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We construct Edgeworth exchange economies equivalent to demand and supply environments

typically used in bargaining models and market experiments. This formulation clearly delin-

eates environment, institution, and behavior for these models and experiments. To illustrate,

we examine results by Gode and Sunder, who simulate random behavior in a double auc-

tion and argue that this institution leads to an efficient allocation, even in the absence of

rationality. We use the Edgeworth exchange representation of their economic environment to

demonstrate that they model individually rational behavior, and show that their model is a

special case of theoretical results by Hurwicz, Radner, and Reiter.
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1 Introduction

Market experiments typically use the technique of induced supply and demand. Through

use of this tool, the extensive literature on experimental markets has empirically established

performance properties of several market institutions under a variety of economic environ-

ments and information structures.1 Although induced supply and demand is an effective
∗ This paper is a substantial revision of “A General Equilibrium Structure for Induced Supply and De-

mand” (UCSD Economics Discussion Paper 96-35).
1Smith [1982] provides a thorough description of the theory and techniques of induced supply and demand.

For extensive surveys of the literature and results on these issues, see Plott [1982] and Smith [1982].
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experimental technique, it can lead to problems in interpretation, since many theoretical

models of resource allocation are formulated in terms of utility functions and endowments.

The objective of our paper is to develop a framework that facilitates interpretation of bar-

gaining models and experiments by spanning this gap between theory and experiment.

We formulate market experiments as Edgeworth exchange economies by demonstrating

that a buyer’s induced demand schedule and a seller’s induced supply schedule can each

be represented as a quasi-linear utility function with an appropriate endowment, and show

that the induced supply and demand formulation typical of market experiments is equiv-

alent to an Edgeworth exchange economy. With this formulation we examine a result by

Gode and Sunder [1993] (henceforth GS), who simulate bargaining in a double auction,

and conclude that the structure of this market institution drives convergence to a Pareto

optimum, even when agents do not seek profits and their bids are random. We demonstrate

that when viewed as an Edgeworth exchange economy, agents in their model exhibit indi-

vidual rationality, by which we mean that no agent attempts to take part in a trade that

fails to increase, or at least leaves constant, his own utility.2 The high efficiency observed in

the GS simulations in fact results from this individual rationality coupled with the agents’

quasi-linear utility functions. Furthermore, we show that the GS simulation model is a

special case of an analytic model developed earlier by Hurwicz, Radner, and Reiter [1975]

(henceforth HRR).

Our analysis in this paper is similar to the approach that Hurwicz [1995] takes in his

critique of the “Coase theorem” (Coase [1960]). Hurwicz shows that Coase’s result – which

states roughly that efficiency in a market with externalities is independent of the assignment

of property rights – holds only in the case of quasi-linear utility. Consequently, Hurwicz’s

recognition of the implicit preference structure underlying Coase’s model has led to a rein-

terpretation of the scope of Coase’s result. In this paper we reformulate supply and demand

environments, commonly studied in market experiments, as Edgeworth exchange economies

and use this formulation to reinterpret the nature and scope of the GS model.

2 The Edgeworth formulation of induced supply and demand

In this section, we describe induced supply and demand environments and formulate these

environments as Edgeworth exchange economies. With this formulation, we develop an

2 This definition follows Luce and Raiffa [1957], pp. 192-3.
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example of the Edgeworth exchange representation of a supply and demand environment.

2.1 Relationship between induced demand and quasi-linear utility

In this subsection we describe an induced demand function, construct a quasi-linear utility

function from the demand function, and then show that the demand function may be derived

from constrained maximization of the quasi-linear utility function, provided the buyer’s

endowment is large enough to yield an interior solution to the maximization problem.

2.1.1 Induced demand and quasi-linear utility

Each buyer j ∈ J has a vector of positive valuations vj = (v1
j , v2

j , . . . , v
nj

j ) for units of the

commodity Y , where v1
j ≥ v2

j ≥ v3
j ≥ · · · ≥ v

nj

j > 0. The total redemption value to buyer j

when she purchases y units is

rj(y) =




0, y = 0;
∑ y

γ=1 v γ
j , y ∈ {1, 2, . . . , nj};

∑ nj

γ=1 v γ
j , y > nj .

We use the buyer’s redemption value function rj(·) to develop the buyer’s quasi-linear

utility function. Define the consumption space of buyer j as X ×Y . Let (xj , yj) ∈ X × Y

denote the number of units of the currency and commodity held by buyer j. Define the

utility function for buyer j as

uj(x, y) = x + rj(y) + Mj (1)

where Mj is a constant.3 Equation (1) is linear in the currency (X) and additively separable

in the currency and commodity, i.e., it is quasi-linear.4

The currency endowment x0
j =

∑nj

γ=1 vγ
j is sufficient to guarantee that buyer j would be

able to purchase each unit at any price at or below the value of the unit.
3The constant Mj has no theoretical implications but is relevant to experimental studies. If Mj = −x0

j

then uj(x
0
j , y0

j ) = 0 so that the autarky outcome has a payoff of 0.

4 Our rationalization of the induced demand schedule as the solution to the constrained maximization

of a quasi-linear utility function is similar to the construction by Smith [1982, p. 932]. Smith derives the

induced demand curve by maximizing the utility function uj(xj , y) = xj + vj(yj) subject to the budget

constraint xj + p yj ≤ 0 where xj ≤ 0 and yj ≥ 0. In contrast, we define finite positive endowments of X for

buyers and sellers that are consistent with the typical specification of consumer choice problems.
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2.1.2 Derivation of induced demand from utility

Lemma 1 Buyer j’s demand for Y – derived from maximization of equation (1) for a

sufficiently large endowment – is characterized by vj .

Proof The vector vj of valuations is non-increasing, so that the total valuation function

vj(y) is (weakly) concave for y ∈ Yj . Therefore the utility function uj(x, y) = x+Mj +vj(y)

is (weakly) quasi-concave. The theorem of the maximum implies that for any given price p

of good Y , the set of values that maximize uj(·) is convex.

Let yj(p) be the demand of buyer j at price p, i.e., the solution to the maximization

problem for uj(x, y). We complete the proof of the lemma by showing that the demand

yj(p) has the same graph as the vector vj of values. If p = vk
j , then yj(p) ∈ {k − 1, k}. If

p ∈ (vk+1
j , vk

j ), then yj(p) = k, for a sufficiently large endowment.

2.2 Relationship between induced supply and quasi-linear utility

In this subsection we describe an induced supply function, construct a quasi-linear utility

function from this supply function, and then show that the supply function may be de-

rived from constrained maximization of the quasi-linear utility function, with a commodity

endowment of Y equal to the number of units for which the seller has a finite unit cost.

2.2.1 Induced supply schedule and quasi-linear utility

The supply function for seller i is given by his marginal cost schedule, which is represented

by the vector ci = (c1
i , c2

i , c3
i , . . . , cmi

i ). Seller i has finite selling capacity, so that the

marginal cost of any unit beyond mi is infinite. Element c k
i is interpreted as the marginal

cost incurred by seller i when he produces his kth unit. For k = {0, 1, 2, . . . , mi} the

redemption value for seller i when he sells k units is

ri(k) =




0, k = 0;

−∑ k
ι=1 c ι

i , k ∈ {1, 2, . . . , mi};
−∞, k > mi.

We use the seller’s redemption value function to develop the seller’s quasi-linear utility

function. Define the quasi-linear utility function for seller i as

ui(x, y) =




x + ri(mi − y), 0 ≤ y ≤ mi;

x, y > mi.
(2)

Set the commodity endowment for seller i to y0
i = mi.
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2.2.2 Derivation of induced supply from utility

Lemma 2 Seller i’s supply of Y , which is derived from maximization of equation (2), is

characterized by ci.

Proof The vector ci of costs is non-decreasing, so that the total valuation function ri(k)

is (weakly) concave for k ∈ {1, 2, . . . , y0
i }, as is ri(y0

i − y) for y ∈ {1, 2, . . . , y0
i }. Therefore

the utility function ui(x, y) = x + ri(y0
i − y) is (weakly) quasi-concave. The theorem of the

maximum implies that for any given price p of good Y , the set of values that maximize ui(·)
is convex.

Let yi(p) be the supply of seller i at price p, i.e., the solution to the maximization

problem for ui(x, y). We complete the proof of the lemma by showing that the supply yi(p)

has the same graph as the vector ci of costs. If p = ck
i , then yi(p) ∈ {y0

i − k, y0
i − k + 1}. If

p ∈ (ck
i , ck+1

i ), then yi(p) = y0
i − k.

2.3 Example

Figure 1 (a) shows a simple example of an induced supply and demand environment. In the

example there is one seller with cost vector ci = (1, 3, 5, 7) and one buyer with the vector

of values vj = (8, 6, 4, 2).

Figures 1 (b) and (c) show indifference curves for the buyer and for the seller. The

buyer has endowment (x0, y0) = (20, 0), the utility function dual to the vector of valuations

vj = {8, 6, 4, 2}, and the constant Mj = −20. Figure 1 (b) shows three indifference

curves for the utility function uj(x, y), constructed using equation (1). The indifference

curves uj(x, y) = 4 and uj(x, y) = 6 are horizontal translations of the indifference curve

uj(x, y) = 0, i.e., preferences are quasi-linear. Figure 1 (b) also shows the buyer’s demand

for two prices: p = 4, and p = 5. When the price is p = 4 (which is equal to v3
j ) the

set of utility maximizing choices of the commodity (Y ) is yj(4) ∈ {2, 3}. If p = 5 then

p ∈ (4, 6) = (v3
j , v2

j ), so the demand is yj(5) = 2. The budget sets generated by these two

prices are depicted in Figure 1 (b), along with the utility maximizing choice sets associated

with these prices. Figure 1 (c), which shows several indifference curves for the seller with

the utility function defined in equation (2), is interpreted analogously to Figure 1 (b). The

buyer’s and seller’s utility functions are combined in the Edgeworth diagram in Figure 1 (d).

We can see in Figure 1 (d) that the range of competitive equilibrium prices in the

Edgeworth exchange representation of this example is p ∈ [4, 5], just as when the example
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is represented as an induced supply and demand environment in Figure 1 (a). At the lower

price ratio, p = py

px
= 4, which is the steeper price line in Figure 1 (d), the buyer is indifferent

between 2 and 3 units and the seller would like to sell 2 units. This of course corresponds

to the net demands for buyer and seller in Figure 1 (a). A similar observation holds for the

high end of the equilibrium price range (p = 5).

uA(x, y) = 0 �

uA(x, y) = 4���
uA(x, y) = 6�

uB(x, y) = 0 �

uB(x, y) = 4���
uB(x, y) = 6�

(a) Supply and demand (b) Buyer’s utility

(c) Seller’s utility (d) Edgeworth diagram
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Figure 1: Supply and demand, indifference curves, and Edgeworth diagram.
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3 The “ZI” model, individual rationality, and the B-process

The framework developed in Section 2 can be used to clarify aspects of the model by Gode

and Sunder [1993] of “zero-intelligence” (ZI) traders. Their model shows that the bargaining

behavior of these traders, whose actions are random bids and offers in a double auction

trading institution, leads to efficient outcomes. This is often considered surprising, since

(according to GS) ZI agents “do not maximize or seek profits.”5 There are three conclusions

that we draw from the Edgeworth exchange representation of the GS simulations. First,

their agents exhibit individual rationality (according to the definition of Luce and Raiffa

[1957]) and as a result, they do in fact seek profits. Secondly, we compare agent behavior

and the market institution that GS employ in their simulations to the results in Hurwicz,

Radner, and Reiter [1975] (HRR) and show that it is this profit seeking behavior that

produces efficient outcomes in the GS model. Finally, we examine performance of ZI agents

in environments with non-convexities and show that their result is not as general as the

HRR result.

3.1 The “ZI” model reinterpreted

The DA market simulations in GS fit perfectly into the Edgeworth exchange representa-

tion developed in Section 2. GS report results of simulations with two primary treatment

variables. We focus our attention on the treatment in which high allocative efficiency is

observed : the treatment that they refer to as “budget constrained.” In this treatment, each

buyer has a positive valuation for a single unit, and each seller can sell a single unit at some

positive marginal cost. Bargaining in the Gode and Sunder model takes place in a double

auction. In this institution, those sellers who have not already sold their unit may submit

an ask at any time, and those buyers who have not already purchased a unit may submit

a bid at any time. When a bid and an ask cross, a trade occurs at a price that is equal to

the bid if the bid precedes the ask or at the ask if the ask precedes the bid.

A buyer in the GS model submits bids that are drawn from a uniform distribution

between 0 and her unit value; likewise, a seller submits asks that are randomly drawn

between his unit cost and some upper bound. According to GS, “the market forbade traders

to buy or sell at a loss because then they would not have been able to settle their accounts.”

This argument is inconsistent in the case of sellers, since each seller has an endowment

5See GS [1993, p. 120]. Emphasis added.
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of a single unit of the commodity, and would therefore be able to settle any trade at a

non-negative price. In the case of a buyer, a natural interpretation of her inability to settle

her account is that she does not have sufficient currency endowment to purchase at the

negotiated price. Viewed within the framework of Section 2, the constraint that GS impose

implies that buyer i has a currency endowment x0
i equal to her unit value. Therefore, for

each buyer the set of feasible trades6 is identical to the set of individually rational trades.

This ambiguity allows one to interpret “ZI” buyer behavior in either of two ways: (1) a

buyer submits random bids from her feasible set of trades, or (2) a buyer submits bids that

lie in her upper contour set. Since the first explanation is consistent only if each buyer’s

endowment is equal to the buyer’s valuation, and since this is not generically true, we adopt

the second explanation, and conclude that the “ZI” traders exhibit individual rationality.

We now have a complete description of a stochastic process and a microeconomic system

in which performance can be evaluated. Their simulations generate high allocative efficiency

in all markets. An efficiency loss can only occur when there is a trade of an extra-marginal

unit (that is, a unit with a value below or a unit with a cost above the competitive equilib-

rium price). The double auction that GS consider prevents buyers from reselling a unit to

another buyer with a higher valuation, and prevents a seller from purchasing from a seller

with a lower unit cost.7 When this result was first introduced, it was considered surprising.

However, when viewed from the perspective of the equivalent Edgeworth exchange repre-

sentation, it is apparent that the high allocative efficiency observed when agents randomly

propose trades in their upper contour sets is a special case of the HRR model, as we describe

in the next subsection.

3.2 The ZI model and the B-process

The B-process is a simple non-tatonnement trading institution. With a discrete commodity

space, as in a market experiment, random sequences of proposed trades submitted from

each agent result in a sequence of net trades. An element of the sequence of net trades is

non-zero if submitted proposals include a compatible trade (i.e., there is at least one subset

of trade proposals for which net trades sum to zero). HRR show under weak conditions
6 ‘Feasible’ trade here means that a trade is feasible for both parties given their endowments and also

that the trade is permissible under the rules of the institution.

7 In a sequel to GS, Gode and Sunder [1997] present an analysis of the magnitude of expected efficiency

losses in their simulations.
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on preferences and technologies that if at every iteration of the bargaining process, each

individual only submits trade proposals from their individually feasible and rational choice

set, then the process converges to a Pareto optimal allocation in finite time.

This result applies to a wide class of environments that includes (but is not limited

to) the one that GS consider. Recall that we earlier demonstrated that the GS “budget

constrained” agents generate proposed trades randomly from their individually rational and

feasible choice sets. The strong similarity between the HRR and the GS models generates

optimism that the GS results are robust. For example, it would be interesting to know

whether ZI behavior in a single unit sequential double auction generates Pareto optimal

outcomes for any private good economy without externalities. Unfortunately this is not

the case: there are many environments for which ZI behavior does not generate Pareto

optimal outcomes in the DA. In fact, we have already seen that trades which include extra-

marginal units, combined with the prohibition on retrading, can lead to non-Pareto optimal

outcomes even in quasi-linear environments. Even if we dismiss this scenario as unrealistic

since many markets allow agents to act as a buyer and seller, there are still classes of

environments for which Pareto optimal outcomes are not guaranteed. We identify these

classes of environments by examining differences between the double auction adopted by

GS and the B-process.
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Figure 2: Edgeworth diagram with nonconvexity in preferences.

In the double auctions GS consider, each contract is for a fixed quantity of one unit
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of the commodity (Y ); in the B-process contracts do not have a quantity restriction. The

quantity restriction can prevent convergence to a Pareto optimal allocation. Figure 2 shows

a simple Edgeworth exchange economy in which agent A (the buyer of commodity Y ) has

convex preferences, but agent B has a nonconvexity. The endowment point for A and B is

shown as a square at (3.5, 1) (from the perspective of A). The agents’ indifference curves

are presented for the endowments: A’s indifference curve is marked by filled circles at its

kinks and B’s indifference curve is marked by the empty circles at its kinks. If A and B

adopt “ZI” behavior in a single unit double auction, then the set of bids for one unit of

commodity Y that would increase the utility of agent A are depicted by the set SA and

the set of offers that would increase the utility of agent B are represented by the set SB.

(In the representation for agent B, we assume, as in the GS model, that there is an upper

bound on the offers that are made by a seller, although the seller would benefit from offers

above this upper bound if the offer were accepted.) Since there is no overlap in these two

supports no Pareto improving trade will be realized. However, a Pareto improving trade

would occur if B could sell two units of Y to A for a price between py

px
= 11

8 and py

px
= 1. The

HRR model guarantees convergence to a Pareto optimum, even in the case of non-convexity

of one of the agent’s indifference curves, but we see easily in the Edgeworth representation

that non-convexity can impede convergence with quantity restrictions.

4 Conclusions

The method of induced costs and values is a powerful and effective tool for conducting

market experiments and defining bargaining models. However, our Edgeworth exchange

formulation is a potent tool for interpreting and understanding these bargaining models and

market experiments.

In Section 3 we demonstrate that the Edgeworth formulation of supply and demand

environments clarifies the role of behavior and institution in the Gode and Sunder simula-

tions of “Zero-intelligence” bargaining in the double auction. Once agents’ objectives are

represented as quasi-linear utility functions and these are combined to create an Edgeworth

exchange economy, it is apparent that their behavior is individually rational and that the

result of the ZI model is a special case of the B-process model by Hurwicz, Radner, and

Reiter, who show analytically that individual rationality is sufficient to produce Pareto

optimal outcomes for randomly generated bids in the B-process.
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Since individual rationality in these mechanisms is sufficient to achieve Pareto optimal

outcomes in an Edgeworth exchange economy with quasi-linear utility, it is natural to ask

what behavior is sufficient to achieve competitive equilibrium (CE) outcomes in Edgeworth

exchange. Representation of supply and demand environments as Edgeworth exchange

environments helps address this issue, since we can regard models such as Rustichini, Sat-

terthewaite, and Williams [1994] – who analyze convergence to CE in the k-double auction

– or Gjerstad and Dickhaut [1998] – who simulate convergence to CE in a double auction –

as convergent models of bargaining in Edgeworth exchange. This is important for two rea-

sons. First, interpretation of these models as Edgeworth exchange economies in the special

case of quasi-linear utility may provide insights that facilitate their extension to models of

bargaining in Edgeworth exchange more generally. In addition, once extensions of bargain-

ing models to Edgeworth exchange are formulated, their restriction to the quasi-linear case

should be identical to their formulation in terms of supply and demand. Second, exten-

sion of bargaining models to general Edgeworth exchange economies is important because

of the possible impact of restricting the models to the case of preferences that don’t pro-

duce income effects. This issue has been demonstrated by Hurwicz, whose critique of the

Coase theorem identifies the limitations of restricting attention exclusively to the case of

quasi-linear utility.
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