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1 Introduction

The pioneering work of Nehring (1996) represented the first contribution to the problem

of ensuring the existence of maximal elements for non-binary choice functions. Among the

motivations that made this study relevant, we cite (a) the existence of common situations

where an agent is not able to resolve his/her preference (see the Introductions in Nehring,

1996 and 1997), and (b) the increasing relevance of non-classical choice mechanisms (cf.

Aizerman and Malishevski, 1981). Now it is known that it is possible to take advantage

of that general approach to optimization in order to develop other kind of sensible models

in totally different settings. The recent Alcantud (2002a) exemplifies such possibility, by

introducing a solution to the problem under new assumptions that permit direct applica-

tions e.g. to game theory, as in Alcantud and Alós-Ferrer (2002). All this accounts for

the richness of the general problem proposed by Nehring.

Focusing on the Nehring’s model, we emphasize some issues. The condition that an

element is chosen in a set whenever it is chosen in all two-element situations extracted from

it is abandoned. What replaces it is the so-called “finitariness” condition. The setting

is completed by requesting a weak consistency axiom and also by postulating that any

finite subset has a non-empty choice. According to his Remark 1, this model is relatively

close to that of a choice correspondence that can be deduced by optimizing an acyclic

binary relation. Owing to this, Nehring’s contribution generalized the extensively used

Bergstrom-Walker theorem: he provides a continuity condition that ensures non-empty

choices on compact sets. That possibility was further exploited in Llinares and Sánchez

(1999), where a yet weaker consistency axiom is used.

Our purpose is to complete the study by presenting necessary and sufficient conditions

for a choice funtion under axioms weaker than those of the Nehring’s model to have

non-empty choices on compact sets. The conditions we propose are of transfer type. This

kind of properties have provided milestones in the literature on the maximization of binary

relations. Their use gave complete solutions to the question of the existence of maximal

elements for complete preorders and for interval orders -cf. Tian and Zhou (1995)- and for

acyclic and only irreflexive binary relations -cf. Rodŕıguez-Palmero and Garćıa-Lapresta

(2002). Hence, we here show that a similar achievement is available in fairly general

non-binary models of choice. That is accomplished in Section 2. As an application, the

characterization of the existence of maximal elements for acyclic binary relations proven

in Rodŕıguez-Palmero and Garćıa-Lapresta (2002) is deduced from our results in Section
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3. Each of these solutions encompassed the cases tackled by Tian and Zhou (1995) which,

therefore, must follow from our characterization results as well. Some further discussion

on variations of our results and open questions put an end to our exposition in Section

4. In particular, we close some remaining gaps of the binary literature on the existence

of maximal elements, namely, the study of the k-acyclic case. Some relationships to the

approach initiated in Alcantud (2002b) complete our analysis.

2 A necessary and sufficient condition for non-binary

maximization

We begin by describing our general framework.

Unless otherwise stated, X will denote a compact topological space. Let D be a domain

of non-empty subsets of X, that represents all the choice situations to which the agent

has been or could conceivably be faced. Denote by C : D −→ X a correspondence such

that C(S) ⊆ S for all S ∈ D. As in Nehring (1996), it is henceforth assumed that all

finite subsets of X belong to D. F(S) will denote the set of all non-empty finite subsets

of the choice situation S.

We stick to the notation and terminology of Nehring (1996) with regard to the following

axioms:

Non-emptiness. If S ∈ D is finite then C(S) 6= ∅.

Contraction consistency or Chernoff condition. For all S, T ∈ D : T ⊆ S implies C(S) ∩
T ⊆ C(T ) if S is finite.

Finitariness. For all S ∈ D, if x ∈ S satisfies that for all T ∈ F(S), x ∈ T implies

x ∈ C(T ), then x ∈ C(S).

Contraction consistency says that an element x chosen in a set S is also chosen in any

smaller set T containing x. Finitariness says that if for a given available set S, there is an

element x which is always chosen in every finite subset of S which contains it, then that

element has to be chosen in A. In Section 3 we shall relate these conditions to the case

where an underlying binary relation exists. Complementarily, we also address the reader

to Remark 1 in Nehring (1996).

Nehring (1996) proves that, under these three independent axioms, the choice cor-

respondence C will assign a non-empty choice to any compact set belonging to D if a
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certain continuity condition is fulfilled. Llinares and Sánchez (1999) have proven a similar

result which weakens the Chernoff condition and enlarges the class of subsets for which

non-empty choice is guaranteed.

Our technique will require to make use of further definitions.

Definitions. The choice function C is said to satisfy non-binary transfer continuity

(respectively: non-binary k-transfer continuity) if for all x ∈ X such that there is Sx

finite (respectively: with |Sx| < k) with x 6∈ C(Sx ∪ {x}), there exists a neighborhood

N(x) of x and a yx ∈ X such that: for all S finite (respectively: with |S| < k) with

yx 6∈ C(S ∪ {yx}) it is also true that z 6∈ C(S ∪ {z}) whenever z ∈ N(x). We abbreviate

these definitions by NBTC and NBkTC respectively.

Also, the choice function C is said to satisfy the weak Chernoff condition (resp. k-weak

Chernoff condition) if for all S ⊆ X with C(S) 6= ∅, there exists x ∈ C(S) such that for

all T ⊆ S finite (resp. with |T | < k) it is true that x ∈ C(T ∪ {x}).
For k-finitariness we shall mean: for all S ∈ D, if x ∈ S satisfies that for all T ⊆ S

with x ∈ T and |T | 6 k it is true x ∈ C(T ), then x ∈ C(S).

Theorem 1. Suppose that C satisfies Non-emptiness, k-Finitariness, and the k-weak

Chernoff condition. Then, C(X) is nonempty if and only if C satisfies NBkTC

Remark. The case k=1 is useless to any purpose, since it contains one single choice

correspondence for each (D associated with) X. In fact, 1-finitariness plus C(x) 6= ∅ for

all x ∈ X together already force C(A) = A whenever A ∈ D. Also, 2-finitariness is the

binariness property that is stated as A5 in Nehring (1996). Section 3 will take advantage

of this particular case.

Proof. Necessity. Being C(X) 6= ∅, the k-weak Chernoff condition provides an element

y such that for all S with |S| < k it is true that y ∈ C(S ∪ {y}). Thus, for all x ∈ X

and any neighborhood N(x) of x, yx = y satisfies vacuously the condition required by

NBkTC.

Sufficiency. We distinguish two incompatible cases.

Case 1: If there is x ∈ X for which x ∈ C(S∪{x}) whenever |S| < k, then k-finitariness

says that x ∈ C(X).
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Case 2: Suppose Case 1 does not hold. We show that a contradiction arises.

Due to NBkTC, with each x ∈ X we can associate a neighborhood N(x) of x and a

yx ∈ X such that: for all S ⊆ X with |S| < k and yx 6∈ C(S ∪ {yx}) it is also true that

z 6∈ C(S ∪ {z}) whenever z ∈ N(x). Because X =
⋃

x∈X N(x), compactness yields the

existence of a finite number of elements x1, ..., xn such that X =
⋃

i=1,...,n N(xi). In order

to alleviate the notation, we shall denote yi instead of yxi
henceforth. The fact that Case

1 has been rejected ensures the existence of Si such that |Si| < k and yi 6∈ C(Si ∪ {yi}),
for each i = 1, ..., n. Hence, due to the NBkTC condition we can guarantee that

z 6∈ C(Si ∪ {z}) whenever z ∈ N(xi)

Define S = S1 ∪ .... ∪ Sn ∈ D, being a finite subset of X. Non-emptiness ensures the

existence of a ∈ C(S) ⊆ S , thus a ∈ C(S∪{a}). However, the k-weak Chernoff condition

provides b ∈ C(S) ⊆ S such that b ∈ C(T ) for every T ⊆ S with |T | 6 k and b ∈ T .

By construction, there is i for which b ∈ N(xi). Then we get b ∈ C(Si ∪ {b}) because

Si ∪ {b} ⊆ S and |Si ∪ {b}| 6 k, a contradiction. Q.E.D.

The next result is a variation on the model of the Theorem above. It appeals to a quite

remarkable framework, since it encompasses the motivating Nehring’s model. Observe

that k-finitariness implies both (k + 1)-finitariness and finitariness, and also that the

weak Chernoff condition is stronger than the k-weak Chernoff condition. The proof of

Theorem 2 is virtually identical to that provided for Theorem 1 and is omitted.

Theorem 2. Suppose that C satisfies Non-emptiness, Finitariness, and the weak Chernoff

condition. Then, C(X) is nonempty if and only if C satisfies NBTC

3 Application: the characterization in the acyclic

binary case

Rodŕıguez-Palmero and Garćıa-Lapresta (2002) have put forward conditions that charac-

terize of the existence of maximal elements for acyclic binary relations defined on compact

spaces. Actually, they obtained such result as an application of the characterization given

for only irreflexive relations. We proceed to deduce their contribution for the acyclic case
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from Theorem 2. Because interval orders are acyclic (and irreflexive), the aforementioned

cases studied by Tian and Zhou (1995) are encompassed in the characterization for the

acyclic case and thus they must follow from our Theorem 2 as well.

For any P binary relation defined on the set X, define C(T ) = {x ∈ T : yPx is

false, ∀y ∈ T} whenever T ⊆ X. It is clear that it satisfies finitariness -actually, it

satisfies 2-finitariness or binariness- as well as the Chernoff condition. It is well known

and straightforward -see Theorem 2.5 in Aleskerov and Monjardet (2002) for an illustrative

proof in the case where X finite- that: P is acyclic if and only if C(T ) 6= ∅ for every

finite subset T of X. This amounts to saying: C fulfils non-emptiness if and only if P is

acyclic. We observe that P is irreflexive if and only if C({x}) 6= ∅ for all x ∈ X.

We let P (x) = {y ∈ X : yPx}, for each x ∈ X. Thus, an element x will be maximal

of P in X if and only if P (x) = ∅. The transitive closure of P will be denoted by P∞.

Rodŕıguez-Palmero and Garćıa-Lapresta (2002) introduced the concept of TALC (transfer

acyclic lower continuity). It applies to P if and only if: whenever P (x) 6= ∅, there is y ∈ X

and a neighborhood of x, N(x), such that z P∞ y entails z P∞ a, for each a ∈ N(x).

Besides, it is trivial that P is acyclic if and only if P∞ is irreflexive. Obviously, in such

case P∞ is acyclic (as well as transitive).

Corollary 1 (Rodŕıguez-Palmero and Garćıa-Lapresta). Let P be an acyclic binary

relation on X compact topological space. Then: P has a maximal element on X if and

only if P is TALC.

Proof. The necessity if the condition is plain. Conversely, assume that P is TALC.

Define C(T ) = {x ∈ T : yP∞x is false, ∀y ∈ T}. We have argued that our Theorem 2

applies to it: C satisfies Non-emptiness, Finitariness, and the (weak) Chernoff condition.

In order to conclude, we only need to justify that C fulfils NBTC, because C(X) 6= ∅
implies that P has a maximal element.

Take x ∈ X such that there is a finite Sx ⊆ X with x 6∈ C(Sx ∪ {x}). We need

to produce a neighborhood N(x) of x and a y(x) ∈ X such that: for all S ∈ F(X)

with y(x) 6∈ C(S ∪ {y(x)}) it is also true that z 6∈ C(S ∪ {z}) whenever z ∈ N(x).

Because P is TALC and P (x) 6= ∅, there is yx ∈ X and a neighborhood of x, Nx, such

that z P∞ y entails z P∞ a for each a ∈ Nx. We check that these serve to our purpose.

Indeed, if S ∈ F(X) displays yx 6∈ C(S ∪ {yx}) there must be z ∈ S with z P∞ yx by the

construction of C, which entails z P∞ a, for each a ∈ Nx. This ends the proof. Q.E.D.

6



4 Comments, questions for further research, and the

characterization in the k-acyclic binary case

We conclude with some comments and questions that seem interesting to us.

1.- It makes sense to reconsider our problem for settings that are different from ours,

according to one’s interests or necessities. In particular: what condition must replace

NBkTC (respectively: NBTC) in our Theorem 1 (respectively: in Theorem 2) in the

case that we replace non-emptiness by the much weaker condition C({x}) 6= ∅ for all

x ∈ X? As we argued above, the latter result would provide a natural generalization of

the characterization of the existence of maximal elements for irreflexive binary relations

available in Rodŕıguez-Palmero and Garćıa-Lapresta (2002). This could be motivated

out of interest in understanding the foundations of optimization at the individual level

that precede equlibrium results such as e.g. Gale and Mas-Colell (1975) or Shafer and

Sonnenschenin (1975).

2.- Equally, and in a related line of thought, one might be interested in studying frame-

works where non-emptiness is replaced by the intermediate requirements: C(S) 6= ∅ for

all S ⊆ X with cardinality at most k. These models have plain interpretations in terms of

myopia and are related to generalizations of k-acyclic binary optimization (k = 1, 2, ....),

which seem to lack a specific study in terms of explicit characterizations. We here close

such gap of the binary literature by an appeal to the technique used in Rodŕıguez-Palmero

and Garćıa-Lapresta (2002), who did give an explicit characterization in the 1-acyclic case,

as we proceed to recall.

In general, for k-acyclicity we mean: x1 P x2 P ....P xl implies xl P x1 false, if l 6 k

(in case l = 1 the implication is satisfied vacuously by convention, so k-acyclicity implies

irreflexivity and irreflexivity implies 1-acyclicity). P k denotes the following k-transitive

closure: x1 P k y if and only if there is l 6 k and x1, ...., xl with x1 P x2 P ....P xl P y (the

case l = 1 is to be interpreted x1 P y, thus P k extends P and they coincide for k = 1).

Clearly, P is k-acyclic if and only if P k is irreflexive. This entails necessary and sufficient

conditions for the existence of maximal elements for k-acyclic binary relations by virtue of

the 1-acyclic case as trivially as in Theorem 2 in Rodŕıguez-Palmero and Garćıa-Lapresta

(2002). We just need to translate their TILC condition when P k is used:

Definitions. An irreflexive binary relation P on X is TILC (transfer irreflexive lower
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continuity) if and only if: whenever P (x) 6= ∅, there is y ∈ X and a neighborhood of x,

N(x), such that z P∞ y entails z P a, for each a ∈ N(x). An irreflexive binary relation P

on X is TkALC (transfer k-acyclic lower continuity) if and only if P k is TILC if and only

if whenever P (x) 6= ∅, there is y ∈ X and a neighborhood of x, N(x), such that z P∞ y

entails z P k a, for each a ∈ N(x). Note that P (x) 6= ∅ is equivalent to P k(x) 6= ∅, and

also that the transitive closure of P k is P∞ too.

Corollary 2. Let P be a k-acyclic binary relation on X compact topological space. Then:

P has a maximal element on X if and only if P is TkALC.

Proof. Apply Theorem 1 in Rodŕıguez-Palmero and Garćıa-Lapresta (2002) to the as-

sociated P k, that is irreflexive. This result states that P k has a maximal element if and

only if P k is TILC, that is, if and only if P is TkALC. Q.E.D.

Observe that P is 2-acyclic if and only if P is asymmetric, which gives raise to a

particular characterization in an interesting case not yet explicited, and that P is k-acyclic

for every k = 1, 2, ..... if and only if P is acyclic.

As we mentioned before, and because P is k-acyclic if and only if every subset of X

with cardinality at most k has a maximal element, maximality in the k-acyclic binary case

addresses to the variation of any of our Theorems 1 or 2 where non-emptiness is replaced

by the weaker axiom: C(S) 6= ∅ for all S ⊆ X with cardinality at most k.

3.- The fact that a binary relation has a maximal element is not of topological nature:

it is simply set-theoretical. This is even more obvious in the approach by choice cor-

respondences: the fact that C(X) is either empty or not is none but a set-theoretical

statement. In view of these plain facts, Alcantud (2002b) has proposed that a different

way to state the results on maximality could be more appropriate and illustrative. It is

argued that fixing a topology a priori may seem comfortable, but it is nonetheless true

that the (transfer) continuity issues that are typically to be ellucidated in order to ensure

the existence of maximal elements may be much easier to check if a different topology

had been employed. Consequently, Theorems 4 and 5 in Alcantud (2002b) constituted

the first characterizations of the existence of maximal elements of acyclic relations in the

literature. We can apply the technique developed there and provide what, in our view, is

a more complete and procedurally correct statement of Theorems 1 and 2 above.
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Theorem 1 (Alternative Statement). Let X be a set and D a domain of non-empty

subsets of X such that F(X) ⊆ D. Denote by C : D −→ X a correspondence such that

C(S) ⊆ S for all S ∈ D.

Suppose that C satisfies Non-emptiness, k-Finitariness, and the k-weak Chernoff con-

dition. The following conditions are equivalent:

(a) C(X) is nonempty

(b) there is a topology on X for which X is compact and C satisfies NBkTC

Proof. Theorem 1 says that (b) implies (a).

Assume that (a) holds. By the k-weak Chernoff condition, there must be an element z

such that for all S ⊆ X with |S| < k it is true that z ∈ C(S ∪ {z}). Endow X with the

topology on X whose non-trivial open sets are all the subsets of X that do not contain

z. The set X is compact, since every open cover of X includes X itself, and thus {X}
is a finite subcover. Also, C satisfies NBkTC. Indeed, for all x ∈ X such that there is

Sx with |Sx| < k with x 6∈ C(Sx ∪ {x}), we just take any neighborhood N(x) of x and

yx = z. Then, the condition that for all S with |S| < k and yx 6∈ C(S ∪ {yx}) it is also

true that z 6∈ C(S ∪ {z}) whenever z ∈ N(x) is satisfied vacuously. Q.E.D.

That being proven, the details of the proof of the next statement are left to the reader:

Theorem 2 (Alternative Statement). Let X be a set and D a domain of non-empty

subsets of X such that F(X) ⊆ D. Denote by C : D −→ X a correspondence such that

C(S) ⊆ S for all S ∈ D.

Suppose that C satisfies Non-emptiness, Finitariness, and the weak Chernoff condition.

The following conditions are equivalent:

(a) C(X) is nonempty

(b) there is a topology on X for which X is compact and C satisfies NBTC
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