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1 Introduction

Many interactions, both economic and social, involve network relationships. Most

importantly, in many interactions the specifics of the network structure are impor-

tant in determining the outcome. The most basic example is the exchange of infor-

mation. For instance, personal contacts play critical roles in obtaining information

about job opportunities (e.g., Boorman (1975), Montgomery (1991), Topa (1996), Ar-

row and Borzekowski (2000), Calvo-Armengol (2000), Calvo-Armengol and Jackson

(2001)). Networks also play important roles in the trade and exchange of goods in non-

centralized markets (e.g., Tesfatsion (1997, 1998), Weisbuch, Kirman and Herreiner

(1995)), and in providing mutual insurance in developing countries (e.g., Fafchamps

and Lund (1997)).

Although it is clear that network structures are of fundamental importance in de-

termining outcomes of a wide variety of social and economic interactions, far beyond

those mentioned above, we are only beginning to develop theoretical models that are

useful in a systematic analysis of how such network structures form and what their

characteristics are likely to be. This paper outlines such an area of research on net-

work formation. The aim is to develop a systematic analysis of how incentives of

individuals to form networks align with social efficiency. That is, when do the private

incentives of individuals to form ties with one another lead to network structures that

maximize some appropriate measure of social efficiency?

This paper synthesizes and reviews some results from the previous literature on

this issue,1 and also presents some new results and insights into circumstances under

private incentives to form networks align with social efficiency.

The paper is structured as follows. The next section provides some basic definitions

1There is a large and growing literature on network interactions, and this paper does not attempt to
survey it. Instead, the focus here is on a strand of the economics literature that uses game theoretic
models to study the formation and efficiency of networks. Let me offer just a few tips on where
to start discovering the other portions of the literature on social and economic networks. There is
an enormous “social networks” literature in sociology that is almost entirely complementary to the
literature that has developed in economics. An excellent and broad introductory text to the social
networks literature is Wasserman and Faust (1994). Within that literature there is a branch which
has used game theoretic tools (e.g., studying exchange through cooperative game theoretic concepts).
A good starting reference for that branch is Bienenstock and Bonacich (1997). There is also a game
theory literature that studies communication structures in cooperative games. That literature is a bit
closer to that covered here, and the seminal reference is Myerson (1977) which is discussed in various
pieces here. A nice overview of that literature is provided by Slikker (2000).
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and a few simple stylized examples of network settings that have been explored in the

recent literature. Next, three definitions of efficiency of networks are presented. These

correspond to three perspectives on societal welfare which differ based on the degree

to which intervention and transfers of value are possible. The first is the usual notion

of Pareto efficiency, where a network is Pareto efficient if no other network leads to

better payoffs for all individuals of the society. The second is the much stronger

notion of efficiency, where a network is efficient if it maximizes the sum of payoffs of

the individuals of the society. This stronger notion is essentially one that considers

value to be arbitrarily transferable across individuals in the society. The third is an

intermediate notion of efficiency that allows for a natural, but limited class of transfers

to be made across individuals of the society. With these definitions of efficiency in hand,

the paper turns its focus on the existence and properties of pairwise stable networks,

i.e., those where individuals have no incentives to form any new links or sever any

existing links. Finally, the compatibility of the different efficiency notions and pairwise

stability is studied from a series of different angles.

2 Definitions

Networks2

A set N = {1, . . . , n} of individuals are connected in a network relationship. These

may be people, firms, or other entities depending on the application.

The network relationships are reciprocal and the network is thus modeled as a non-

directed graph. Individuals are the nodes in the graph and links indicate bilateral

relationships between the individuals.3 Thus, a network g is simply a list of which

pairs of individuals are linked to each other. If we are considering a pair of individuals

i and j, then {i, j} ∈ g indicates that i and j are linked under the network g.

There are many variations on networks which can be considered and are appropriate

for different sorts of applications.4 Here it is important that links are bilateral. This is

2The notation and basic definitions follow Jackson and Wolinsky (1996) when convenient.
3The word “link” follows Myerson’s (1977) usage. The literature in economics and game theory

has largely followed that terminology. In the social networks literature in sociology, the term “tie”
is standard. Of course, in the graph theory literature the terms vertices and edges (or arcs) are
standard. I will try to keep a uniform usage of individual and link in this paper, with the appropriate
translations applying.

4A nice overview appears in Wasserman and Faust (1994).
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appropriate, for instance, in modeling many social ties such as marriage, friendship, as

well as a variety of economic relationships such as alliances, exchange, and insurance,

among others. The key important feature is that it takes the consent of both parties

in order for a link to form. If one party does not consent, then the relationship cannot

exist. There are other situations where the relationships may be unilateral: for instance

advertising or links to web sites. Those relationships are more appropriately modeled by

directed networks.5 As some degree of mutual consent is the more commonly applicable

case, I focus attention here on non-directed networks.

An important restriction of such a simple graph model of networks is that links

are either present or not, and there is no variation in intensity. This does not dis-

tinguish, for instance, between strong and weak ties which has been an important

area of research.6 Nevertheless, the simple graph model of networks is a good first

approximation to many economic and social interactions and a remarkably rich one.

For simplicity, write ij to represent the link {i, j}, and so ij ∈ g indicates that i

and j are linked under the network g.

More formally, let gN be the set of all subsets of N of size 2. G = {g ⊂ gN} denotes

the set of all possible networks or graphs on N , with gN being the full or complete

network.

For instance, if N = {1, 2, 3} then g = {12, 23} is the network where there is a link

between individuals 1 and 2, a link between individuals 2 and 3, but no link between

individuals 1 and 3.

The network obtained by adding link ij to an existing network g is denoted by g+ij

and the network obtained by deleting link ij from an existing network g is denoted

g − ij.

For any network g, let N(g) be the set of individuals who have at least one link in

the network g. That is, N(g) = {i | ∃j s.t. ij ∈ g}.
Paths and Components

Given a network g ∈ G, a path in g between i an j is a sequence of individuals

i1, . . . , iK such that ikik+1 ∈ g for each k ∈ {1, . . . , K − 1}, with i1 = i and iK = j.

A (connected) component of a network g, is a nonempty subnetwork g′ ⊂ g, such

that

5For some analysis of the formation and efficiency of such networks see Bala and Goyal (2000) and
Dutta and Jackson (2000).

6For some early references in that literature, see Granovetter (1973) and Boorman (1975).
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• if i ∈ N(g′) and j ∈ N(g′) where j 6= i, then there exists a path in g′ between i

and j, and

• if i ∈ N(g′) and j /∈ N(g′) then there does not exist a path in g between i and j.

Thus, the components of a network are the distinct connected subgraphs of a net-

work.

The set of components of g is denoted C(g). Note that g = ∪g′∈C(g) g′.

Value Functions

Different network configurations lead to different values of overall production or

overall utility to a society. These various possible valuations are represented via a

value function.

A value function is a function v : G → IR.

I maintain the normalization that v(∅) = 0.

The set of all possible value functions is denoted V .

Note that different networks that connect the same individuals may lead to different

values. This makes a value function a much richer object than a characteristic function

used in cooperative game theory. For instance, a soceity N = {1, 2, 3} may have a

different value depending on whether it is connected via the network g = {12, 23} or

the network gN = {12, 23, 13}.
The special case where the value function depends only on the groups of agents

that are connected, but not how they are connected, corresponds to the communication

networks considered by Myerson (1977).7 In most applications, however, there may be

some cost to links and thus some difference in total value across networks even if they

connect the same sets of players, and so this more general and flexible formulation is

more powerful and encompasses many more applications.

It is also important to note that the value function can incorporate costs to links

as well as benefits. It allows for arbitrary ways in which costs and benefits may vary

7To be precise, Myerson started with a transferable utility cooperative game in characteristic func-
tion form, and layered on top of that network structures that indicated which agents could communi-
cate. A coalition could only generate value if its members were connected via paths in the network.
But, the particular structure of the network did not matter, as long as the coalition’s members were
connected somehow. In the approach taken here (following Jackson and Wolinsky (1996)), the value
is a function that is allowed to depend on the specific network structure. A special case is where v(g)
only depends on the coalitions induced by the component structure of g, which corresponds to the
communication games.
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across networks. This means that a value function allows for externalities both within

and across components of a network.

Allocation Rules

A value function only keeps track of how the total societal value varies across differ-

ent networks. We also wish to keep track of how that value is allocated or distributed

among the individuals forming a network.

An allocation rule is a function Y : G× V → IRN such that
∑

i Yi(g, v) = v(g) for

all v and g.8

It is important to note that an allocation rule depends on both g and v. This

allows an allocation rule to take full account of an individual i’s role in the network.

This includes not only what the network configuration is, but also and how the value

generated depends on the overall network structure. For instance, consider a network

g = {12, 23} in a situation where v(g) = 1. Individual 2’s allocation might be very

different on what the value of other networks are. For instance, if v({12, 23, 13}) = 0 =

v({13}), then in a sense 2 is essential to the network and may receive a large allocation.

If on the other hand v(g′) = 1 for all networks, then 2’s role is not particularly special.

This information can be relevant, which is why the allocation rule is allowed (but not

required) to depend on it.

There are two different perspectives on allocation rules that will be important in

different contexts. First, an allocation rule may simply represent the natural payoff

to different individuals depending on their role in the network. This could include

bargaining among the individuals, or any form of interaction. This might be viewed as

the “naturally arising allocation rule” and is illustrated in the examples below. Second,

an allocation rule can be an object of economic design, i.e., representing net payoffs

resulting from natural payoffs coupled with some intervention via transfers, taxes, or

subsidies. In what follows we will be interested in when the natural underlying payoffs

lead individuals to form efficient networks, as well as when intervention can help lead

to efficient networks.

Before turning to that analysis, let us consider some examples of models of social

and economic networks and the corresponding value functions and allocation rules that

describe them.

Some Illustrative Examples

8This definition builds balance (
∑

i Yi(g, v) = v(g)) into the definition of allocation rule. This
is without loss of generality for the discussion in this paper, but there may be contexts in which
imbalanced allocation rules are of interest.
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Example 1 The Connections Model (Jackson and Wolinsky (1996))

The basic connections model is described as follows. Links represent social relation-

ships between individuals; for instance friendships. These relationships offer benefits in

terms of favors, information, etc., and also involve some costs. Moreover, individuals

also benefit from indirect relationships. A “friend of a friend” also results in some

benefits, although of a lesser value than a “friend,” as do “friends of a friend of a

friend” and so forth. The benefit deteriorates in the “distance” of the relationship. For

instance, in the network g = {12, 23, 34} individual 1 gets a benefit δ from the direct

connection with individual 2, an indirect benefit δ2 from the indirect connection with

individual 3, and an indirect benefit δ3 from the indirect connection with individual 4.

For δ < 1 this leads to a lower benefit from an indirect connection than a direct one.

Individuals only pay costs, however, for maintaining their direct relationships. These

payoffs and benefits may be relation specific, and so are indexed by ij.

Formally, the payoff player i receives from network g is

Yi(g) =
∑
j 6=i

δ
t(ij)
ij − ∑

j:ij∈g

cij,

where t(ij) is the number of links in the shortest path between i and j (setting t(ij) =

∞ if there is no path between i and j).9 The value function in the connections model

of a network g is simply v(g) =
∑

i Yi(g).

Some special cases are of particular interest. The first is the “symmetric connections

model” where there are common δ and c such that δij = δ and cij = c for all i and j.

This case is studied extensively in Jackson and Wolinsky (1996).

The second is one with spatial costs, where there is a geography to locations and

cij is related to distance (for instance, if individuals are spaced equally on a line then

costs are proportional to |i − j|). This is studied extensively in Johnson and Gilles

(2000).

Example 2 The Co-Author Model (Jackson and Wolinsky (1996))

The co-author model is described as follows. Each individual is a researcher who

spends time working on research projects. If two researchers are connected, then they

are working on a project together. The amount of time researcher i spends on a

9t(ij) is sometimes referred to as the geodesic.
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given project is inversely related to the number of projects, ni, that he is involved in.

Formally, i’s payoff is represented by

Yi(g) =
∑

j:ij∈g

1

ni

+
1

nj

+
1

ninj

for ni > 0, and Yi(g) = 0 if ni = 0.10 The total value is v(g) =
∑

i Yi(g).

Note that in the co-author model there are no directly modeled costs to links. Costs

come indirectly in terms of diluted synergy in interaction with co-authors.

Example 3 A Bilateral Bargaining Model (Corominas-Bosch (1999))

Corominas-Bosch (1999) considers a bargaining model where buyers and sellers

bargain over prices for trade. A link is necessary between a buyer and seller for a

transaction to occur, but if an individual has several links then there are several possi-

bilities as to whom they might transact with. Thus, the network structure essentially

determines bargaining power of various buyers and sellers.

More specifically, each seller has a single unit of an indivisible good to sell which

has no value to the seller. Buyers have a valuation of 1 for a single unit of the good. If

a buyer and seller exchange at a price p, then the buyer receives a payoff of 1− p and

the seller a payoff of p. A link in the network represents the opportunity for a buyer

and seller to bargain and potentially exchange a good.11

Corominas-Bosch models bargaining via the following variation on a Rubinstein

bargaining protocol. In the first period sellers simultaneously each call out a price. A

buyer can only select from the prices that she has heard called out by the sellers to

whom she is linked. Buyers simultaneously respond by either choosing to accept some

single price offer they received, or to reject all price offers they received. 12 If there

are several sellers who have called out the same price and/or several buyers who have

accepted the same price, and there is any discretion under the given network connec-

tions as to which trades should occur, then there is a careful protocol for determining

10It might also make sense to set Yi(g) = 1 when an individual has no links, as the person can still
produce reseach! This is not in keeping with the normalization of v(∅) = 0, but it is easy to simply
subtract 1 from all payoffs and then view Y as the extra benefits above working alone.

11In the Corominas-Bosch framework links can only form between buyers and sellers. One can fit
this into the more general setting where links can form between any individuals, by having the value
function and allocation rule ignore any links except those between buyers and sellers.

12So buyers accept or reject price offers, rather than accepting or rejecting the offer of some specific
seller.
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which trades occur (which is essentially designed to maximize the number of eventual

transactions).

At the end of the period, trades are made and buyers and sellers who have traded

are cleared from the market. In the next period the situation reverses and buyers

call out prices. These are then either accepted or rejected by the sellers connected

to them in the same way as described above. Each period the role of proposer and

responder switches and this process repeats itself indefinitely, until all remaining buyers

and sellers are not linked to each other.

Buyers and sellers are impatient and discount according to a common discount

factor 0 < δ < 1. So a transaction at price p in period t is worth only δtp to a seller

and δt(1− p) to a buyer.

Corominas-Bosch outlines a subgame perfect equilibrium of the above game, and

this equilibrium has a very nice interpretation as the discount factor approaches 1.

Some easy special cases are as follows. First, consider a seller linked to each of two

buyers, who are only linked to that seller. Competition between the buyers to accept

the price will lead to an equilibrium price of 1. So the payoff to the seller in such a

network will be 1 while the payoff to the buyers will be 0. This is reversed for a single

buyer linked to two sellers. Next, consider a single seller linked to a single buyer. That

corresponds to Rubinstein bargaining, and so the price (in the limit as δ → 1) is 1/2,

as are the payoffs to the buyer and seller.

More generally, which side of the market outnumbers the other is a bit tricky

to determine as it depends on the overall link structure which can be much more

complicated than that described above. Quite cleverly, Corominas-Bosch describes an

algorithm13 for subdividing any network into three types of sub-networks: those where

a set of sellers are collectively linked to a larger set of buyers and sellers get payoffs

of 1 and buyers 0, those where the collective set of sellers is linked to a same-sized

collective set of buyers and each get payoff of 1/2, and those where sellers outnumber

13The decomposition is based on Hall’s (marriage) Theorem, and works roughly as follows. Start
by identifying groups of two or more sellers who are all linked only to the same buyer. Regardless of
that buyer’s other connections, take that set of sellers and buyer out as a subgraph where that buyer
gets a payoff of 1 and the sellers all get payoffs of 0. Proceed, inductively in k, to identify subnetworks
where some collection of more than k sellers are collectively linked to k or fewer buyers. Next reverse
the process and progressively in k look for at least k buyers collectively linked to fewer than k sellers,
removing such subgraphs and assigning those sellers payoffs of 1 and buyers payoffs of 0. When all
such subgraphs are removed, the remaining subgraphs all have “even” connections and earn payoffs
of 1/2.
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buyers and sellers get payoffs of 0 and buyers 1. This is illustrated in Figure 1 for a

few networks.

[Insert Figure 1 here]

While the algorithm prevents us from providing a simple formula for the allocation

rule in this model, the important characteristics of the allocation rule for our purposes

can be summarized as follows.

(i) if a buyer gets a payoff of 1, then some seller linked to that buyer must get a

payoff of 0, and similarly if the roles are reversed,

(ii) a buyer and seller who are only linked to each other get payoffs of 1/2, and

(iii) a connected component is such that all buyers and all sellers get payoffs of 1/2

if and only if any subgroup of k buyers in the component can be matched with

at least k distinct sellers and vice versa.

In what follows, I will augment the Corominas-Bosch model to consider a cost to

each link of cs for sellers and cb for buyers. So the payoff to an individual is their

payoff from any trade via the bargaining on the network, less the cost of maintaining

any links that they are involved with.

Example 4 A Model of Buyer-Seller Networks (Kranton and Minehart (1998))

The Kranton and Minehart model of buyer-seller networks is similar to the Corominas-

Bosch model described above except that the valuations of the buyers for a good are

random and the determination of prices is made through an auction rather than alter-

nating offers bargaining.

The Kranton and Minehart model is described as follows. Again, each seller has

an indivisible object for sale. Buyers have independently and identically distributed

utilities for the object, denoted ui. Each buyer knows her own valuation, but only the

distribution over other buyers’ valuations, and similarly sellers know only the distribu-

tion of buyers’ valuations.

Again, link patterns represent the potential transactions, however, the transactions

and prices are determined by an auction rather than bargaining.In particular, prices

rise simultaneously across all sellers. Buyers drop out when the price exceeds their

valuation (as they would in an English or ascending oral auction). As buyers drop out,
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there emerge sets of sellers for whom the remaining buyers still linked to those sellers

is no larger than the set of sellers. Those sellers transact with the buyers still linked

to them.14 The exact matching of whom trades with whom given the link pattern is

done carefully to maximize the number of transactions. Those sellers and buyers are

cleared from the market, and the prices continue to rise among remaining sellers, and

the process repeats itself.

For each link pattern every individual has a well-defined expected payoff from the

above described process (from an ex-ante perspective before buyers know their ui’s).

From this expected payoff can be deducted costs of links to both buyers and sellers.15

This leads to well-defined allocation rules Yi’s and a well-defined value function

v. The main intuitions behind the Kranton and Minehart model are easily seen in a

simple case, as follows.

Consider a situation with one seller and n buyers. Let the ui’s be uniformly and

independently distributed on [0, 1]. In this case the auction simplifies to a standard

second-price auction. If k is the number of buyers linked to the seller, the expected

revenue to the seller is the second order statistic out of k, which is k−1
k+1

for a uniform

distribution. The corresponding expected payoff to a bidder is 1
k(k+1)

.16

For a cost per link of cs to the seller and cb to the buyer, the allocation rule for any

network g with k ≥ 1 links between the buyers and seller is17

Yi(g) =


1

k(k+1)
− cb if i is a linked buyer

k−1
k+1

− kcs if i is the seller

0 if i is a buyer without any links.

(1)

The value function is then

v(g) =
∑

i

Yi(g) =
k

k + 1
− k(cs + cb).

14It is possible, that several buyers drop out at once and so one or more of the buyers dropping out
will be selected to transact at that price.

15Kranton and Minehart (1998) only consider costs of links to buyers. They also consider potential
investment costs to sellers of producing a good for sale, but sellers do not incur any cost per link.
Here, I will consider links as being costly to sellers as well as buyers.

16Each bidder has a 1
k chance of being the highest valued bidder. The expected valuation of the

highest bidder for k draws from a uniform distribution on [0,1] is k
k+1 , and the expected price is the

expected second highest valuation which is k−1
k+1 . Putting these together, the ex-ante expected payoff

to any single bidder is 1
k

(
k

k+1 − k−1
k+1

)
= 1

k(k+1) .
17For larger numbers of sellers, the Yi’s correspond to the V b

i and V s
i ’s in Kranton and Minehart

(1999) (despite their footnote 16) with the subtraction here of a cost per link for sellers.

11



Thus, the total value of the network is simply the expected value of the good to the

highest valued buyer less the cost of links.

Similar calculations can be done for larger numbers of sellers and more general

network structures.

Some Basic Properties of Value and Allocation Functions

Component Additivity

A value function is component additive if v(g) =
∑

g′∈C(g) v(g′) for all g ∈ G.

Component additive value functions are ones for which the value of a network is

simply the sum of the value of its components. This implies that the value of one

component does not depend on the structure of other components. This condition is

satisfied in Examples 1–4, and is satisfied in many economic and social situations. It

still allows for arbitrary ways in value can depend on the network configuration within

a component. Thus, it allows for externalities among individuals within a component.

An example where component additivity is violated is that of alliances among com-

peting firms (e.g., see Goyal and Joshi (2000)), where the payoff to one set of intercon-

nected firms may depend on how other competing firms are interconnected. So, what

component additivity rules out is externalities across components of a network, but it

still permits them within components.

Component Balance

When a value function is component additive, the value generated by any compo-

nent will often naturally be allocated to the individuals among that component. This

is captured in the following definition.

An allocation rule Y is component balanced if for any component additive v, g ∈ G,

and g′ ∈ C(g) ∑
i∈N(g′)

Yi(g
′, v) = v(g′).

Note that component balance only makes requirements on Y for v’s that are com-

ponent additive, and Y can be arbitrary otherwise. If v is not component additive,

then requiring component balance of an allocation rule Y (·, v) would necessarily violate

balance.

Component balance is satisfied in situations where Y represents the value naturally

accruing in terms of utility or production, as the members of a given component have

no incentive to distribute productive value to members outside of their component,

12



given that there are no externalities across components (i.e., a component balanced v).

This is the case in Examples 1–4, as in many other contexts.

Component balance may also be thought of as a normative property that one wishes

to respect if Y includes some intervention by a government or outside authority -

as it requires that that value generated by a given component be allocated among

the members of that component. An important thing to note is that if Y violates

component balance, then there will be some component receiving less than its net

productive value. That component could improve the standing of all its members by

seceding. Thus, one justification for the condition is as a component based participation

constraint.18

Anonymity and Equal Treatment

Given a permutation of individuals π (a bijection from N to N) and any g ∈ G, let

gπ = {π(i)π(j)|ij ∈ g}. Thus, gπ is a network that shares the same architecture as g

but with the specific individuals permuted.

A value function is anonymous if for any permutation π and any g ∈ G, v(gπ) =

v(g).

Anonymous value functions are those such that the architecture of a network mat-

ters, but not the labels of individuals.

Given a permutation π, let vπ be defined by vπ(g) = v(gπ−1
) for each g ∈ G.

An allocation rule Y is anonymous if for any v, g ∈ G, and permutation π,

Yπ(i)(g
π, vπ) = Yi(g, v).

Anonymity of an allocation rule requires that if all that has changed is the labels of

the agents and the value generated by networks has changed in an exactly correspond-

ing fashion, then the allocation only change according to the relabeling. Of course,

anonymity is a type of fairness condition that has a rich axiomatic history, and also

naturally arises situations where Y represents the utility or productive value coming

directly from some social network.

Note that anonymity allows for asymmetries in the ways that allocation rules oper-

ate even in completely symmetric networks. For instance, anonymity does not require

that each individual in a complete network get the same allocation. That would be

18This is a bit different from a standard individual rationality type of constraint given some outside
option, as it may be that the value generated by a component is negative.
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true only in the case where v was in fact anonymous. Generally, an allocation rule can

respond to different roles or powers of individuals and still be anonymous.

An allocation rule Y satisfies equal treatment of equals if for any anonymous v ∈ V,

g ∈ G, i ∈ N , and permutation π such that gπ = g, Yπ(i)(g, v) = Yi(g, v).

Equal treatment of equals says that all allocation rule should give the same payoff to

individuals who play exactly the same role in terms of symmetric position in a network

under a value function that depends only on the structure of a network. This is implied

by anonymity, which is seen by noting that (gπ, vπ) = (g, v) for any anonymous v and

a π as described in the definition of equal treatment of equals. Equal treatment of

equals is more of a symmetry condition that anonymity, and again is a condition that

has a rich background in the axiomatic literature.

Some Prominent Allocation Rules

There are several allocation rules that are of particular interest that I now discuss.

The first naturally arises in situations where the allocation rule comes from some

bargaining (or other process) where the benefits that accrue to the individuals involved

in a link are split equally among those two individuals.

Equal Bargaining Power and the Myerson Value

An allocation rule satisfies equal bargaining power if for any component additive v

and g ∈ G

Yi(g)− Yi(g − ij) = Yj(g)− Yj(g − ij).

Note that equal bargaining power does not require that individuals split the marginal

value of a link. It just requires that they equally benefit or suffer from its addition.

It is possible (and generally the case) that Yi(g) − Yi(g − ij) + Yj(g) − Yj(g − ij) 6=
v(g)− v(g − ij).

It was first shown by Myerson (1977), in the context of communication games, that

such a condition leads to an allocation that is a variation on the Shapley value. This

rule was subsequently referred to as the Myerson value (e.g., see Aumann and Myerson

(1988)).

The Myerson value also has a corresponding allocation rule in the context of net-

works beyond communication games, as shown by Jackson and Wolinsky (1996). That

allocation rule is expressed as follows.

Let

g|S = {ij : ij ∈ g and i ∈ S, j ∈ S}.
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Thus g|S is the network found deleting all links except those that are between individ-

uals in S.

Y MV
i (g, v) =

∑
S⊂N\{i}

(v(g|S∪i)− v(g|S))

(
#S!(n−#S − 1)!

n!

)
(2)

The following proposition from Jackson and Wolinsky (1996) is an extension of

Myerson’s (1977) result from the communication game setting to the network setting.

Proposition 1 (Myerson (1977), Jackson and Wolinsky (1996))19 Y satisfies com-

ponent balance and equal bargaining power if and only if Y (g, v) = Y MV (g, v) for all

g ∈ G and any component additive v.

The surprising aspect of equal bargaining power is that it has such strong implica-

tions for the structuring of the allocation rule.

Egalitarian Rules

Two other allocation rules that are of particular interest are the egalitarian and

component-wise egalitarian rule.

The egalitarian allocation rule Y e is defined by

Y e
i (g, v) =

v(g)

n

for all i and g.

The egalitarian allocation rule splits the value of a network equally among all mem-

bers of a society regardless of what their role in the network is. It is clear that the

egalitarian allocation rule will have very nice properties in terms of aligning individual

incentives with efficiency.

However, the egalitarian rule violates component balance. The following modifica-

tion of the egalitarian rule respects component balance.

The component-wise egalitarian allocation rule Y ce is defined as follows for compo-

nent additive v’s and any g.

Y ce
i (g, v) =

{
v(h)
|N(h)| if there exists h ∈ C(g) such that i ∈ h,

0 otherwise.

For any v that is not component additive, set Y ce(·, v) = Y e(·, v).

19Dutta and Mutuswami (1997) extend the characterization to allow for weighted bargaining power,
and show that one obtains a version of a weighted Shapley (Myerson) value.
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The component-wise egalitarian splits the value of a component network equally

among all members of that component, but makes no transfers across components.

The component-wise egalitarian rule has some nice properties in terms of aligning

individual incentives with efficiency, although not quite to the extent that the egali-

tarian rule does.20

3 Defining Efficiency

In evaluating societal welfare, we may take various perspectives. The basic notion

used is that of Pareto efficiency - so that a network is inefficient if there is some other

network that leads to higher payoffs for all members of the society. The differences in

perspective derive from the degree to which transfers can be made between individuals

in determining what the payoffs are.

One perspective is to see how well society functions on its own with no outside

intervention (i.e., where Y arises naturally from the network interactions). We may

also consider how the society fares when some intervention in the forms of redistribution

takes place (i.e., where Y also incorporates some transfers). Depending on whether we

allow arbitrary transfers or we require that such intervention satisfy conditions like

anonymity and component balance, we end up with different degrees to which value

can be redistributed. Thus, considering these various alternatives, we are led to several

different definitions of efficiency of a network, depending on the perspective taken. Let

us examine these in detail. I begin with the weakest notion.

Pareto Efficiency

A network g is Pareto efficient relative to v and Y if there does not exist any g′ ∈ G

such that Yi(g
′, v) ≥ Yi(g, v) for all i with strict inequality for some i.

This definition of efficiency of a network takes Y as fixed, and hence can be thought

of as applying to situations where no intervention is possible.

Next, let us consider the strongest notion of efficiency.21

Efficiency

A network g is efficient relative to v if v(g) ≥ v(g′) for all g′ ∈ G.

20See Jackson and Wolinsky (1996) Section 4 for some detailed analysis of the properties of the
egalitarian and component-wise egalitarian rules.

21This notion of efficiency was called strong efficiency in Jackson and Wolinsky (1996).
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This is a strong notion of efficiency as it takes the perspective that value is fully

transferable. This applies in situations where unlimited intervention is possible, so that

any naturally arising Y can be redistributed in arbitrary ways.

Another way to express efficiency is to say that g is efficient relative to v if it is

Pareto efficient relative to v and Y for all Y . Thus, we see directly that this notion

is appropriate in situations where one believes that arbitrary reallocations of value are

possible.

Constrained Efficiency

The third notion of efficiency falls between the other two notions. Rather than

allowing for arbitrary reallocations of value as in efficiency, or no reallocations of value

as in Pareto efficiency, it allows for reallocations that are anonymous and component

balanced.

A network g is constrained efficient relative to v if there does not exist any g′ ∈ G

and a component balanced and anonymous Y such that Yi(g
′, v) ≥ Yi(g, v) for all i

with strict inequality for some i.

Note that g is constrained efficient relative to v if and only if it is Pareto efficient

relative to v and Y for every component balanced and anonymous Y .

There exist definitions of constrained efficiency for any class of allocation rules that

one wishes to consider. For instance, one might also consider that class of component

balanced allocation rules satisfying equal treatment of equals, or any other class that

is appropriate in some context.

The relationship between the three definitions of efficiency we consider here is as

follows. Let PE(v, Y ) denote the Pareto efficient networks relative to v and Y , and

similarly let CE(v) and E(v) denote the constrained efficient and efficient networks

relative to v, respective.

Remark: If Y is component balanced and anonymous, then E(v) ⊂ CE(v) ⊂
PE(v, Y ).

Given that there always exists an efficient network (any network that maximizes v,

and such a network exists as G is finite), it follows that there also exist constrained

efficient and Pareto efficient networks.

Let us also check that these definitions are distinct.

Example 5 E(v) 6= CE(v)
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Let n = 5 and consider an anonymous and component additive v such that the

complete network gN has value 10, a component consisting of pair of individuals with

one link between them has value 2, and a completely connected component among

three individuals has value 9. All other networks have value 0.

The only efficient networks are those consisting of two components: one component

consisting of a pair of individuals with one link and the other component consisting

of a completely connected triad (set of three individuals). However, the completely

connected network is constrained efficient.

To see that the completely connected network is constrained efficient even though it

is not efficient, first note that any anonymous allocation rule must give each individual

a payoff of 2 in the complete network. Next, note that the only network that could

possibly give a higher allocation to all individuals is an efficient one consisting of two

components: one dyad and one completely connected triad. Any component balanced

and anonymous allocation rule must allocate payoffs of 3 to each individual in the

triad, and 1 to each individual in the dyad. So, the individuals in the dyad are worse

off than they were under the complete network. Thus, the fully connected network

is Pareto efficient under every Y that is anonymous and component balanced. This

implies that the fully connected network is constrained efficient even though it is not

efficient. This is pictured in Figure 2.

[Insert Figure 2 here.]

Example 6 CE(v) 6= PE(v, Y )

Let n = 3. Consider an anonymous v where the complete network has a value of 9,

a network with two links has a value of 8, and a network of a single link network has

any value.

Consider a component balanced and anonymous Y that allocates 3 to each indi-

vidual in the complete network, and in any network with two links allocates 2 to each

of the individuals with just one link and 4 to the individual with two links (and splits

value equally among the two individuals in a link if there is just one link). The net-

work g = {12, 23} is Pareto efficient relative to v and Y , since any other network

results in a lower payoff to at least one of the players (for instance, Y2(g, v) = 4, while

Y2(g
N , v) = 3). The network g is not constrained efficient, since under the component

balanced and anonymous rule Y such that Y 1(g, v) = Y 2(g, v) = Y 3(g, v) = 8/3, all

individuals prefer to be in the complete network gN where they receive payoffs of 3.

See Figure 3.
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[Insert Figure 3 here.]

4 Modeling Network Formation

A simple, tractable, and natural way to analyze the networks that one might expect to

emerge in the long run is to examine a sort of equilibrium requirement that individuals

not benefit from altering the structure of the network. A weak version of such a

condition is the following pairwise stability notion defined by Jackson and Wolinsky

(1996).

Pairwise Stability

A network g is pairwise stable with respect to allocation rule Y and value function

v if

(i) for all ij ∈ g, Yi(g, v) ≥ Yi(g − ij, v) and Yj(g, v) ≥ Yj(g − ij, v), and

(ii) for all ij /∈ g, if Yi(g + ij, v) > Yi(g, v) then Yj(g + ij, v) < Yj(g, v).

Let us say that g′ is adjacent to g if g′ = g + ij or g′ = g − ij for some ij.

A network g′ defeats g if either g′ = g− ij and Yi(g
′, v) > Yi(g

′, v), or if g′ = g + ij

with Yi(g
′, v) ≥ Yi(g

′, v) and Yi(g
′, v) ≥ Yi(g

′, v) with at least one inequality holding

strictly.

Pairwise stability is equivalent to saying that a network is pairwise stable if it is

not defeated by another (necessarily adjacent) network.

There are several aspects of pairwise stability that deserve discussion.

First, it is a very weak notion in that it only considers deviations on a single link

at a time. If other sorts of deviations are viable and attractive, then pairwise stability

may be too weak a concept. For instance, it could be that an individual would not

benefit from severing any single link but would benefit from severing several links

simultaneously, and yet the network would still be pairwise stable. Second, pairwise

stability considers only deviations by at most a pair of individuals at a time. It might be

that some group of individuals could all be made better off by some more complicated

reorganization of their links, which is not accounted for under pairwise stability.

In both of these regards, pairwise stability might be thought of as a necessary but

not sufficient requirement for a network to be stable over time. Nevertheless, we will
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see that pairwise stability already significantly narrows the class of networks to the

point where efficiency and pairwise stability are already in tension at times.

There are alternative approaches to modeling network stability. One is to explicitly

model a game by which links form and then to solve for an equilibrium of that game.

Aumann and Myerson (1988) take such an approach in the context of communica-

tion games, where individuals sequentially propose links which are then accepted or

rejected. Such an approach has the advantage that it allows one to use off-the-shelf

game theoretic tools. However, such an approach also has the disadvantage that the

game is necessarily ad hoc and fine details of the protocol (e.g., the ordering of who

proposes links when, whether or not the game has a finite horizon, individuals are

impatient, etc.) may matter. Pairwise stability can be thought of as a condition iden-

tifies networks that are the only ones that could emerge at the end of any well defined

game where players where the process does not artificially end, but only ends when no

player(s) wish to make further changes to the network.

Dutta and Mutuswami (1997) analyze the equilibria of a link formation game under

various solution concepts and outline the relationship between pairwise stability and

equilibria of that game. The game is one first discussed by Myerson (1991). Individuals

simultaneously announce all the links they wish to be involved in. Links form if both

individuals involved have announced that link. While such games have a multiplicity of

unappealing Nash equilibria (e.g., nobody announces any links), using strong equilib-

rium and coalition-proof Nash equilibrium, and variations on strong equilibrium where

only pairs of individuals might deviate, lead to nicer classes of equilibria. The networks

arising in variations of the strong equilibrium are in fact subsets of the pairwise stable

networks.22

Finally, there is another aspect of network formation that deserves attention. The

above definitions (including some of the game theoretic approaches) are both static

and myopic. Individuals do not forecast how others might react to their actions. For

instance, the adding or severing of one link might lead to the subsequent addition

or severing of another link. Dynamic (but still myopic) network formation processes

are studied by Watts (2001) and Jackson and Watts (1998), but a fully dynamic and

forward looking analysis of network formation is still missing. 23

22See Jackson and van den Nouweland (2000) for additional discussion of coalitional stability notions
and the relationship to core based solutions.

23The approach of Aumann and Myerson (1988) is a sequential game and so forward thinking is
incorporated to an extent. However, the finite termination of their game provides an artificial way
by which one can put a limit on how far forward players have to look. This permits a solution of the
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Myopic considerations on the part of the individuals in a network are natural in

large situations where individuals might be faced with the consideration of adding or

severing a given link, but might have difficulty in forecasting the reactions to this.

For instance, in deciding whether or not a firm wishes to connect its computer system

to the internet, the firm might not forecast the impact of that decision on the future

evolution of the internet. Likewise in forming a business contact or friendship, an

individual might not forecast the impact of that new link on the future evolution of

the network. Nevertheless, there are other situations, such as strategic alliances among

airlines, where individuals might be very forward looking in forecasting how others

will react to the decision. Such forward looking behavior has been analyzed in various

contexts in the coalition formation literature (e.g., see Chwe (1994)), but is still an

important issue for further consideration in the network formation literature.24

Existence of Pairwise Stable Networks

In some situations, there may not exist any pairwise stable network. It may be that

each network is defeated by some adjacent network, and that these “improving paths”

form cycles with no undefeated networks existing.25

An improving path is a sequence of networks {g1, g2, . . . , gK} where each network

gk is defeated by the subsequent (adjacent) network gk+1.

A network is pairwise stable if and only if it has no improving paths emanating

from it. Given the finite number of networks, it then directly follows that if there

does not exist any pairwise stable network, then there must exist at least one cycle,

i.e., an improving path {g1, g2, . . . , gK} where g1 = gK . The possibility of cycles and

non-existence of a pairwise stable network is illustrated in the following example.

Example 7 Exchange Networks – Non-existence of a Pairwise Stable Network (Jack-

son and Watts (1998))

game via backward induction, but does not seem to provide an adequate basis for a study of such
forward thinking behavior. A more truly dynamic setting, where a network stays in place only if no
player(s) wish to change it given their forecasts of what would happen subsequently, has not been
analyzed.

24It is possible that with some forward looking aspects to behavior, situations are plausible where
a network that is not pairwise stable emerges. For instance, individuals might not add a link that
appears valuable to them given the current network, as that might in turn lead to the formation
of other links and ultimately lower the payoffs of the original individuals. This is an important
consideration that needs to be examined.

25Improving paths are defined by Jackson and Watts (1998, 2002), who provide some additional
results on existence of pairwise stable networks.
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The society consists of n ≥ 4 individuals who get value from trading goods with each

other. In particular, there are two consumption goods and individuals all have the same

utility function for the two goods which is Cobb-Douglas, u(x, y) = xy. Individuals

have a random endowment, which is independently and identically distributed. A

individual’s endowment is either (1,0) or (0,1), each with probability 1/2.

Individuals can trade with any of the other individuals in the same component of

the network. For instance, in a network g = {12, 23, 45}, individuals 1, 2 and 3 can

trade with each other and individuals 4 and 5 can trade with each other, but there is

no trade between 123 and 45. Trade flows without friction along any path and each

connected component trades to a Walrasian equilibrium. This means, for instance,

that the networks {12, 23} and {12, 23, 13} lead to the same expected trades, but lead

to different costs of links.

The network g = {12} leads to the following payoffs. There is a 1
2

probability that

one individual has an endowment of (1,0) and the other has an endowment of (0,1).

They then trade to the Walrasian allocation of (1
2
, 1

2
) each and so their utility is 1

4
each.

There is also a 1
2

probability that the individuals have the same endowment and then

there are no gains from trade and they each get a utility of 0. Expecting over these

two situations leads to an expected utility of 1
8
. Thus, Y1({12}) = Y2({12}) = 1

8
− c,

where c is the cost (in utils) of maintaining a link. One can do similar calculations for

a network {12, 23} and so forth.

Let the cost of a link c = 5
96

(to each individual in the link).

Let us check that there does not exist a pairwise stable network. The utility of being

alone is 0. Not accounting for the cost of links, the expected utility for a individual

of being connected to one other is 1
8
. The expected utility for a individual of being

connected (directly or indirectly) to two other individuals is 1
6
; and of being connected

to three other individuals is 3
16

. It is easily checked that the expected utility of a

individual is increasing and strictly concave in the number of other individuals that

she is directly or indirectly connected to, ignoring the cost of links.

Now let us account for the cost of links and argue that there cannot exist any

pairwise stable network. Any component in a pairwise stable network that connects

k individuals must have exactly k − 1 links, as some additional link could be severed

without changing the expected trades but saving the cost of the link. Also, any compo-

nent in a pairwise stable network that involves 3 or more individuals cannot contain a

individual who has just one link. This follows from the fact that a individual connected

to some individual who is not connected to anyone else, loses at most 1
6
− 1

8
= 1

24
in
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expected utility from trades by severing the link, but saves the cost of 5
96

and so should

sever this link. These two observations imply that a pairwise stable network must

consist of pairs of connected individuals (as two completely unconnected individuals

benefit from forming a link), with one unconnected individual if n is odd. However,

such a network is not pairwise stable, since any two individuals in different pairs gain

from forming a link (their utility goes from 1
8
− 5

96
to 3

16
− 5

96
). Thus, there is no pairwise

stable network. This is illustrated in Figure 4.

[Insert Figure 4 here.]

A cycle in this example is {12, 34} is defeated by {12, 23, 34} which is defeated by

{12, 23} which is defeated by {12} which is defeated by {12, 34}.
Existence of Pairwise Stable Networks under the Myerson Value

While the above example shows that pairwise stable networks may not exist in

some settings for some allocation rules, there are interesting allocation rules for which

pairwise stable networks always exist.

Existence of pairwise stable networks is straightforward for the egalitarian and

component-wise egalitarian allocation rules. Under the egalitarian rule, any efficient

network will be pairwise stable. Under the component-wise egalitarian rule, one can

also always find a pairwise stable network. An algorithm is as follows:26 find a com-

ponent h that maximizes the payoff Y ce
i (h, v) over i and h. Next, do the same on the

remaining population N \ N(h), and so on. The collection of resulting components

forms the network.27

What is less transparent, is that the Myerson value allocation rule also has very

nice existence properties. Under the Myerson value allocation rule there always exists

a pairwise stable network, all improving paths lead to pairwise stable networks, and

there are no cycles. This is shown in the following Proposition.

Proposition 2 There exists a pairwise stable network relative to Y MV for every v ∈
V. Moreover, all improving paths (relative to Y MV ) emanating from any network

(under any v ∈ V) lead to pairwise stable networks. Thus, there are no cycles under

the Myerson value allocation rule.

26This is specified for component additive v’s. For any other v, Y e and Y ce coincide.
27This follows the same argument as existence of core-stable coalition structures under the weak

top coalition property in Banerjee, Konishi and Sönmez (2001). However, these networks are not
necessarily stable in a stronger sense (against coalitional deviations). A characterization for when
such strongly stable networks exist appears in Jackson and van den Nouweland (2001).
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Proof of Proposition 2: Let

F (g) =
∑

T⊂N

v(g|T )

(
(|T | − 1)!(n− |T |)!

n!

)
.

Straightforward calculations that are left to the reader verify that for any g, i and

ij ∈ g 28

Y MV
i (g, v)− Y MV

i (g − ij, v) = F (g)− F (g − ij). (3)

Let g∗ maximize F (·). Thus 0 ≥ F (g∗+ ij)−F (g∗) and likewise 0 ≥ F (g∗− ij)−F (g∗)

for all ij. It follows from (3) that g∗ is pairwise stable.

To see the second part of the proposition, note that (3) implies that along any

improving path F must be increasing. Such an increasing path in F must lead to g

which is a local maximizer (among adjacent networks) of F . By (3) it follows that g is

pairwise stable.29

5 The Compatibility of Efficiency and Stability

Let us now turn to the central question of the relationship between stability and effi-

ciency of networks.

As mentioned briefly above, if one has complete control over the allocation rule

and does not wish to respect component balance, then it is easy to guarantee that

all efficient networks are pairwise stable: simply use the egalitarian allocation rule Y e.

While this is partly reassuring, we are also interested in knowing whether it is generally

the case that some efficient network is pairwise stable without intervention, or with

intervention that respects component balance. The following proposition shows that

there is no component balanced and anonymous allocation rule for which it is always

the case that some constrained efficient network is pairwise stable.

28It helps in these calculations to note that if i /∈ T then g|T = g − ij|T . Note that F is what is
known as a potential function (see Monderer and Shapley (1996)). Based on some results in Monderer
and Shapley (1996) (see also Quin (1996)), potential functions and the Shapley value have a special
relationship; and it may be that there is a limited converse to Proposition 2.

29Jackson and Watts (1998, working paper version) show that for any Y and v there exist no cycles
(and thus there exist pairwise stable networks and all improving paths lead to pairwise stable networks)
if and only if there exists a function F : G → IR such that g defeats g′ if and only if F (g) > F (g′).
Thus, the existence of the F satisfying (3) in this proof is actually a necessary condition for such
nicely behaved improving paths.
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Proposition 3 There does not exist any component balanced and anonymous alloca-

tion rule (or even a component balanced rule satisfying equal treatment of equals) such

that for every v there exists a constrained efficient network that is pairwise stable.

Proposition 3 strengthens Theorem 1 in Jackson and Wolinsky (1996) in two ways:

first it holds under equal treatment of equals rather than anonymity, and second it

applies to constrained efficiency rather than efficiency. Most importantly, the consid-

eration of constrained efficiency is more natural that the consideration of the stronger

efficiency notion, given that it applies to component balanced and anonymous alloca-

tion rules.

The proof of Proposition 3 shows that there is a particular v such that for every

component balanced and anonymous allocation rule none of the constrained efficient

networks are pairwise stable. It uses the same value function as Jackson and Wolinsky

(1996) used to prove a similar proposition for efficient networks rather than constrained

efficient networks. The main complication in the proof is showing that there is a unique

constrained efficient architecture and that it coincides with the efficient architecture.

As the structure of the value function is quite simple and natural, and the difficulty

also holds for many variations on it, the proposition is disturbing. The proof appears

in the appendix.

Proposition 3 is tight. If we drop component balance, then as mentioned above

the egalitarian rule leads to E(v) ⊂ PS(Y e, v) for all v. If we drop anonymity (or

equal treatment of equals), then a careful and clever construction of Y by Dutta and

Mutuswami (1997) ensures that E(v)∩ PS(Y, v) 6= ∅ for a class of v. This is stated in

the following proposition.

Let V∗ = {v ∈ V | g 6= ∅ ⇒ v(g) > 0}

Proposition 4 (Dutta and Mutuswami (1997)) There exists a component balanced

Y such that E(v) ∩ PS(Y, v) 6= ∅ for all v ∈ V∗. Moreover, Y is anonymous on some

networks in E(v) ∩ PS(Y, v).30 31

30The statement that Y is anonymous on some networks that are efficient and pairwise stable means
that one needs to consider some other networks to verify the failure of anonymity.

31Dutta and Mutuswami actually work with a notion called strong stability, that is (almost) a
stronger requirement than pairwise stability in that it allows for deviations by coalitions of individuals.
They show that the strongly stable networks are a subset of the efficient ones. Strong stability is not
quite a strengthening of pairwise stability, as it only considers one network to defeat another if there
is a deviation by a coalitions that makes all of its members strictly better off; while pairwise stability
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This proposition shows that if one can design an allocation rule, and only wishes

to satisfy anonymity on stable networks, then efficiency and stability are compatible.

While Proposition 4 shows that if we are willing to sacrifice anonymity, then we can

reconcile stability with efficiency, there are also many situations where we need not go

so far. That is, there are value functions for which there do exist component balanced

and anonymous allocation rules for which some efficient networks are pairwise stable.

The Role of “Loose-Ends” in the Tension between Stability and Efficiency

The following proposition identifies a very particular feature of the problem between

efficiency and stability. It shows that if efficient networks are such that each individual

has at least two links, then there is no tension. So, problems arise only in situations

where efficient networks involve individuals who may be thought of as “loose ends.”

A network g has no loose ends if for any i ∈ N(g), |{j|ij ∈ g}| ≥ 2.

Proposition 5 There exists an anonymous and component balanced Y such that if

v is anonymous and such that there exists g∗ ∈ E(v) with no loose ends, then E(v) ∩
PS(Y, v) 6= ∅.

The proof of Proposition 5 appears in the appendix. In a network with no loose

ends individuals can alter the component structure by adding or severing links, but

they cannot decrease the total number of individuals who are involved in the network

by severing a link. This limitation on the ways in which individuals can change a

network is enough to ensure the existence of a component balanced and anonymous

allocation rule for which such an efficient network is stable, and is critical to the proof.

The proof of Proposition 5 turns out to be more complicated that one might guess.

For instance, one might guess that the component wise egalitarian allocation rule Y ce

would satisfy the demands of the proposition.32 However, this is not the case as the

following example illustrates.

Example 8

Let n = 7. Consider a component additive and anonymous v such that the value

of a ring of three individuals is 6, the value of a ring of 4 individuals is 20, and the

allows one of the two individuals adding a link to be indifferent. However, one can check that the
construction of Dutta and Mutuswami extends to pairwise stability as well.

32See the discussion of critical link monotonicity in Jackson and Wolinsky (1996) for a complete
characterization of when Y ce provides for efficient networks that are pairwise stable.
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value of a network where a ring of three individuals with a single bridge to a ring of

four individuals (e.g., g∗ = {12, 23, 13, 14, 45, 56, 67, 47}) is 28. Let the value of other

components be 0. The efficient network structure is g∗. Under the component wise

egalitarian rule each individual gets a payoff of 4 under g∗, and yet if 4 severs the link

14, then 4 would get a payoff of 5 under any anonymous rule or one satisfying equal

treatment of equals. Thus g∗ would not be stable under the component-wise egalitarian

rule. See Figure 5.

[insert Figure 5 here]

Thus, a Y that guarantees the pairwise stability of g∗ will have to recognize that

individual 4 can get a payoff of 5 by severing the link 14. This involves a carefully

defined allocation rule, as provided in the appendix.

Taking the Allocation Rule as Given

As we have seen, efficiency and even constrained efficiency are only compatible with

pairwise stability under certain allocation rules and for certain settings. Sometimes this

involves quite careful design of the allocation rule, as under Propositions 4 and 5.

While there are situations where the allocation rule is an object of design, we are

also interested in understanding when naturally arising allocation rules lead to pairwise

stable networks that are (Pareto) efficient.

Let us examine some of some of the examples discussed previously to get a feeling

for this.

Example 9 Pareto Inefficiency in the Symmetric Connections Model.

In the symmetric connections model (Example 1) efficient networks fall into three

categories:

• empty networks when there are high costs to links,

• star networks (n − 1 individuals all having 1 link to the n-th individual) when

there are middle costs to links, and

• complete networks when there are low costs to links.

For high and low costs to links, these coincide with the pairwise stable networks.33 The

problematic case is for middle costs to links.

33The compatibility of pairwise stability and efficiency in the symmetric connections model is fully
characterized in Jackson and Wolinsky (1996). The relationship with Pareto efficient networks is not
noted.
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For instance, consider a situation where n = 4 and δ < c < δ + δ2

2
. In this case,

the only pairwise stable networks is the empty network. To see this, note that since

c > δ an individual gets a positive payoff from a link only if it also offers an indirect

connection. Thus, each individual must have at least two links in a pairwise stable

network, as if i only had a link to j, then j would want to sever that link. Also an

individual maintains at most 2 links, since the payoff to an individual with three links

(given n = 4) is less than 0 since c > δ. So, a pairwise stable network where each

individual has two links would have to be a ring (e.g., {12, 23, 34, 14}). However, such

a network is not pairwise stable since, the payoff to any player is increased by severing

a link. For instance, 1’s payoff in the ring is 2δ + δ2 − 2c, while severing the link 14

leads to δ + δ2 + δ3 − c which is higher since c > δ.

Although the empty network is the unique pairwise stable network, it is not even

Pareto efficient. The empty network is Pareto dominated by a line (e.g., g = {12, 23, 34}).
To see this, not that under the line, the payoff to the end individuals (1 and 4) is

δ + δ2 + δ3− c which is greater than 0, and to the middle two individuals (2 and 3) the

payoff is 2δ + δ2 − 2c which is also greater than 0 since c < δ + δ2

2
.

Thus, there exist cost ranges under the symmetric connections model for which

all pairwise stable networks are Pareto inefficient, and other cost ranges where all

pairwise stable networks are efficient. There are also some cost ranges where some

pairwise stable networks are efficient and some other pairwise stable networks are not

even Pareto efficient.

Example 10 Pareto Inefficiency in the Co-Author Model.

Generally, the co-author model results in Pareto inefficient networks. To see this,

consider a simple setting where n = 4. Here the only pairwise stable network is the

complete network, as the reader can check with some straightforward calculations. The

complete network leads to a payoff of 2.5 to each player. However, a network of two

distinct linked pairs (e.g., g = {12, 34}) leads to payoffs of 3 for each individual. Thus,

the unique pairwise stable network is Pareto inefficient.

Example 11 Efficiency in the Corominas-Bosch Bargaining Networks

While incentives to form networks do not always lead to efficiency in the connections

model, the news is better in the bargaining model of Corominas-Bosch (Example 3).

In that model the set of pairwise stable networks is often exactly the set of efficient

networks, as it outlined in the following Proposition.
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Proposition 6 In the Corominas-Bosch model as outlined in Example 3, with costs

to links 1/2 > cs > 0 and 1/2 > cb > 0, the pairwise stable networks are exactly the set

of efficient networks.34 The same is true if cs > 1/2 and/or cb > 1/2 and cs + cb ≥ 1.

If cs > 1/2 and 1 > cs + cb, or cb > 1/2 and 1 > cs + cb, then the only pairwise stable

network is inefficient, but Pareto efficient.

The proof of Proposition 6 appears in the appendix. The intuition for the result is

fairly straightforward. Individuals get payoffs of either 0, 1/2 or 1 from the bargaining,

ignoring the costs of links. An individual getting a payoff of 0 would never want to

maintain any links, as they cost something but offer no payoff in bargaining. So, it is

easy to show that all individuals who have links must get payoffs of 1/2. Then, one can

show that if there are extra links in such a network (relative to the efficient network

which is just linked pairs) that some particular links could be severed without changing

the bargaining payoffs and thus saving link costs.

The optimistic conclusion in the bargaining networks is dependent on the simple

set of potential payoffs to individuals. That is, either all linked individuals get payoffs

of 1/2, or for every individual getting a payoff of 1 there is some linked individual

getting a payoff of 0. The low payoffs to such individuals prohibit them from wanting

to maintain such links. This would not be the case, if such individuals got some positive

payoff. We see this next in the next example.

Example 12 Pareto Inefficiency in Kranton and Minehart’s Buyer-Seller Networks

Despite the superficial similarities between the Corominas-Bosch and Kranton and

Minehart models, the conclusions regarding efficiency are quite different. This differ-

ence stems from the fact that there is a possible heterogeneity in buyers’ valuations

in the Kranton and Minehart model, and so efficient networks are more complicated

34Corominas-Bosch (1999) considers a different definition of pairwise stability, where a cost is in-
curred for creating a link, but none is saved for severing a link. Such a definition can clearly lead
to over-connections, and thus a more pessimistic conclusion than that of Proposition 6 here. She
also considers a game where links can be formed unilaterally and the cost of a link is incurred only
by the individual adding the link. In such a setting, a buyer (say when there are more sellers than
buyers) getting a payoff of 1/2 or less has an incentive to add a link to some seller who is earning a
payoff of 0, which will then increase the buyer’s payoff. As long as this costs the seller nothing, the
seller is indifferent to the addition of the link. So again, Corominas-Bosch obtains an over-connection
result. It seems that the more reasonable case is one that involves some cost for and consent of both
individuals, which is the case treated in Proposition 6 here.
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than in the simpler bargaining setting of Corominas-Bosch. It is generally the case

that these more complicated networks are not pairwise stable.

Before showing that all pairwise stable networks may fail to be Pareto efficient, let

us first show that they may fail to be efficient as this is a bit easier to see.

Consider Example 4, where there is one seller and up to n buyers.

The efficient network in this setting is one where k
k+1

− k(cs + cb) is maximized.

This occurs where35

1

k(k + 1)
≥ cs + cb ≥ 1

(k + 1)(k + 2)
.

Let us examine the pairwise stable networks. From (1) it follows that the seller

gains from adding a new link to a network of with k links as long as

2

(k + 1)(k + 2)
> cs.

Also from (1) it follows that a buyer wishes to add a new link to a network of k links

as long as
1

k(k + 1)
> cb.

If we are in a situation where cs = 0, then the incentives of the buyers lead to

exactly the right social incentives: and the pairwise stable networks are exactly the

efficient ones.36 This result for cs = 0 extends to situations with more than one seller

and to general distributions over signals, and is a main result of Kranton and Minehart

(1998).

However, let us also consider situations where cs > 0, and for instance cb = cs. In

this case, the incentives are not so well behaved.37 For instance, if cs = 1/100 = cb,

then any efficient network has six buyers linked to the seller (k = 6). However, buyers

will be happy to add new links until k = 10, while sellers wish to add new links until

k = 13. Thus, in this situation the pairwise stable networks would have 10 links, while

networks with only 6 links are the efficient ones.

To see the intuition for the inefficiency in this example note that the increase in

expected price to sellers from adding a link can be thought of as coming from two

35Or at n if such a k > n.
36Sellers always gain from adding links if cs = 0 and so it is the buyers’ incentives that limit the

number of links added.
37See Kranton and Minehart (1998) for discussion of how a costly investment decision of the seller

might lead to inefficiency. Although it is not the same as a cost per link, it has some similar
consequences.
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sources. One source is the expected increase in willingness to pay of the winning

bidder due to an expectation that the winner will have a higher valuation as we see

more draws from the same distribution. This increase is of social value, as it means that

the good is going to someone who values it more. The other source of price increase to

the seller from connecting to more buyers comes from the increased competition among

the bidders in the auction. There is a greater number of bidders competing for a single

object. This source of price increase is not of social value since it only increases the

proportion of value which is transferred to the seller. Buyers’ incentives are distorted

relative to social efficiency since although they properly see the change in social value,

they only bear part of the increase in total cost of adding a link.

While the pairwise stable networks in this example are not efficient (or even con-

strained efficient), they are Pareto efficient, and this is easily seen to be generally true

when there is a single seller as then disconnected buyers get a payoff of 0. This is not

true with more sellers as we now see.

Let us now show that it is possible for (non-trivial) pairwise stable networks in

the Kranton-Minehart model to be Pareto inefficient. For this we need more than one

seller.

Consider a population with 2 sellers and 4 buyers. Let individuals 1 and 2 be the

sellers and 3,4,5,6, be the buyers. Let the cost of a link to a seller be cs = 5
60

and the

cost of a link to a buyer be cb = 1
60

.

Some straightforward (but tedious) calculations lead to the following payoffs to

individuals in various networks:

ga = {13}: Y1(g
a) = − 5

60
and Y1(g

a) = 29
60

.

gb = {13, 14}: Y1(g
b) = 10

60
and Y3 = Y4(g

b) = 9
60

.

gc = {13, 14, 15}: Y1(g
c) = 15

60
and Y3 = Y4 = Y5(g

c) = 4
60

.

gd = {13, 14, 15, 16}: Y1(g
d) = 16

60
and Y3 = Y4 = Y5(g

d) = 2
60

.

ge = {13, 14, 25, 26}: Y1 = Y2(g
e) = 10

60
and Y3 = Y4 = Y5 = Y6(g

e) = 9
60

.

gf = {13, 14, 15, 25, 26}: Y1(g
f ) = 13

60
, Y2(g

f ) = 8
60

, and Y3 = Y4(g
f ) = 6

60
, while

Y5(g
f ) = 10

60
and Y6(g

f ) = 11
60

.

gg = {13, 14, 15, 24, 25, 26}: Y1 = Y2(g
g) = 9

60
and Y3 = Y4 = Y5 = Y6(g

g) = 8
60

.

There are three types of pairwise stable networks here: the empty network, networks

that look like gd, and networks that look like gg.38 Both the empty network and gg are

not Pareto efficient, while gd is. In particular, gg is Pareto dominated by ge. Also, gd

38The reader is left to check networks that are not listed here.
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is not efficient nor is it constrained efficient.39 In this example, one might hope that ge

would turn out to be pairwise stable, but as we see 1 and 5 then have an incentive to

add a link; and then 2 and 4 which takes us to gg. Thus, individuals have an incentive

to over-connect as it increases their individual payoffs even when it is decreasing overall

value.

It is not clear whether there are examples where all pairwise stable networks are

Pareto inefficient in this model, as there are generally pairwise stable networks like gd

where only one seller is active and gets his or her maximum payoff. But this is an open

question, as with many buyers this may be Pareto dominated by networks where there

are several active sellers. And as we see here, it is possible for active sellers to want to

link to each others’ buyers to an extent that is inefficient.

Pareto Inefficiency under the Myerson Value

As we have seen in the above examples, efficiency and Pareto efficiency are prop-

erties that sometimes but not always satisfied by pairwise stable networks. To get a

fuller picture of this, and to understand some sources of inefficiency, let us look at

an allocation rule that will arise naturally in many applications. As equal bargaining

power is a condition that may naturally arise in a variety of settings, the Myerson value

allocation rule that is worthy of serious attention. Unfortunately, although it has nice

properties with respect to the existence of pairwise stable networks, the pairwise stable

networks are not always Pareto efficient networks.

The intuition behind the (Pareto) inefficiency under the Myerson value is that indi-

viduals can have an incentive to over-connect as it improves their bargaining position.

This can lead to overall Pareto inefficiency. To see this in some detail, it is useful to

separate costs and benefits arising from the network.

Let us write v(g) = b(g) − c(g) where b(·) represents benefits and c(·) costs and

both functions take on nonnegative values and have some natural properties.

b(g) is monotone if

• b(g) ≥ b(g′) if g′ ⊂ g, and

• b({ij}) > 0 for any ij.

b(g) is strictly monotone if b(g) > b(g′) whenever g′ ⊂ g.

Similar definitions apply to a cost function c.

39To see constrained inefficiency, consider an allocation rule that divides payoffs equally among
buyers in a component and gives 0 to sellers. Under such a rule, ge Pareto dominates gd.
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Proposition 7 For any monotone and anonymous benefit function b there exists a

strictly monotone and anonymous cost function c such that all pairwise stable networks

relative to Y MV and v = b − c are Pareto inefficient. In fact, the pairwise stable

networks are over-connected in the sense that each pairwise stable network has some

subnetwork that Pareto dominates it.

Proposition 7 is a fairly negative result, saying that for any of a wide class of

benefit functions there is some cost function for which individuals have incentives to

over-connect the network, as they each try to improve their bargaining position and

hence payoff.

Proposition 7 is actually proven using the following result, which applies to a nar-

rower class of benefit functions but is more specific in terms of the cost functions.

Proposition 8 Consider a monotone benefit function b for which there is some ef-

ficient network g∗ relative to b (g∗ ∈ E(b)) such that g∗ 6= gN . There exists c > 0

such that for any cost function c such that c ≥ c(g) for all g ∈ G, the pairwise stable

networks relative to Y MV and v = b−c are all inefficient. Moreover, if b is anonymous

and g∗ is symmetric,40 then each pairwise stable networks is Pareto dominated by some

subnetwork.

Proposition 8 says that for any monotone benefit function that has at least one

efficient network under the benefit function that is not fully connected, if costs to links

are low enough, then all pairwise stable networks will be over-connected relative to

the efficient networks. Moreover, if the efficient network under the benefit function is

symmetric does not involve too many connections, then all pairwise stable networks

will be Pareto inefficient.

Proposition 8 is somewhat limited, since it requires that the benefit function have

some network smaller than the complete network which is efficient. However, as there

are many b’s and c’s that sum to the same v, this condition actually comes without

much loss of generality, which is the idea behind the proof of Proposition 7. The proof

of Propositions 7 and 8 appear in the appendix.

40A network g is symmetric if for every i and j there exists a permutation π such that g = gπ and
π(j) = i.
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6 Discussion

The analysis and overview presented here shows that the relationship between the

stability and efficiency of networks is context dependent. Results show that they

are not always compatible, but are compatible for certain classes of value functions

and allocation rules. Looking at some specific examples, we see a variety of different

relationships even as one varies parameters within models.

The fact that there can be a variety of different relationships between stable and

efficient networks depending on context, seems to be a somewhat negative finding for

the hopes of developing a systematic theoretical understanding of the relationship be-

tween stability and efficiency that cuts across applications. However, there are several

things to note in this regard. First, a result such as Proposition 5 is reassuring, since

it shows that some systematic positive results can be found. Second, there is hope of

tying incompatibility between individual incentives and efficiency to a couple of ideas

that cut across applications. Let me outline this in more detail.

One reason why individual incentives might not lead to overall efficiency is one

that economists are very familiar with: that of externalities. This comes out quite

clearly in the failure exhibited in the symmetric connections model in Example 9.

By maintaining a link an individual not only receives the benefits of that link (and

its indirect connections) him or herself, but also provides indirect benefits to other

individuals to whom he or she is linked. For instance, 2’s decision of whether or not

to maintain a link to 3 in a network {12, 23} has payoff consequences for individual

1. The absence of a proper incentive for 2 to evaluate 1’s well being when deciding on

whether to add or delete the link 23 is a classic externality problem. If the link 23 has

a positive benefit for 1 (as in the connections model) it can lead to under-connection

relative to what is efficient, and if the link 23 has a negative effect on 1 (as in the co-

author model) it can lead to over-connection.

Power-Based Inefficiencies

There is also a second, quite different reason for inefficiency that is evident in some

of the examples and allocation rules discussed here. It is what we might call a “power-

based inefficiency”. The idea is that in many applications, especially those related to

bargaining or trade, an individual’s payoff depends on where they sit in the network

and not only what value the network generates. For instance, individual 2 in a network

{12, 23} is critical in allowing any value to accrue to the network, as deleting all of 2’s

links leaves an empty network. Under the Myerson value allocation rule, and many
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others, 2’s payoff will be higher than that of 1 and 3; as individual 2 is rewarded well

for the role that he or she plays. Consider the incentives of individuals 1 and 3 in such a

situation. Adding the link 13 might lower the overall value of the network, but it would

also put the individuals into equal roles in the network, thereby decreasing individual

2’s importance in the network and resulting bargaining power. Thus, individual 1 and

3’s bargaining positions can improve and their payoffs under the Myerson value can

increase; even if the new network is less productive than the previous one. This leads

1 and 3 to over-connect the network relative to what is efficient. This is effectively the

intuition behind the results in Propositions 7 and 8, which says that this is a problem

which arises systematically under the Myerson value.

The inefficiency arising here comes not so much from an externality, as it does from

individuals trying to position themselves well in the network to affect their relative

power and resulting allocation of the payoffs. A similar effect is seen in Example 12,

where sellers add links to new buyers not only for the potential increase in value of

the object to the highest valued buyer, but also because it increases the competition

among buyers and increases the proportion of the value that goes to the seller rather

than staying in the buyers’ hands.41

An interesting topic for further research is to see whether inefficiencies in network

formation can always be traced to either externalities or power-based incentives, and

whether there are features of settings which indicate when one, and which one, of these

difficulties might be present.

Some other issues for further study

There are other areas that deserve significant attention in further efforts to model

the formation of networks.

First, as discussed near the definition of pairwise stability, it would be useful to

develop a notion of network stability that incorporates farsighted and dynamic behav-

ior. Judging from such efforts in the coalition formation literature, this is a formidable

and potentially ad hoc task. Nevertheless, it is an important one if one wants to apply

network models to things like strategic trade alliances.

Second, in the modeling here, allocation rules are taken as being separate from the

41Such a source of inefficiency is not unique to network settings, but are also observed in, for example,
search problems and bargaining problems more generally (e.g., see Stole and Zwiebel (1996) on intra-
firm bargaining and hiring decisions). The point here is that this power-based source of inefficiency is
one that will be particularly prevalent in network formation situations, and so it deserves particular
attention in network analyses.
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network formation process. However, in many applications, one can see bargaining over

allocation of value happening simultaneously with the formation of links. Intuitively,

this should help in the attainment of efficiency. In fact, in some contexts it does,

as shown by Currarini and Morelli (2000) and Mutuswami and Winter (2000). The

contexts explored in those models use given (finite horizon) orderings over individual

proposals of links, and so it would be interesting to see how robust such intuition is to

the specification of bargaining protocol.

Third, game theory has developed many powerful tools to study evolutionary pres-

sures on societies of players, as well as learning by players. Such tools can be very

valuable in studying the dynamics of networks over time. A recent literature has

grown around these issues, studying how various random perturbations to and evo-

lutionary pressures on networks affects the long run emergence of different networks

structures (e.g., Jackson and Watts (1998, 1999), Goyal and Vega-Redondo (1999),

Skyrms and Pemantle (2000), and Droste, Gilles and Johnson (2000)). One sees from

this preliminary work on the subject that network formation naturally lends itself to

such modeling, and that such models can lead to predictions not only about network

structure but also about the interaction that takes place between linked individuals.

Still, there is much to be understood about individual choices, interaction, and network

structure depend on various dynamic and stochastic effects.

Finally, experimental tools are becoming more powerful and well-refined, and can

be brought to bear on network formation problems, and there is also a rich set of areas

where network formation can be empirically estimated and some models tested. Exper-

imental and empirical analyses of networks are well-founded in the sociology literature

(e.g., see the review of experiments on exchange networks by Bienenstock and Bonacich

(1993)), but is only beginning in the context of some of the recent network formation

models developed in economics (e.g., see Corbae and Duffy (2000) and Charness and

Corominas-Bosch (2000)). As these incentives-based network formation models have

become richer and have many pointed predictions for wide sets of applications, there

is a significant opportunity for experimental and empirical testing of various aspects

of the models. For instance, the hypothesis presented above, that one should expect

to see over-connection of networks due to the power-based inefficiencies under equal

bargaining power and low costs to links, provides specific predictions that are testable

and have implications for trade in decentralized markets.

In closing, let me say that the future for research on models of network formation
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is quite bright. The multitude of important issues that arise from a wide variety of

applications provides a wide open landscape. At the same time the modeling proves to

be quite tractable and interesting, and has the potential to provide new explanations,

predictions and insights regarding a host of social and economic settings and behaviors.
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Appendix

Proof of Proposition 3: The proof uses the same value function as Jackson and

Wolinsky (1996), and is also easily extended to more individuals. The main complica-

tion is showing that the constrained efficient and efficient networks coincide. Let n = 3

and the value of the complete network be 12, the value of a single link 12, and the

value of a network with two links 13.

Let us show that the set of constrained efficient networks is exactly the set of

networks with two links. First consider the complete network. Under any component

balanced Y satisfying equal treatment of equals (and thus anonymity), each individual

must get a payoff of 4. Consider the component balanced and anonymous Y which gives

each individual in a two link network 13/3. Then g = {12, 23} offers each individual a

higher payoff than gN , and so the complete network is not constrained efficient. The

empty network is similarly ruled out as being constrained efficient. Next consider the

network g′ = {12} (similar arguments hold for any permutation of it). Under any

component balanced and Y satisfying equal treatment of equals, Y1(g
′, v) = Y2(g

′, v) =

6. Consider g′′ = {13, 23} and a component balanced and anonymous Y such that

Y1(g
′′, v) = Y2(g

′′, v) = 6.25 and Y3(g
′′, v) = .5. All three individuals are better off

under g′′ than g′ and so g′ is not constrained efficient. The only remaining networks

are those with two links, which are clearly efficient and thus constrained efficient.

To complete the proof, we need to show that any component balanced Y satisfying

equal treatment of equals results in none of the two link networks being pairwise stable.

As noted above, under any component balanced Y satisfying equal treatment of

equals, each individual in the complete network gets a payoff of 4, and the two indi-

viduals with connections in the single link network each get a payoff of 6. So consider

the network g = {12, 23} (or any permutation of it) and let us argue that it cannot be

pairwise stable. In order for individual 2 not to want to sever a link, 2’s payoff must

be at least 6. In order for individuals 1 and 3 not to both wish to form a link (given

equal treatment of equals) their payoffs must be at least 4. Thus, in order to have

g be pairwise stable it must be that Y1(g, v) + Y2(g, v) + Y3(g, v) ≥ 14, which is not

feasible.

Proof of Proposition 5: Let N∗(g) = |C(g)| + n − |N(g)|. Thus, N∗(g) counts

the components of g, and also counts individuals with no connections. So if we let a

component∗ be either a component or isolated individual, then N∗ counts component∗’s.

For instance, under this counting the empty network has one more component∗ than

the network with a single link.
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Let

B(g) = {i|∃j s.t. |N∗(g − ij)| > |N∗(g)|}.
Thus B(g) is the set of individuals who form bridges under g, i.e., those individuals

who by severing a link can alter the component structure of g. Let42

SB(g) = {i|∃j s.t. |N∗(g−ij)| > |N∗(g)| and i ∈ N(hi), hi ∈ C(g−ij), hi is symmetric}.

SB(g) identifies the individuals who form bridges and who by severing the bridge end

up in a symmetric component.

Claim 1: If g is connected (|C(g)| = 1) and has no loose ends, then i ∈ SB(g) implies

that i has at most one bridge in g. Also, for any such g, |N(g)|/3 ≥ |SB(g)|, and if

{i, j} ⊂ SB(g) and ij ∈ g, then {i, j} = B(g).

Proof of claim: Since there are no loose ends under g, each i ∈ N(g) has at least

two links. This implies that if i ∈ SB(g) severs a link and ends up in a symmetric

component h of g− ij, that h will have at least three individuals since each must have

at least two links. Also N(h) ∩ SB(g) = {i}. To see this note that if not, then there

exists some k 6= i, k ∈ N(h), such that k has a bridge under h. However, given the

symmetry of h and the fact that each individual has at least two links, there are at

least two distinct paths connecting any two individuals in the component, which rules

out any bridges. Note this implies that i has at most one bridge. As we have shown

that for each i ∈ SB(g) there are at least two other individuals in N(g∗) \ SB(g) and

so |N(g)|/3 ≥ |SB(g)|. If {i, j} ⊂ SB(g) and ij ∈ g, then given the symmetry of the

component from severing a bridge, it must be that ij is the bridge for both i and j

and that severing this results in two symmetric components with not bridges. This

completes the claim.

Pick g∗ to be efficient under v and have no loose ends. Also, choose g∗ so that if

h∗ ∈ C(g∗) then v(h∗) > 0. (Simply replace any h∗ ∈ C(g∗) such that 0 ≥ v(h∗) with

an empty component, which preserves efficiency.)

Consider any i that is non-isolated under g∗ and the component h∗i ∈ C(g∗) with

i ∈ N(h∗i ). Define Ŷ (h∗i , v) as follows.

Ŷi(h
∗
i , v) =


max[Y ce(g∗, v), Y ce

i (hi, v)] if i ∈ SB(h), where hi is the symmetric

component when i severs his bridge
v(h∗i )−

∑
k∈SB(h)

Ŷk(h∗i ,v)

|N(h∗i )\SB(h∗i )| if i ∈ N(h∗i ) \ SB(h∗i ).

42Recall that a network g is symmetric if for every i and j there exists a permutation pi such that
g = gπ and π(j) = i.
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Let Ŷ (g∗, v) be the component balanced allocation rule defined on g∗ from Ŷ defined

above.

Claim 2: Ŷi(g
∗, v) > 0 for all i ∈ N(g∗).

This is clear for i ∈ SB(h∗i ) since i gets at least Y ce
i (h∗i , v) > 0. Consider i ∈ N(h∗)\

SB(h∗i ). From the definition of Ŷ , we need only show that v(h∗) >
∑

k∈SB(h∗) Ŷk(h
∗, v).

Given that by Claim 1 we know |N(h∗)|/3 ≥ |SB(h∗)|, it is sufficient to show that
2v(h∗)
|N(h∗)| ≥ Ŷk(h

∗, v) for any k ∈ SB(h∗). Let hk be the symmetric component obtained

when k severs his bridge. By efficiency of g∗ and anonymity of v

v(h∗) ≥ v(hk)

( |N(h∗)|
|N(hk)|

)−

where (·)− rounds down.

v(h∗)

|N(hk)|
( |N(h∗)|
|N(hk)|

)− ≥ v(hk)

|N(hk)| .

Also note that |N(hk)|
( |N(h∗)|
|N(hk)|

)− ≥ 1
2
. Thus,

2v(h∗)
|N(h∗)| ≥

v(h∗)

|N(hk)|
( |N(h∗)|
|N(hk)|

)− ≥ v(hk)

|N(hk)| .

So, from the definition of Ŷ , we know that for any k ∈ SB(h∗) that 2v(h∗)
|N(h∗)| ≥ Ŷk(h

∗, v).

As argued above, this completes the proof of the claim.

Now let us define Ŷ on other networks to satisfy the Proposition.

For a component of a network h let the symmetry groups be coarsest partition

of N(h), such that if i and j are in the same symmetry group, then there exists a

permutation π with π(i) = j and hπ = h. Thus, individuals in the same symmetry

group are those who perform the same role in a network architecture and must be

given the same allocation under an anonymous allocation rule when faced with an

anonymous v.

For g adjacent to g∗, so that g = g∗+ ij or g = g∗− ij for some ij, set Ŷ as follows.

Consider h ∈ C(g)

Case 1. There exists k ∈ N(h) such that k is not in the symmetry group of either

i nor j under g: split v(h) equally among the members of k’s symmetry group within

h, and 0 to other members of N(h).

Case 2. Otherwise, set Ŷ (h, v) = Y ce(h, v).
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For anonymous permutations of g∗ and its adjacent networks define Ŷ according to

the corresponding permutations of Ŷ defined above. For any other g let Ŷ = Y ce.

Let us verify that g∗ is pairwise stable under Ŷ .

Consider any ij ∈ g∗ and g = g∗− ij. Consider hi ∈ C(g) such that i ∈ N(hi). We

show that i (and hence also j since the labels are arbitrary) cannot be better off.

If hi falls under Case 1 above, then i gets 0 which by Claim 2 cannot be improving.

Next consider case where hi has a single symmetry group. If N(hi) ∩ SB(g∗) = ∅,
then ij could not have been a bride and so N(hi) was the same group of individuals i

was connected to under g∗ (N(hi) = N(h∗i )). Thus i got Y ce
i (g∗, v) under g∗ and now

gets Y ce
i (g, v), and so by efficiency this cannot be improving since i is still connected to

the same group of individuals. If N(hi)∩SB(g∗) 6= ∅, then it must be that i ∈ SB(g∗)

and ij was i’s bridge. In this case it follows from the definition of Ŷi(g
∗, v) that the

deviation could not be improving.

The remaining case is where N(hi) ⊂ Ni ∪Nj, where Ni and Nj are the symmetry

groups of i and j under g, and Ni ∩ Nj = ∅. If i and j are both in N(hi) it must be

that N(hi) = N(h∗i ), and that N(hi) ∩ SB(g∗) = ∅. [To see this suppose the contrary.

ij could not be a bridge since i and j are both in N(hi). Thus, there is some k /∈ {i, j}
with k ∈ SB(g∗). But then there is no path from i to j that passes through k. Thus i

and j are in the same component when k severs a bridge, which is either the component

of k - which cannot be since then k must be in a different symmetry group from i and

j under g - or in the other component. But then k ∈ SB(g). This implies that either

i ∈ SB(g) or j ∈ SB(g) but not both. Take i ∈ SB(g). By severing i’s bridge under

g, i’s component must be symmetric and include j (or else j also has a bridge under g

and there must be more than two symmetry groups which would be a contradiction).

There is some l 6= j connected to i who is not i’s bridge. But l and j cannot be in the

same symmetry group under g since l is connected to some i ∈ SB(g) and j cannot

be (by claim 1) as ij /∈ g. Also, l is not in i’s symmetry group (again the proof of

claim 1), and so his is a contraction.] Thus i got Y ce
i (g∗, v) under g∗ and now gets

Y ce
i (g, v), and so by efficiency this cannot be improving since i is still connected to

the same group of individuals. If i and j are in different components under g, then it

must be that they are in identical architectures given that N(hi) ⊂ Ni ∪ Nj. In this

case ij was a bridge and since hi (and hj) are not symmetric and N(hi) ⊂ Ni ∪ Nj,

it follows the component of g∗ containing i and j had no members of SB(g∗). Thus

Ŷi(g
∗, v) = Y ce

i (g∗, v) and also Ŷi(g, v) = Y ce
i (g, v). Since the two components that are

obtained when ij is severed are identical, by efficiency it follows that the payoffs to i
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(and j) are at least as high under g∗ as under g.

Next, consider any ij ∈ g∗ and g = g∗+ij. Consider hi ∈ C(g) such that i ∈ N(hi).

We show that if i is better off, then j must be worse off.

If hi falls under Case 1 above, then i gets 0 which by Claim 2 makes i no better off.

Next consider case where hi has a single symmetry group. Then since ij was added,

and each individual had two links to begin with, it follows that N(hi) ∩ SB(g∗) = ∅.
Moreover, it must be that N(hi) = N(h∗i ), where h∗i is i’s component under g∗. This

implies that i got Y ce
i (g∗, v) under g∗ and now gets Y ce

i (g, v). By efficiency, this cannot

be improving for i.

The remaining case is where hi is not symmetric and N(hi) ⊂ Ni ∪ Nj, where Ni

and Nj are the symmetry groups of i and j under g, and Ni∩Nj = ∅. As argued below,

N(hi) ∩ SB(g∗) = ∅. Also, it follows again that N(hi) = N(h∗i ), and so the argument

from the case above applies again. So to complete the proof we need only show that

N(hi) ∩ SB(g∗) = ∅. First, note that ij cannot be a bridge as by the arguments of

claim 1 there must be some l /∈ B(g), which would then put l is a different symmetry

group than either i or j which would be a contradiction of this case. Consider the case

where B(g) = B(g∗). Then it must be that either i ∈ SB(g∗) or j ∈ B(g∗), but not

both (given only two symmetry groups under g). Take i ∈ SB(g∗). Then by severing

i’s bridge, the resulting component (given the addition of ij under g) is not symmetric.

But this means there is some l in that component not in j’s symmetry class, and

also not in B(g) and so l is in a third symmetry class which is a contradiction. Thus

B(g) 6= B(g∗). This means that ij is a link that connects two components that were

only connected via some other link kl under g∗. Given there are only two symmetry

classes Ni and Nj under hi, then it must be that every individual is involved in such

a duplicate bridge and that the duplicate ij was not present in g∗, which contradicts

the fact that some individual in N(hi) is in SB(g∗).

Proof of Proposition 6: Under (i) from Example 3, it follows that any buyer (or

seller) who gets a payoff of 0 from the bargaining would gain by severing any link, as

the payoff from the bargaining would still be at least 0, but at a lower cost. Thus, in

any pairwise stable network g all individuals who have any links must get payoffs of

1/2. Thus, from (iii) from Example 3, it follows that there is some number K ≥ 0 such

that there are exactly K buyers collectively linked to exactly K sellers and that we

can find some subgraph g′ with exactly K links linking all buyers to all sellers. Let us

show that it must be that g = g′. Consider any buyer or seller in N(g). Suppose that

buyer (seller) has two or more links. Consider a link for that buyer (seller) in g \ g′.
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If that buyer (seller) severs that link, the resulting network will still be such that any

subgroup of k buyers in the component can be matched with at least k distinct sellers

and vice versa, since g′ is still a subset of the resulting network. Thus, under (iii) that

buyer (seller) would still get a payoff of 1/2 from the trading under the new network,

but would save a cost cb (or cs) from severing the link, and so g cannot be pairwise

stable.

Thus, we have shown that all pairwise stable networks consist of K ≥ 0 links

connecting exactly K sellers to K buyers, and where all individuals who have a link

get a payoff of 1/2.

To complete the proof, note that if there is any pair of buyer and seller who each

have no link and each cost is less than 1/2, then both would benefit from adding a

link, and so that cannot be pairwise stable. Without loss of generality assume that the

number of buyers is at least the number of sellers. We have shown that any pairwise

stable network is such that each seller is connected to exactly one buyer, and each

seller to a different buyer. It is easily checked (by similar arguments) that any such

network is pairwise stable. Since this is exactly the set of efficient networks for these

cost parameters, the first claim in the Proposition follows.

The remaining two claims in the proposition follow from noting that in the case

where cs > 1/2 or cb > 1/2, then K must be 0. Thus, the empty network is the only

pairwise stable network in those cases. It is always Pareto efficent in these cases since

someone must get a payoff less than 0 in any other network in this case. It is only

efficient if cs + cb ≥ 1.

Proof of Proposition 8: The linearity of the Shapley value operator, and hence the

Myerson value allocation rule,43 implies that Yi(v, g) = Yi(b, g) − Yi(c, g). It follows

directly from (2) that for monotone b and c, that Yi(b, g) ≥ 0 and likewise Yi(c, g) ≥ 0.

Since
∑

i Yi(b, g) = b(g), and each Yi(b, g) is nonnegative it also follows that b(g) ≥
Yi(b, g) ≥ 0 and likewise that c(g) ≥ Yi(c, g) ≥ 0.

Let us show that for any monotone b and small enough c ≥ c(·), that the unique

pairwise stable network is the complete network (PS(Y MV , v = b − c) = {gN}). We

first show that for any network g ∈ G, if ij /∈ g, then

Yi(g + ij, b) ≥ Yi(g, b) +
2b({ij})

n(n− 1)(n− 2)
(4)

43This linearity is also easily checked directly from (2).
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From (2) it follows that

Y MV
i (g, b)− Yi(g − ij, b) =

∑
S⊂N\{i}:j∈S

(b(g + ij|S∪i)− b(g|S∪i))
#S!(n−#S − 1)!

n!
.

Since b is monotone, it follows that b(g + ij|S∪i)− b(g|S∪i) ≥ 0 for every S. Thus,

Y MV
i (g, b)− Yi(g − ij, b) ≥ (b(g + ij|{i,j})− b(g|{i,j}))#2!(n− 3)!

n!
.

Since b(g + ij|S∪i)− b(g|S∪i) = b({ij}) > 0, (4) follows directly.

Let c < minij
2b({ij})

n(n−1)(n−2)
. (Note that for a monotone b, b({ij}) > 0 for all ij.) Then

from (4)

Yi(g + ij, v)− Yi(g, v) ≥ 2b({ij})
n(n− 1)(n− 2)

− (Yi(g + ij, c)− Yi(g, c)).

Note that since c ≥ c(g) ≥ Yi(c, g) ≥ 0 for all g′, it follows that c ≥ Yi(g+ij, c)−Yi(g, c).

Hence, from our choice of c it follows that Yi(g + ij, v) − Yi(g, v) for all g and ij /∈ g.

This directly implies that the only pairwise stable network is the complete network.

Given that g∗ 6= gN is efficient under b and c is strictly monotone, then it follows

that the complete network is not efficient under v. This establishes the first claim of

the proposition.

If b is such that g∗ ⊂ g ⊂ gN for some symmetric g 6= gN , then given that b

is monotone it follows that g is also efficient for b. Also, the symmetry of g and

anonymity of Y MV implies that Yi(g, b) = Yj(g, b) for all i and j. Since this is also

true of gN , it follows that Yi(g, b) ≥ Yi(g
N , b) for all i. For a strictly monotone c,

this implies that Yi(g, b − c) > Yi(g
N , b − c) for all i. Thus, gN is Pareto dominated

by g. Since gN is the unique pairwise stable network, this implies the claim that

PS(Y MV , v) ∩ PE(Y MV , v) = ∅.
Proof of Proposition 7: Consider b that is anonymous and monotone. Consider

a symmetric g such that C(g) = g and N(g) = N and g 6= gN . Let b′(g′) =

min[b(g′), b(g)]. Note that b′ is monotone and that g is efficient for b′. Find a strictly

monotone c′ according to Proposition 8, for which the unique pairwise stable network

under b′−c′ is the complete network while the Pareto efficient networks are incomplete.

Let c = c′ + b− b′. It follows that c is strictly monotone. Also, v = b− c = b′ − c′ and

so the unique pairwise stable network under b′ − c′ is the complete network while the

Pareto efficient networks are incomplete.
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