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Abstract

We examine the strategy-proof provision of excludable public goods when agents
care not only about the level of provision of a public good, but also the number of
consumers. We show that on such domains strategy-proof and efficient social choice
functions satisfying an outsider independence condition must be rigid in that they
must always assign a fixed number of consumers, regardless of individual desires to
participate. The fixed number depends on the attitudes of agents regarding group size
- being small when congestion effects dominate (individuals prefer to have fewer other
consumers) and large when cost sharing effects dominate (agents prefer to have more
consumers). A hierarchical rule selects which consumers participate and a variation of
a generalized median rule to selects the level of the public good. Under heterogeneity
in agents’ views on the optimal number of consumers, strategy-proof, efficient, and
outsider independent social choice functions are much more limited and in an important
case must be dictatorial.
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1 Introduction

In classic studies of the strategy-proof provision of public goods, public good consumption

is assumed to occur without rivalry and without possibility of exclusion. That is, agents do

not care about how many other agents consume the good, and all members of the society

consume the public good. However, as Buchanan (1965) pointed out in his seminal work on

club goods, in many cases of interest agents do care about who else consumes a public good

and agents can be excluded from the use of the public good or else can freely decide not

to consume the good. Examples of such goods are abundant, including for instance, public

libraries, pools, and roads. In all of these cases agents prefer to have less crowded public

good use, but at the same time they may also prefer to have costs of public facilities split

among a larger pool of agents. Accounting for such preferences over who consumes a public

good is an important aspect of evaluating the performance of mechanisms for the provision

of public goods, especially for those goods whose use is not compulsory or can be regulated.

While the study of pure public goods as well as club goods is quite extensive (see Cornes

and Sandler (1996)), the study of the strategy-proof provision is concentrated on the case

of pure public goods.1 While the case of pure public goods is a useful starting point, the

prevalence of some aspects of congestion and exclusion makes it imperative that the literature

move beyond the case of pure public goods to understand the strategy-proof provision of club

goods as well. In this paper we study the provision of a club good; that is, an excludable

public good when agents care about the number of other agents consuming the public good.

We depart from the classic “single-peaked” pure public good model (e.g., Moulin (1980))

simply by allowing the group that consumes the public good to be a choice variable, and

allowing individuals to have preferences over the size of this group.

In our model an allocation specifies a level of the public good (which might also be a

location or some other attribute), as well as the group of agents who consume the public

good. Agents have preferences over these allocation pairs. We focus on the case where

agents have classic single-peaked preferences over the public good level, and consider several

variations on how agents rank groups consuming the public good. One variation is the case

of pure congestion, where agents prefer to have fewer people consuming the public good.

This applies in situations where the distribution of any cost to producing the public good

1See Barbera (2001) for an up-to-date discussion of some of the literature on strategy-proofness. Some
papers have considered exclusion as an incentive device (e.g., see Moulin (1994)), but none have examined
congestion effects when exclusion is possible. Given that Groves schemes have a very abstract domain, one
could use that framework to examine the issue (as we discuss below), but with some important differences
from our analysis introduced by the transferable quasi-linear environment of the Groves analysis.
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is either already fixed, or simply not an issue to begin with. Another variation is the other

extreme where individuals would rather have more individuals consuming the public good.

We refer to this as the case of pure cost-sharing, but it also includes some other applications

as we discuss below. Both of these may be thought of as extreme cases of the more general

setting where individuals have single-peaked preferences on group size. For instance, in the

case of a toll road both effects are present: agents would prefer less congestion all else held

equal, but also benefit from larger usage as that lowers the per capita cost or toll. In such

situations agents may prefer an intermediate number of consumers of the public good.2

We characterize the strategy-proof and Pareto efficient social choice functions in these

different cases; sometimes using auxiliary conditions such as a condition of ‘outsider inde-

pendence’ which requires that the allocation not be dependent on the preferences of those

not assigned to consume the good.3

One fundamental result that emerges is that strategy-proof and efficient rules must fix

the size of the group assigned to consume the good and not allow this to vary with agents’

preferences. In the case of pure congestion this amounts to assigning just one agent to

the facility, and in the case of pure cost-sharing it amounts to assigning all agents to the

public good; while in the general case where agents find groups of size k to be optimal it

amounts to assigning groups of size k to the facility. This is true despite the fact that there

are many efficient allocations in these settings which differ from such fixed size rules. We

show how varying size is incompatible with strategy-proofness. These results also imply

that strategy-proofness and Pareto efficiency are generally incompatible with an individual

stability notion that requires that individuals assigned to consume the public good weakly

prefer consumption to abstinence, and those not assigned to consume weakly prefer not

to consume. In fact, the strategy-proof and efficient rules can be incompatible with the

weaker condition of individual rationality. Another of the main results is that if there is

heterogeneity in agents’ preferences over the optimal sized group, then only dictatorial rules

satisfy strategy-proofness and Pareto efficiency and outsider independence.

While some of the results are negative, in several important cases (e.g., cost sharing)

there are still a variety of strategy-proof and Pareto efficient rules and the results provide

2The various aspects that affect agents’ preferences over who consumes the public good may have to do
with the actual consumption itself, or some arrangement about how payments are distributed among those
consuming or not consuming the good. In our analysis we abstract away from the specifics generating the
preferences and simply work directly with preferences over the size of the group, even though our labels may
have some more specific connotations.

3This may be thought of as a weak version of a non-bossiness condition, with a normative grounding in
self-determination.
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partial or full characterizations of these rules depending on the preference domain.

Relation to the Literature

While there is an extensive literature on the strategy-proof provision of public goods4,

ours is the first analysis (that we are aware of) that deals with the characterization of

strategy-proof rules when the group assigned to consume the public good is something that

agents care about and can be varied. The closest paper in spirit is by Bogomolnaia and

Nicolò (1999) who consider a situation where agents have preferences that are single-peaked

over location and prefer less crowding for any fixed location. However, they study situations

where two facilities must be located and each agent must be assigned exactly to one of

these facilities. Although there is a dimension of preference over who else consumes at a

particular location, the scope of those preferences, the applications, and the basic structure

of the problem and results differ. Here, we focus on the problem of locating a single public

good and where some group of agents must be chosen to participate, and remaining agents

do not participate. This setting results in fairly dramatic differences in the structuring of

strategy-proof and efficient rules compared to the two facility setting, and in fact stability

is easily shown to be impossible in our setting while it is satisfied in the setting with two

facilities. Also a goal of our analysis is to move beyond the case of congestion, and try to

develop a general intuition for how preferences over number of co-users matter.

Our paper is also related to Cantala (2000) who analyzes the provision of a public good

when agents can opt out of consumption. In his analysis, agents do not care about the

group that consumes the good, but do care about its location and have reservation utilities.

Since there are no congestion effects in Cantala’s setting, the rules that Cantala identifies

differ from ours and in particular allow the group that consumes the good to vary in size.

The comparison of our results to Cantala’s work is thus useful in deciphering the impact of

congestion in the analysis. We shall see that congestion effects force us to fix the size of the

group that consumes the good and force individual rationality to be violated.

The incompatibility of strategy-proofness with Pareto efficiency and individual rational-

ity echoes a theme in the literature surrounding Groves’ schemes (sometimes referred to as

Clarke-Groves-Vickrey mechanisms, see Clarke (1971), Groves (1973) and Vickrey (1961)).

There, strategy-proofness and an efficient level choice were incompatible with balanced cost

payments and individual rationality.5 It is important to emphasize that the nature of the

4See Barberà (2000) for some discussion of the literature.
5See Green and Laffont (1977, 1979) and Laffont and Maskin (1980) for details in domains including

public goods settings. Jackson (2001) provides an overview and some simple examples illustrating the
incompatibilities.
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incompatibilities, however, stems from quite different considerations and the settings and

issues are also varied on several dimensions. Let us be more specific. First, in the Grovesian

world, utility functions are quasi-linear and so Pareto efficiency ends up embodying a max-

imization of the sum of utility functions, and thus embodying cardinal preferences. This

means that in that world, the allocation functions which are efficient are tightly defined and

the incentive compatibility constraints that result are quite strong as differences in cardinal

preferences must be uncovered. In our setting, utility is not assumed to be transferable, and

as a result there are many more allocation functions which are Pareto efficient and so the in-

centive compatibility constraints are weaker in the sense that only ordinal information needs

to be discovered. Second, in the Grovesian world a full domain of preferences is generally

assumed, while here the preferences are assumed to be single-peaked. This restriction to

single-peaked preferences provides an important reason why one might expect more positive

results here, as it did in Moulin (1980). Third, the incompatibility in the Groves setting

holds even without any congestive preferences or excludable nature of the public good, while

here the fact that agents care about how many others are consuming the good is essential

to the results. Fourth, transfers are admitted in the Grovesian analysis, while here transfers

are not considered.

These differences on at least four dimensions, makes the current analysis and what we

know from the Grovesian world hard to compare. The first two points describe ways in which

the Grovesian analysis is more demanding, and the last two points describe ways in which our

analysis is more demanding. Despite all of these differences, there is a basic intuitive level on

which we can understand the similarity in conclusions. In the Groves setting, difficulties with

individual rationality (or even balance) when combined with strategy-proofness and efficient

decision making stem from the demands of uncovering fairly rich preference information -

essentially cardinal information - and making choices that depend on that information. Here

what we are seeing is also a strong demand in terms of uncovering preference information -

but it is in terms of how agents trade-off public goods for congestion. Having such detailed

knowledge of preferences would be necessary to ensure voluntary participation, but turns

out to be incompatible with incentives.

The richness of preferences coming from the added dimension of congestion effects is

also the source of the contrast with the previous results on single-peaked domains. There

Pareto efficient mechanisms could be run with very little knowledge of the details of agents

preferences, beyond what their peaks are. In a sense, our results show how the positive

results on single-peaked domains (e.g., Moulin (1980)) were dependent on the paucity of

information about preferences that was needed to run the mechanisms (e.g., “peaks-only”).
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As a final remark before presenting the formal analysis, our model considers only the pro-

vision of a single good. That is, we do not allow agents who are excluded from consumption

to form their own club and produce their own good. Our model fits cases where the public

good is unique. For example, consider the case of a natural resource, like a natural park,

when the agents have to decide the dimension of the area to be protected and the number of

people (per year) allowed to visit the park. Individuals’ preferences on the optimal number

of visitors may depend from the tradeoff between the wish of preserving the natural envi-

ronment, and the necessity of raising funds through the entrance fees in order to finance the

public project. Also, this concentration on the provision of a single good allows us the most

direct comparison to the literature on the strategy-proof provision of pure public goods, such

as the important analysis of Moulin (1980). Nevertheless, there are cases outside of the scope

of our model, such as the provision of local public goods under congestion, that fit well into

the club goods setting and where the optimal number of goods to be provided is a natural

issue. As such, our analysis should be viewed as a first step towards a more general analysis

of the strategy-proof provision of club goods.

The paper proceeds as follows. We begin by providing basic definitions and outlining the

preference domains we consider. Next, on these different domains we offer characterizations

of rules satisfying strategy-proofness in combination with various other conditions such as

Pareto efficiency, outsider independence, individual rationality and individual stability. All

proofs are collected in the appendix.

2 Notation and Definitions

A Society and Allocations

A finite society of individuals, N = { 1, 2, . . . , n}, chooses the location of a public facility

and a set of individuals to use the public facility.

An allocation is a pair (x, S) in A = [0, 1]× 2N , where x ∈ [0, 1] specifies the location of

the public facility and S ⊂ N specifies the set of individuals assigned to the facility.

Preferences

Agent i’s preferences over allocations are represented by a generalized single-peaked util-

ity function ui : A→ IR that satisfies the following properties:
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(1) there exists an x̂i ∈ [0, 1] (agent i’s peak) such that for all x, y ∈ [0, 1] , if x̂i ≥ y > x
or x > y ≥ x̂i, then ui (y, S) > ui (x, S) for all S ⊂ N such that i ∈ S,

(2) ui(x, S) = ui(y, ∅) for all (x, S) and y ∈ [0, 1] such that i /∈ S.

(3) ui(x, S) = ui(x, S
′) if i ∈ S ∩ S ′ and |S| = |S ′|.

(4) ∃ (x, S) ∈ A such that ui (x, S) > ui(x, ∅).

(5) ui is continuous.
6

Without loss of generality, we normalize utility functions so that if i /∈ S, then ui (x, S) =

0. Note that it could be the case that ui (x, S) < 0 for some x ∈ [0, 1] and for some S ⊂ N
with i ∈ S.

Item (1) states that preferences are single-peaked in the level of public good, and moreover

that peak is independent of the group size. We talk about this independence in more detail

below. Item (2) states that i cares about differences in the location of the facility only if he

or she is assigned to use the facility. Item (3) states that agents care only about the number

of people who are assigned to the facility, but not the identity of the people in the group.

Item (4) requires that there is some allocation that an agent prefers to not participating,

which ensures that the public facility is indeed a public “good.” Item (5) states that the

preferences are continuous.

Given that the characterizations we obtain are very tight, the narrower the domain of

preferences the stronger the results. Thus, the uniformity of the peak across groups (1) and

the continuity (5) restrictions on preferences actually strengthen the results. Extensions to

expand the domains are straightforward, as one needs only check that the stated rules in

the results below remain strategy-proof and efficient when allowing for variance of the peak

and/or discontinuous preferences.7

The set of utility functions satisfying the above conditions and normalization is denoted

Ui.

Let p (ui) ∈ [0, 1] denote agent i’s peak under ui.

Profiles, of utility functions are denoted u = (u1, . . . , un). We denote by (ûi, u−i) the

vector (u1, . . . , ui−1, ûi, ui+1, . . . , un) . Let U = U1×· · ·×Un be the set of profiles of generalized

single-peaked utility functions.

6Given that 2N is finite, this amounts to requiring that ui is continuous in x fixing any S.
7Of course, if one expands the domain too much, the results eventually become impossibility theorems,

as should be expected.
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In what follows, we consider several variations of sub-domains of preferences. Let us

discuss some of them now.

Congestion

The first subdomain of Ui is where agents experience congestion. An agent prefers to

have fewer agents consume the public good. Let U cong
i denote the set of utility functions

ui ∈ Ui satisfying the following condition:

(6) If i ∈ S ∩ S ′ and |S| < |S ′|, then ui (x, S) > ui (x, S
′) for any x ∈ [0, 1].

The corresponding subdomain of U is denoted U cong.

Cost-sharing

Another subdomain of Ui of particular interest is one where agents prefer to have larger

groups consume the public good. Let U shar
i be the set of utility functions ui ∈ Ui such that

(7) for all S, S ′ ∈
(
2N

)
such that i ∈ (S ∩ S ′) , if |S| > |S ′|, then ui (x, S) > ui (x, S

′) for

all x ∈ [0, 1] .

The corresponding subdomain of U is denoted U shar.

Let us discuss some applications covered under the cost-sharing subdomain.

One possibility is that a group is building and locating a facility which provides a public

service or good. Here x represents the location of the facility and S the group of users.

The cost of the public facility is to be shared equally among the users of the public facility.

Here the only difference from the classic (excludable) public good problem is that individuals

prefer to have more agents involved in order to lower their cost.

We remark that the preference domain U requires that the peaks be independent of the

size of the group consuming the public good. If instead, we consider a situation where the

level of congestion of the public good depends not only on the number of consumers, but

also on the size of the public good, then it could be that an individual’s peak varies with the

number of agents consuming the good. We note that the closure of that domain of preferences

includes the domain of preferences considered here and that the characterizations presented

below in fact extend to that case.8

8 Such a domain would allow individual peaks to vary as a function of group size. The proofs we
provide do not require that peaks be independent of group size, and could be modified accordingly. As our
characterizations are tight on the smaller domain, they provide for stronger results and so we stick with the
smaller domain.

8



Another application that is covered in this subdomain, but does not actually involve any

“costs” to the public good, is the following. Consider a group of nations which have to reach

an agreement on some common standard. Each country has different optimal choice as to

what standard should be involved, and no state can be obliged to subscribe the agreement

(for example on air pollution emissions). At the same time, the larger is the number of

countries which reach the agreement, the greater is the welfare of each country. Note that

under this interpretation, individual rationality becomes a natural condition to impose on

the allocation.

This type of preference may also be generated also by private goods in presence of a

network effect. Consider for example the case of computer operating systems or technological

standards in communications. The utility of using a certain good depends not only on its

intrinsic characteristics, but also on the number of consumers of this particular good. In

this case our model fits the decision problem of companies which want to merge and use the

same technology, or nations that have to agree on the use of the same technological standard

in communications. In that case the public decision is the choice of standard or technology.

“Size k” Preferences

The cases of congestion and cost-sharing can be thought of as opposite extremes of situa-

tions where individuals have some preference over the number of individuals who consume a

public good. Intermediate cases, or cases where both effects are present are also of interest.

Generally, let Uk
i denote the set of preferences of agent i that stipulate groups of size

k ∈ {1, . . . , n} as the optimal size. That is, let Uk
i be the set of utility functions ui ∈ Ui such

that

(8) for all S, S ′ ∈
(
2N

)
such that i ∈ (S ∩ S ′) , if k ≥ |S| > |S ′| or |S ′| > |S| ≥ k, then

ui (x, S) > ui (x, S
′) for all x ∈ [0, 1] .

Social Choice Functions and Properties

We provide the following definitions on the domain U . Corresponding definitions for any

subdomain are analogous.

A social choice function is a function f : U → [0, 1]×
(
2N

)
.

It will often be useful to split a social choice function into its two component functions.

We write f(u) = (fL(u), fG(u)), where fL : U → [0, 1] specifies the location or level of the

public good and fG : U → 2N specifies the group consuming the public good.

Strategy-Proofness
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A social choice function f is strategy-proof if ui (f (u)) ≥ ui (f (ûi, u−i)) for all ûi ∈ Ui,

u ∈ U , and i ∈ N.
Pareto Efficiency

An allocation (x, S) is Pareto efficient at u if there does not exist another allocation

(y, S ′) ∈ A such that for ui (y, S
′) ≥ ui (x, S) for all i with strict inequality for some i.

A social choice function is Pareto efficient if f (u) is Pareto efficient for all u ∈ U .
Individual Rationality

An allocation (x, S) is individually rational at u if for all i ∈ S, ui (x, S) ≥ 0.

A social choice function is individually rational if f (u) is individually rational at every

u ∈ U .
Individual rationality requires that individuals who are assigned to consume the public

good, should be willing to participate in the public good consumption. The expression here

reflects our normalization of non-participation to a utility of 0, and is equivalent to stating

that individuals who are called to participate, weakly prefer to participate.

Individual Stability

An allocation (x, S) is individually stable at u if ui (x, S) ≥ 0 for all i ∈ S and 0 ≥
uj (x, {S ∪ j}) for all j /∈ S.

A social choice function is individually stable if f (u) is individually stable for all u ∈ U .
Individual stability is a stronger condition than individual rationality. In addition to

requiring that those who are participating weakly prefer participation to non-participation,

it also requires that those excluded from participating do not wish to participate. As we shall

see, this is not an easy condition to satisfy in conjunction with strategy-proofness and Pareto

efficiency. It is however, a condition that can be satisfied on its own and in conjunction with

Pareto efficiency.

Lemma 1 For any x ∈ [0, 1], k ∈ N , and u ∈ Uk, there exists S ∈ 2N such that (x, S)

is individually stable at u. Moreover, if k = n (cost sharing) then there is a maximal such

group (i.e., a superset of any other individually stable group).9

The proof of the lemma is simple. For instance in the case of cost sharing it works as

follows. We order agents in non-decreasing order based on the minimum size group needed

9This unique super-group property also holds for any k < n at any u such that no more than k individuals
have ui(x, S) ≥ 0 when |S| = k and i ∈ S. This is shown in the proof in the appendix. The condition can
fail at some other u ∈ Uk for any k < n, as Example 1 below shows.
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before an agent would prefer to consume the public good. We then look for the highest

ordered agent for whom the number of agents up to him in the ordering is at least as large

as that agent’s threshold number. That uniquely determines a largest individually stable

group. The largest such group is then easily seen to be Pareto efficient subject to the choice

of x. A careful choice of x then results in an efficient and individually stable rule.

The following example shows that the uniqueness of the maximal sized individually stable

group only holds on the domain of cost sharing.

Example 1 Non-unique maximal size stable groups when k < n.

Fix some x and let each i have ui(x, S) > 0 if |S| = k and i ∈ S, and ui(x, S) < 0

otherwise. If k > 1, then the set of individually stable groups is any group of size k as well

as the empty group. If k = 1 then the set of individually stable groups are the singletons.

The next example shows that if we move to a domain where there is heterogeneous

preferences over group size then there may not exist any individually stable group.

Example 2 Non-existence of stable groups under heterogeneous size preferences.

Fix x and let n = 2. It will be clear that this extends to n > 2 and more general

preferences. Let u1(x, {1}) > 0 > u1(x, {1, 2}) and u2(x, {1, 2}) > 0 > u2(x, {2}).
Here {1} is not individually stable as then 2 would prefer to consume. {1, 2} is also not

individually stable as then 1 would prefer not to consume. Finally, {2} is not individually

stable as 2 would prefer not to consume alone.

Outsider Independence

In many cases we work with a condition that requires that a social choice function should

not be dependent on changes in preferences of individuals who are not consuming the public

good. This can be viewed as a weak version of a non-bossiness condition, and is all that is

needed in most of the characterizations and has an easy interpretation.10

A social choice function f is outsider independent if for all i ∈ N, u ∈ U and u′i ∈ Ui, if

i /∈ S and i /∈ S ′ where (x, S) = f (u) and (x′, S ′) = f (u′i, u−i), then f (u) = f (u
′
i, u−i).

10The stronger standard condition of non-bossiness is as follows. A social choice function f is non-bossy if
for all i ∈ N, u ∈ U and ūi ∈ Ui, ui(f(u)) = ui(f(ūi, u−i)) implies uj(f(u)) = uj (f (ūi, u−i)) for all j ∈ N .
Outsider independence is the equivalent definition in our environment of a condition called non-bossiness of
excluded individuals by Deb and Razzolini (1999).
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Outsider independence requires that decisions regarding the public good be made by

those involved in the consumption. The condition rules out some social choice functions, but

we argue that the rules that fail to satisfy outsider independence are less attractive than the

counterparts that are admitted. We provide some examples below.

While outsider independence is a reasonable condition, our use of it is largely driven by

its usefulness in the proofs of the characterization results. It may in fact be unnecessary in

some of the results, but we have not found a method around it.

3 Characterization Theorems

We begin by reminding the reader of the class of social choice functions that are strategy-

proof when agents do not care about the number of agents consuming the public good, and

all agents are assigned to consume.11 This is the class of generalized median voting rules

identified by Moulin (1980).

For each C ⊂ N (including C = ∅) choose aC ∈ [0, 1], such that aC ≥ aC′ when C ⊂ C ′.

Let

fL(u) = min
C⊂N

(
max
i∈C

[aC , p(ui)]
)
.

This is the full class of social choice functions that are strategy-proof and have a connected

range.12

Sovereign Generalized Median Rules

There is a special class of generalized median rules that play an important role in our

characterizations. This is the class where aC ∈ {0, 1} for all C ⊂ N , and where aN = 0 and

a∅ = 1. We call this class the sovereign generalized median rules.

This class has two special properties:

(i) it has a full range of public good levels, and

(ii) it always picks the peak of some agent.

It is easy to verify that this subclass is in fact characterized by these properties.13

11That is equivalent to the class of rules where fG(u) is fixed to be N for all u and only fL is varied, as
then preferences over group size are irrelevant.

12For a proof of this see Barberà and Jackson (1994). The class with arbitrary ranges is a variation on
this definition and is also discussed in Barberà and Jackson (1994). For more on the role of the range and
other interpretations of such generalized median rules see Barberà, Masso and Neme (1997).

13This class of rules also plays an important role in the characterizations of Cantala (2000) who calls them
extreme minimax rules.
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The sovereign generalized median rules include dictatorial rules (setting aC = 0 if the

dictator i is in C and aC = 1 otherwise), median voting rules (setting aC = 0 if C has at

least half of the agents and aC = 1 otherwise), rules found according to other order statistics

of peaks, as well as a variety of other rules including ones that give special consideration to

some coalitions of agents.

An important subclass of generalized median rules that are not admitted in the sovereign

generalized median rules are those including (interior) “phantom voters,” as termed by

Moulin (1980). We point out below why such phantom voting rules fail to satisfy strategy-

proofness and efficiency on domains where agents have preferences over the number of con-

sumers.

3.1 The Cost-Sharing Domain

We begin by characterizing the strategy-proof social choice functions on the cost sharing

domain, since this is the most closely related domain to the classic domain where agents do

not care about the number of agents consuming the public good.

On the cost-sharing domain all agents prefer to have more agents consuming the good

rather than fewer and so the only difference between this domain and the classic domain is

that it is possible that some agents might prefer not to participate. For instance, consider

a situation where two thirds of the agents have a peak at 0 and the remaining agents have

a peak at 1, and where agents prefer not to participate if the location is more than 1/4

away from their peak, but prefer to participate at their peak no matter how many others

participate. Here, one might think that a reasonable allocation would be to locate the public

facility at 0 and then have the two thirds of the agents whose peaks are at 0 participate.

Even though this is a Pareto efficient allocation, it cannot be in the range of a strategy-proof

and efficient social choice function.

The following theorem shows that in fact any strategy-proof and efficient social choice

function must always assign the complete group to consume the public good, even if some

would prefer not to participate.

Theorem 1 A social choice function f : U shar → A is strategy-proof, Pareto efficient, and

outsider independent if and only if it always assigns the whole group to the facility and selects

the location via a sovereign generalized median rule.

The proof of Theorem 1 appears in the appendix.
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It is not clear that outsider independence is needed in the characterization established in

Theorem 1. We have not found a proof without it nor an example showing that the theorem

fails with only strategy-proofness and Pareto efficiency on the sharing domain.

As mentioned before, the sovereign generalized median rules do not include the rules

based on phantom voters where some phantom is in the interior. To get an idea of why the

phantom rules fail strategy-proofness and efficiency in this setting, consider n = 2 and a

rule which selects the median of [p(u1), p(u2),
1
2
]. This rule is strategy-proof and constrained

Pareto efficient under the constraint that all agents be assigned to the facility. However,

it is not Pareto efficient. For instance, If p(u1) = 0 and p(u2) = 1 and ui(
1
2
, {1, 2}) < 0,

then both agents would be better off not participating! So, the only sovereign rules that are

strategy-proof and Pareto efficient on U shar with n = 2 are the rule that picks the max of the

peaks, the rule which picks the min of the peaks, and the rules that are dictatorial. More

generally, the theorem tells us that a strategy-proof and Pareto efficient rule must pick some

peak at every preference profile.

Given that all agents must be assigned to consume in any strategy-proof and efficient

social choice function on the cost sharing domain, it follows that there will be cases where

some agents would prefer not to consume and hence individually rationality will be violated.

This is easily seen by considering a preference profile where some agents have a peak at 0

and are only happy to participate if the public good level is near 0 and others have a peak

at 1 and are only happy to participate if the public good level is near 1. Regardless of the

level of public good chosen some agent will prefer not to participate. This reasoning leads

to the following corollary.

Corollary 1 There does not exist a social choice function f : U shar → A that is strategy-

proof, Pareto efficient, outsider independent, and individually rational; and thus there is no

strategy-proof, Pareto efficient, outsider independent, and individually stable social choice

function.

To get a better feeling for why there is no strategy-proof social choice function that varies

the group of participants, consider the following natural rule and let us see why it is not

strategy-proof even though it is Pareto efficient and individually stable.

Example 3 A Voluntary Participation Rule

Consider the following social choice function for the case of n = 2. (Similar examples

can be constructed for more agents.) With each x ∈ [0, 1] associate the largest individually

14



stable group at the chosen location. Such a group exists and is unique by Lemma 1. Let

agent 1 pick from these allocations.14,15

To see that such a rule is not strategy-proof, consider u ∈ U shar where agents have peaks

p(u1) = 0, p(u2) = 1. Suppose that agent 1 prefers to participate with any sized group and

has preferences such that u1(x, S) > u1(x
′, S ′) whenever 1 ∈ S and |S| > |S ′|. So, agent 1

cares more about group size than location of the public good. Let agent 2 have preferences so

that u2(x, S) ≥ 0 if and only if S = N and x ≥ 2
3
. Then, under truthful announcements by

the agents the outcome is (2
3
, {1, 2}). If agent 2 lies and announces u2 such that u2(x, S) ≥ 0

if and only if S = N and x ≥ 3
4
, then the outcome will be (3

4
, {1, 2}). Agent 2 is better off

announcing u2 when his true preference is u2, and so the rule is not strategy-proof.

An implication of Theorem 1 and Corollary 1 is that in order to have a strategy-proof

and Pareto efficient provision of the public good, there must be some enforcement of the

mechanism as individuals will not always wish to participate when they are called on to do

so. This is a property that carries over to any domain where agents have some preference

over group size, as we shall see below.

Before proceeding, we note that, excepting for the role of outsider independence, Theorem

1 is tight. If one drops strategy-proofness, then rules such as the voluntary participation

rule in Example 3 satisfy efficiency. If one drops Pareto efficiency, then other strategy-proof

rules appear. For instance, one can fix the group to be any S and then run any generalized

median rule to select the location (and the generalized median rule could pay attention to

individuals who are not in S).

To get a better feeling for the strategy-proof but inefficient rules, we conclude this section

with the following result which characterizes what happens when we replace Pareto efficiency

with individual stability.

Theorem 2 If f : U shar → A is strategy-proof, outsider independent and individually stable,
then there exists a ∈ [0, 1] such that for each u ∈ U shar, f (u) = (a, S) where S is individually

stable at u relative to a.
14Given the continuity of preferences, and the preference for larger sized groups, points of discontinuity in

the largest stable group have larger groups and so this is well-defined. For example, it may be that {1, 2}
is individually stable for all x ∈ [a, b] and then {2} is stable on (b, c] and then ∅ is individually stable on
(c, 1]. This follows from the upper-hemicontinuity of the correspondence of individually stable groups as x

is varied.
15Note that simply picking a peak according to some rule and then a largest individually stable group at

that peak is not Pareto efficient. For instance suppose that the choice is (p(u1), {1}), while at some other x

both agents wish to participate. It could be that both are better off with the second choice.
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Theorem 2 provides a dual to Theorem 1. Theorem 1 shows that strategy-proofness and

efficiency require one to fix the group of users (to be the entire set of agents) and to perform

a suitable general median voter rule to locate the facility. Theorem 2 shows that strategy-

proofness and individual stability (plus outsider independence) require us to fix the location

of the facility and then choose an individually stable set of agents to be the set of users.

The following examples provide some insights on Theorem 2. Example 4 clarifies the role

of outsider independence in Theorem 2.

Example 4 Role of Outsider Independence

Let Sx(u) be the maximal sized individually stable group at u ∈ U shar relative to x.

Define f as follows. Let f (u) = (0, S0 (u)) if u2 ∈ U shar
2 is such that p (u2) = 1

2
and

u2 (x, S) ≥ 0 only if x ∈
[

1
3
, 2

3

]
;16 and let f (u) = (1, S1 (u)) , otherwise. This rule violates

outsider independence, but it is strategy-proof and individually stable. According to this

rule the facility is not always located at the same place.

The next example shows why the converse to Theorem 2 requires one to be careful in

selecting the group.

Example 5 Selection of the stable group

Let N = {1, 2}. Consider the following rule. For all u ∈ U shar let f (u) =
(

1
2
, Smin

1
2

)
where

Smin
1
2

is a stable group with the minimum cardinality at 1
2
. This rule is outsider independent

and individually stable, but not strategy-proof. To see this, consider a profile u ∈ U shar such

that ui

(
1
2
, {i}

)
< 0 and ui

(
1
2
, {1, 2}

)
> 0 for both i = 1, 2. It follows that f (u) =

(
1
2
, ∅

)
.

Let û1 ∈ U shar
1 be such that û1

(
1
2
, {1}

)
> 0. Individual stability implies that f (û1, u2) =(

1
2
, {1, 2}

)
, but then strategy-proofness is violated at u by agent 1 via û1.

The previous example suggests that failing to pick the largest individually stable group

may result in a violation of strategy-proofness. It is easily seen that always selecting the

largest individually stable group at a fixed location will result in a strategy-proof rule.

However, there are also some

other strategy-proof (outsider independent and individually stable) rules, as the final

example of this section shows.

Example 6 Selection of the stable group II

16Note that agent 2 /∈ S0 (u) .
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Let N = {1, 2, 3}. Consider the following rule. For all u ∈ U shar let fL (u) = a and fG (u)

is the largest individually stable group for which all agents have strictly positive utility in

being assigned to the facility. Consider, for example, utility profile u ∈ U shar such that

u3 (a,N) = 0 and u3 (a, S) < 0 for all S �= N, while ui (a, {i}) > 0 for both i = 1, 2. It

follows that f (u) = (a, {1, 2}), while the largest stable group at a is N .

This rule is outsider independent, individually stable, and strategy-proof, even though it

does not always select the largest stable group at the given location.17

3.2 The Pure Congestion Domain

We now turn to the other extreme domain of pure congestion, where agents all prefer to

have smaller groups consume the public good.

The basic intuition that there will be problems in varying the group size in a strategy-

proof rule carries over to this case. However, in the case of congestion this suggests that the

group size should be just 1, and hence we end up with only dictatorial rules. This is stated

in the following theorem.

Theorem 3 A social choice function f : U cong → A is strategy-proof, Pareto efficient, and

outsider independent if and only if it is dictatorial.18

Theorem 3 does require outsider independence. If outsider independence is dropped,

then some non-dictatorial rules emerge. For instance, in a three agent economy one can

find a strategy-proof rule where either agent 1 dictates or agent 2 dictates, depending in

some arbitrary way on the announcement of preferences by agent 3. While we have not been

able to find a proof, we conjecture that the only new rules admitted by dropping outsider

independence amount to some variation on picking a dictator in a way that depends on

outsiders’ preferences.

The characterization is tight. If one drops Pareto efficiency, then fixing any group S

and running a generalized median rule on that group to choose the location results in

a strategy-proof and outsider independent social choice function. If one drops strategy-

proofness then, for example, one admits rules of the following form. If both agents 1 and

2 have ui(p(u1), {1, 2}) > 0 then let the outcome be (p(u1), {1, 2}), and otherwise let the

17It is easy to show, however, that the freedom to vary the selection of the stable group is limited. In cases
where all agents in the largest stable group at some given location get strictly positive utility from being
in the largest stable group at that location, then the rule must pick the largest stable group. This is true
regardless of how the location is chosen.

18There exists i such that f(u) = (pi(ui), {i}) for all u ∈ U cong.
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outcome be (p(un), {n}). As the set of efficient allocations is quite large, there are many

Pareto efficient and outsider independent rules that are not strategy-proof.

3.3 The Domain of a Common Optimal Group Size k

We now turn to the more general case where both congestion and cost sharing effects may

be present. As in the above extreme cases, strategy-proof, efficient and outsider independent

rules cannot vary the group size. The full characterization of all such rules is complex and

tedious, so we offer a partial characterization that captures most of the properties of the

rules.

Theorem 4 Fix k ∈ {1, . . . , n}. If a social choice function f : Uk → A is strategy-proof,

Pareto efficient, and outsider independent, then it always assigns a group of size k to use the

facility, the level of public good selected depends only on the peaks of the agents over levels,

and at least one agent whose peak coincides with the level of the public good is included in

the group of assigned consumers.

The theorem stops short of providing a complete characterization as it leaves partly open

how the rules select among the peaks and how agents are assigned to the facility. A bit more

can be seen fairly easily, as the fact that the peak selection must always be a peak of an agent

assigned to the facility together with the properties of strategy-proofness, efficiency, and

outsider independence implies that the level is chosen according to a sovereign generalized

median rule which depends only on the peaks of the agents who always may be assigned

to consume if they so desire (and some such agents exist). However, a full characterization

involves a system by which assignment of the group to use the facility can follow fairly

complicated priority rules. To get a feeling for the complexity of the rules that can satisfy

the above conditions, consider the following example.

Example 7 Group Selection

The level of the public good is the minimum of agent 1 and agent 2’s peaks. The n > k > 1

agents assigned to consume are chosen as follows. If agent 1’s peak is the minimum, then

select the first k agents who have positive utility for being assigned to the facility (in a group

of size k) by the following priority rule: 1, 2, 3, ..., n. If there are less than k agents with

positive utility, select the remaining agents to be forced in the group by the following priority

rule: n, n − 1, ..., 2. If agent 2’s peak is the lowest then select the first k agents who have
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positive utility in being assigned to the group by the following priority rule 2, 1, n, n−1, ..., 3.

If there are less than k agents select the agents to be forced in the group by the same priority

rule.

Finally note that individual stability is a difficult condition to satisfy in conjunction with

strategy-proofness. A direct corollary to Theorem 4 is that there does not exist any social

choice function f : Uk → A that is strategy-proof, Pareto efficient, outsider independent,

and individually stable.19 The following stronger result is, in fact, true.

Theorem 5 If k < n, then there does not exist any social choice function f : Uk → A that

is strategy-proof and individually stable.

Note that Theorem 5 uses very little of the structure of the preference domain. It holds

even if all agents have identical known peaks and we fix the location to be that peak. It

results entirely from the selection of the group and agents preferences over group sizes versus

non-participation.20

3.4 Heterogeneous Most Preferred Group Sizes

Theorem 4 only applies to situations where all agents have exactly the same optimal group

size in mind. In many applications, it may be that agents disagree about the optimal group

size, and their preferences over the optimal group size may not always be constant.

What we show in the theorem below is that even a small expansion of the preference

domain to allow for some variance in optimal group size leads to a very negative conclusion.

The small expansion in the domain is simply to allowing an agent’s favorite group size to

take on more than one value.

Let Uk,k′
= ×i(U

k
i ∪Uk′

i ). This is a domain where agents’ favorite sized groups may take

on more than one value.

Theorem 6 Consider any group sizes k and k′ with k �= k′. If a social choice function

f : Uk,k′ → [0, 1] × 2N is strategy-proof, Pareto efficient, and outsider independent, then it

is dictatorial.21

19As with k = n, if k > 1 one can show that in fact individual rationality must be violated.
20A similar result is noted in Bogomolnaia and Jackson (2002) in a pure coalition formation setting.
21A social choice function is dictatorial if there exists i ∈ N such that the outcome is always i’s most

preferred level and group size, with i in the group.
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Theorem 6 does not provide a full characterization as we have not specified exactly how

the group is selected and only certain methods of selecting the group are compatible with

strategy-proofness. But in this case, a strategy-proof rule must identify a single agent i,

locate the public good at that agent’s peak, choose a group that includes i and is of i’s

optimal size. The only thing that we have left unspecified in the characterization is the

exact selection of the group, which again can follow a hierarchical priority system (as in

Example 7).22

4 Discussion

When the number of consumers of a public good is an important aspect of agents’ prefer-

ences, strategy-proofness, efficiency and individual stability are not compatible. In order for

strategy-proofness, efficiency, and outsider independence to be satisfied, some agents must

be either forced to consume the public good, or excluded from its usage. Thus, one of the

implications of the results here is that in order to implement a strategy-proof and efficient

social choice rule we do need a “planner” who has some coercive power over the set of possi-

ble consumers of the public good. It follows that for the provision of public goods when the

size of the group of users matters, there must exist a real enforcing authority and not

just a virtual organization among its members.

Another thing to note about the results is that anonymity is naturally precluded, since

even when all agents have the same preferences some group of size k must be selected. This

is partly due to our approach which only considers determinate groups of consumers as

outcomes. It may be of interest to study partial exclusion and/or randomization in settings

where some congestion is present.

Theorem 6 is somewhat pessimistic as it shows that allowing for flexibility in size will be

incompatible with strategy-proofness unless one cares for dictatorial rules. Thus, efficiency

and strategy-proofness are somewhat at odds here. However, if one allows for approximate

efficiency, and for instance considers large economies where the distribution over preferences

for group size is known, then fixing a group size may not be far from efficient, and would

allow a variety of non-dictatorial, strategy-proof, and approximately efficient rules to be

available.

22To get a feeling for how such priority systems can work in the face of strategy-proofness, see Barberà,
Jackson and Neme (1997) who outline priority systems in allotment rules or Papai (2000) who outlines
hierarchies in an allocation problem.
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We have focused on the provision of a single good. Studying the strategy-proof provision

of more than one public good and possibly with side payments, but with preferences on

group size, is an important area for future study. This is especially true, given that our

results showing that the size of groups must be fixed. In cases where the preferred size k is

smaller than n, it is natural to think of producing several local public goods. This would

involve bringing together approaches such as that here with those as in Bogomolnaia and

Nicolò (1999) and Le Breton and Weber (2001), among others in the more general Tiebout

and club goods literatures.

As one final note, the characterizations we have obtained here hold under even stricter

domains of preferences. For instance, the proofs in the appendix all hold if we add a condition:

ui(x, S) > ui(y, S) if and only if ui(x, S
′) > ui(y, S

′) whenever i ∈ S ∩ S ′. This makes the

results stronger as it implies that the characterizations are tight even with a separability in

utility between x and S.
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6 Appendix

For any i and k, let Uk+
i denote the subdomain of Uk

i such that ui(x, S) > 0 for all (x, S)

such that i ∈ S.

Proof of Lemma 1: Fix any location choice x ∈ [0, 1] and some k ∈ N and u ∈ Uk. Let

us first show that there always exists a choice of an S for which (x, S) is individually stable

at u.

Case 1: No more than k individuals have ui(x, S) ≥ 0 when |S| = k and i ∈ S.
Letmi be such that ui(x, S) ≥ 0 when |S| = mi and i ∈ S, but ui(x, S) < 0 when |S| < mi

and i ∈ S. (Set mi = n+1 if ui(x, S) < 0 for all S with i ∈ S and mi = 1 if ui(x, S) ≥ 0 for

all S such that i ∈ S.) So, mi is the minimal sized group that i is willing to be a member of

at x. Note mi is uniquely determined under the preference assumptions. Order the agents in

terms of mi. In particular, without loss of generality assume that mn ≥ mn−1 ≥ · · · ≥ m1.

Find the largest i such that i ≥ mi. If there is no such i, then clearly the empty group is

individually stable. Otherwise, it follows directly that {1, . . . , i} is individually stable.

Case 2: More than k individuals have ui(x, S) ≥ 0 when |S| = k and i ∈ S.
Let Mi be such that ui(x, S) ≥ 0 when |S| = Mi and i ∈ S, but ui(x, S) < 0 when

|S| > Mi and i ∈ S. (Set Mi = 0 if ui(x, S) < 0 for all S with i ∈ S.) So, Mi is the maximal

sized group that i is willing to be a member of at x. Again, Mi is uniquely determined under

the preference assumptions. Without loss of generality assume that agents are labeled so

that M1 ≥M2 ≥ · · · ≥Mn. If n ≤Mn, then the group N is individually stable. Otherwise,

find i such that i ≤ Mi but i + 1 > Mi+1 and then {1, . . . , i} is clearly individually stable.

Note that i is uniquely determined under our ordering of agents, and that i ≥ k by the

definition of this case.

To complete the proof let us show that when k = n then there is an individually stable

group that includes all other individually stable groups. First note that when k = n we must

always fall in case 1. Suppose that the empty group is selected under the algorithm in case

1. Then it is clear from the definition of the mi’s that no other group is individually stable.

Next, consider the case where some {1, . . . , i} is the group selected by the algorithm in case

1. Suppose that some other S is individually stable where j ∈ S for some j > i. Let j be
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the largest indexed individual in S. It must be that |S| ≥ mj by individual stability and the

definition of mj. By our ordering mj ≥ mh for any h < j. Thus, by the preferences it must

be that h < j strictly prefers to be in S if h /∈ S, and so by individual stability h ∈ S for all

h < j. Thus, {1, . . . , j} = S. However, then j = |S| ≥ mj which contradicts that fact that

i < j was the largest indexed agent for whom i ≥ mi.

The following Lemmas are useful in the remaining proofs.

For any u−i and any k

Ok
i (u−i) = {(x, S)|(x, S) = f(ui, u−i) for some ui ∈ Uk

i }.

So, Ok
i (u−i) is the option set of i; that is, the set of outcomes that i can generate fixing the

profile of preferences of the other agents. Note that strategy-proofness implies that for each

u ∈ Uk and for all i ∈ N,

f(u) ∈ argmax(x,S)∈Ok
i (u−i)

ui(x, S).

For any x ∈ [0, 1], let I (x) denote a. When we refer to a specific agent i ∈ N , we write

Ii (x). Finally let Sk denote any group of agents with cardinality k.

Lemma 2 Let f : Uk → [0, 1] × 2N be strategy-proof, and consider any u ∈ Uk and let

(a, Y ) = f (u). For each i ∈ Y there exists a closed set with non-empty interior containing

a, I ⊂ [0, 1], such that for any closed neighborhood of a with non-empty interior Ii (a) ⊂ I,
then there exists u′i ∈ Uk

i such that

• p (u′i) = a,

• u′i (a, Y ) > 0 and u′i (x, S) < 0 for all x /∈ I (a) and for all S such that i ∈ S,

• f (u′i, u−i) = (a, S) with |S| = |Y | and i ∈ S.

Proof of Lemma 2: If |Y | = k, then the Lemma follows directly. So consider the case

where k′ = |Y | > k (k′ = |Y | < k). By strategy-proofness and the conditions on preferences,

it must be that (a, S) /∈ Ok
i (u−i) for any S such that i ∈ S and k′ > |S| ≥ k (k′ < |S| ≤ k). In

fact, by the continuity of preferences and strategy-proofness it follows that there exists some

γ > 0 such that (b, S) /∈ Ok
i (u−i) for any S such that i ∈ S and k′ > |S| ≥ k (k′ < |S| ≤ k) ,

and any b such that |b− a| < γ.

25



Select u′i ∈ Uk
i such that p(u′i) = a and u′i (x, S) ≥ 0 only if x ∈ Ii (a) and i ∈ S, with

ui(a, S) > 0 whenever i ∈ S, and the length of Ii (a) is less than
γ
2
.

Since (b, S) /∈ Ok
i (u−i) for any S such that i ∈ S and k′ > |S| ≥ k (k′ < |S| ≤ k) and any

b such that |b− a| < γ, it follows that the most preferred alternative in Ok
i (u−i) under u

′
i is

(a, Y ) or any (a, S) with |S| = |Y |. The lemma follows directly.

Lemma 3 Consider a strategy-proof and outsider independent f defined on Uk for some k,

and consider u ∈ Uk, letting f (u) = (a, Y ). For all i /∈ Y, there exists u′i ∈ Uk
i with p (u

′
i) �= a

such that f
(
u′−Y , uY

)
= (a, Y ) and p

(
u′j

)
�= p (u′h) for each j /∈ Y and h �= j.

Proof of Lemma 3: Let f (u) = (a, Y ). Consider any j /∈ Y . Suppose that either p (uj) = a

or p (uj) = p (uh) for some other agent h ∈ N . By continuity of the utility functions, for

each j /∈ Y there exists a closed interval with non-empty interior23 Ij (p (uj)) such that

uj(x, S) ≥ 0 for all x ∈ Ij (p (uj)) and S such that j ∈ S and |S| = k. Let u′j ∈ Uk
j be

such that p(u′j) ∈ Ij (p (uj)) , p(u
′
j) �= p(uh) for any h ∈ N, and u′j (x, S) ≥ 0 only if |S| = k

and x ∈ I ′j (p (uj)) ⊂ Ij (p (uj)). Then by strategy-proofness and outsider independence

f
(
u′j, u−j

)
= (a, Y ) . Repeat the argument for all j /∈ Y, choosing at u′j a different peak for

each agent j.

Proof of Theorem 1: Theorem 4, which is proven below, implies that the whole group must

always be assigned to consume the good. The problem then boils down to a characterization

of the efficient and strategy-proof rules where size preferences do not matter and a peak of

some agent is always picked. Following Moulin (1980) (and see Barbera and Jackson (1994)

for details), this is easily seen to be the class of sovereign generalized median rules.

Proof of Theorem 2:

We first define the following utility function. For any c ∈ [0, 1] and i ∈ N let ũc
i be such

that p (ũc
i) = c and

1) |S| > |S ′| with i ∈ S ∩ S ′ ⇒ ũc
i (x, S) > ũ

c
i (y, S

′) for all x, y ∈ [0, 1].

2) ũc
i (x, S) > 0 for all x ∈ [0, 1] and for all S ∈ 2N with i ∈ S.
The theorem follows from the two steps below.

Step 1: For all u ∈ U shar, f (u) = (c, Y ) implies f (ũc) = (c,N).

If Y = N this follows easily, so consider the case where Y �= N . Consider any i ∈ Y .
By Lemma 2 we can assume that f(u) = (c, Y ) with p (ui) = c, and u is such that for each

i ∈ Y : ui(x, S) ≥ 0 and i ∈ S implies that x ∈ Ii (c) = I(c). By Lemma 3 assume that

23Noting that j’s most preferred allocation has positive utility, this interval must have a non-empty interior.
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for each j �= Y, uj (x, S) ≥ 0 only if x ∈ Ij (p (uj)) and S = N with Ijp (uj) ∩ Ihp (uh) = ∅
for any pair such that j /∈ Y and h �= j. Consider j /∈ Y and profile

(
u′j, u−j

)
with

u′j ∈ U shar
j such that p

(
u′j

)
= c, u′j (x, S) ≥ 0 only if x ∈ I ′j (c) ⊂ I (c) and u′j(c, {j}) > 0.

If agent j /∈ fG
(
u′j, u−j

)
, then by outsider independence f

(
u′j, u−j

)
= (c, Y ) and individual

stability is violated. Therefore by strategy-proofness and individual stability f
(
u′j, u−j

)
=

(z, (Y ∪ j)) with z ∈ I ′j (c). Since this must hold for any closed neighborhood of c, it follows

f
(
u′j, u−j

)
= (c, (Y ∪ j)) . Iterating for all agents i /∈ (Y ∪ j) , we obtain f (u′) = (c,N) . By

strategy-proofness it follows that f (ũc) = (c,N).

Step 2: Let f (u) = (c, Y ) and f (u̇) = (z,W ). We show that c = z.

By Step 1, f (ũc) = (c,N) and f (ũz) = (z,N) . Consider profile
(
uz

1, ũ
c
−1

)
where p (uz

1) =

z and uz
1 (x, S) ≥ 0 only if x ∈ I1 (z) and such that c /∈ I1 (z) . If fL

(
uz

1, ũ
c
−1

)
/∈ I1 (z) , then

by individual stability agent 1 /∈ fG
(
uz

1, ũ
c
−1

)
In this case strategy-proofness is violated at

some profile since f
(
uz

1, ũ
z
−1

)
= f (ũz) = (z,N) and, for all i ∈ N, ũc

i (z,N) > ũc
i (x, S)

for all S �= N , for all x. Since fL
(
uz

1, ũ
c
−1

)
∈ I1 (z) for all possible neighborhoods of z,

then by strategy-proofness it must be f
(
uz

1, ũ
c
−1

)
= (z,N) . Again by strategy-proofness

f
(
ũz

1, ũ
c
−1

)
= (z,N) and iterating for all i �= n, f

(
ũz

1, ..., ũ
z
n−1, ũ

c
n

)
= f

(
ũz
−n, ũ

c
n

)
= (z,N) .

Consider profile
(
ũz
−n, u

c
n

)
where p (uc

n) = c, uc
n (c, S) > 0 for all S, and uc

n (x, S) < 0 if

x /∈ In (c) with z /∈ In (c) . By the same argument, we conclude that f
(
ũz
−n, u

c
n,

)
= (c,N)

and by strategy-proofness f
(
ũz
−n, ũ

c
n

)
= (c,N), which contradicts our previous conclusion

that f
(
ũz
−n, ũ

c
n

)
= (z,N).

Proof of Theorem 3: From Theorem 4 (proven below) we know that there is always just

one agent assigned to consume and the level must be that agent’s peak. We need only show

that it must always be the same agent.

We first state an obvious fact that follows directly from strategy-proofness.

Fact 1: Let f (u) = (p (ui) , {i}) for some i ∈ I. Then f (ūi, u−i) = (p (ūi) , {i}) for all

ūi ∈ U cong
i .

We now show that f (u) = (p (ui) , {i}) implies f (ū) = (p (ūi) , {i}) for all ū ∈ U cong.

Suppose the contrary. Without loss of generality, let f (u) = (p (u1) , {1}) and f (ū) =

(p (ū2) , {2}). By Fact 1 f (ū2, u−2) �= (p (ū2) , {2}), as otherwise it would have to be

that f(u) = (p (ū2) , {2}). By outsider independence, f (ū2, u−2) = (p (u1) , {1}) . Simi-

larly, f (ū2, ū3, u−2,3) �= (p (ū3) , {3}) and so by outsider independence f (ū2, ū3, u−2,3) =

(p (u1) , {1}) . Iterating this argument we reach the conclusion that f (u1, ū−1) = (p (u1) , {1}).
Therefore, by Fact 1 f (ū) = (p (ū1) , {1}), which contradicts our supposition.
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Proof of Theorem 4: We prove the theorem through a series of lemmas.

Lemma 4 Let f : Uk → [0, 1]× 2N be strategy-proof, Pareto efficient and outsider indepen-

dent. Then for all u ∈ Uk, k ≥
∣∣∣fG (u)

∣∣∣.
Proof of Lemma 4: Suppose the contrary. Then we can find u ∈ Uk such that f (u) =

(a, Y ) where |Y | = q > k and q is the minimal cardinality of any group in the range which

is of size greater than k. Without loss of generality, assume Y = (1, ..., q). By Lemma 2

we can assume, without loss of generality, that p (ui) = a, ui (a, Y ) > 0, ui (x, S) ≥ 0 only

if x ∈ Ii (p (ui)) = I (a), and q ≥ |S| ≥ k, for all i ∈ Y . By Lemma 3 we assume that

p (uj) �= a, uj (x, S) ≥ 0 only if |S| = k, and x ∈ Ij (p (uj)) with Ij (p (uj)) ∩ Ih (p (uh)) = ∅
for all h �= j.

Let us assume that a �= 1, as the case where a �= 0 is analogous. For any i ∈ Y , let
ūb

i ∈ Uk
i be such that24 p

(
ūb

i

)
= b /∈ I (a) , such that there does not exist any j �= i with

p (uj) ∈ (a, b). Let ūb
i be such that ūb

i (x, S) ≥ 0 only if q ≥ |S| ≥ k and x ∈ Ii (b) = I(b),
with I (b) ∩ Ij (p (uj)) = ∅ for all j /∈ Y , and ūb

i (a, Y ) > 0 (hence a is interior to I (b)).

Let us consider profile
(
ūb

1, u−1

)
. Since ūb

1 (f (u)) > 0,by strategy-proofness and the condi-

tions on preferences, it follows that 1 ∈ fG
(
ūb

1, u−1

)
,

∣∣∣fG
(
ūb

1, u−1

)∣∣∣ ≥ k, and fL
(
ūb

1, u−1

)
=

y ∈ I (b). Suppose that either fL
(
ūb

1, u−1

)
= y such that ui (y, Y ) < 0 for any i ∈ Y , or∣∣∣fG

(
ūb

1, u−1

)∣∣∣ < q. By efficiency and the minimality of Y , it follows that
∣∣∣fG

(
ūb

1, u−1

)∣∣∣ = k.
Let u′′1 be such that p (u′′1) = a, u′′1 (x, S) ≥ 0 if and only if |S| = k, i ∈ S and x ∈ I ′′1 (a);
moreover let I ′′1 (a) be such that b ∈ intI ′′1 (a) and I ′′1 (a) ∩ I (p (uj)) = ∅ for all j �= Y . If

f
(
ūb

1, u−1

)
= (y, Sk) with 1 ∈ fG (ū1, u−1) , then by strategy-proofness, 1 ∈ fG (u′′i , u−1) and

by efficiency f (u′′1, u−1) = (a, Sk). However, then strategy-proofness is violated at profile

u by agent 1. Thus, consider the case where fL
(
ūb

1, u−1

)
= y with ui (y, Y ) ≥ 0 for all

i ∈ Y and
∣∣∣fG

(
ūb

1, u−1

)∣∣∣ ≥ q. By strategy-proofness and the conditions on preferences it

must be
∣∣∣fG

(
ūb

1, u−1

)∣∣∣ = q, hence by efficiency fG
(
ūb

1, u−1

)
= Y . Suppose that y �= a. Then

consider u̇2 such that p (u̇2) = a and u̇2 (x, S) ≥ 0 only if x ∈ İ2 (a) ⊂ I (a) and q ≥ |S| ≥ k,
with y /∈ İ2 (a) and u̇2 (a, Y ) > 0. By strategy-proofness f (u̇2, u−2) = (a, Y ). By the same

reasoning as before it follows that f
(
ūb

1, u̇2, u−(1∪2)

)
= (z, Y ) with z ∈ İ2 (a) , and strategy-

proofness is violated at profile
(
ūb

1, u−1

)
by agent 2 via u̇2, since u2 (y, Y ) < u2 (z, Y ) .

So, it follows that f
(
ūb

1, u−1

)
= (a, Y ) . Repeating the same argument we conclude that

f
(
ūb

1, ..., ū
b
q−1, uq, ..., un

)
= (a, Y ) (1)

24The apex b specifies the agent i′s peak according to the new preferences. We write the apex when the
peak is different from the peak of the former preferences ui.
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and by efficiency

f
(
ūb

1, ..., ū
b
q−1, ū

b
q, uq+1, ..., un

)
= (b, Y ) (2)

From now on we fix the utility functions of agents from q+1 to n, and simplify notation

by writing only the first q components of the utility profiles.

Consider ûq such that p (ûq) = a, ûq (b, Y ) > 0, and ûq (x, S) ≥ 0 only if x ∈ Îq (a) and

q ≤ |S| ≤ k. Given (1), by strategy-proofness q ∈ fG
((
ūb

1, ...ū
b
q−1, ûq

))
.

Suppose that fL
((
ūb

1, ...ū
b
q−1, ûq

))
= c with c �= a, c ∈ Îq (a) . Since f

(
ūb

1, ..., ū
b
q−1, uq

)
=

(a, Y ) , then strategy-proofness implies q < fG
((
ūb

1, ...ū
b
q−1, ûq

))
≤ k. By minimality of

Y, it follows
∣∣∣fG

((
ūb

1, ...ū
b
q−1, ûq

))∣∣∣ = k. Consider, then, u̇b
q such that p

(
u̇b

q

)
= b, and

u̇b
q (c, Sk) > u̇

b
q (b, Y ). By efficiency f

(
ūb

1, ...ū
b
q−1, u̇

b
q

)
= (b, Sk) violating strategy-proofness

at profile f
(
ūb

)
. It follows that fL

((
ūb

1, ...ū
b
q−1, ûq

))
= a. By strategy-proofness, given (1),

we have that

f
(
ūb

1, ...ū
b
q−1, ûq

)
= (a, Y ) . (3)

Consider ũb
1 such that p

(
ũb

1

)
= b and ũb

1 (x, S) ≥ 0 only if x ∈ Ĩ1 (b) with a /∈ Ĩ1 (b), and
q ≥ |S| ≥ k. By strategy-proofness, (2) implies that

f
(
ũb

1, ū
b
2, ..., ū

b
q

)
= (b, Y ) . (4)

Next, consider the profile
(
ũb

1, ū
b
2..., ū

b
q−1, ûq

)
. Since ûq (x, S) ≥ 0 only if q ≤ |S| ≤ k, and

ûq (b, Y ) > 0, strategy-proofness and (4) imply that agent q ∈ fG
(
ũb

1, ū
b
2..., ū

b
q−1, ûq

)
and

q ≤
∣∣∣fG

(
ũb

1, ū
b
2..., ū

b
q−1, ûq

)∣∣∣ ≤ k. If fL
(
ũb

1, ū
b
2..., ū

b
q−1, ûq

)
∈ Ĩ1 (b) then strategy-proofness

is violated at (3) by agent 1 via ũb
1. Suppose, then, that fL

(
ũb

1, ū
b
2..., ū

b
q−1, ûq

)
/∈ Ĩ1 (b).

Pareto efficiency implies that agent 1 /∈ fG
(
ũb

1, ū
b
2..., ū

b
q−1, ûq

)
and by the minimality of Y,∣∣∣fG

(
ũb

1, ū
b
2..., ū

b
q−1, ûq

)∣∣∣ = k. Efficiency implies also that fL
(
ũb

1, ū
b
2..., ū

b
q−1, ûq

)
= c ∈ [a, b).

Consider ub
q such that p

(
ub

q

)
= b, ub

q (c, Sk) > 0, and ub
q (x, S) < 0 if |S| �= k or x /∈ [a, b].

Given that q ∈ fG
(
ũb

1, ū
b
2..., ū

b
q−1, ûq

)
, by strategy-proofness agent q ∈ fG

(
ũb

1, ū
b
2..., ū

b
q−1, u

b
q

)
,

and
∣∣∣fG

(
ũb

1, ū
b
2..., ū

b
q−1, u

b
q

)∣∣∣ = k.By efficiency f
(
ũb

1, ū
b
2..., ū

b
q−1, u

b
q

)
= (b, Sk), but strategy-

proofness is violated at profile (4) by agent q via ub
q. We have reached a contradiction and

so k ≥ |Y |.

Lemma 5 Let f : Uk → [0, 1] × 2N be strategy-proof, efficient and outsider independent.

Then for all u ∈ Uk,
∣∣∣fG (u)

∣∣∣ ≥ k.
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Proof of Lemma 5: Suppose the contrary. Let f (u) = (a, Y ) with |Y | = q < k where q

is the maximal cardinality of any group in the range that is smaller than k. Without loss

of generality, assume that Y = (1, ..., q). Also, by Lemma 2 we can assume that all agents

i ∈ Y have the same preferences with p (ui) = a, ui (a, Y ) > 0 and ui (x, S) ≥ 0 only if

x ∈ Ii (p (ui)) = I (a). Let Ik (a) = {x ∈ I (a) |ui(x, Sk) ≥ ui(a, Y ) for any i ∈ Y }. By

Lemma 3 we can assume that for all j /∈ Y , p (uj) �= a, uj (x, S) ≥ 0 only if |S| = k and

x ∈ Ijp (uj) with Ijp (uj) ∩ Iip (ui) = ∅ for all i �= j. Finally, without loss of generality,

assume that p (uq+1) = b > a and there does not exist any agent i ∈ N, i �= q + 1 such that

p (ui) ∈ (a, b] .

For any i ∈ Y let u′i be such that p (u′i) = a, u
′
i (x, S) ≥ 0 only if x ∈ I ′i(a) = I ′(a) with

I ′(a) ∩ Ij(p (uj)) = ∅ for all j ≥ q + 2, and k ≥ |S| ≥ q, and u′i (b, Sq+1) > u
′
i (a, Y ) . By

efficiency and strategy-proofness fG
(
u′1, ..., u

′
q, uq+1, ..., un

)
⊃ {1, ..., q + 1}. Hence by the

assumption of the maximality of Y and strategy-proofness we have f (u′Y , u−Y ) = (x, Sk)

with x /∈ Ik (a) . We fix the preferences of agents q + 2 to n, and simplify notation by

only writing the first q + 1 components of each preference profile. Let u′q+1 be such that

p
(
u′q+1

)
= b u′q+1 (x, S) ≥ 0 only if x ∈ I ′q+1 (b) ,with, I

′
q+1 (b) ∩ Ijp (uj) = ∅ for all

j ≥ q + 2, and k ≥ |S| > q. Let also u′q+1 be such that u′q+1 (a, Sq+1) > 0 (hence

a ∈ intI ′q+1 (b)). Then f
(
u1, ...uq, u

′
q+1

)
= (x, Sk) with x �= b. By strategy-proofness it fol-

lows that f
(
u1, ...uq, u

′
q+1

)
= f

(
u′1, ...u

′
q, u

′
q+1

)
= f

(
u′1, ...u

′
q, uq+1

)
= (c, Sk) with c ∈ (a, b),

c /∈ Ik (a).

For any i ∈ Y , let ũi be such that p (ũi) = a, ũi (x, S) ≥ 0 only if x ∈ Ĩi (a) =

Ĩ (a) with Ĩ (a) ⊂ Ik (a). Let ūi be such that p (ūi) = a, ūi (a, Y ) > ūi (b, Sk) > 0

and ūi (x, Sk) < 0 for all x /∈ Īi (a) = Ī (a) with Ī(a) ∩ Ij(p (uj)) = ∅ for all j ≥ q +
2. Let Īk (a) =

{
x ∈ Ī (a) |ūi(x, Sk) ≥ ūi(a, Y ) for any i ∈ Y

}
. Let ūq+1 be such that

p (ūq+1) = b, ūq+1 (b, {q + 1}) > ūq+1 (x, Sk) for all x /∈ [b− ε, b+ ε] with (b− ε) /∈ Īk (a) ,

and ūq+1 (a, Sk) > 0, and ūq+1 (x, Sk) < 0 for all x /∈ Īq+1(b) with Īq+1(b) ∩ Ij(p (uj)) = ∅ for

all j ≥ q + 2.

First, consider profile
(
u′1, u

′
2...u

′
q, ūq+1

)
. Since ūq+1 (b, {q + 1}) > ūq+1 (a, Sk) > 0 and

u′i (b, Sq+1) > 0 for all i ∈ {1, ..., q} , then by efficiency {1, ..., q + 1} ⊂ fG
(
u′1, u

′
2...u

′
q, ūq+1

)
.

Since f (u′) = (c, Sk) then by strategy-proofness and by maximality of Y f
(
u′1, u

′
2...u

′
q, ūq+1

)
=

(c, Sk) . Next, consider profile
(
ũ1, u

′
2...u

′
q, ūq+1

)
.

We argue that agent q+1 ∈ fG
(
ũ1, u

′
2...u

′
q, ūq+1

)
. Suppose not. Consider u′′q+1 such that

p
(
u′′q+1

)
= a and u′′q+1 (x, S) ≥ 0 if and only if k ≥ |S| ≥ q and x ∈ I ′′q+1(a) ⊂ I (a) . By

outsider independence if agent q+1 /∈ fG
(
u1, .., uq, u

′′
q+1

)
then f

(
u1, .., uq, u

′′
q+1

)
= f (u) and
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efficiency is violated. Therefore agent q + 1 ∈ fG
(
u1, .., uq, u

′′
q+1

)
and by strategy-proofness

and the maximality of Y, f
(
u1, .., uq, u

′′
q+1

)
= (a, Sk). It follows by strategy-proofness

that f
(
u′1, .., u

′
q, u

′′
q+1

)
= (a, Sk) and, consequently f

(
ũ1, u

′
2.., u

′
q, u

′′
q+1

)
= (a, Sk). Since

ūq+1 (a, Sk) > 0, by strategy-proofness it follows that agent q + 1 ∈ fG
(
ũ1, u

′
2.., u

′
q, ūq+1

)
.

Now we argue that, fL
(
ũ1, u

′
2...u

′
q, ūq+1

)
/∈ Ĩ (a). In fact, if fL

(
ũ1, u

′
2...u

′
q, ūq+1

)
∈ Ĩ (a)

then by efficiency and the maximality of Y, it follows that
∣∣∣fG

(
ũ1, u

′
2...u

′
q, ūq+1

)∣∣∣ = k and

strategy-proofness is violated by agent 1 at profile
(
u′1, u

′
2...u

′
q, ūq+1

)
via ũ1. Therefore

fL
(
ũ1, u

′
2.., u

′
q, ūq+1

)
∈

(
max Ĩ (a) ,max Īq+1 (b)

]
. Next, consider the profile

(
ũ1, ũ2, u

′
3.., u

′
q, ūq+1

)
.

If agent 2 /∈ fG
(
ũ1, u

′
2.., u

′
q, ūq+1

)
, then by outsider independence f

(
ũ1, u

′
2 . . . , u

′
q, ūq+1

)
=

f
(
ũ1, ũ2, u

′
3.., u

′
q, ūq+1

)
. If agent 2 ∈ fG

(
ũ1, u

′
2.., u

′
q, ūq+1

)
we may use the same argument as

given above to prove that agent q+1 ∈ fG
(
ũ1, ũ2, u

′
3.., u

′
q, ūq+1

)
and fL

(
ũ1, ũ2.., u

′
q, ūq+1

)
∈(

max Ĩ (a) ,max Īq+1 (b)
]
. Iterating this argument, we conclude that agent q+1 ∈ fG (ũ1, ũ2...ũq, ūq+1).

Since at the allocation f (ũ1, ũ2...ũq, ūq+1) the utility level of all agents in fG (ũ1, ũ2...ũq, ūq+1)

is negative, except the utility level of agent q + 1, and ūq+1 (b, {q + 1}) > 0, it follows that

any efficient allocation provides fL (ũ1, ũ2...ũq, ūq+1) ∈ [b− ε, b+ ε] . Let ũq+1 be such that

p (ũq+1) = b, ũq+1 (x, S) ≥ 0 only if x ∈ Ĩq+1 (b) = Ĩ (b), with c /∈ Ĩ (b) ,and ũq+1 (x, {q + 1}) >
0 for all x ∈ [b− ε, b+ ε] . Moreover let ũq+1 be such that for any x < y < b (x > y > b)

ũq+1 (x, S) ≥ ũq+1 (y, S
′) implies ūq+1 (x, S) > ūq+1 (y, S

′). By strategy-proofness

fL (ũ) ∈ [b− ε, b+ ε] (5)

Consider now the profile f
(
ū1, u

′
2, ..., u

′
q+1

)
. As we previously showed f

(
u′1, u

′
2...u

′
q, u

′
q+1

)
=

(c, Sk). Given that ū1 (c, Sk) > 0, it follows from strategy-proofness that agent 1 ∈ fG
(
ū1, u

′
2...u

′
q, u

′
q+1

)
.

Since u′q+1 (b, Sq+1) > 0, it follows from strategy-proofness and the maximality of Y that

f
(
ū1, u

′
2...u

′
q, u

′
q+1

)
= (c, Sk) . Iterating the same argument we conclude that f

(
ū1, ...ūq, u

′
q+1

)
=

(c, Sk). Now change agent q + 1’s preferences to ũq+1. By efficiency and the maximality of

Y, if fL (ū1, ...ūq, ũq+1) ∈ Ĩ(b), since ūi (b, Sk) > 0 for all i ∈ Y,then fG |(ū1, ...ūq, ũq+1)| = k
and strategy-proofness is violated at profile

(
ū1, ...ūq, u

′
q+1

)
by agent q + 1 via ũq+1. There-

fore fL (ū1, ...ūq, ũq+1) /∈ Ĩ(b) and ũq+1 (f (ū1, ...ūq, ũq+1)) < 0. Since ūi (a, Y ) > ūi (b, Sk)

for all i ∈ Y, by efficiency, fL (ū1, ...ūq, ũq+1) ∈ Ik(a) and by strategy-proofness agent

q + 1 /∈ fG (ū1, ...ūq, ũq+1), otherwhise he would announce u′q+1. It follows from strategy-

proofness that f (ũ1, ...ũq, ũq+1) = (a, S) with q + 1 /∈ S, which contradicts the previous

conclusion in equation (5).

Lemma 6 Let f : Uk → [0, 1] × 2N be strategy-proof, efficient and outsider independent.

Then for each u ∈ Uk, there exists some i ∈ fG(u) with p (ui) = f
L(u).
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Proof of Lemma 6: Suppose the contrary for some u, and let f (u) = (b, Y ), with p (ui) �= b
for all i ∈ Y . Using the same argument as in the proof of Lemma 3, we assume without loss

of generality that p (uj) �= b for all j /∈ Y . From now on we do not specify the cardinality

of the assigned group since we have already proven that it must be k at all u ∈ Uk. The

following claim is useful.

Claim: If f (u) = (a, S) , with i ∈ S and p (ui) < a, then for all x ∈ (p (ui) , a) there exists

u′i such that p (u′i) = x and f (u′i, u−i) = (a, S ′) with i ∈ S ′ (and the same holds for the case

where p (ui) > a).

Proof of the Claim: Consider, in fact, any u′′i such that p (u′′i ) = x with x ∈ (p (ui) , a) , and

u′′i (a, S) > 0. By strategy-proofness it follows that i ∈ fG (u′′i , u−i). Then fL (u′′i , u−i) �= a
implies by strategy-proofness fL (u′′i , u−i) = y with y < p (ui) and u′′i (y, S) ≥ u′′i (a, S) .
Consider then u′i such that p (u′i) = p (u

′′
i ), u

′
i (a, S) > 0, but u′i (y, S) < 0. Then by strategy-

proofness f (u′i, u−i) = (a, S ′) with i ∈ S ′.

Suppose that Y = {1, ..., k} , and by the claim that p (u1) = ...p (uq) = a < b, p (uq+1) =

... = p (uk) = c > b, and for all j /∈ Y, p (uj) /∈ [a, c] . Let A = {1, ..., q} and C =

{q + 1, ..., k} .let assume that for all i ∈ A (C) ui (x, S) ≥ 0 only if x ∈ Ii (p (ui)) = I(a)

(= I(c)) such that [a, c] ⊂ Ii (p (ui)) , while for all j /∈ Y, uj (x, S) ≥ 0 only if x ∈ Ij (p (uj))

and |S| = k, with Ij (p (uj)) ∩ Ii (p (ui)) = ∅ for any pair such that j /∈ Y, i ∈ N. . Consider
any i ∈ Y. Let ūi be such that p (ūi) = p (ui) and ūi (x, S) ≥ 0 only if x ∈ Īi (p (ui)), where

Īi (p (ui)) ⊂ Ii (p (ui)) , b /∈ Īi (p (ui)) and such that for all x ∈ Īi (p (ui)) ui(x, S) > ui(b, S).

Consider preference profile (ū1, u−1) . By efficiency if fL ((ū1, u−1)) = x for any x ∈ Īi (p (ui)),

then fG ((ū1, u−1)) = Y, which violates strategy-proofness at profile u. So, consider the fol-

lowing remaining cases. We show that each cannot hold.

CASE 1: f (ū1, u−1) = (y, S ′) with y < a or y > max I(c).

Consider any i ∈ C. Let u′i be such that p (u′i) = a and u′i (x, S) ≥ 0 with i ∈ S only if

x ∈ I(a) with u′i(b, Y ) > 0. By strategy-proofness and efficiency f (u′C , u−C) = (a, Y ). By

strategy-proofness f
(
ū1, u

′
C , u−(C∪1)

)
= (a, Y ) . Therefore since ui (y, S

′) < ui (a, Y ) for all

i ∈ C, strategy-proofness is violated at some utility profile.

CASE 2: f (ū1, u−1) = (y, S ′) with y ∈
(
max Ī1(a), b

)
.

Agent 1 /∈ S ′, otherwhise strategy-proofness is violated at profile u by agent 1 via ū1.

Consider then u′1 such that p (u′1) = d with a < d < y and u′1 (x, S
′) ≥ 0 if and only

if agent x ∈ [a, y] with 1 ∈ S ′. By outsider independence if agent 1 /∈ f (u′1, u−1), then

f (u′1, u−1) = f (ū1, u−1) and efficiency is violated. Therefore agent 1 ∈ f (u′1, u−1) and

fL (u′1, u−1) ∈ [a, y] and strategy-proofness is violated at profile u by agent 1 via u′1.
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CASE 3: f (ū1, u−1) = (y, S ′) with y ∈ [b,max I (c)] .

By efficiency C ⊂ S ′. Change one by one preferences of all agents i ∈ A. Then f (ūA, u−A) =

(z, S ′′) with z ∈ [b,max I (c)], otherwise Case 1 or 2 above apply at some profile. By effi-

ciency C ⊂ S ′′. Suppose that z �= c. For i ∈ C, find preferences such that p (u′i) = c,

u′i (z, S) > 0 but u′i (c, Sk−q) > u
′
i (z, S) . By efficiency fL

(
ūA, u

′
C , u−(A∪C)

)
= c with C ⊂

fG
(
ūA, u

′
C , u−(A∪C)

)
, since the outcome (c, C) Pareto dominates (z, S ′′) . It follows that

strategy-proofness is violated at some profile, since
∣∣∣fG

(
ūA, u

′
C , u−(A∪C)

)∣∣∣ = k by Lem-

mas 4 and 5. Therefore f (ūA, u−A) = (c, S ′′) with C ⊂ S ′′ and by strategyproofness

f
(
ūA∪C , u−(A∪C)

)
= (c, S ′′).

A similar argument, starting looking at profile (ūk, u−k) provides that f
(
ūA∪C , u−(A∪C)

)
=

(a, S) reaching a contradiction.

Lemma 7 Let f : Uk → [0, 1] × 2N be strategy-proof, efficient and outsider independent. If

u ∈ Uk and u′ ∈ Uk are such that p(ui) = p(u
′
i) for all i, then f

L (u) = fL (u′).

Proof of Lemma 7: From the previous lemmas, we know that f picks the peak of some

agent and selects a group of size k. This is taken as given in the proof that follows.

Let Ûk ⊂ Uk be the set of profiles for which 0 �= ui(p(uj), S) �= ui(p(ui), S) whenever

i ∈ S and j �= i.
We establish the Lemma in the following steps.

Step 1: If u ∈ Ûk and ũi = ui+M for some largeM (so that ũi(x, S) > 0 for any x whenever

i ∈ S), then fL(ũ) = fL(u).

Let f(ũ) = (a, S). By strategy-proofness and outsider independence it follows that

f(ũS, u−S) = (a, S). Consider j ∈ S. Let us show that fL(ũS\j, u−S∪j) = a. Iterating the

same logic then establishes Step 1. First consider the case where uj(a, S) > 0. It follows

from strategy-proofness that j ∈ fG(ũS\j, u−S∪j). Given that on Ûk uj is not indifferent

over any of the peaks of the agents, that fL picks a peak, and that uj and ũj have the same

ranking of levels, it follows from strategy-proofness that fL(ũS\j, u−S∪j) = a. Next, consider

the case where 0 ≥ uj(a, S). Find i such that a = p(ũi) = p(ui). For any ε > 0, define ûe
i to

be a shift of ũi where p(û
e
i ) = (1− ε)p(ũi) + εp(uj). It follows from strategy-proofness, the

fact that fL picks a peak, and the continuity of ûe
i that for small enough ε (and taking it so

that the peak does not overlap with another peak)

fL(ûe
i , ũS\i, u−S) = p(û

e
i ). (6)
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Define ûe
j so that the ranking over levels is the same as under ũj, but so that ûe

j(a, S) < 0

and ûj(p(û
e
i )) > 0. Then it follows that

fL(ûe
i , û

e
j , ũS\i,j, u−S) = p(û

e
i ). (7)

This follows from strategy-proofness and (6) if j ∈ fL(ûe
i , ũS\i, u−S), and from outsider

independence and strategy-proofness otherwise. Then it must be by strategy-proofness (via

agent i), (7), and the fact that fL picks a peak, that for small enough ε

fL(ûe
j , ũS\j, u−S) = a. (8)

Then if j ∈ fG(ûe
j , ũS\j, u−S) it must be by strategy-proofness (and the fact that ûe

j and uj

have the same ranking over levels) that fL(ũS\j, u−S∪j) = a. So consider the case where

j /∈ fG(ûe
j , ũS\j, u−S). If also, j /∈ fG(ũS\j, u−S∪j), then outsider independence establishes

the conclusion of the step. If j ∈ fG(ũS\j, u−S∪j), then if fL(ũS\j, u−S∪j) �= a, then it must

be that uj(f(ũS\j, u−S∪j)) > 0, which implies that ûe
j(f(ũS\j, u−S∪j)) > 0 for small ε, which

contradicts strategy-proofness and (8).

Step 2: If u ∈ Ûk and u′ ∈ Ûk are such that p(ui) = p(u
′
i) for all i, then f

L (u) = fL (u′).

From step 1, we can concentrate on the case where ui(x, S) > 0 for all x when i ∈ S
and similarly for u′i. Let f(u) = (a, S), where a = p(ui). By strategy-proofness and outsider

independence it follows that f(uS, u
′
−S) = (a, S). It then easily follows that fL(uS\i, u′−S∪i) =

a. Next, change uj to u′j for some j ∈ S \ i. Let us show that the outcome must still be

a. Then iteration of this argument for further agents in S establishes the step. Suppose

to the contrary that fL(uS\i,j, u′−S∪i,j) = b �= a. By outsider independence, it must be that

j ∈ fG(uS\i, u′−S∪i) or fG(uS\i,j, u′−S∪i,j), and so by strategy-proofness j must be in both

groups. Also by strategy-proofness, it must be that b �= p(uj) = p(u′j) �= a. In particular,

it follows from strategy-proofness that b must lie on one side of p(uj) and a on the other

side. For any ε > 0, consider uε
j with p(uε

j) = p(uj) and such that uε
j(b) > u

ε
j(a), but

uε
j((1− ε)a+ εb) > uε

j(b), and where uε
j(x, T ) > 0 whenever j ∈ T . It follows from strategy-

proofness that

fL(uε
j , uS\i,j, u′−S∪i) = b. (9)

Let uε
i be such that p(uε

i ) = (1 − ε)a + εb and uε
i (x, T ) > 0 whenever i ∈ T , and such that

uε
i (a) > u

ε
i (b),

25 but any peak of some other agent h �= i that lies on the opposite side of

25Since we have established that the size of the group must be fixed at k, we write the utility function as
a function of the location; denoting the utility that would be obtained if i were in the group of size k.
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a from b is worse than b under uε
i . For small ε, since fL(uS, u

′
−S) = a, then by strategy-

proofness, continuity of preferences and the fact that fL always picks a peak of an agent, it

follows that

fL(uε
i , uS\i, u′−S) = (1− ε)a+ εb, (10)

and that i ∈ fG(uε
i , uS\i, u′−S). By strategy-proofness (for i) and outsider independence, and

(9) it follows that

fL(uε
i , u

ε
j , uS\i,j, u′−S) = b. (11)

[Under strategy-proofness, the only possibility is to change to the other side of a but then it

would have to be the peak of some other agent which is worse for i than b.] However, now

(10) and (11) contradict strategy-proofness for j via a manipulation at uε
j .

Step 3: If u ∈ Uk and u′ ∈ Uk are such that p(ui) = p(u
′
i) for all i, then f

L (u) = fL (u′).

The proof of this step follows from finding uε ∈ Ûk arbitrarily “close” to u and uε′ ∈ Ûk

arbitrarily “close” to u′ such that the peaks of uε and uε′ coincide. From Step 2 we know

that fL(uε) = fL(uε′). Showing that careful selection of these profiles leads to outcomes

arbitrarily close to fL(u) and fL(u′), respectively, provides the result.

Consider any ε > 0. We identify uε
i inductively on the agents. First consider agent 1. If

1 /∈ fG(u) find uε
1 such that uε

1 has a strict ranking over the (distinct) peaks of other agents,

maxx,S |u1(x, S) − uε
1(x, S)| < ε, and uε

1(x, S) < u1(x, S) whenever 1 ∈ S. It follows from

outsider independence that f(u−1, u
ε
1) = f(u). If 1 ∈ fG(u), then find uε

1 such that uε
1 has a

strict ranking over the (distinct) peaks of the other agents, maxx,S |u1(x, S)− uε
1(x, S)| < ε,

and {x|uε
1(x, f

G(u)) > uε
1(f(u))} is a strict subset of {x|u1(x, f

G(u)) > uε
1(f(u))}, and

uε
1(f(u)) > 0 if u1(f(u)) ≥ 0. By strategy-proofness, it must be that 1 ∈ fG(u−1, u

ε
1).

Then the fact that {x|uε
1(x, f

G(u)) > uε
1(f(u))} is a strict subset of {x|u1(x, f

G(u)) >

uε
1(f(u))} and strategy-proofness imply that either fL(u−1, u

ε
1) = f

L(u) or that fL(u−1, u
ε
1)

is arbitrarily near fL(u) for small enough ε, (as if it is not the first case then it must have

been that fL(u) = p(u1)).

Then inducting and making similar changes for i > 1 (taking care when changing i’s

peak not to induce indifference over peaks for any j < i) provides that fL(uε) can be made

arbitrarily close to fL(u). When selecting uε′ , choose it to coincide with the peaks of uε.

The Lemmas above establish Theorem 4.

Proof of Theorem 5: We show that any individually stable rule cannot be strategy-proof.

Let Sq denote any group with cardinality equal to q. Let u ∈ Uk with k < n be such that

for all i ∈ N

• ui (x, S) > 0 for all x ∈ [0, 1] and for all S such that |S| ≤ k, with i ∈ S, and
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• ui (x, S
′) < 0 for all x ∈ [0, 1] and for all S ′ such that |S ′| > k, with i ∈ S ′.

By individual stability f (u) = (y, Sk) for some y ∈ [0, 1]. Hence, since by assumption

k < n, there exists an agent i /∈ Sk. Consider ũi ∈ Uk
i such that ũi (x, Sk+1) > 0 for

all x ∈ [0, 1]. By individual stability f (ũi, u−i) =
(
z, S̄k

)
with i ∈ S̄k. It follows that

strategy-proofness is violated at f (u) by agent i who can manipulate via ũi.

Proof of Theorem 6: The theorem follows from the lemmas below.

Lemma 8 Consider S ⊂ N and let f : Uk
S × Uk′

N\S → [0, 1] × 2N be strategy-proof, efficient

and outsider independent. (So the domain is one where agents in S always prefer size k and

agents in N \ S prefer size k′.) The fG must have a constant size of k or a constant size of

k′. Also, for any u and u′, if p(ui) = p(u
′
i) for all i, then f

L(u) = fL(u′).

Proof of Lemma 8: The facts that fL(u) = fL(u′) and fG must be of a constant size

follow from arguments that are similar to those in the proof of Theorem 4. The fact that

the size of fG must be either k or k′ follows from Pareto efficiency.

Lemma 9 Let f : Uk,k′ → [0, 1] × 2N be strategy-proof, efficient and outsider independent.

Then for any u ∈ Uk,k′
and u′ ∈ Uk,k′

, if p(ui) = p(u
′
i) for all j, then f

L(u) = fL(u′).

Proof of Lemma 9:The proof is by induction on the agents. First consider agent i who

may have preference in Uk,k′
i while all other agents have uj ∈ Uk

j . Suppose to the contrary

that fL(u) = a �= b = fL(u′i, u−i) for some u ∈ Uk and u′i ∈ Uk′
i with p(ui) = p(u′i). By

Lemma 8, we can assume that i prefers to be in any group at any level and size under both

preferences, that either i prefers a at size k or k′ to b at size k or k′, or vice versa (in the

case where b = p(ui)). By strategy-proofness it follows that either i ∈ fG(u) ∩ fG(u′i, u−i),

or that i /∈ fG(u) ∪ fG(u′i, u−i). The second case would violate outsider independence, so it

must be the first case. But then this violates strategy- proofness. Iterating on the agents

provides the result.

Lemma 10 Let f : Uk ∪ Uk′ → [0, 1]× 2N be strategy-proof, efficient and outsider indepen-

dent. Then for any u ∈ Uk ∪ Uk′
there exists i such that f(u) = (p(ui), S) with i ∈ S and

|S| is of i’s favorite size.

Proof of Lemma 10: Suppose the contrary. Without loss of generality let f(u) = (a, S),

where |S| = k, while any agent i ∈ S who has p(ui) = a (if any) has favorite size k
′. For j /∈ S
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consider ũj such that p(ũj) �= a, maintaining the ordering over peaks of the other agents

(and varied sizes of groups) as under uj and such that uj(x, T ) < 0 implies ũj(x, T ) ≤ 0.

It follows from strategy-proofness and outsider independence that f(uS, ũ−S) = (a, S). For

j /∈ S consider u′j such that p(u′j) = p(ũj) and u′j(x, T ) < 0 for all x /∈ Ij
(
p(u′j)

)
with a /∈

Ij
(
p(u′j)

)
. It follows from strategy-proofness and outsider independence that f(uS, u

′
−S) =

(a, S). Next for each i ∈ S, consider u′i such that i has the same ranking over all choices

where i is a consumer as under ui, but has u′i(a, S) < 0. It follows from Lemma 8 that

f(u′) = (a, S ′) where |S ′| = k. However, this is inefficient since it is Pareto dominated by

(a, ∅), which is a contradiction.

Lemma 11 Let f : Uk ∪ Uk′ → [0, 1]× 2N be strategy-proof, efficient and outsider indepen-

dent. Then f is dictatorial.

Proof of Lemma 11: Consider u ∈ Uk ∪ Uk′
such that all peaks are distinct. Then by

Lemma 10, f(u) = (p(ui), S) where i ∈ S, and S is of i’s favorite size, which without loss

of generality let be k. Change u−i to u
′
−i with the same peaks, and all with favorite size k′.

By Lemma 9, fL(u) = fL(ui, u
′
−i), and then by Lemma 10 it must be (p(ui), S

′) with i ∈ S ′,

but still |S ′| = k. We know from Theorem 4 that fL must be determined by a sovereign

median rule which always picks a peak of one agent. So consider any j such that there are

no peaks of any agent between u′j and ui. Without loss of generality consider the case where

p(u′j) < p(ui). Let u
ε
i ∈ Uk+

i be such that p(ue
i ) = max[0, p(u′j)− ε] and ue

i (z, T ) > u
e
i (y, T

′)

whenever i ∈ T and |T | = k and |T ′| = k′ regardless of z and y. Since this is a generalized

median rule, for small enough ε either fL(u) = p(ue
i ) or = p(u′j). By strategy-proofness, it

must be that |fG(ue
i , u

′
−i)| = k. Thus, by Lemma 10 it must be that fL(ue

i , u
′
−i) = p(u

e
i ). It

is then clear that f must be dictatorial on the domain where all agents other than i have

distinct peaks. Strategy-proofness then easily shows that it must be dictatorial on Uk∪Uk′
.
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