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Abstract Edgeworth exchange is the fundamental general equilibrium model, yet equi-

librium predications and theories of price adjustment for this model remain untested. This

paper reports an experimental test of Edgeworth exchange which demonstrates that prices

and allocations converge sharply to the competitive equilibrium. Price convergence is eval-

uated with the tatonnement model, interpreted as a disequilibrium model of across-period

price adjustment. Subsequently, the extent of within-period adjustment is compared to that

of across-period adjustment. Since most observed price adjustment occurs within trading

periods, price adjustment data is evaluated with two disequilibrium models of within-period

trades. These models are the Geometric Mean model, which is formulated in this paper, and

the Hahn process (Hahn and Negishi [1962]). Price dynamics from experiment sessions fit the

Geometric Mean model better than the Hahn process, and in addition, the Geometric Mean

model provides direction for development of an Edgeworth exchange bargaining model.

KEYWORDS: Competitive equilibrium, disequilibrium dynamics, double auction, Edgeworth

exchange, experimental economics, exchange economy, Hahn process, market dynamics

1 Introduction

Although Edgeworth exchange is the fundamental general equilibrium model, competitive

equilibrium and price dynamic predictions for the model remain untested. The purpose of

Edgeworth exchange experiments is to determine whether the competitive equilibrium of

the model is attained, and if so, to evaluate the convergence process. Experiments support

the competitive equilibrium prediction. Market dynamics are evaluated with three price

adjustment models. Across-period adjustment is evaluated with the tatonnement model,

interpreted as a disequilibrium model. In the tatonnement model, a price is announced by
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the ‘Walrasian auctioneer’ and net demands are reported by agents to the auctioneer, who

then adjusts price to reduce the magnitude of excess demand.1 Exchange in this model

takes place only when an equilibrium price is announced. Tatonnement, interpreted as a

disequilibrium model, is used to evaluate convergence across market replications (or market

‘periods’), with the change in average price between periods t and t + 1 equal to a constant

times the excess demand at the average price in period t. Tatonnement though neglects

the substantial price adjustment that occurs within trading periods. In the “Hahn process”

(Hahn and Negishi [1962]), price adjusts in response to excess demand as in tatonnement,

but disequilibrium trades can occur at each announced price, so this model is better suited

to analysis of Edgeworth exchange price data generated with the double auction institution.

The primary limitation of the Hahn process for the evaluation of disequilibrium dynamics is

conceptual: the model relies upon price adjustment in response to excess demand, which is

unobserved by traders in the double auction. In view of these limitations of the tatonnement

model and of the Hahn process, an alternative adjustment model – called the Geometric

Mean model – is formulated in this paper. The Hahn process and the Geometric Mean

model are evaluated by comparing their predicted price paths for each trading period to

the observed within-period price paths from experiment sessions. This paper demonstrates

that the Geometric Mean model provides a better fit than the Hahn process to the price

paths observed in Edgeworth exchange experiments.

In order to develop an experimental test of the competitive equilibrium prediction and

price dynamics of Edgeworth exchange, a utility function over two commodities is induced

(as in Smith [1976, 1982]) for each of six sellers and each of six buyers in an experiment

session. Each agent also has an endowment of one of the two commodities. In order to

facilitate the emergence of stable terms of trade, one of these two commodities is treated

as the numeraire commodity; prices for the non-numeraire commodity are stated in terms

of the numeraire. Buyers initially hold only the numeraire commodity in their endowment,

and sellers initially hold only the non-numeraire commodity in their endowment.2 In each

1 For a description of the tatonnement model and stability results for the model, see Arrow and Hurwicz

[1958] and Arrow, Block, and Hurwicz [1959].

2 The position of each subject in the experiment as either a buyer or a seller is of course a fiction: those

labelled ‘buyer’ in the experiment because they purchase units of the non-numeraire commodity are also

sellers of the numeraire commodity, and those labelled ‘seller’ purchase the numeraire commodity.
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experiment session, the group of six sellers and six buyers engage in a series of either 12 or

15 identical trading periods. In each of these trading periods, the sellers post offer prices

and the buyers post bid prices for the exchange of one unit of the commodity for the number

of units of the numeraire commodity specified in the offer or bid. Sellers and buyers may

(and typically do) participate in several trades in each trading period.

By the final period in four of the five sessions, allocations and prices were very near

the competitive equilibrium allocation and price: the per capita allocation differed from

the competitive equilibrium allocation by less than 3% and the difference between the

average price and the equilibrium price was less than 3.1% in each of these four sessions.

In addition to the confirmation of the equilibrium model for Edgeworth exchange, these

experiment sessions provide a unique opportunity to assess price dynamics in Edgeworth

exchange. In the double auction trades are negotiated directly between sellers and buyers,

trades typically occur at a variety of prices even within a single trading period, and most

trades are out of equilibrium. These characteristics of the trading process though, rather

than hindering evaluation of price dynamics, facilitate evaluation of the Hahn process and

the Geometric Mean model of within-period price dynamics.

The Geometric Mean model has two primary elements: price adjustment within each pe-

riod, and price adjustment across periods. The crucial element is within-period adjustment.

In the model, price adjusts in the direction of a weighted geometric mean between the sell-

ers’ and buyers’ marginal rates of substitution at the current allocation. This within-period

price adjustment model has several beneficial characteristics: it is based on the individual

incentives of sellers and buyers rather than on the market aggregate of excess demand, it can

account for and adapt to disequilibrium trades, it converges to a Pareto optimal allocation

in each period, and in many cases it tracks within-period price movements extremely well.

This paper progresses though the steps outlined above. The economic environment uti-

lized in the experiment sessions is described in Section 2. The double auction mechanism is

described for the Edgeworth exchange context in Section 3. Experiment data is evaluated

for across-period convergence in Section 4. Section 5 describes the Hahn process and devel-

ops the Geometric Mean model of within-period price dynamics. Predictions of these two

models are compared to experiment data in Section 6. Conclusions are drawn in Section 7.
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2 Economic environment

At the beginning of each trading period, each buyer is endowed with 1800 units of the

numeraire commodity (X), which is described to the buyer as currency. Buyers can use

this numeraire to purchase units of the commodity (Y ). Each seller is endowed with eighteen

units of the commodity, which can be sold individually to acquire units of the numeraire

commodity. Following the technique developed by Smith [1976, 1982], utility functions for

each buyer and for each seller are induced with a payment that is determined by evaluation

of a utility function at the final allocation of currency (the numeraire commodity X) and

the commodity (Y ). Each buyer and each seller has a constant elasticity of substitution

(CES) utility function ui(x, y) = ci ((ai xi)ri +(bi yi)ri)1/ri . The parameter ci does not affect

the competitive equilibrium price or allocation, but it does affect the utility level attained

by subject i, and is therefore a useful element of the utility inducement technique, since it

permits the experimenter to rescale a subject’s payoff with a single parameter.

In each period of an experiment session, each of six buyers (agent type A) had the same

utility function uA(xA , yA) and endowment ωA = (1800, 0); each of six sellers (agent type B)

had the same utility function uB (xB , yB ) and endowment ωB = (0, 18). Table 1 shows the

CES utility function parameters and the endowments of sellers and buyers.

ci ai bi ri ωi

Sellers’ parameters (i = 2, 4, . . . , 12) 0.2560 2.982 109.89 −1 (1800, 0)

Buyers’ parameters (i = 1, 3, . . . , 11) 0.6950 0.362 109.89 −1 (0, 18)

Table 1: Sellers’ and buyers’ parameters.

Equilibrium

The equilibrium price pe is calculated by setting aggregate excess demand in the market

for the commodity (Y ) equal to zero and solving for the equilibrium price. In equilibrium,

the market for the numeraire commodity (X) then clears by Walras’ law. Equilibrium

allocations for buyers and for sellers are determined by substituting the equilibrium price

pe into the individual excess demand equations. Each agent has the excess demand function

Z
Y

i ( p |ωi) =
b ρi

i (ωX
i + p ωY

i )

p
(
b ρi

i + p ρi a ρi
i

) − ωY
i (1)
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for the commodity Y , where ρi = ri

1−ri
. Market excess demand for Y is

Z
Y
( p |ω) =

∑ 12

i=1
Z

Y

i ( p |ωi)

= 6 Z
Y

A
( p |ωA) + 6 Z

Y

B
( p |ωB ), (2)

where Z
Y

A
( p |ωA) is the excess demand for an individual buyer and Z

Y

B
( p |ωB ) is the excess

demand for each seller.3 When parameters from table 1 for buyers and sellers are substituted

into equation (1), and the resulting individual excess demand functions are substituted

into equation (2), the equilibrium price pe is obtained by setting aggregate excess demand

equal to zero. Then the equilibrium price pe is substituted into equation (1) to determine

equilibrium allocations. With sellers identical to one another, and buyers identical to each

other, the economic environment can be displayed in an Edgeworth diagram, as in figure 1.

The equilibrium price for the parameter set used in the experiment sessions is pe

.= 91.

Table 2 shows sellers’ and buyers’ equilibrium allocations and equilibrium utility levels.
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Figure 1: Edgeworth diagrams for experiment sessions.

In order to implement a test of Edgeworth exchange, experiment subjects need to be

provided with both a detailed specification of their objectives and of the exchange institu-

tion. The next section describes the double auction institution in the context of Edgeworth

exchange and describes the representation of the utility inducement technique to subjects.

3 Dependence of excess demand on endowments ωA and ωB or on the current allocations (xA , yA) and

(xB , yB ) is indicated because in the Hahn process, price adjusts after each trade in response to excess

demand at the current allocation. In Section 5.1, which defines the Hahn process adjustment rule, the

excess demand for Y is written Z
Y

( p | (x, y)) = Z
Y

A
( p | (xA , yA)) + Z

Y

B
( p | (xB , yB )) on a per capita basis.
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Equilibrium Equilibrium
Allocation Utility

Sellers (1163, 7) 189

Buyers ( 637, 11) 189

Table 2: Equilibrium allocations and equilibrium utility levels for sellers and buyers.

3 The double auction

In the double auction mechanism, any seller may submit an ask at any time during a trading

period. An ask, which is the seller’s current report of the fewest units of the numeraire

commodity that he is willing to accept for a unit of the commodity, is entered in the area

labelled “Enter Ask” on the seller’s screen display, as in figure 2. Similarly, a buyer’s bid,

which represents her current report of the most units of the numeraire commodity that she

is willing to pay for a unit of the commodity, may be submitted at any time. If an ask is

placed that is at or below the current high bid, a trade results with the price equal to the

bid. If a bid is placed that meets or exceeds the current low ask, a trade occurs with the

price equal to the ask. A seller may make any number of asks, and may trade any number of

units that is consistent with his commodity endowment. Similarly, a buyer may make any

number of bids, and may trade any number of units that is consistent with her endowment

of the numeraire commodity. Several specific rules are implemented in the version of the

double auction used to conduct the experiment sessions reported here. Of these, the most

important is the “spread reduction rule,” which requires that each new ask is made at a

value that is below the current low ask and each new bid is placed at a higher value than

the current high bid. Sellers and buyers have the option to remove any ask or bid that they

have previously made, provided the request to remove the ask or bid is received before it

results in a trade. Each seller is permitted a single ask in the market queue at any time and

any new ask by a seller replaces his previous ask if he has one in the queue. Each ask is

the unit price offered by the seller for a single unit: multiple unit trades are not permitted.

Similar restrictions apply to each buyer’s bids.

During each period, a queue on the seller’s screen displays all current asks and bids

(shown as the “Market Queue” in figure 2); each buyer’s screen also displays both queues.

When a seller successfully enters an ask into the ask queue, he receives a confirmation
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Figure 2: Seller screen with elements of market institution.

message in the “Messages” area of the screen display. This ask also appears in the “Unit

Ask” row of the “Trade Summary” table, in the column that corresponds to the unit the

seller has offered for sale. Similarly, a buyer receives a confirmation message when she

enters a bid into the bid queue, and also sees an update to the appropriate cell in her Trade

Summary table. When a seller and buyer complete a trade, they both receive a confirmation

message, “Unit Price,” “Unit Profit,” and “Total Profit” figures are recorded in their Trade

Summary tables, and the price appears in a display of all trade prices from the current

period, shown as the “Market Transaction Prices” graph. The trading phase of each period

lasts 180 seconds. Subjects know the length of the trading phase of each market period,

and a clock at the top of the screen of each seller and each buyer shows the time remaining

in the current phase. Each of these elements of the market institution appears on a seller’s

trading screen, as in figure 2. Buyers have a similar trading screen.
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Profit (or utility) representation

Each market period is separated into three phases. During the preview phase, which

lasts 60 seconds, and during the 180 second trading phase, a seller is able to enter “Price”

and “Quantity” into a “Profit Calculator,” which appears on the lower right hand side of

the seller screen in figure 2. (The final phase is the 30 second review phase, when sellers

and buyers have an opportunity to examine the results of the trading phase.) This Profit

Calculator displays both a tabular and a graphical representation of the utility level that

would result from a proposed trade. Examples of the Profit Calculator are shown for a seller

and for a buyer in figure 3, starting from the seller’s and the buyer’s initial endowments.

When a subject enters data into the Price and Quantity boxes in this calculator and clicks

“Update Table,” the profit (or utility) level is displayed in the center of the table for the

allocation that would result from the proposed exchange. Profit levels are also displayed

for prices above and below the proposed price, and for quantities above and below the pro-

posed quantity. In addition, the graph represents the “Current Allocation,” the “Proposed

Allocation” which would result from the proposed Price and Quantity, and the “Iso-profit

Curve” (or indifference curve) that passes through the Proposed Allocation.

Figure 3: Profit calculator table and graph for seller (left) and buyer (right).
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Instructions

These elements of the double auction mechanism and of the representation of profit (or

utility) levels are explained to subjects in a detailed interactive instruction set. Instructions

describe each element of the seller’s (or buyer’s) trading screen independently, and then

describe how elements relate to one another. There are points in the instruction set at

which the seller or buyer is prompted for inputs, and there are eight interactive questions

that must be answered correctly in order to proceed through the instructions. The sequence

of steps through the instructions is outlined in Appendix A.

Experiment sessions and experience

Three experiment sessions were conducted at the University of York in the U.K. on June

7, 2001. The fourth session was conducted at the University of Arizona on November 16,

2001, and the final session was conducted in York on December 14, 2001. Subjects in all

Edgeworth exchange sessions had double auction experience in a session with a list of unit

costs for each seller and a list of unit values for each buyer, rather than a utility function.

4 Convergence

This section assesses convergence in the five experiment sessions. Section 4.1 assesses con-

vergence of per capita allocations to the competitive equilibrium allocation. Final per capita

allocations in each trading period are shown in an Edgeworth diagram for each of the five

experiment sessions. In Section 4.2, tatonnement is interpreted as a model of across-period

convergence of mean prices, and the adjustment factor from the tatonnement model is esti-

mated for each experiment session. Section 4.3 compares the extent of across-period price

convergence to the extent of within-period price convergence.

4.1 Convergence of allocations across periods

Figure 4 (a) shows the reallocations of units that result from all trades in periods 1, 6,

and 11 of session IU-CES1-DAs-010607a. The series of dots for Period 1 indicate the per

capita allocation of currency and commodity after each trade during the period. The dots

for periods 6 and 11 are interpreted similarly. Figure 4 (b) shows the final per capita

allocation for each of 12 periods in the same experiment session. (A more detailed view of

the final allocations for this session is shown in Figure 9 (b) on page 25.) Figure 5 shows
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(a) Trades within periods (b) Final allocations across periods
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Figure 4: Trades (left) and final allocations (right) in session IU-CES1-DAs-010607a.

final allocations by period for each of the other four sessions. There is a significant level of

convergence across periods in four of five sessions, and convergence is almost immediate in

the first period of the session shown in figure 5 (a). Only the session shown in figure 5 (d)

does not converge to the competitive equilibrium allocation.

In order to examine the rate of convergence of allocations across periods, the distance

of the final allocation from the competitive equilibrium allocation is determined for each

period. The metric used to measure the distance between the final allocation (xA
t
, yA

t
)

observed in period t and the equilibrium allocation (xA
e
, yA

e
) is

d((xA
t
, yA

t
), (xA

e
, yA

e
)) = 1√

2

((
1
91 (xA

t
− xA

e
)
)2

+ (yA
t
− yA

e
)2
)0.5

.

The rationale for this distance metric is straightforward: if trades take place at the equilib-

rium price pe = 91 and trade falls short of or exceeds the equilibrium allocation by α units,

then the distance between the allocation and the equilibrium allocation is α. For example,

if in period t all trades take place at the equilibrium price pe = 91 and one unit per capita is

not traded that should be to reach the equilibrium allocation (xA
e
, yA

e
) = (1163, 7) for agent

type A, then (xA
t
, yA

t
) = (1163 + 91, 7− 1). The distance between (xA

t
, yA

t
) and (xA

e
, yA

e
) in

this situation is then d((xA
t
, yA

t
), (xA

e
, yA

e
)) = 1.

With the distance d((xA
t
, yA

t
), (xA

e
, yA

e
)) denoted dt , convergence is evaluated with the

regression equation dt = d1 e−r ln t εt . This model can be expressed as the linear model

ln dt = ln d1 − r ln t + ln εt . (3)
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(a) IU-CES1-DAs-010607b (b) IU-CES1-DAs-010607c

(c) IU-CES1-DAs-011116b (d) IU-CES1-DAs-011214b
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Figure 5: Edgeworth diagrams for IU-CES1-DAs sessions.

Figure 6 shows the convergence of the distance between final allocations in each pe-

riod and the equilibrium allocation, together with the estimated curve from the model in

equation (3) for session IU-CES1-DAs-010607a. Although a linear model can be fit to this

data, the exponential model in the equation is more appropriate, since distances cannot

be negative. Table 3 summarizes convergence estimates for each of the five sessions. For

each session, the table includes the estimate d̂1 of the initial distance from equilibrium, the

estimate of the rate of convergence r̂, the p-value for the hypothesis test that r > 0, the R2

statistic for the model, the distance dT between the allocation in the last period and the
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equilibrium allocation that is implied by the estimates r̂ and d̂1 (where dT = d̂1 e−r̂ ln T ),

and the number of trading periods T in the session. Strong convergence occurs in four of

the five sessions (as measured by the estimate r̂ and its p-value).4,5

1 2 3 4 5 6 7 8 9 10 11 12

0.2
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Distance

Figure 6: Convergence of allocations in session IU-CES1-DAs-010607a.

p-value
Periods d̂1 r̂ (r̂ > 0) R2 d

T

IU-CES1-DAs-010607a 1 - 12 1.473 0.778 0.000 0.817 0.213

IU-CES1-DAs-010607b 1 - 12 0.238 0.066 0.349 0.016 0.202
2 - 12 0.392 0.348 0.008 0.490 0.170

IU-CES1-DAs-010607c 1 - 12 2.269 0.654 0.006 0.482 0.446

IU-CES1-DAs-011116b 1 - 15 2.424 0.540 0.002 0.489 0.561

IU-CES2-DAs-011214b 1 - 15 0.728 0.009 0.483 0.000 0.710

Table 3: Regression coefficients and statistics from the convergence model.

The regression model in equation (3) can be reformulated to account for subjects’ de-

cision errors. In two sessions, sellers frequently sold units at a loss. The regression model

is reformulated with the additional variable et

(
1 − 2 I{p̄t>pe}

)
, where et is the difference

4 Fourteen price errors were corrected from the five sessions for the estimates reported here and in

Section 6. In the five sessions there were 2932 trades, so the errors represent less than one in 200 trades.

Nine of fourteen errors occurred when a seller omitted a digit in his ask.

5 Two regression estimates are reported in table 3 for session IU-CES1-DAs-010607b. The first estimate

is for all 12 periods. The second estimate does not include period 1. The average price in the first period of

this session was p̄1 = 93.44, which is very near the competitive equilibrium price pe = 91. The average price

moved away from the competitive equilibrium price in period 2 to p̄2 = 95.23. The substantial movement

away from the equilibrium allocation between periods 1 and 2 masks the significant restoration toward

equilibrium that occurred over the subsequent 11 periods.
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between the number of units purchased at a loss by agent type A and the number of units

sold at a loss by agent type B. The second factor,
(
1 − 2 I{p̄t>pe}

)
, is included to account

for the fact that errors have different implications for convergence depending on the side

of the equilibrium price that trades occur on. For example, if agent type B sells units at

a loss, this will depress the price. When the average price is below the equilibrium price,

this slows convergence, whereas if the average price is above the equilibrium, this hastens

convergence. With the decision error term included, the regression equation is

dt = d1 e
(
−r +s et

(
1−2 I{p̄t >pe}

))
ln t

εt ,

which can be expressed as the linear model

ln dt = ln d1 − r ln t + s et

(
1 − 2 I{p̄t>pe}

)
ln t + ln εt . (4)

Table 4 shows parameter estimates for equation (4). The second session had no net

decision error in any period, so the estimates reported are from table 3. As noted above,

across period convergence in this session was weak, but this resulted from the price move-

ment away from the equilibrium price between the first and second periods. Finally, in the

fifth session, the estimate on the convergence rate r is much more consistent with the other

sessions when decision errors are included in the regression equation: the convergence rate

parameter estimate r̂ is significantly positive at the level p = 0.10.

p-value p-value
Periods d̂1 r̂ (r̂ > 0) ŝ (ŝ > 0) R2

IU-CES1-DAs-010607a 1 - 12 1.347 0.679 0.000 0.194 0.031 0.879

IU-CES1-DAs-010607b 1 - 12 0.238 0.066 0.349 —— —— 0.016
IU-CES1-DAs-010607b 2 - 12 0.392 0.348 0.008 —— —— 0.490

IU-CES1-DAs-010607c 1 - 12 2.037 0.631 0.010 0.100 0.246 0.510

IU-CES1-DAs-011116b 1 - 15 1.391 0.341 0.003 0.082 0.000 0.823

IU-CES1-DAs-011214b 1 - 15 1.045 0.367 0.074 0.078 0.018 0.319

Table 4: Regression summary for convergence model with decision error term.

4.2 Price convergence across periods: tatonnement

Although the tatonnement model does not involve trade out of equilibrium, the model

can be reinterpreted to accommodate disequilibrium trades with repetition of the exchange

environment, as in these Edgeworth exchange experiment sessions. The tatonnement model

predicts price changes of the form (∆ pX , ∆ pY ) = ((1− c)Z
X
(p), c Z

Y
(p)) for commodities
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X and Y . The price of the numeraire commodity (X) does not change in the experiment,

but the tatonnement model specifies a theoretical change in the price of X, so the predicted

price for the numeraire commodity is not normalized. The normalization is reestablished

by specifying the (renormalized) predicted price of the non-numeraire commodity Y as the

ratio of the predicted non-normalized prices pY = p + c Z
Y
(p) and pX = 1 + (1− c)Z

X
(p).

This adjustment rule depends not only on the excess demand for Y , but also on the

excess demand for X. Since X is the numeraire commodity, the excess demand for X is

stated as a function of the price p of the non-numeraire commodity:

Z
X

i ( p |ωi) =
p ρi a ρi

i
(ωX

i
+ p ωY

i
)(

b ρi
i + p ρi a ρi

i

) − ωX
i
. (5)

The market excess demand for X is

Z
X
( p |ω) =

∑ 12

i=1
Z

X

i ( p |ωi)

= 6 Z
X

A
( p |ωA) + 6 Z

X

B
( p |ωB ). (6)

The adjustment rules for the average prices of X and Y between periods t and t + 1 are

p̄ X
t+1

= 1 + (1 − c)Z
X
( p̄t) and p̄ Y

t+1
= p̄t + c Z

Y
( p̄t). These two equations can be combined

to obtained a non-linear regression equation with the predicted average price of Y , p̄t+1 , on

the left hand side of the equation. Since p̄t+1 = p̄ Y
t+1

/p̄ X
t+1

, the regression equation is

p̄t+1 =
p̄t + c Z

Y
(p̄t)

1 + (1 − c)Z X (p̄t)
+ εt . (7)

Table 5 shows estimated values of the adjustment rate parameter c from equation (7),

asymptotic standard errors, and 95% confidence intervals for the estimates.6 An estimate of

c at or below one indicates adjustment in the direction predicted by the tatonnement model.

For all values c < c̄ where c̄ > 1, price adjusts in the direction predicted by the tatonnement

6 The regression estimate in table 5 for session IU-CES1-DAs-010607b does not include periods 2 and 3.

The average price in the first period of this session was p̄1 = 93.44, which is very near the competitive

equilibrium price pe = 91. The average price moved away from the competitive equilibrium price in period

2 to p̄2 = 95.23, moved further away in period 3 to p̄3 = 95.85, and then began to slowly adjust back to the

equilibrium price. Although the average price movements in these two periods were small, they moved in

the opposite direction from the excess demand, which was very small in these two periods. It is remarkable

that price adjusted between periods 4 and 12 toward the competitive equilibrium, since the excess demand

at the mean price in period 3 was Z
Y

(95.85) = −0.799, or −0.133 on a per capita basis. The estimate ĉ with

periods 2 and 3 included is ĉ = 1.00012.
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model. The threshold value c̄ is determined by setting p̄t+1 = p̄t in equation (7) and solving

the resulting equation for c̄. For fixed values of the CES utility function parameters and

endowments, the equation that determines c̄ is only a function of p̄t . The value of c̄ listed

for each session in table 5 is the maximum value of c that is consistent with the tatonnement

adjustment prediction for the average price p̄t observed in each period of the session. Values

of c̄ differ by session because the range of observed average period prices differ by session.

In the first three sessions, the adjustment prediction of the tatonnement model holds for

every value of c in the 95% confidence interval on the estimate ĉ. In the fourth session, the

adjustment is in the predicted direction for the estimate ĉ and for most of the confidence

interval. In the final session, adjustment is in the predicted direction at the estimate, but

it is not in the predicted direction for a large part of the confidence interval.

Asymptotic Confidence
Periods ĉ Standard Error Interval c̄

IU-CES1-DAs-010607a 2 - 12 0.99931 0.00008 (0.99912, 0.99949) 1.00013

IU-CES1-DAs-010607b 4 - 12 0.99995 0.00007 (0.99979, 1.00010) 1.00011

IU-CES1-DAs-010607c 2 - 12 0.99952 0.00015 (0.99918, 0.99987) 1.00013

IU-CES1-DAs-011116b 2 - 15 0.99983 0.00042 (0.99941, 1.00024) 1.00011

IU-CES2-DAs-011214b 2 - 15 0.99994 0.00030 (0.99930, 1.00058) 1.00007

Table 5: Regression coefficients and statistics from the tatonnement model.

The regression model in equation (7) can be reformulated to account for subjects’ de-

cision errors, as was done for the convergence estimates in equation (4). The regression

model, reformulated to include the decision error term et

(
1 − 2 I{p̄t>pe}

)
, is

p̄t+1 =
p̄t + c Z

Y
(p̄t)

1 + (1 − c)Z X (p̄t)
+ d et

(
1 − 2 I{p̄t>pe}

)
+ εt . (8)

No decision error was made in any period of the second session. In each of the other four

sessions, the vector of decision errors was non-zero so the model can be estimated with the

decision error term. Estimates and confidence intervals for the model with the decision

error term are shown in table 6.

In the first and third sessions, there were few net decision errors. Consequently, the

estimates ĉ for these two sessions are similar to the estimates from the regression without

the decision error term. Asymptotic standard errors for the estimates of d̂ from these two

sessions are large due to the infrequency of decision errors. In the second session, as noted
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Σ
T

t=1
|e

t
| ĉ ASE (ĉ) CI (ĉ) d̂ ASE (d̂ ) CI (d̂ )

0607a 2 0.9993 0.0001 (0.99916, 0.99950) 0.952 0.658 (-0.536, 2.441)

0607b 0 0.9999 0.0001 (0.99979, 1.00010) —— —— ——

0607c 6 0.9994 0.0002 (0.99900, 0.99980) 1.025 0.792 (-0.766, 2.817)

1116b 40 0.9990 0.0002 (0.99860, 0.99941) 1.254 0.250 (0.709, 1.798)

1214b 29 0.9997 0.0002 (0.99922, 1.00012) 1.797 0.412 (0.899, 2.694)

Table 6: Tatonnement regression model estimates with decision error term.

above, there was no net decision error so the reported estimates are from the model with

no decision error term. In the final two sessions, the numbers of decision errors
(
Σ

T

t=1
|et |
)

were large, and the estimates of ĉ are lower when the decision error term is included. In

addition, the entire 95% confidence intervals for the estimates ĉ lie in the set of values of

c that imply convergence under tatonnement for the fourth session and most of the 95%

confidence interval lies in the region that implies convergence in the fifth session.

4.3 Comparison of across-period and within-period price convergence

Table 3 in Section 4.1 demonstrates that allocations converged to the competitive equilib-

rium allocation across trading periods in four of five sessions. Table 4 in the same section

demonstrates that allocations converged across periods in the final session, at the level

p = 0.10, when the decision error term is included in the regression equation. Table 5

in Section 4.2 demonstrates that average prices converged to the competitive equilibrium

price for the price adjustment process predicted by the tatonnement model, in three of five

sessions. Table 6 demonstrates that average prices converged in the final two sessions when

decision errors are included in the regression. This section compares the extent of across-

period price convergence to the extent of within-period price convergence and demonstrates

that across-period price changes are typically smaller than within-period price changes,

which motivates the analysis of within-period price adjustment in Sections 5 and 6.

For periods t = 2, 3, . . . , T , across-period price convergence is measured by the ratio

R
a

t
=

| p̄t − pe |
| p̄t−1 − pe |

. (9)

Denote the number of trades in period t by Kt . Within-period price convergence for periods

t = 1, 2, . . . , T is measured as the ratio
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R
w

t
=

∣∣∣∑ Kt

k=Kt−4
p

t,k
− pe

∣∣∣∣∣∣∑ 5

k=1
p

t,k
− pe

∣∣∣ . (10)

Three cases will help interpret these measures of across-period and within-period con-

vergence. The three cases are ordered from the case with only within-period adjustment,

equal within-period and across-period adjustment, and only across-period adjustment.

(1) If price adjusts within each period so that

1
5

∑ Kt

k=Kt−4
( p

t,k
− pe) = α 1

5

∑ 5

k=1
( p

t,k
− pe),

that is, the average difference between the last five prices and the equilibrium price is α

times the average difference between the first five prices and the equilibrium price, and if

there is no adjustment across periods (so that period t is identical to period t − 1), then

R
a

t
= 1 for t = 2, 3, . . . , T and R

w

t
= α for t = 1, 2, . . . , T .

(2) If price adjusts linearly within each period so that the difference between the final price

in period t and the equilibrium price is α times the difference between the initial price and

the equilibrium price, and if the first price in period t is equal to the last price in period

t − 1, then R
a

t
= α and R

w

t

.= α.

(3) If price in each period is constant and the difference between the price in period t and

the equilibrium price is α times the difference between the price in period t − 1 and the

equilibrium price, then R
a

t
= α and R

w

t
= 1.

The average across-period price adjustment R
a

t
for all five sessions was R̄

a
= 0.967

and the average within-period adjustment R
w

t
was R̄

w
= 0.882. Both the across-period and

within-period adjustment factors from periods 8−15 in session IU-CES1-DAs-011214b were

significant outliers, due to the fact that prices in that session diverged from the equilibrium

price after period 7. With those periods eliminated, the average across-period adjustment

factor was R̄
a

= 0.904 and the average within-period adjustment factor was R̄
w

= 0.712.

These measures of observed across-period and within-period adjustment are close to the

first benchmark case above: most price adjustment occurs within periods. Since the mag-

nitude of within-period adjustment typically exceeds that of across-period adjustment, it is

likely that across-period adjustment occurs in response to price changes observed within pe-

riods. In this case, the tatonnement model has limited capacity to explain price adjustment.

The next section explores the predictions of two models of within-period price adjustment.
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5 Dynamics

In four of the five experiment sessions, prices converge to the competitive equilibrium price,

and these prices support allocations that are approximately equal to the competitive equi-

librium allocation. In order to assess the mechanics of this convergence, two models of

within-period price dynamics are evaluated. Section 5.1 describes the Hahn process (Hahn

and Negishi [1962]), which adapts the tatonnement model to incorporate disequilibrium

trades. An alternative model of within-period price dynamics – the Geometric Mean (GM)

model – is motivated in Section 5.2 and developed in Section 5.3.

The Geometric Mean model is motivated by a simple observation: for any allocation

outside of the set of Pareto optimal allocations, there is a set of prices that support Pareto

improving trades. Imagine that for the first k trades in period t, each price p
t,k

is the

same until gains from exchange are exhausted at that price for one side of the market.

At this point, the price must adjust in order to achieve a Pareto improving trade. The

Geometric Mean model generalizes the price adjustment rule from this observation. In the

Geometric Mean model, price adjusts after each trade, and the new price is a weighted

geometric mean of the marginal rates of substitution for the representative seller and the

representative buyer. The price adjustment rule for the Geometric Mean model is described

in detail in Section 5.3.

5.1 Hahn process

The Hahn process is conceptually similar to the tatonnement model. In both the taton-

nement model and the Hahn process, price adjusts in response to excess demand. In taton-

nement, a price is announced, agents submit net demands, and the announced price is

adjusted to reduce the magnitude of excess demand. Trade occurs when an equilibrium

price is announced. In the Hahn process, trades take place as soon as a price is announced.

This initial price is held constant during some time interval [ 0, h], and subsequently (for

t > h) price adjusts continually in response to excess demand according to the adjustment

rule ṗt = c · Z( pt |(xt , yt)), where (xt , yt) is the allocation that results from all trades that

have occurred along the price path ( ps)s∈(0, t). Hahn and Negishi [1962] demonstrate that,

in the continuous-time version of their model, every limit point of this dynamical system is

a competitive equilibrium.
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Both the Hahn process and the Geometric Mean model use a price adjustment rule that

depends on the allocation reached after each trade. It is useful to represent per capita allo-

cations of sellers and buyers after k trades in period t in terms of initial endowments and the

vector of trade prices P
t,k

= ( pt,1 , pt,2 , . . . , p
t,k

). The per capita allocation for buyers can

be written in terms of P
t,k

as
(
xA

t,k
(P

t,k
), y A

t,k
(P

t,k
)
)

=
(
ω A

x
− 1

6

∑ k

i=1
pt,i , ω A

y
+ 1

6 k
)
. The

per capita allocation for sellers is
(
xB

t,k
(P

t,k
), y B

t,k
(P

t,k
)
)

=
(
ω B

x
+ 1

6

∑ k

i=1
pt,i , ω B

y
− 1

6 k
)
.

In the discrete version of the Hahn process, the price adjustment rule for the numeraire

commodity X after trade k in period t is

p X,H
t,k+1

= 1 + (1 − c) Z
X
(

p
t,k

∣∣∣(xt,k
(P

t,k
), y

t,k
(P

t,k
)
))

= 1 + (1 − c)
(
Z

X

A

(
p

t,k

∣∣∣(xA
t,k

(P
t,k

), y A
t,k

(P
t,k

)
))

+

Z
X

B

(
p

t,k

∣∣∣(xB
t,k

(P
t,k

), y B
t,k

(P
t,k

)
)))

; (11)

the price adjustment rule for the commodity Y is

p Y,H
t,k+1

= p
t,k

+ c Z
Y
(

p
t,k

∣∣∣(xt,k
(P

t,k
), y

t,k
(P

t,k
)
))

= p
t,k

+ c
(
Z

Y

A

(
p

t,k

∣∣∣(xA
t,k

(P
t,k

), y A
t,k

(P
t,k

)
))

+

Z
Y

B

(
p

t,k

∣∣∣(xB
t,k

(P
t,k

), y B
t,k

(P
t,k

)
)))

. (12)

The Hahn process adjustment rule is

p H
t,k+1

=
p Y,H

t,k+1

p X,H
t,k+1

=
p

t,k
+ c Z

Y
(

p
t,k

∣∣∣(xt,k
(P

t,k
), y

t,k
(P

t,k
)
))

1 + (1 − c)Z X
(

p
t,k

∣∣∣(xt,k
(P

t,k
), y

t,k
(P

t,k
)
)) . (13)

Equation (13) characterizes the Hahn process price path during the course of a trading

period, with the free parameter ‘c’.

Hahn process example

For the parameters used in the experiment sessions and for c = 0.995 in the Hahn

process price adjustment rule, discrete-time simulation of the Hahn process price path

approximates the continuous version very closely when the discrete grid is fine. For the

initial price pt,1 = 60, when each trade is for 0.0001 unit (so that it requires approximately

70,000 trades to reach the per capita equilibrium allocation (1163, 7)), the average price in

the period is 90.9229 whereas the equilibrium price is 90.9406. For k ∈ {1, 2, 3, 4}, if each
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trade is for 10
−k

unit, pt,1 = 60, and c = 0.995, simulation of the Hahn process produces an

average price p̄t that lies in the interval
((

1 − 2 × 10
−k
)

pe , pe

)
.

For coarser price adjustments – such as those used in the experiment session in which

each trade is for 1/6 unit on a per capita basis – the discrete version of the Hahn process is

a coarse approximation to the competitive equilibrium, but this is an advantage for model

evaluation, since the discrete version of the Hahn process then predicts a price path that

differs significantly from the equilibrium price path. Once a value for c and an initial price

pt,1 for the period are specified, the price path predicted by the Hahn process is determined.

For example, if the initial price is pt,1 = 60, c = 0.995, and each trade is for 1/6 unit, the

Hahn process prediction for the last trade price of the period is pt,45

.= 85. In the analysis

of experiment data, values of the adjustment rate parameter c are obtained by regressing

observed prices from each period of each experiment session on a weighted average of the

price path predicted by the Hahn process and the first trade price for the period, with

the value of c selected to optimize the fit of the regression model, in a sense described in

Section 6.1.

5.2 Geometric Mean model: motivation

Imagine that in trading period t an initial price pt,1 is established, and subsequent prices

p
t,k

are equal to pt,1 so long as the trade quantity is below the minimum of the quantity

that buyers want to purchase at pt,1 and the quantity the sellers make available at pt,1 . At

this point, either the demand of the buyers or the supply of the sellers is exhausted.

The Edgeworth diagram on the left side of figure 7 shows k = 54 trades at pt,1 = 37 and

the allocation (x
t,k

, y
t,k

) that results from these trades. For the price pt,1 = 37 shown in

the diagram, the buyers (agent type A) want to purchase over 12 units of the commodity

per capita; the sellers (agent type B) are willing to sell 9 units per capita at pt,1 . After k

trades have occurred at the price pt,1 that lead to the per capita allocation (x
t,k

, y
t,k

), the

price pt,1 is equal to the marginal rate of substitution for agent type B, so agent type B no

longer offers units for sale at pt,1 . In the Hahn process, the excess demand at pt,1 , which is

about 3.5 units per capita, leads to an upward price adjustment.

In the Geometric Mean model the new price lies in the cone of prices that support

Pareto improving trades. The Edgeworth diagram on the right side of figure 7 shows the

situation once the allocation reaches (x
t,k

, y
t,k

). Agent type B is no longer willing to sell



MARKET DYNAMICS IN EDGEWORTH EXCHANGE 21

0 400 800 1200 1600A
0

2

4

6

8

10

12

14

16

18
040080012001600 B

16

14

12

10

8

6

4

2

0

�xt,k,yt,k�

0 400 800 1200 1600A
0

2

4

6

8

10

12

14

16

18
040080012001600 B

16

14

12

10

8

6

4

2

0

�xt,k,yt,k�

Figure 7: Trades from the endowment (left) and from the allocation (x
t,k

, y
t,k

) (right).

units to agent type A at the price pt,1 = 37, but there is a cone of prices that support

allocations that are Pareto improvements over the allocation (x
t,k

, y
t,k

). The original price

pt,1 = 37 is a lower bound on the prices that support Pareto improving trades; the upper

bound p̃ = 87, which is also shown in the diagram, is determined from the tangency to the

indifference curve of agent type A at the allocation (x
t,k

, y
t,k

). For the example shown in

the Edgeworth diagram, with the original price pt,1 below the equilibrium price, the prices

p ∈ ( pt,1 , p̃) that support Pareto improving trades are above pt,1 . If trades occur at a

new price p
t,k+1

∈ ( pt,1 , p̃), then further gains from exchange – beyond those achieved at

the allocation (x
t,k

, y
t,k

) – can be realized. In the subsequent period, if the initial price

is drawn from a uniform distribution on the interval (pt,1 , p
t,k+1

), then price also adjusts

across periods in the direction of the competitive equilibrium price. The Geometric Mean

model generalizes this example by expanding the set of events that trigger a price change

and by specifying the within- and across-period price adjustment rules.

5.3 Geometric Mean (GM) model: formulation

The GM model includes specifications of both within-period and across-period adjustment.

The key model element, within-period adjustment, is developed in this section and estimated

in Section 6.2. A simple model of across-period adjustment is added to the description of

the GM model, and the resulting model of both within-period and across-period price

adjustment is simulated to demonstrate the path of final allocations across periods for the
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GM model. The simulated path of final allocations is then compared in the example to the

path of across-period final allocations observed in an experiment session.

Within-period adjustment

Price adjustment in the Geometric Mean model is similar to price adjustment in the

motivating example, but in the Geometric Mean model, price adjusts after each exchange.

The marginal rate of substitution for the representative buyer is

MRSA

(
xA

t,k
, y A

t,k

)
=

(
bA

aA

)r
A

(
y A

t,k

xA
t,k

)r
A
−1

=
aA

bA

(
xA

t,k

y A
t,k

)2

.

As described in Section 5.1, after k trades in period t at prices P
t,k

= ( pt,1 , pt,2 , . . . , p
t,k

),

the per capita allocation is
(
xA

t,k
(P

t,k
), y A

t,k
(P

t,k
)
)

=
(
1800 − 1

6

∑ k

i=1
pt,i ,

1
6 k
)

for the repre-

sentative buyer. As a function of the observed prices P
t,k

, the per capita marginal rate of

substitution for the representative buyer is therefore

MRSA

(
xA

t,k
(P

t,k
), y A

t,k
(P

t,k
)
)

=
aA

bA

1800 − 1
6

∑ k

i=1
pt,i

1
6 k

2

.

The marginal rate of substitution for the representative seller is

MRSB

(
xB

t,k
, y B

t,k

)
=

aB

bB

(
xB

t,k

y B
t,k

)2

.

For the representative seller,
(
xB

t,k
(P

t,k
), y B

t,k
(P

t,k
)
)

=
(

1
6

∑ k

i=1
pt,i , 18 − 1

6 k
)

is the per

capita allocation after k trades in period t. The per capita marginal rate of substitution for

the sellers is therefore

MRSB

(
xB

t,k
(P

t,k
), y B

t,k
(P

t,k
)
)

=
aB

bB

 1
6

∑ k

i=1
pt,i

18 − 1
6 k

2

.

These two marginal rates of substitution define lower and upper bounds on the prices that

can support Pareto improving trades. Price in the GM model is determined as a weighted

geometric mean of MRSA

(
xA

t,k
, y A

t,k

)
and MRSB

(
xB

t,k
, y B

t,k

)
. This weighted geometric mean

price is

p G
t,k+1

(
xA

t,k
, y A

t,k

)
= MRSA

(
xA

t,k
, y A

t,k

) 1
2

(1−φ) × MRSB

(
xB

t,k
, y B

t,k

) 1
2

(1+φ)
.
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The weighted geometric mean price after k trades can be written in terms of utility function

parameters, endowments, the vector of trades prices P
t,k

, and φ as

p G
t,k+1

(P
t,k

) =
(

aA

bA

) 1
2

(1−φ)
10800 −∑ k

i=1
pt,i

k

1−φ (
aB

bB

) 1
2

(1+φ)
∑ k

i=1
pt,i

108 − k

1+φ

. (14)

The parameter φ can be interpreted as a proxy for differences between the bargaining

capability of sellers and buyers. When φ = 0 agent types A and B are treated symmetrically.

The bargaining power of buyers relative to sellers is an increasing function of φ. For example,

if φ = 1 then p G
t,k+1

is equal to the marginal rate of substitution for the sellers, so that all

of the gains from exchange go to the buyers.

Equation (14) completely characterizes within-period GM model price adjustment. The

price adjustment rule depends only on the slopes of the representative seller’s and the

representative buyer’s utility functions at their current per capita allocations, and on the

parameter φ. Trade continues until a Pareto optimal allocation is reached.

(a) Marginal rates of substitution (b) Geometric mean price
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Figure 8: Marginal rates of substitution and geometric mean after 24 trades.

Figure 8 (a) shows the first 24 trades in period 8 from session IU-CES1-DAs-010607c,

and in addition, for the representative buyer and the representative seller it shows the

marginal rates of substitution at the per capita allocation that results from these trades.

Figure 8 (b) shows the same information as figure 8 (a), and in addition, it shows the

weighted geometric mean price pG
8,24

(P8,24) after 24 trades. (Trades from period 8 in this

session were selected for graphical representation because, as discussed in Section 6.2 below,
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in this period the Geometric Mean model was closest to the median fit across all 66 periods

from the five sessions.)

Across-period adjustment

The initial price in period t + 1 is assumed to be drawn from a uniform distribution on

the range of prices defined by the first price (pt,1) and the last price (pt,Kt
) from period t:

pt+1,1 ∼ U
(
[min{ pt,1 , pt,Kt

}, max{ pt,1 , pt,Kt
}]
)

. (15)

If the first trade price in period one is determined randomly according to some distribution,

trades within each period are determined by equation (14), and the initial prices in periods

t = 2, 3, . . . , T are determined by the distributions in (15), then an adjustment process is

completely specified, both within and across periods.

GM model simulation example

Figure 9 (a) shows all first period trades generated by the Geometric Mean model in

equation (14) (with φ = −0.01 starting from an initial price p1,1 = 60). The triangles

connected by the dashed line in figure 9 (b) show the final allocations across periods from

a simulation of this model with the initial condition p1,1 = 60. The dots connected by the

solid line show final allocations in each period of session IU-CES1-DAs-010607a, which also

had the initial trade price p1,1 = 60 in period 1. The primary difference between the series of

final allocations from the model and from the experiment session is that in the experiment

sessions, there are frequently final allocations that are not Pareto optimal, whereas in the

model, by definition the final allocation is Pareto optimal (relative to the discrete grid of

allocations possible in the experiment). Final allocations generated by the model could

be matched more closely to final allocations from each period in the experiment session

by including a positive probability that trades which generate low incremental payoffs are

not completed, and trades which lead to small losses are completed. In this way, final

allocations on either side of the Pareto set would be observed in the model. Since the focus

of the empirical assessment of the adjustment model is on within-period price adjustment,

this feature has not been added to the model, to keep the model parsimonious.

There is one important caveat with regard to this convergence example that should be

noted. The parameter φ in equation (14) is necessary in this example to obtain convergence

to the competitive equilibrium price and allocation. To illustrate, if φ̃ = 0 (rather than the

weighted geometric mean with φ = −0.01), then the fixed point for the price adjustment rule
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(a) Geometric mean model trades (b) End of period allocations
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Figure 9: Within-period trades (left) and across-period final allocations (right).

in equation (14), with the across-period adjustments specified by the distributions in (15),

is p = 85. From the model simulation shown in figure 9 (b) it is clear that with φ = −0.01 in

equation (14) and the across-period adjustments determined by the distributions in (15), the

average price in the model converges to the equilibrium price pe = 91 and the equilibrium

allocation is reached. The next section demonstrates that, in addition to reaching the

competitive equilibrium of this exchange economy in simulations, the model generally fits

the within-period price data well, and in many cases fits the data remarkably well.

6 Model estimation

Both the Hahn process and the Geometric Mean model are estimated by assuming that

prices follow paths that are weighted averages of the initial price in the trading period

and the path predicted by the Hahn process or the Geometric Mean model. This section

specifies the estimation procedure for both models and compares estimates of the weight

on the price path predicted by each model.

Section 4.1 demonstrates that decision errors significantly affect convergence of alloca-

tions in the final session. Section 4.2 demonstrates that decision errors significantly affect

price convergence across periods in the final two sessions. Sixty-nine of seventy-seven de-

cision errors occurred in the final two sessions. (See column 1 of table 6.) In the fourth
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session, IU-CES1-DAs-011116b, there were 33 decision errors in the first eight periods and

only seven errors in the final seven periods. In the fifth session, IU-CES1-DAs-012114b,

there were three decision errors in the first eight periods and 26 decision errors in the final

seven periods. Fifteen periods from the final two sessions include a large fraction (59 of

77) of the decision errors. Given the large number of decision errors in these periods, there

were a number of subjects whose behavior indicates that they had different objectives (or

a different understanding of the induced objectives) from those in the experimental design.

The analysis in the remainder of this section focuses primarily on the 51 periods in

which the number of decision errors was small. Specifically, the analysis focuses on periods

1 − 12 of the first three sessions, periods 9 − 15 of the fourth session, and periods 1 − 8

of the fifth session. These periods produce much more consistent parameter estimates for

the Hahn process and the Geometric Mean model than the full data set does. Estimates

from the full data set are reported for completeness, but the 51 periods in which the large

majority of trades led to Pareto improving allocations provide a clearer picture of the price

adjustment process in Edgeworth exchange.

6.1 Hahn process estimation

The Hahn process is evaluated by regressing the observed price path P
t,k

= ( p
t,k

) Kt
k=1 in

period t on a weighted average of the initial price pt,1 and the price path P
H

t,k
predicted by

the Hahn process. Equation (13) shows that the predicted price p H
t,k+1

depends on the most

recent price p
t,k

, on the excess demands for X and Y at the current allocation (x
t,k

, y
t,k

)

and the most recent price p
t,k

, and on the adjustment rate parameter c. In the experiment,

the allocation (x
t,k

, y
t,k

) after k trades is observed, the price p
t,k

is observed, and excess

demand is known as a result of the utility inducing technique. The procedure used to select

an adjustment rate parameter c for the estimation of the regression equation is explained

after the regression equation is defined.

For a fixed value of c, a predicted price path is determined starting from the initial price

pt,1 . The predicted second price p H
t,2

is determined based on the observed first price and the

adjustment rule in equation (13). Subsequent predicted prices are determined iteratively

based on the observed initial price pt,1 and the predicted prices p H
t,2

, p H
t,3

, . . . , p H
t,k

, again

following equation (13). Denote the observed first price and the subsequent predicted

prices, through k trades, by P
H

t,k
= ( pt,1 , p H

t,2
, p H

t,3
, . . . , p H

t,k
). The price prediction p H

t,k+1
is
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determined from equation (13), with the excess demand evaluated at the allocation predicted

after k trades. With the arbitrary price path P
t,k

in equation (13) replaced by the predicted

price path P
H

t,k
(given the initial price pt,1), successive elements of the predicted price path

are determined iteratively:

p H
t,k+1

=
p H

t,k
+ c Z

Y
(
p

t,k

∣∣∣(xt,k

(
P

H

t,k

)
, y

t,k

(
P

H

t,k

)))
1 + (1 − c)Z X

(
p

t,k

∣∣∣(xt,k

(
P H

t,k

)
, y

t,k

(
P H

t,k

))) . (16)

Equation (16) is the Hahn process analog of equation (7), which defines the adjustment rule

for the tatonnement model of across-period adjustment. For k = 1, 2, 3, . . . , Kt − 2, the

regression equation is p
t,k+1

= αt p H
t,k+1

+ (1 − αt) pt,1 + ε
t,k+1

, which can be expressed as

p
t,k+1

− pt,1 = αt (p H
t,k+1

− pt,1) + ε
t,k+1

. (17)

Estimates of αt from equation (17) depend on the adjustment rate parameter c in

equation (16). An estimate of α̂t(c) for period t that is near one with R2 near one would

indicate that the price path over the course of period t is very similar to the path predicted

by the Hahn process, when the initial condition for the predicted Hahn process price path

is the observed first price pt,1 . The objective of this section is to compare the Hahn process

and the Geometric Mean model. The comparison of the estimates from the two models

that is carried out in the remainder of this section demonstrates that the Geometric Mean

model outperforms the Hahn process model. For this reason, the adjustment parameter c

has been selected to minimize S(α̂(c)) ≡ T−1 ∑ T

t=1
(α̂t(c)−1)2, which is the average squared

distance between the estimates α̂t(c) and one, so that the best possible fit for the Hahn

process model can be compared to the fit for the Geometric Mean model. Table 7 shows

the values of c∗ that are obtained when S(α̂(c)) is minimized separately for each session.

Session Periods c∗ S(α̂t(c
∗))

IU-CES1-DAs-010607a 1 - 12 1.000024 0.15972

IU-CES1-DAs-010607b 1 - 12 1.000036 0.45619

IU-CES1-DAs-010607c 1 - 12 1.000013 0.54311

IU-CES1-DAs-011116b 9 - 15 0.999891 0.45706

IU-CES2-DAs-011214b 1 - 8 0.999956 0.19429

Table 7: Adjustment rate c∗ and average squared deviations S(α̂t(c∗)).

For the 51 trading periods included in table 7, the value c∗ of the adjustment rate

parameter that minimizes S(α̂(c)) = T−1 ∑ T
t=1

(α̂t(c) − 1)2, pooled across these fifty-one
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periods, is c∗ = 0.999982. This value of c∗ has been used to obtain estimates of the

parameters αt(c) in equation (17) for periods 1 − 12 in the first three sessions, for periods

9 − 15 from the fourth session, and for periods 1 − 8 from the fifth session. Over these 51

trading periods, S(α̂t(c∗)), which is the average squared difference between the estimates

α̂t(c∗) and one, is 0.383. Estimates α̂(c∗) for each period in each of the first three sessions,

and for periods 2 − 15 in the fourth session are shown in figure 10.

(a) IU-CES1-DAs-010607a (b) IU-CES1-DAs-010607b

(c) IU-CES1-DAs-010607c (d) IU-CES1-DAs-011116b
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Figure 10: Estimates α̂t(c∗) and R2 from Hahn process regressions of equation (17).

The values c∗ in table 7 that minimizes S(α̂(c)) for each of the first four sessions, and the

value c∗ = 0.999982 that minimizes S(α̂(c)) pooled across 51 periods are measures of the rate

at which price adjusts from one transaction to the next. The estimates ĉ of across-period

adjustment rate parameters obtained for the tatonnement model in table 5 of Section 4.2

are all between ĉ = 0.99931 and ĉ = 0.99995. These adjustment parameter estimates are all

below the value c∗ = 0.999982 for within-period adjustment. For values of c ∈ (0.996, 1.000)

adjustment is faster for smaller values of c. If c < 0.996, adjustment is faster yet, but the
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price overshoots the equilibrium with the discrete adjustments of the experiment design.

This is the main reason that the estimates of c in Section 4.1 and the values of c∗ in this

section fall in a narrow range near one. Although the estimates ĉ of across-period adjustment

in the tatonnement model from Section 4.1 are all below c∗ = 0.999982, the within-period

adjustment rate applies to each trade. The total within-period adjustment implied by the

value c∗ = 0.999982 exceeds the adjustment implied by the across-period estimates in table 5

by a large margin. Figure 11 displays the predicted and observed levels of across-period

adjustment and the predicted and observed levels of within-period adjustment for session

IU-CES1-DAs-010607a. For each period in the session, the figure shows the level of across-

period adjustment predicted by the tatonnement model price adjustment rule as the series

of dots connected by the dashed line. The tatonnement price adjustment rule used is from

equation (7) with the estimated value ĉ for session IU-CES1-DAs-010607a from table 5.

The graph shows the observed across-period adjustment ratio from equation (9) as the

series of dots connected with a solid line. Within-period adjustment implied by the Hahn

process is defined as

R
w,H

t =
α̂t(c∗) p H

t,Kt
+ (1 − α̂t(c∗)) pt,1 − pe

pt,1 − pe

, (18)

where p H
t,Kt

is the predicted final price from the Hahn process path from equation (16) and

α̂t(c∗) is the estimate on the Hahn path from the regression equation (17). The level of

within-period price adjustment implied by the Hahn process is shown as the series of squares

connected by the dashed line. The level of observed within-period adjustment, as measured

by equation (10) is shown as the series of squares connected with the solid line. The fact that

within-period adjustment exceeds adjustment across periods is apparent from the graph.

This comparison of adjustment parameter estimates from the tatonnement model and the

Hahn process is consistent with the direct comparison of within-period and across-period

adjustment levels in Section 4.3.

Evidence from experiments on the Scarf example of global instability under the taton-

nement dynamic (Scarf [1960]) by Anderson, Granat, Plott, and Shimomura [2003] also

supports the importance of within-period price movements. Anderson et al. examine the

number of price changes that move in the same direction as the prediction of the Hahn

process (which they call the “instantaneous excess demand model”). They find that in the

convergent treatment 60.3% of price changes move in the same direction as the instanta-
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Figure 11: Predicted and observed across-period and within-period adjustment.

neous excess demand model or Hahn process. In the Edgeworth experiment sessions, 869 of

1538 or 56.5% of price changes are in the predicted direction. Suppose that price changes

follow the process p
k+1

= a + b p
k

+ ε
k
, where ε

k
∼ N(0, σ2). Assume without loss of gen-

erality that b > 0. For b > 0, the observed price movement agrees with the predicted price

movement when p
k+1

> p
k
. The probability of this event is P [ p

k+1
> p

k
] = P [ ε

k+1
−ε

k
> b ].

Since ε
k+1

−ε
k
∼ N(0, 2 σ2), price movements in the direction of predicted price movements

will occur 56.5% of the time for b
2 σ2 = 0.164, or b = 0.164 σ2. The average variance of prices

from the Edgeworth experiments around the predicted Hahn process price paths was 4.22.

If the variance of price around a linear trend is similar, then the value of b that would result

in 56.5% of observed price changes in the direction of predicted price changes is b
.= 0.69.

With an average of 43 trades per period, the resulting difference between the price at the

beginning of a period and the price at the end of a period would be |pKt
− p1 | = 29.75.

Relative to the equilibrium price level of pe = 91, this is a large within-period price change.

In Anderson et al., frequencies of observed price movements that are consistent with the

prediction of the Hahn process are all similar to or greater than the frequency of 56.5% that

was observed in the Edgeworth experiment.

Anderson et al. conclude that across-period price adjustment is more important than

within-period adjustment. They base this conclusion on the fact that the frequency of

within-period price changes that are consistent with the tatonnement adjustment predic-

tions exceeds the frequency of within-period price changes that are consistent with the Hahn

process predictions. Anderson et al. use predictions of both the across-period adjustment

predicted by tatonnement and the within-period adjustment predicted by the Hahn pro-
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cess to assess within-period adjustment. The observed frequencies of within-period price

changes that are consistent with both models can only occur if there is a substantial level

of within-period price adjustment.

6.2 GM model estimation

The Geometric Mean model is tested by regressing observed prices p
t,k+1

in period t on a

weighted average of the initial price pt,1 in period t and on the prices p G
t,k+1

(P
t,k

) predicted by

the Geometric Mean model from equation (14). For k = 1, 2, 3, . . . , Kt − 2 the regression

equation is p
t,k+1

= αt p G
t,k+1

+ (1 − αt) pt,1 + η
t,k+1

which can be expressed as

p
t,k+1

− pt,1 = αt ( p G
t,k+1

− pt,1) + η
t,k+1

. (19)

Since the initial endowment is on the boundary, the geometric mean price isn’t defined

until after the first trade. Then the second price ( pt,2) can be predicted as a function of

the geometric mean price after the first trade ( pG
t,2

(Pt,1)) and so forth. Regressions are run

on the data from each period separately. As with the Hahn process model, estimates of αt

near one and R2 near one would constitute strong confirmation of the model.

Regression results are summarized for each period of each of the first four sessions in

figure 12. The dots connected with the solid line show the estimates of α̂t for each period.

The dots connected by the dashed line show the R2 statistics from each period for the model

in equation (19).

Since each value of α̂t in figures 12 (a) through (d) is a summary statistic from an entire

period of trading, it is valuable to compare observed price paths to the price paths predicted

by the Geometric Mean model for several representative trading periods. Several important

patterns of the predicted price paths and the observed price paths from the experiment

sessions are depicted in figure 13. Each graph in figure 13 shows the observed prices for

one trading period (as a solid line) and the value of the weighted geometric mean price pG
t,k

after each trade during the period (as a dashed line).

The estimate of α̂t closest to zero occurred in period 6 of session IU-CES1-DAs-010607c.

The prices from this session are shown in figure 13 (a) (as the solid line), along with the

price pG
t,k

predicted by the GM model after each trade during the period (as the dashed line).

For the period shown in figure 13 (a), the estimate α̂t from equation (19) was 0.009 and

R2 = 0.001. Throughout this period, prices were nearly constant. Clearly from the figure,

the prices did not follow the Geometric Mean model price prediction, but figure 12 (c),
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(a) IU-CES1-DAs-010607a (b) IU-CES1-DAs-010607b

(c) IU-CES1-DAs-010607c (d) IU-CES1-DAs-011116b
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Figure 12: Alpha coefficients and R2 from GM model regressions of equation (19).

which shows the estimates of α̂t for each period in the session, demonstrates that prices did

begin to follow the Geometric Mean model prediction starting in period 7 and continued to

do so until the end of the session. This pattern – stable prices in early periods followed by

prices that tracked the Geometric Mean model price prediction – also occurred in session

IU-CES1-DAs-011116b. (Compare figures 12 (c) and (d).)

The median value of α̂t across 66 periods in five sessions was 0.639. The value α̂t = 0.633

in period 8 from the third session, IU-CES1-DAs-010607c, was closest to this median value.

The R2 statistic for the model was R2 = 0.523 in this period. Figure 13 (b) shows the trade

prices in that period (as a solid line) and the value of pG
t,k

after each trade during the period

(as the dashed line).

The estimate of α̂t from all of the 66 trading periods that was closest to one occurred in

period 6 from session IU-CES1-DAs-010607a. In that period, α̂t = 0.978 and R2 = 0.774.

Figure 13 (c) shows the trade prices and the value of pG
t,k

after each trade during the period.
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(a) α̂t closest to zero (b) α̂t closest to median

(c) α̂t closest to one (d) α̂t and R2 close to one
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Figure 13: Prices, equilibrium prices, and geometric mean prices from four periods.

Finally, figure 13 (d) shows the prices and the predicted prices pG
t,k

from the Geometric

Mean model for period 11 from session IU-CES1-DAs-011116b. The predicted prices in this

period were close to the actual prices both in terms of the estimated value α̂t = 0.951 of

the coefficient on pG
t,k

in the regression model from equation (19) and also in terms of the

R2 statistic from the regression equation, which was R2 = 0.872.

The Geometric Mean model fit is superior to that of the Hahn process. The median

value of the estimates α̂t across sixty-six periods in the five sessions for the GM model

was 0.639. For the Hahn process, the median value of α̂t(c∗) was 0.448 across all sixty-six

periods. The median value of R2 for the Geometric Mean model was 0.522; for the Hahn

process the median value of R2 was 0.224. Another important measure of the fit for these

models is S(α̂) (or S(α̂(c∗)) for the Hahn process). If the average squared deviation between

the parameter estimates α̂t and one is small, then price paths from the experiment sessions
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are predicted well by the model. With the sums taken over the fifty-one periods evaluated

in the previous sections, S(α̂) = 0.354 for the Geometric Mean model and S(α̂(c∗)) = 0.383

for the Hahn process model. If the sums are taken over all sixty-six periods, S(α̂) = 0.509

for the Geometric Mean model, and S(α̂(c∗)) = 5.772 for the Hahn process. Although the

average fit of the Geometric Mean model is imperfect, the fit improves dramatically for

the last four periods of the four convergent sessions. In these 16 periods, the mean value

of the coefficient α̂t is 0.959, the median value is 0.951, and the mean squared difference

between the estimates α̂t and one is 0.130. Subjects in the experiments had no experience

with markets that involved induced utility. With experience from early periods, strategies

began to respond to differences in profits for the two sides of the market at disequilibrium

prices, and hence trade prices tracked changing conditions more effectively in later periods.

Consequently, it is reasonable to assume that Geometric Mean model price paths predictions

– which track observed price paths closely in these later periods – reflect the price adjustment

process in Edgeworth exchange accurately.

7 Conclusions

Edgeworth exchange is the fundamental model in the neoclassical theory of value. Empirical

assessment of the Axioms of Revealed Preference, as in Cox [1997], demonstrates that

choices over a small number of commodities are consistent with the existence of a regular

preference ordering or utility function. The experiments reported in this paper demonstrate

that when agents with (induced) regular utility functions engage in exchange, the result

is consistent with the Edgeworth model. Consequently, the two key assumptions in the

neoclassical theory of value – that (1) agents have consistent preference orderings, and (2)

exchange by agents with consistent preference orderings (or utility) leads to a competitive

equilibrium allocation – are consistent with experimental evidence, at least when these two

assumptions are evaluated separately.

In addition to confirmation of the static predictions of the Edgeworth model, this paper

addresses important aspects of the dynamics of convergence. Edgeworth exchange exper-

iments exhibit both across-period and within-period convergence. Comparison of price

adjustment across periods and price adjustment within periods demonstrates that most

price adjustment occurs within each trading period. Consequently, models that predict
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price adjustment within trading periods are essential in order to understand the dynam-

ics of convergence in general equilibrium models. Comparison of the Hahn process to the

Geometric Mean model – both of which provide price path predictions within trading pe-

riods – demonstrates that the Geometric Mean model produces a better prediction of the

within-period price adjustment process.

In addition to the superior fit of the Geometric Mean model of price adjustment, the

model links to important local characteristics of sellers and buyers. The price adjustment

rule in the Geometric Mean model is based on marginal rates of substitution of sellers

and buyers. Since prices predicted by the GM model balance the buyers’ and sellers’ local

characteristics, this analysis points in the direction of a model of the interactions among

individual sellers and buyers. One possible direction for development of such models would

be to extend the heuristic bargaining model in Gjerstad and Dickhaut [1998] (GD98) and

Gjerstad [2003] from the partial equilibrium case in which sellers have a list of marginal

costs and buyers have a list of marginal values to the case of Edgeworth exchange. Agents’

marginal conditions in the form of values and costs play a prominent role in the model of

double auction bargaining in GD98 and in Gjerstad [2003]. The fact that a price adjustment

model that balances marginal conditions of sellers and buyers also predicts price movements

well in an Edgeworth exchange economy suggests that a model analogous to the model in

GD98 could provide a basis for the price adjustment posited in this paper. In this way,

the observation that price adjustment is predicted well by a simple function of marginal

conditions might form the basis for development of a model of the bargaining process that

underlies general equilibrium. By exploiting the role of marginal conditions in the price

adjustment process that is demonstrated in this paper, it is likely that models will be

developed that demonstrate how competitive equilibrium outcomes are achieved in general

equilibrium models.
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Appendix A

Prior to the start of an experiment session, a seller goes through an instruction set that describes each

of the elements of the seller screen and their operations. These elements include: (1) the seller’s endowment

and current allocation of currency and commodity, (2) the seller’s profit (or utility) function, (3) input that

the seller provides during the session, (4) processing of input (by the double auction mechanism) from the

seller, as well as from other sellers and from buyers, and (5) the determination of the seller’s profit, which

is based on the seller’s allocation of currency and commodity. Buyers’ instructions are analogous to sellers’

instructions. The most important principle adhered to in our implementation of instructions is that inputs

of asks by sellers (or bids by buyers) are initiated by the seller (or by the buyer) in order to avoid creation

of a reference point effect that would influence asks or bids once the session begins.

Each seller and each buyer views a total of 33 screens, and makes inputs on five of these screens. There

are eight interactive questions that each seller and each buyer must answer correctly in order to proceed.

Although there are 33 screens, most of the screen space is devoted to the actual screen display that the subject

views and uses during the experiment session. During the instructions, a text box describes elements of the

seller’s screen display. The total length of the sellers’ instructions is 3250 words, which is equivalent to

approximately six pages of text. Subjects typically complete instructions in 15 to 35 minutes.

The sequence of steps through the screens is described below. The instruction summary below refers

frequently to elements of the seller’s screen, which is shown in figure 2 (p. 7). The instructions for a buyer are

similar. Direct experimenter interaction with subjects was kept to a minimum whenever possible, including

sign-in, seating, and payment.

Screen 1: The subject’s earnings are based on subject’s decisions and the decisions of other participants.

Screen 2: The subject is a seller throughout an experiment session that lasts for 12 trading periods (in the

first three of the five sessions) or 15 periods (in the last two sessions).

Screen 3: The subject should not communicate with or distract others. The subject’s data is anonymous.

Screen 4: Payment is made at an exchange rate of £0.01 per unit of experiment currency accumulated.

(This rate was $0.008 in session 4 at the University of Arizona.) Payment is made anonymously in cash

at the conclusion of the experiment session.

Screen 5: There is a set of interactive instructions that follow this screen. The seller will know that he

either has or has not completed instructions based on the status message at the top of his screen.

Screen 6: Each period of the session consists of a 60 second “Preview Phase”, a “Trading Phase” of 180

seconds and a “Review Phase” of 30 seconds. A clock at the top of the screen ticks down to the end of

each phase.

Screen 7: The seller begins each period with eighteen units of the commodity. The current balance of both

currency and commodity are shown throughout each trading period in the Current Allocation box on

the seller’s screen.

Screen 8: The location and purpose of the “Profit Calculator” is described to the seller.

Screen 9: The seller is prompted to enter a Quantity and a Price into the Profit Calculator. The profit

that would result if the seller sold the proposed quantity at the proposed price is shown in the Profit
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Calculator table, and the Current Allocation and Proposed Allocation are shown in the Profit Calculator

Graph. (See figure 3 on page 9 for a view of the Profit Calculator for a seller and for a buyer.)

Screen 10: The Profit Calculator table is described to the seller. Rows correspond to different prices and

columns correspond to different numbers of units sold. The profit level for the price and quantity that

the seller entered on Screen 9 is displayed in the center of the table.

Question 1: For the quantity ‘q’ and the price ‘p’ that the seller entered, he is asked to state what his

profit would be if he were to sell ‘q + 1’ units at price ‘p’.

Screen 11: The Profit Calculator Graph is described. The graph shows the seller’s Current Allocation, the

seller’s Proposed Allocation (which is the allocation that would result if the seller exchanges q units of

the commodity for p q units of the numeraire commodity), and the Iso-profit Curve that passes through

the Proposed Allocation.

Screen 12: The seller is reminded that he begins each period with eighteen units of the commodity, and

is asked to use the Profit Calculator to determine what his total profit would be if he were to sell all

eighteen units of the commodity at the price that he entered on Screen 9.

Question 2: The seller is asked to enter the profit that he would obtain if he were to sell all 18 units from

his commodity endowment at the price that he entered on screen 9.

Screen 13: The Profit Calculator includes left and right arrows that can be used to decrease or increase the

quantity proposal and up and down arrows that can be used to decrease or increase the price proposal.

The seller is encouraged to test these features.

Screen 14: An ask is entered in the “Enter Ask” area of the seller screen. The subject enters an ask at

this point.

Screen 15: The ask entered by the subject appears in the Unit Ask row of the Trade Summary display.

Commodity Holding remains unchanged, but Commodity Available is reduced by one unit. The ask also

appears in the “Your Asks” display area.

Screen 16: Asks by all sellers and bids by all buyers appear in the “Market Queue” display.

Screen 17: A new ask is generated randomly to simulate an action by another seller. The new ask is at a

higher amount than the subject’s ask, to illustrate the Ask Improvement rule. (The new ask is generated

randomly from one to ten above the seller’s own ask, though the subject is not informed of the process

that generates the new ask.) The subject is also informed that if he makes a new ask at this point, the

new ask will replace his current ask.

Question 3: The seller has a quiz question appear at this point. The seller, after seeing a description of

the Ask Improvement rule, is prompted to state what is the highest ask that can be submitted at this

point.

Question 4: After the subject answers Question 1 correctly, he is asked to state the number of asks that

will be in the Market Queue if he submits a new ask.

Screen 18: The subject is asked to enter a new ask that improves on the ask submitted by the simulated

seller.

Screen 19: The new ask replaces the seller’s previous ask. The “Messages” display is shown, and updates

to the Trade Summary display are described.
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Screen 20: The subject is prompted to remove his ask by double clicking on the ask in the “Your Asks”

display.

Screen 21: Changes to the seller screen that result from the removal of his ask are described, including

updates to the Commodity Available, Your Asks, Market Queue, Trade Summary, and Messages displays.

Screen 22: The seller is prompted to enter a new ask to replace the ask that he just removed.

Screen 23: Updates to the seller’s screen that result from the new ask are reviewed.

Screen 24: A trade occurs when a seller’s ask is at or below the current best bid, or a buyer’s bid meets or

exceeds the best ask. The seller is informed that on the next screen, a bid from a simulated buyer will

be generated that will meet the seller’s ask, so that the seller will trade with the simulated buyer.

Screen 25: Updates to the seller’s Unit Price, Unit Profit, and Total Profit entries in his Trade Summary

table that result from the most recent trade are described. Changes to the Currency Holdings and

Commodity Holdings areas are described. The Market Transaction Prices graph update is described.

Screen 26: The price determination rule is reviewed and the seller is informed that after two questions, a

bid will be simulated that results in a trade with the current low ask.

Question 5: The seller is asked whether a trade will result if a buyer now submits a bid that is below the

current low ask.

Question 6: The subject is asked what the trade price will be if a bid is submitted that meets or exceeds

the current low ask.

Screen 27: A bid is simulated that generates another trade. (This trade is between a simulated seller and

a simulated buyer, so the subject only sees public information regarding the trade, i.e., its price on the

Market Transaction Prices graph.)

Screen 28: A new simulated bid appears in the Market Queue. The price determination rule is reviewed

once more and the subject is asked two more questions.

Question 7: The seller is asked whether a trade will result if he submits an ask that exceeds the current

high bid.

Question 8: The seller is asked what the trade price will be if he submits an ask that is below the current

high bid.

Screen 29: The seller is prompted to enter an ask that is at or below the current high bid, in order to

produce a new trade.

Screen 30: Changes to the Current Allocation, Trade Summary, and other screen displays that result from

the most recent trade are reviewed.

Screen 31: The seller is informed of the Vote to End Period option, and the unanimity rule that triggers

an early end to the trading phase of the current period.

Screen 32: A Period Profit window appears during the review phase of each period.

Screen 33: Subjects are cautioned that the ask by another seller and the bids by other buyers in the

instructions were simulated and that these may not be similar to the responses by buyers and by other

sellers during the experiment. The subject is informed that he has now completed the instructions and

trading will begin when all subjects have completed their instructions.




