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Abstract

We consider the endogenous choice of a voting rule, characterized by the majority
size needed to elect change over the status quo, by a society who will use the rule to
make future decisions. Under simple assumptions on the uncertainty concerning the
future alternatives that will be voted upon, voters’ have induced preferences over voting
rules that are single-peaked and intermediate. We explore the existence of self-stable
voting rules, i.e., voting rules such that there is no alternative rule that would beat the
given voting rule if the given voting rule is used to choose between the rules. There
are situations where self-stable voting rules do not exist. We explore conditions that
guarantee existence, as well as issues relating to efficiency and constitutional design.
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1 Introduction

Different societies use different voting rules to make collective decisions. How do they come

to choose the voting rule that will guide their subsequent decision making? Should the choice

of a choice rule be treated as a special type of decision, or is it just one more instance of

the many issues that a society has to face? If the choice of voting rule deserves a special

treatment, what are the grounds for it, and what type of considerations are to be added to

those already incorporated into the rules for day-to-day decisions? These are the questions

we address in this paper. Let us expand on their relevance, outline our approach and some

of our results.

The voting rule that a society uses to make collective decisions has consequences. For

instance, a society that uses simple majority might reach a different decision than if it

required two thirds of the voters to approve change over status quo for a proposed change

to be accepted. The extensive social choice literature has analyzed the properties of many

voting rules, and it is well understood that the rules to be used make a difference as soon as

society members have conflicting interests.

Taking for granted that voting rules matter, the question arises as to who chooses the

rules of choice, and on what grounds. We consider here that the members of society vote over

voting rules. This is the case in many situations where democratic institutions are in place:

they include procedures for constitutional changes.1 There are many important questions

that come to mind and we focus on several of them:

• When do self-stable voting rules exist - that is, are there rules such that if such a rule

is used, then no other rule would defeat it?

• What sorts of constitutions (specifying one voting rule for standard decisions and a

different voting rule for voting over constitutions) are self-stable?

• When is simple majority rule (which is attractive for its efficiency) self-stable and when

can it be included in a self-stable constitution?

To give more perspective to these questions, let us describe the model in which we answer

them. To explore voting over voting rules, we need to study a context in which preferences

over voting rules and votes over voting rules can be naturally considered. We do this by

taking the following perspective. Two alternatives are to be voted upon in in the future, and

1Even when citizens are not actually allowed to change the rules, understanding whether or not they
would like to change them, and in what direction, is a relevant standard of evaluation.
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perhaps a number of such choices will be faced. In each instance, one of these alternatives will

be the status quo and the other will be some change. A voting rule is simply characterized

by the minimal number of votes required in favor of change in order to select change. Each

voter is characterized by a probability that they will support the status quo. To fix ideas,

think of a legislature just beginning a term. Legislators know that they will face votes on bills

which would introduce changes to current systems. Some legislators might be very satisfied

with the current system and thus expect to favor a relatively low percentage of the bills that

will be voted upon. These legislators would have a relatively high probability of supporting

the status quo and a low probability of supporting change. They would end up preferring

voting rules that make change difficult.2 Other legislators might be very dissatisfied with

the current system and thus expect to favor a high percentage of the bills that will be faced.

These legislators would have a relatively low probability of supporting the status quo and

a high probability of supporting change. They would end up preferring voting rules that

make change easy.3 Voters’ beliefs over their relative likelihood of supporting change versus

the status quo induces preferences over voting rules. We examine these indirect preferences

over voting rules in some detail, and it turns out that this very simple model of uncertainty

ends up producing a remarkable structure to preferences over voting rules, as discussed in

the sections that follow.

While the discussion of the uncertain preferences above is a bit abstract, it is clear that

there are many decisions which fit exactly into this framework. For instance, examples

include voting over whether to admit new members to a club or organization (or to grant

tenure), or a vote by a parliament or legislature on whether or not to go to war, a vote

by shareholders of a company on whether to approve a plan proposed by their board, etc..

Nevertheless, an important consideration that this model abstracts away is agenda formation.

As agendas can be endogenous, agenda formation may interact with the voting rule in

interesting ways. In our analysis here, we ignore where the agenda comes from with the

understanding that analyzing voting over voting rules with exogenous agendas is a useful

2The term “relatively” is used in this discussion for a reason. As we will see below, the preferences over
voting rules will depend on the relative comparisons of various voters’ probabilities of supporting change,
and cannot simply be determined by the absolute probabilities. For instance, even if a voter has a low
probability of supporting change; if that probability is much higher than any other voter’s probability, then
that voter will be the most likely to be among the supporters of a change whenever change is supported.
This would mean that the voter should favor voting rules that make change easy, even though their absolute
probability of supporting change is low.

3For much more discussion of and motivation for this model of a choice over two alternatives that are
currently uncertain in voters’ minds, see the introductory chapter in Niemi and Weisberg (1972), as well as
the chapters by Badger (1972), Curtis (1972), and Schofield (1972).
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first step, there are important situations where agendas are naturally viewed as exogenous

to the voters, and expanding the model to account for endogenous agendas provides for

interesting further research.

Knowing how the members in our stylized society have induced preferences over different

voting rules, we can ask which rules are likely to be chosen, or more specifically, which rules

are likely to persist. Given some voting rule in place, by imposition or by a previous act

of choice, would this rule prevail against others, when the rule itself is used to determine

whether to keep it as the status quo, or change it for some of its potential contenders? Since

we concentrate on the choice among majoritarian rules, our problem is that of choosing

the majority size required to change the status quo. Then, our previous question can be

rephrased as follows. Given a majority size s, will it be the case that no alternative majority

size s′ is preferred over s by s or more voters? If s is not so defeated by any other rule, we

say that the rule s is self-stable.

We argue that self-stability is a desirable property of voting rules. If a society uses a rule

that is not self-stable, then there will be a large enough group of voters who all prefer some

alternative voting rule to be successful in changing the rule. Hence, societies which value the

type of stability embodied in the continued use of the same rules of the game, should settle

for voting rules which are self-stable, when available. Also, one may argue that self-stable

voting rules are the ones that should emerge over time, as rules that are not self-stable will

be transient while voting rules that are self-stable will be absorbing states.

Since self-stability is a property that depends on the preferences of voters regarding

alternative voting methods, different rules will be self-stable depending on the type of society.

We thus provide a careful study of the variables that determine which rules are self-stable. As

we shall see, for some societies no voting rule is self-stable. Moreover, our analysis makes it

apparent that this lack of self-stability is a robust phenomenon, not an occasional anomaly.

However, as we show, the non-existence problem occurs in less than 1/2 of all potential

societies, in a well-defined sense.

If some societies do not have the possibility of choosing any voting rule that is self-stable,

does this mean that they are doomed to an endless and hopeless drift from an unstable rule

to another unstable one? Certainly not. If this was the end of our story, we might well

have discovered an imaginary difficulty, since we do not often observe a continual change of

rules within societies which resort to voting as a means to solve conflict. But notice that, in

actual constitutions, special rules are often set in order to change the rules of choice. Our

discovery that societies may face situations where no single rule would be self-stable suggests

an explanation for this fact. If the choice of only one rule for decisions of any type may be a
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source of instability, then it is natural to set at least two rules: one to be used when making

standard choices, and a different one to use when it comes to change the preceding rule.4

Consider, then, a stylized constitution, given by two rules (s, S). The first rule, s, is

used for all decisions except decisions over voting rules. The second rule, S, is used to make

any decisions over the constitution, and in particular is used to make any change of s. For

example, in many real situations s is simple majority (one half of the voters) and S is two

thirds, so a super-majority is needed to change the rules. We say that a constitution (s, S) is

self-stable if no voting rule s′ would gather the support of S or more voters when compared

to s. Hence, a constitution is self-stable if its rule s to make standard decisions cannot be

challenged effectively under the prescribed procedure for constitutional changes. There are

always self-stable constitutions for any society, as we shall show.

We explore also explore which super-majorities S are such that the (simple majority, S)

constitution is self-stable. This is an attractive type of constitution because of the efficiency

of simple majority rule.

Our research takes the view that ‘choosing how to choose’ is an issue that calls for the

treatment of institutions as endogenous variables, and not as exogenously given data. Thus,

we see it as part of a broad and ambitious research program of not only understanding

normative or positive properties of institutions and mechanisms, but also how they come

to take certain forms when individuals in the society have personal stakes in the design of

the institution and can affect it. To some extent this presents a ‘chicken and egg’ dilemma,

as the existing institutional environment to a large extent determines what institutional

changes can take place, and are also the result of previous institutional change. Economics

has a tradition of dealing with problems of this kind by resorting to appropriate fixed-point

notions, and self-stability can viewed in this light.

The Related Literature

Since we concentrate on the forces that drive the choice among different majority sizes,

we are naturally led to identify those instances where simple majority would arise as the

choice of society. There are many angles from which one can provide theoretical reasons to

support and explain the widespread use of simple majority, and its appeal as a reference

point even when it is not actually used (e.g. see Schofield (1972)). One is axiomatic: simple

4We do not claim that the lack of self-stability is the only relevant reason to establish special rules for
constitutional change. Other classical explanations may concur. For example, if existing constitutions are
viewed as the result of some accumulated wisdom, requiring a large majority to change it may also be
interpreted as a precaution against a short sighted rejection of past experience. What we claim is that
self-stability is a relevant consideration as well, and one that has not been put forth before.
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majority is the unique rule to satisfy some combinations of attractive desiderata, as shown

in May’s Theorem (1952). Another classical justification is referred to as the Condorcet jury

theorem: the simple majority winner is the maximum likelihood estimator of the correct

decision, in societies where all voters have the common aim of choosing the alternative that

is correct, but differ in their perceptions due to noisy information (e.g., see Condorcet (1785),

or Young and Levenglick (1978)). Our approach differs from the axiomatic, because we treat

the decision rules as choice variables, and from the jury theorem approach because our voters

may have conflicting objectives. In fact, the model we work with was first proposed in the

early seventies in a series of brilliant papers (most of which are collected in a volume edited

by Niemi and Weisberg (1972)), inspired by a seminal work of Rae (1969), whose purpose

was to justify the use of simple majority from a novel viewpoint. Our analysis reinforces the

conclusions of this early literature, by pointing at new arguments and situations under which

simple majority would be the only self-stable rule. Moreover, the special nature of simple

majority is also reinforced by the fact that it is the only rule for day-to day decisions which

constitutes, when coupled with unanimity, a self-stable constitution valid for all societies.

This and other side results make it clear that simple majority is special in many ways. Yet,

our analysis also clarifies that alternative majority sizes may have their own advantages, and

in particular may be self-stable for societies where simple majority would not satisfy this

desirable property.

Constitutional design and properties of voting rules are topics that have been extensively

studied in political science and social choice theory. Such studies go back to the classics,

such as Rousseau (1762) who explicitly discussed how the size of a majority required in a

voting rule should be related to the importance of the question at hand.5 Buchanan and

Tullock (1962) were the first to raise the issue of choosing how to choose, and they raise it

explicitly in the context of constitutional design. To quote from their work (page 6):

“When we recognize that “constitutional” decisions themselves, which are necessarily

collective, may also be reached under any of several decision-making rules, the same issue is

confronted all over again. Moreover, in postulating a decision making rule for constitutional

choices, we face the same problem when we ask: How is the rule itself chosen?”

While Buchanan and Tullock raise the issue of choosing how to choose, they end up

stepping around it and instead focussing on the role of full consent in decision making,

including decisions regarding constitutional choice. This holds with their central thesis that

5Some recent references from the large literature that relates to issues regarding majority size includes
Caplin and Nalebuff (1988), Austen-Smith and Banks (1997), Feddersen and Pesendorfer (1998), and Das-
gupta and Maskin (1998).
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full consent is the only manner in which proper improvements can be reached due to the

external costs that will be forced on individuals through other decision making rules such

as simple majority rule. In contrast, the approach that we take here of identifying self-

stable voting rules and constitutions, addresses this problem of choosing voting rules and

constitutions head-on. Our central purpose is to analyze such questions of choosing how

to choose and to provide a framework where a fuller understanding of such choices can be

developed.

While such exploration of voting over voting rules is relatively new, there is a predecessor

to our paper. The first work that is concerned with carefully modeling how societies choose

how they will choose is Koray (2000). Koray outlines a method for viewing social choice

functions themselves as alternatives, so that one can ask whether a social choice function

always selects itself. He shows that given enough richness of preferences the only self-selective

social choice functions are dictatorial. While our self-stability notion is similar in spirit to self-

selection, there are differences in the concepts and settings so that such impossibility results

are not an issue in our analysis. First, our concept of self-stability only requires that a voting

rule should not be beaten by another rule when the given rule is used, which is different from

saying that a rule must select itself. Another way to say this is that in our setting there

is a special standing to the status-quo alternative, which can provide an asymmetry not

present in the more abstract social choice setting analyzed by Koray. Second, the underlying

setting here considers votes over two (possibly uncertain) alternatives at a time, rather than

making selections from three or more (known) alternatives. These differences reflect very

different idealized applications, and end up providing dramatic differences in the model and

the results, so that the only real tie between our study and Koray’s is in the common interest

of endogenizing the way in which societies make choices.

There are previous studies of votes to be taken over pairs of alternatives that are still

unknown, but over which voters have beliefs about which they will prefer. In particular,

Rae (1969) conjectured that in such settings simple majority rule was the one that would

maximize total societal welfare, and argued this through some examples. The properties

of simple majority rule were more extensively modeled and verified by Badger (1972) and

Curtis (1972). In doing this, Badger and Curtis studied properties of preferences over voting

rules that are useful in our study here and are noted below as Theorem 1. While the Badger

and Curtis papers provide some useful tools and a nice point of departure for our analysis,

they are not concerned with self-stability of voting rules.
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2 Definitions

Voters and Alternatives

N = {1, . . . , n} is a set of voters.

The voters will face votes over pairs alternatives. We denote the terms of these pairwise

choices as a and b. Alternative a is interpreted as the status-quo. Alternative b is interpreted

as a change.

Voting Rules

Each voter casts a vote in {a, b}.
A voting rule is characterized by a number s ∈ {1, . . . , n}.6 If at least s voters say “b”

then b is elected, and a is elected otherwise.

Some examples of voting rules are as follows.

If s = 1, then b is elected whenever there is at least one voter for change, and so a is

elected only when it is unanimously supported.

If s = n, then b is elected if there is unanimous support for change, and a is elected as

soon as at least one a voter supports it.

If n is odd and s = n+1
2

or n is even and s = n
2

+ 1, then the voting rule is the standard

or simple majority rule.7

As simple majority rule is referred to at several points in what follows we denote it by

smaj. Thus, smaj = n+1
2

if n is odd and smaj = n
2

+ 1 if n is even.

Note that our definition of a voting rule presumes anonymity. We discuss this property

in the concluding remarks.

Voter Preferences

At the time a voting rule s is chosen, voters have expectations over the future issues that

will be voted on, but do not know the exact realization. We consider a stark model where

voters are simply characterized by a parameter pi ∈ (0, 1). This represents the probability

6Allowing for s = 0 or s = n + 1 results in degenerate voting rules that always choose b or always choose
a, respectively. We focus on rules where there is a real choice to be made.

7When n is even, there are two possible choices: n
2 and n

2 + 1 depending on which alternative wins in the
case of a tie. For simplicity, we break ties in favor of the status quo in this case. None of the analysis that
follows is dependent on tie-breaking conventions.
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that they will prefer b to a at the time of the vote.8 Such an uncertain setting was first

considered in Badger (1972) and Curtis (1972), and we will make use of some of their results

in what follows.

The realizations of voters’ support for the alternatives are independent. For instance,

the probability that voters 1 and 2 support b while voter 3 supports a is p1p2(1− p3).

A voter gets utility 1 if his preferred alternative is chosen in the vote, and utility 0

otherwise.9

The society of voters is represented by a set of voters N and a vector p = (p1, . . . , pn).

In what follows, we treat the society (N, p) as given and so will often suppress the fact

that preferences will depend on these parameters, except where we want to specifically point

out this dependence.

As we shall see, the simple identification of a voter with the probability that he or she

will support change rather than the status quo is sufficient to induce significant structure

on voters’ preferences over voting rules. The probability attached to each voter may be

justified in several ways. For example, suppose that each voter has well defined preferences

over alternative decisions. If the voter knows the existing social situation at a point in time

and also has an idea of the kind of changes that may be proposed, then the voter may have

an estimate of how often he or she will be facing a desired change, and how often it would

rather see the status quo being maintained.10

Induced Preferences over Voting Rules

The simple structure described above induces preferences over voting rules for every voter.

That is, given that voters have beliefs about the likelihood of different patterns of support

for a and b, a voter can calculate his or her expected utility under each voting rule s.

8Extensions to the case where pi can be 0 or 1 are straightforward. These cases complicate some of the
calculations and proofs when we divide by pi or 1− pi, but are still easily directly handled as special cases.
To keep an uncluttered exposition, we leave the cases where pi = 0 or 1 to the interested reader.

9This presumes that a voter cares as much for getting change when preferring change over the status quo,
as the voter cares for preserving the status-quo when preferring the status quo over change. We discuss the
role of this assumption in detail in the concluding remarks.

10Governments, of course, change and the status quo will evolve over time and hence so will voters’ prefer-
ences. In this stark model, the probability to favor change that characterizes our stylized voters summarizes
a lot of information about preferences, expectations about the likely proposals they will face, expectations
about the probability that governments (committees, legislatures, etc.) change ,and expectations regarding
how the status quo may evolve. This summary information will also reflect the time horizon for which
all these expectations are taken to be relevant. We understand that richer conclusions may be reached by
more explicit models, but we emphasize here that the simplicity of this summary representation provides
substantial insight into the issue of stability of voting rules.
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Let Ui(s) be the expected utility of voter i if voting rule s is used. This is expressed as

follows. For any k ∈ {0, . . . , n − 1}, let Pi(k) denote the probability that exactly k of the

individuals in N \ {i} support the change. We can write

Pi(k) =
∑

C⊂N\{i}:|C|=k

×j∈Cpj ×`/∈C (1− p`). (1)

and

Ui(s) = pi

n−1∑
k=s−1

Pi(k) + (1− pi)
s−1∑
k=0

Pi(k). (2)

Self-Stable Voting Rules

Given that voters’ have induced preferences over voting rules, we also study how voters

would vote when voting over voting rules. Our particular interest is in voting rules that are

robust in the sense that if they are used, then no other voting rule could be put forth as a

challenger and defeat the given voting rule viewed as the status quo.

A voting rule s is self-stable (for society p) if #{i | Ui(s
′) > Ui(s)} < s for every s′ 6= s.

The property of self-stability ensures that a given voting rule would be robust to change

if used for making decisions.11

3 Properties of Preferences over Voting Rules

Before examining the issue of the existence of self-stable voting rules, we establish some

properties of voters’ preferences over voting rules that will be instrumental in understanding

self-stability.

Single Peaked Preferences

The usual definition of single-peaked preferences requires that all alternatives can be

ranked from left to right, that one alternative ŝ is best, and that the alternatives that one

encounters by moving leftward (or rightward) away from ŝ are considered worse and worse.

Our definition here will be slightly weaker, as it allows a voter to have two peaks.12 In

11As with many equilibrium concepts, we do not model how one might reach a self-stable voting rule, nor
do we model the choice among them if there are several. What we can say is that a self-stable rule would
stay in place if reached, while other rules would tend not to.

12These could be referred to as single-plateaued preferences following the literature. However, given that
such indifference can only occur between two points and happens non-generically (in p) we stick with the
term single-peaked.
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particular, it is possible that Ui(ŝ) = Ui(ŝ − 1). For instance, in a society where n is even

and each pi = p for all i, all individuals will be indifferent between n/2 and n/2 + 1.

Ui is single-peaked if there exists ŝ ∈ {1, . . . , n} with Ui(ŝ) ≥ Ui(s) for all s ∈ {1, . . . , n}
such that Ui(s) > Ui(s− 1) for any ŝ > s > 1 and Ui(s− 1) > Ui(s) for any n ≥ s > ŝ.

Let ŝi denote the peak of voter i.

In the case where a voter has twin-peaks, the definition above selects the higher of the

two peaks as ŝi. This is simply a convention and does not matter in any of the results that

follow.

The following theorem is proven in Badger (1972). We include a proof in the appendix,

for completeness.

Theorem 1 [Badger (1972)] For any society, every voter’s preferences over voting rules are

single-peaked.

Intermediate Preferences and Single Crossing

While Theorem 1 tells us that each voter’s preferences over voting rules have the nice

property of single-peakedness, the following theorem tells us about how different voters’

preferences are related to each other. There are two properties that are useful in noting.

A society of voters has preferences satisfying the single crossing property if for any i and

j with pj ≥ pi,

Ui(s)− Ui(s
′) ≥ Uj(s)− Uj(s

′)

for all s ≥ s′.

As we shall see, the single crossing property is satisfied in this model. The single crossing

property allows us to order preferences over voting rules in terms of the pi’s; but more

importantly also implies that the preferences are intermediate.

A society of voters has intermediate preferences if for any i, j, k with pj ≥ pk ≥ pi:

• Ui(s) ≥ Ui(s
′) and Uj(s) ≥ Uj(s

′) imply that Uk(s) ≥ Uk(s
′), and

• Ui(s) > Ui(s
′) and Uj(s) > Uj(s

′) imply that Uk(s) > Uk(s
′).

Intermediate preferences are usually defined by requiring that there exists some ordering

over individuals so that when two individuals have the same ranking over two alternatives,

then individuals between them in the ordering have that same ranking (e.g., see Grandmont
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(1978)). Here the natural ordering over individuals is in terms of their pi’s, the distinguishing

characteristic of voters, and so we take the shortcut of defining intermediate preferences

directly in terms of that ordering. Hence, a society will have intermediate preferences over

voting rules if whenever two voters with pi and pj agree on how to rank two rules s and s′,

then all voters with probabilities pk between pi and pj will also agree on the way to rank

these two rules. The simple model we are considering has the following strong feature.

Theorem 2 Every society has preferences over voting rules that satisfy the single crossing

property and are intermediate.

The proof of Theorem 2 appears in the appendix. The intuition for why the voters’

peaks over voting rules follow an inverse order to the voters pi’s (Corollary 1 below), is fairly

straightforward, as voters with higher pi’s are more likely to favor change and thus will be

in favor of a lower quota than voters who are less likely to favor change. While ordering the

peaks is intuitive and useful, we emphasize that Theorem 2 has much stronger implications,

as it relates preferences over arbitrary values of s and s′, including those falling on opposite

sides of a set of voters’ peaks. This additional structure will also be useful in what follows.

The proof of these aspects of preferences builds inductively from preferences over adjacent

voting rules, and involves direct comparison of the expressions of differences in expected

utilities for different voters. Details are in the appendix.

As just mentioned above, Theorem 2 has the following useful corollary (see the proof of

Theorem 2).

Corollary 1 For any society, ŝi ≥ ŝj whenever pj ≥ pi.

There are some other facts about the location of the voters’ peaks that are worth em-

phasizing. The relative ordering of pi’s is not only important in determining the relative

ordering over the ŝi’s, but it is also critical in determining the actual values of the ŝi’s. This

is seen in the following theorem, which states that regardless of p, there is always some voter

who has a peak at least as high as smaj and some other voter who has a peak no higher than

smaj.

Theorem 3 For any society there exist i and j such that ŝi ≥ smaj ≥ ŝj.
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The proof of Theorem 3 is based on the following reasoning. The unique maximizer of∑
i Ui(s) is smaj, since smaj chooses the alternative that will result in the largest group of

voters who get utility 1 for each realization of preferences over a and b (see the concluding

remarks). Thus, if some voter’s expected utility is increased by moving to an s that is higher

than smaj, then some other voter’s expected utility must fall as the result of such a move.

The same is true in reverse. So there is at least one voter with a peak at least as high as

smaj and at least one voter with a peak no higher than smaj. The complete proof, taking into

account the possibility of twin-peaks appears in the appendix.

Note that by combining Corollary 1 with Theorem 3, we know that the voter who has

the highest pi must have a ŝi which is no higher than smaj and the voter who has the lowest

pi must have a ŝi that is at least as high as smaj, and this is true regardless of p.

4 Self-Stable Voting Rules

With some understanding of voters’ preferences over voting rules under our belts, we now

examine the issue of existence of self-stable voting rules in some detail.

We begin by considering the special case where all voters have the same pi. This is

of some interest where this common p is an indicator of the average propensity to favor

change of a society’s representative voter. It is also worth considering as an exercise, since

the reasoning required for this simple case extends to the analysis of more heterogeneous

societies. Moreover, the conclusion we reach may seem counterintuitive at first, although it

is easy to reach after some reflection.

Theorem 4 If pi = pj for all i and j, then smaj is the unique self-stable rule if n is odd,

while both smaj and smaj − 1 are self-stable if n is even.

Thus, simple majority is the unique self-stable voting rule whenever all voters have the

same probability of choosing change, irrespective of what this probability might be. One

might have guessed that societies where all voters are very likely to want changes would

prefer low values of s, that is low barriers to change, and that homogeneously conservative

societies would favor high values of s. But this is not the case. Actually, in homogeneous

societies, all voters have their peak at ŝi = smaj , and thus simple majority is the consensus

choice of rule. This is a simple corollary of Theorem 3. What actually matters is not the

absolute values of the p’s but their values relative to those of other voters. For instance,

consider a society where pi = .01 for each i and so voters are very conservative and very

likely to support the status-quo. In this case, shouldn’t it be that voters all prefer a high
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quota s as they each know they are likely to support the status quo? The answer is no and

the reasoning lies in the answer to the following question. Which alternative would a voter

prefer society to choose in a generic realization where k voters end up supporting a and n−k

voters end up supporting b? That is, the voter can think of the different scenarios possible

for numbers of voters supporting a and b, and then ask which side he is most likely to fall on

in each scenario. Given the symmetry in pi’s, conditional on this realization of preferences

it is most likely that the voter is in the larger of the two groups. So, the voter would like

society to choose a in scenarios where k > n− k and society to choose b in scenarios where

k < n − k, and is indifferent if k = n − k. Thus, the voter would like society to choose

in favor of the majority as that is where the voter is most likely to be in any realization.

Once one understands the above reasoning, then Theorem 3 and the importance of relative

comparisons becomes clear.

Dichotomous Societies

Theorem 4 showed that there always exists a self-stable voting rule in a homogeneous

society. Next, let us examine societies with some heterogeneity, starting with the next

simplest case where society splits into two groups.

A society (N, p) is dichotomous if there exists N1 6= ∅, p1 ∈ (0, 1), N2 6= ∅, and p2 ∈ (0, 1)

such that N = N1 ∪N2, pi = p1 for all i ∈ N1, pi = p2 for all i ∈ N1.

A dichotomous society is thus one which can be divided into two groups such that mem-

bers of the same group have the same pi’s. For such a society, let n1 and n2 denote the

respective cardinalities of N1 and N2.

Example 1.

N1 = {1, . . . , 4} and N2 = {5, . . . , 10} with p1 = .01 and p2 = .99.

In this society, ŝ1 = 8 and ŝ2 = 4.

Let us examine why ŝ2 = 4 (the intuition for ŝ1 = 8 is similar). This can be verified by

direct calculations, but also can be seen in an intuitive manner. Let us consider a voter in

N2. Consider a scenario where exactly three voters end up supporting change. Given the

extreme values of p1 = .01 and p2 = .99, if there are three voters who end up supporting

change, it is very likely that all of those voters are from N2. Given that there are six voters

in N2 this leads to a probability of nearly 1/2 that a voter in N2 would assign to supporting

change conditional on three voters supporting change. Although this probability is nearly

1/2, it is still less than 1/2 due to the small probability that some of the voters in N1 will be

among those supporting change. So, a voter in N2 will prefer that society choose the status
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quo conditional on three voters supporting change. If we consider a scenario where exactly

four voters end up supporting change, then the conditional probability that a voter in N2

would assign to being one of the supporters of change is nearly 2/3. Since it is above 1/2,

a voter in N2 will prefer that society choose change conditional on four voters supporting

change. Given these two observations it follows that ŝ2 = 4. Similar reasoning leads to

ŝ1 = 8.

Generally we can think of a voter considering each possible scenario of numbers of sup-

porters for each of the alternatives. For each scenario the voter determines which group

they are more likely to fall in. The voter’s most preferred voting rule (ŝi) corresponds to the

scenario with the smallest sized group supporting change for which the voter finds it more

likely that he or she will support change. We can see that if the voting rule is raised or

lowered from 4, then there will be some scenarios where the choice will be made in favor of

the group that the voter finds it less likely that he or she will fall in. We can also see why

it is rare for a voter to have twin peaks - as that can only happen in a case where the voter

assigns probability of exactly 1/2 to each of the two groups in some scenario.

In this example, {7, 8} is the set of self-stable voting rules. It is easy to see that 8 is

self-stable as only group N2 would like to change voting rules if 8 is used, but then they

only have 6 members and so are too small to make the change under a rule of 8. The same

is true of quota 7, and although in that case group N1 would like to raise the quota from 7

to 8 it is too small to do so. To see that no other rule is stable, note that 4 is unanimously

preferred to any smaller rule, and 8 is unanimously preferred to any larger rule. So the only

other candidates for self-stability are the quotas 4, 5, and 6. However, 5 and 6 are not stable

because N2 prefers 4 and has enough voters to move the quota to 4. 4 is not stable since

group N1 would have enough voters to increase the quota.

While in the above example, there were two self-stable voting rules, one could imagine

that if p1 were larger then a situation would arise where 6 ≥ ŝ1 and 4 ≥ ŝ2. If that were

possible, then there would not exist a self-stable voting rule. Then the 6 people in group 2

would want to move the rule from ŝ1 down to ŝ2 and the 4 people in group 1 would want to

move the rule up from ŝ2 to ŝ1. As it turns out, however, such examples do not exist and

there always exists a self-stable voting rule in a dichotomous society. This is stated in the

following theorem.

Theorem 5 A dichotomous society has at least one self-stable voting rule.

The proof of Theorem 5 involves explicit examination of voters’ conditional probabilities

that they will support alternative b if k voters support b (the types of conditional probabilities
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discussed in Example 1). The proof is complex and provided in the appendix. Very roughly,

it works by relating the conditional beliefs of the two groups to each other. The main case

that has to be ruled out to establish existence is where n2 ≥ ŝ1 and n1 ≥ ŝ2, when ŝ1 6= ŝ2.13

If the beliefs of N1 are such that n2 ≥ ŝ1, this means that the voters in N1 have relatively

high beliefs that they will be among the supporters of b. This implies that the voters in N2

have relatively low beliefs that they will be among the supporters of b, and so ŝ2 will be

high enough to be larger than n1. The challenge in the proof is to show that these relative

statements translate into absolute statements about the relationship between ŝ1 and ŝ2 and

their comparison to n1 and n2.

Self-Stability in More Heterogeneous Societies

While there always exists a self-stable voting rule in any dichotomous society, the same is

not true more generally. The reasoning behind the proof of Theorem 5 cannot be extended,

as tying down the beliefs of one group of voters no longer determines what the conditional

beliefs of the remainder must be, given the possible heterogeneity of the remainder. In fact,

the existence of self-stable voting rules is no longer guaranteed if society has at least three

levels taken on by the pi’s. This is illustrated in the following counter-example to the general

existence of self-stable voting rules.

Example 2.

N = {1, . . . , 5}. p1 = p2 = p3 = 1/2, p4 = 3/8, and p5 = 3/16.

Direct calculations lead to ŝ1 = ŝ2 = ŝ3 = 2, ŝ4 = 3 and ŝ5 = 4.

Let us verify that there is no self-stable voting procedure. All voters want to raise the

quota from 1 and lower it from 5. That leaves the quotas of 2,3, and 4 to be checked as the

only possibilities for self-stable voting rules. Voters 1 to 3 would vote to lower it from 3 to

2, voters 1 to 4 would vote to lower it from 4 to 3, and voters 3 and 4 would vote to raise it

from 2 to 3. Thus, no voting rule is self-stable.

The possibility that a society may not have a self-stable voting rule is striking, to say the

least. In order to understand its implications, it is worth discussing more extensively when

13If, for instance, ŝ1 > n2 then ŝ1 would be self-stable. So it would have to be that both n2 ≥ ŝ1 and
n1 ≥ ŝ2 for there not to exist a self-stable rule. Without loss of generality let ŝ2 > ŝ1, as the case where
ŝ2 = ŝ1 would lead to unanimity and thus self- stability. So, to see that if a case existed where n2 ≥ ŝ1

and n1 ≥ ŝ2 when ŝ1 6= ŝ2, then there would not exist a self-stable voting rule, note that there would be
unanimous support for change of any s that lies outside of the range between (and including) ŝ1 and ŝ2.
Also N1 would want to change away (and could change) from and s such that ŝ2 ≥ s > ŝ1. Finally, N2

would want to change from ŝ1.
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this phenomenon can occur, and what practical implications it may have.

We begin by identifying some conditions on the distribution of p’s that guarantee the

existence of self-stable rules.

Say that a society is symmetric if when voters are labeled such that pi ≥ pj when i > j,

it follows that pi = 1− pn−i.

Proposition 1 If a society is symmetric, then smaj is a self-stable voting rule.

This fact is an easy corollary of Theorem 6, below.

Let ŝmed denote the median of (ŝ1, . . . , ŝn), i.e., the median of the peaks of the voters.

Note the following simple condition for existence.

Remark: If ŝmed ≥ smaj, then ŝmed is self-stable.

When ŝmed ≥ smaj, then at most half of the population would like to lower the rule

below the median, and at most half would like to increase it above the median, and since

ŝmed ≥ smaj ≥ n+1
2

, it follows that ŝmed be self-stable.

The above remark points at some asymmetry in the role of majority sizes that are above

smaj and those that are below. This asymmetry is further emphasized by the following result,

which also establishes that, although instances of nonexistence of self-stable rules may be

robust, there are more societies where self-stable rules exist than for where they fail to exist.

Theorem 6 If there does not exist a self-stable voting rule for a society (N, p), then there

exists a self-stable voting rule for the society (N, p), where p is defined by pi = 1 − pi for

each i. Moreover, ŝmed is self-stable for society (N, p).

The proof of Theorem 6 is relatively simple and so we just provide a sketch. It follows

from the observation that the setting we are examining is symmetric in the following way:

if in society (N, p) voter i would like society to choose b conditional only on knowing that

s voters out of society favor b, then in society (N, p) voter i would like society to choose a

conditional only on knowing that s voters out of society favor a. This implies that if ŝi is i’s

peak under society (N, p), then n− ŝi + 1 is i’s peak under society (N, p). To establish the

theorem, note that non-existence of a self-stable voting rule implies that ŝmed is no larger

than n
2
, as otherwise it would be self-stable. The reasoning above then implies that ŝmed for

society (N, p) is larger than n
2
, and so is stable.

Despite its simple proof, Theorem 6 has some powerful implications. It implies that

non-existence is a problem for less than “half” of the potential societies in terms of the p’s.
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As already remarked, Proposition 1, which asserts the existence of self-stable voting rules

for symmetric societies, is an easy corollary of Theorem 6.

Before proceeding further, let us make some additional remarks about self-stable voting

rules.

When self-stable voting rules exist, there may be a number of them. Moreover, the set

of self-stable voting rules need not be an interval, nor need it include smaj. These points are

illustrated in the following example.

Example 3.

The society (N, p) is dichotomous.

N1 = {1, . . . , 5} and N2 = {6, . . . , 16} with p1 = .01 and p2 = .99.

Here ŝ1 = 14 and ŝ2 = 6.

It follows that {6, 12, 13, 14} is the set of self-stable voting rules.

It is clear that the set of self-stable voting rules will consist of a set of intervals, each of

which includes at least one ŝi. This puts an upper bound on the number of disjoint intervals

that can be included, at the number of distinct pi’s that are present in the society.

As we have seen so far, self-stable rules will exist for many, but not all, societies. Does

this mean we should take the possibility that a society might not find a self-stable rule as a

serious threat to the stability of actual constitutions or is it just a curiosity? Next, we will

show that this possibility of instability that we have unearthed may help explain the reason

why many actual societies resort to special rules when it comes to changing the voting rules.

This is discussed in the next section where we turn to the definition and the characterization

of self-stable constitutions.

Sub-Majority Voting Rules

Before turning to the question of constitutional design, let us comment on some problems

related to the choice of majority sizes smaller than smaj.

Rules with s < smaj can be problematic in the following sense. Consider a situation

where a and b are each supported by half of the population. A vote under s will result in b

becoming the new status quo. But then, with b as the new status quo, the other half of the

voters would support (and could effect) change back to a if it is proposed for a vote against

b. Thus, there is the potential to continuously cycle back and forth between a and b as the

status quo. This, of course, is only a potential problem of sub-majority rules.

Note that there are two caveats to the above noted difficulty with sub-majority rules.

First, for some alternatives it may not be possible to make reversals. For instance, if a is a
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current membership of a society and b is a question to include a new member, it may not be

permitted to later vote to revoke membership. There are many such examples of decisions

which cannot be reversed, such as a vote to tenure a faculty member, or a vote to declare war,

etc.. Second, the difficulty requires that one reasonably expect that the reversed proposal be

made, and so the agenda control becomes important. It may be that the agenda is controlled

in manners so that once b has been voted for, a is never again pitted as an alternative. We

have abstracted away from the agenda in our model, and a more complete analysis of the

potential instability of sub-majority rules demands a careful modeling of the agenda.

In spite of these caveats, this possible chaotic behavior associated with sub-majority rules

is not to be taken lightly, and so we discuss its importance with regards to our analysis from

two different perspectives.

First, we consider the possibility that a society somehow precludes itself from ever se-

lecting a sub-majority rule. If this is the case, then the existence of self-stable voting rules

is ensured. To see this, consider such a society. The preferences of voters over the restricted

set of s’s (s ≥ smaj) are still single peaked. Voters whose unrestricted peaks were at least

smaj have the same peak on the restricted set, while voters whose peaks were below smaj now

have smaj as a peak. The median of the restricted peaks will be self-stable over the restricted

set of voting rules. This leads to the following theorem.

Theorem 7 For any society where only s ≥ smaj are admissible voting rules, ŝmed (defined

relative to restricted preferences) is a self-stable voting rule.

The proof follows the argument of the remark we made earlier in this section. Hence,

for societies who find that s’s below smaj should be excluded from the analysis on a priori

grounds, we can still offer a theory for the choice of rules, and add a new property, that of

self-stability, to the already well justified choice of the median based-rules.

Despite the reassuring nature of the above theorem, we should not close our eyes to the

possibility that societies might consider sub-majority rules, in spite of their potential for

chaotic decision making behavior. From a positive viewpoint, there is evidence of chaotic

behavior, cycles and swings in many collective-decision making processes. We shall not insist

on that, but a theory based on the idea that voters actually vote on how to vote should not

exclude the possibility that some voters would support rather unstable arrangements. It

is also rare that the possibility of a sub-majority voting rule is prohibited by fiat. More

importantly, a democratic constitution is open to amendment. If under current rules, a

sufficient majority prefers a sub-majority voting rule there may be nothing to prevent them

from making that change. This is precisely the difficulty that arises with the lack of existence
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of self-stable rules: some super-majority prefers a sub-majority rule, and they have sufficient

numbers to enact that change to the current system.

Finally, notice that in example 3, a rule with s below smaj (s=6) emerges as self-stable,

along with others involving values above majority.14 Excluding these low value rules a priori

will deprive us of knowing all possible stable arrangements, when they exist.

5 Self-Stable Constitutions

We now explore the consequences of admitting constitutions that allow for different voting

rules to be used for making different types of decisions. This will solve the existence problems

noted in the previous section, and provides an explanation for such structure in observed

constitutions. A constitution can specify one voting rule to be used on all issues except for

the change of this “standard” rule, where a different rule may be used. The analysis above

suggests that there are situations where this would be natural, and provides an understanding

of why this should be the case.

A constitution is a pair of voting rules (s, S), where s is to be used in votes over the

issues a, b and S is to be used in any votes regarding changes from s to any other rule s′.
1516

14Moreover, there exist examples where the only self-stable rules are sub-majority rules. For example, con-
sider a dichotomous society with N1 = {1, 2} and N2 = {3, . . . , 7} with p1 = .3 and p2 = .5. Straightforward
calculations lead to ŝ1 = 5 and ŝ2 = 3. There s = 3 is the only self-stable rule.

15There are many examples where such pairs of rules are in place. For instance, the U.S. senate uses simple
majority rule, and a 67/100 rule to change the senate rules. In fact, under the filibusters that are possible
in the senate, one needs 60/100 votes to call a vote and so the effective voting rule might be thought of
as a (60,67) rule rather than a (50,67) rule. An interesting (unstable) example arose recently in California.
Under the law until 2000, school bond and tax issues required a 2/3 majority of the participating voters to
pass. So we might think of these votes as having the rule s be 2/3 of the voters. However, propositions
(initiatives that may be placed on the ballot through a variety of means) in California may be passed with
a 1/2 majority. In particular, one can place a proposition on the ballot which changes the vote required on
such issues. Thus, one can amend the rule by a 1/2 vote. Thus we can think of S as being 1/2 of the voters.
In fact in the 2000 election, Proposition 39 suggested changing the voting rule on school bond and tax issues
from 2/3 to 55%. Interestingly, Proposition 39 passed with 53.4% (as reported by the Secretary of State of
California) of the vote. Having a 2/3 majority voting rule that can be amended by a 1/2 vote is inherently
unstable.

16As pointed out to us by Randy Calvert, one could also think of a more general nesting of rules, where
one thinks of a voting rule S′ to amend (s, S), and so on; and it might be interesting to consider when these
may be truncated (as effectively the case of a pair means that the same S is used for all higher orders).
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A constitution (s, S)) is self-stable if #{i |Ui(s
′) > Ui(s)} < S for any s′..

Self-stability of a constitution requires that the preferences of voters be such that there

does not exist a voting rule s′ that would defeat the constitution’s prescribed voting rule

s to be used for choices over issues, when these two voting rules are compared under the

constitution’s voting rule S, to be used for choices over rules. So, a self-stable constitution

is one that would not be changed once in place.

Theorem 8 For any society, the constitutions (smaj, n) and (ŝmed, S) for any S ≥ smaj are

self-stable.

Theorem 8 follows is a straightforward consequence of our theorems on intermediate

preferences (Theorem 2) and on relative positioning of voter’s peaks (Theorem 3), and so

we simply offer a description of the proof as follows. The self-stability of (smaj, n) follows

from the observation that by Theorems 3 and 2 there is always at least one voter who will

wish to keep the voting rule over issues no higher than smaj and at least one who will wish

to keep the voting rule no lower than smaj. Thus, there is no unanimous consent to raise or

lower the voting rule from smaj. The self-stability of (ŝmed, S) with S ≥ smaj follows from

Theorem 2 and the definition of ŝmed, as by intermediate preferences fewer than n/2 voters

will prefer to raise the voting rule from ŝmed, and similarly fewer than n/2 voters will prefer

to lower the voting rule from ŝmed.

Theorem 8 is essentially tight in the sense that for any (s, S) that does not coincide

with either (smaj, n) or (ŝmed, S) with S ≥ smaj, there is some situations in which (s, S) is

not self-stable (with a single exception that (smaj, n− 1) is always self-stable whenever n is

odd).17 Let us be more explicit. First, consider (s, S) with some s 6= smaj. If p is such that

pi = pj for all i and j then ŝi = smaj for all i and so any (s, S) for which s 6= smaj = ŝmed will

be unstable regardless of S. So we need only consider (s, S) where s = smaj or s = ŝmed. We

can see the problem with (ŝmed, S) where S < smaj from Example 2, as it is possible to have

societies where a near majority prefers to move the voting rule away from ŝmed.
18 Finally,

when considering (smaj, S) with S < n (S < n−1 if n is odd), consider a society where voter

1 has p1 near 0 (and the same for voter 2 in the case of n being odd), and all other voters

have the same pi near 1. For high enough pi, voters i will have probability greater than 1/2

17Note that any Pareto optimal s is stable when put together with n. The claim here is that smaj is the
only s that is Pareto optimal for all societies.

18More generally, consider a society with a single voter who has the median preferences and other voters
who have extreme pi’s near 0 and 1, who will prefer to lower or raise the voting rule. In particular, the voters
with pi’s near enough to 1 will prefer an s < ŝmed over ŝmed and there will be at least smaj − 1 such voters.
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of supporting change when there are n/2 supporters of change if n is even and when there

are (n − 1)/2 supporters of change when n is odd. This leads to peaks of smaj − 1 for the

voters with pi near 1, and so they will vote to decrease the voting rule if it is set at smaj.

In summary. For each society, there will always be at least two self-stable constitutions

(three when n is odd).

Although we have treated the constitutions (smaj, n) and (ŝmed, S) on equal footing in

the statement of Theorem 8, notice the following essential difference. The constitution

(ŝmed, S) varies across societies, since ŝmed depends on the distribution of pi’s. On the other

hand, (smaj, n) is the same across all societies of the same size. Hence, (smaj, n) is a stable

constitution regardless of the society, while a constitution of the form (ŝmed, S) is by definition

tailored to a specific society.

Simple Majority Constitutions

The self-stability of constitutions involving simple majority rule is of particular interest

because of the prominence of simple majority in actual constitutions and its special properties

including overall efficiency (see the concluding remarks for additional discussion). We have

just seen that the particular constitution (smaj, n) is, in addition, very robust, since it self-

stable for any society. We now explore the conditions on the distribution of pi’s that are

sufficient for other constitutions (smaj, S) to be self-stable for values of S < n.

Let zi = pi

1−pi
. Thus, zi represents the ratio of the probability that i supports change

compared to the probability that i supports the status quo. Any positive number is a

potential zi.

Theorem 9 For any society with even n the constitution (smaj, S) is self-stable if

S > |{i :
∑

C⊂N,|C|= n
2

,i∈C

(×j∈Czj) ≥
∑

C⊂N,|C|=n
2

,i/∈C

(×j∈Czj)}| > n− S. (3)

Note that (3) can be rewritten as

S > |{i : zi ≥
∑
k 6=i

λi
kzk}| > n− S, (4)

where

λi
k =

2

n

∑
|C|=n

2
−1;i,k/∈C(×j∈Czj)∑

|C|=n
2
−1;i/∈C,(×j∈Czj)

.

Here, the λi
k are weights such that

∑
k 6=i λ

i
k = 1, and so

∑
k 6=i λ

i
kzk is a weighted average of

zk’s over k’s other than i. Thus, (4) says roughly that the number of voters with above
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average zi’s is not too high and not too low. It can be shown that this is also equivalent to

having the number of voters with below average zi’s not be too high or too low.

Condition (3) is almost a necessary condition as well, except for the possibility that one

particular voter (the n − S-th voter when ordered in terms of decreasing pi’s) has peak

exactly at smaj which allows for a slightly weaker condition.

To see the implications of Theorem 9, let us consider the constitution where s′ = 2n/3.

That constitution is stable, provided there are at least 1/3 of the voters who do not wish to

raise the voting rule from smaj and at least 1/3 of the voters who do not wish to lower it from

smaj. The proof of the theorem involves showing that these are equivalent to the inequalities

relating the zi’s. The requirements of the theorem are then that at least 1/3 and no more

than 2/3 of the voters have a zi that is bigger than the weighted average of the other voters’

zi’s. This is in effect a limitation on the skewness of the distribution of the zi’s (or, in effect,

the pi’s). If the distribution of zi’s is not too skewed, then (smaj, 2n/3) will be self-stable.

6 Concluding Remarks

There are a number of dimensions along which our model has been simplified, such as taking

the agenda to be a binary one, taking the agenda to be exogenous, examining only anonymous

voting rules, considering non-repeated environments, and considering a fixed population of

voters. Relaxing some of these restrictions provides a rich agenda for further research. Some

of these dimensions we have little feeling for at this point, while others we have given some

preliminary thought to as we briefly discuss below.

Anonymity

Anonymity has been presumed in our analysis through the definition of a voting rule.

Allowing for non-anonymous rules can help with self-stability. For instance, dictatorial rules

are clearly self-stable. There are contexts where non-anonymous rules are quite natural, as

when certain voters have seniority or other priority in a society. Thus, it would be interesting

to consider various non-anonymous rules (other than dictatorships) to understand their self-

stability properties.19 This issue alone presents a fairly rich agenda for further study of

endogenous voting rules.20

19The class of voting rules can be modeled by the class of simple games, which list the coalitions of agents
can enforce change over the status quo. The extension of self-stability is then to consider the voting rules
for which there is no alternative preferred by all members of some winning coalition.

20A new paper by Sosnowska (2002) extends the model here to weighted voting rules.
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Large Numbers

We have deliberately worked with finite societies for two reasons. First, there are many

applications where the society in question is small and not well approximated by an infinite

society. Second, if one worked with a continuum society (or some other infinite model), then,

without making additional assumptions about the distribution of the underlying uncertainty,

a (suitable) law of large numbers would eliminate the uncertainty over the proportion of

society supporting change over the status quo. This uncertainty is the critical aspect that

makes for non-degenerate and interesting voters’ preferences over voting rules.

While we chose to work with a finite model, it is still interesting to ask questions about

large societies.21 Example 2 extends when the society is replicated a large number of times,

and so general existence of self-stable voting rules will not come simply from considering

a large society. However, there may be some interesting conditions that are sufficient for

self-stability one can obtain from looking at large societies.22

Preferences

Assuming that a voter gets a utility of 1 when his preferred alternative is selected and

0 otherwise involves more than a normalization. Instead, it could be that when voter i

supports a then i gets utility 1 if a is selected and 0 if b is selected, while when voter i

supports b then i gets utility xi when b is selected and 0 if a is selected.

This more general setting leads to changes in the analysis in the following ways.

First, Theorem 1 on single-peaked preferences goes through unaltered and it is easily

checked that the proof works with only slight modification.

Second, the extension of Theorem 2 on intermediate preferences is a more complicated

matter. There are now two characteristics that distinguish voters and so finding an ordering

on voters for which their preferences are intermediate is more delicate. In the case where

xi ≥ xj whenever pi ≥ pj (so that voters who are more likely to support alternative b

care relatively more about alternative b), preferences are still intermediate. Again, for this

situation the proof goes through with very little modification. This would seem to be a

natural condition. However, if there is no such relationship between the xi’s and the pi’s,

then preferences may fail to be intermediate, and it is easy to construct counter-examples.

21See Schofield (1971) for some calculations concerning voters’ preferences in large heterogeneous societies.
22One possibility is to think about conditions on the distributions of pi’s, in an analogous way that

conditions identified by Caplin and Nalebuff (1988) on distributions of preferences suffice for an alternative
with nice properties in their setting.
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The existence of self-stable voting rules with dichotomous preferences, Theorem 5, de-

pends on the property that a voter cares (in expectation, at least) similarly for having a

win when the voter supports a and having b win when the voter supports b. Without that

assumption, examples can be constructed where there does not exist a self-stable voting rule.

However, Theorem 6 extends under an ordering that preserves the intermediate preferences.

Another aspect of preferences that might be due for further consideration is the assump-

tion of the independence of the probabilities that the voters support change. This assumption

played a role in our proof of single-peakedness. Most importantly, this ensures that likelihood

that a voter has that they support change conditional on k voters supporting change is be

monotone in k. With certain forms of correlation, this conditional probability may no longer

be monotone. While arbitrary forms of correlation could be difficult to accommodate, there

are natural ones which still allow for such monotonicity and would thus still be tractable.

Dynamics and the Time Perspective

In our analysis we have considered the choice of a voting rule at a time where preferences

over the alternatives to be voted on are uncertain, but voters have probability assessments

over their likelihoods of supporting change over the status quo.

What if we consider different time perspectives?

First, if we move back in time to an ex-ante point of view (before voters know the pi’s),

then simple majority rule becomes attractive as it maximizes total utility, and hence ex-ante

utility if voters have similar beliefs about what their pi’s are likely to be. However, unless

smaj turns out to be self-stable or else voters can bind themselves not to make future changes,

one has to address the issue of changes that can be made once the pi’s are known. So, we

still need to consider the interim perspective, unless there is a way to make future changes

in rules impossible.

We can also consider moving forward in time to an ex-post point of view, where voters

know which alternatives they support. If a voting rule is already in place from the interim

perspective, there will be no changes made. To see this, note that the voters in favor of

changing the voting rule will be the voters who are not getting the choice that they want.

If they are not getting the choice that they want under the current voting rule s, then they

must be a group of less than s voters and so could not affect a change.

While the ex-post perspective has no implications for self-stable voting rules, it can change

the outcome for some self-stable constitutions. In particular, it can destabilize constitutions

of the form (s, s′) where s > s′. In such a case, if there turn out to be s′′ voters in favor of

change, where s > s′′ ≥ s′, then the s′′ voters will vote to change the voting rule to s′′. This
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problem arises only for constitutions where s > s′, and so if a constitution has s′ ≥ s, then

there will be no incentive for voters to change it ex-post.

An issue that is of interest for future investigation arises in a dynamic situation where

voters face a sequence of choices. Consider a situation where voters already know their

preferences on a current choice, but only have limited knowledge over future choices. Here

there is a possibility of a voter’s preferences over voting rules going against their immediate

(myopic) wishes, due to the longer horizon. This issue is pointed out in the following example.

Example 4.

N = {1, . . . , 8}. p1 = p2 = p3 = .01, p4 = p5 = .49, and p6 = p7 = p8 = .99.

In this case, direct calculations lead to ŝ1 = ŝ2 = ŝ3 = 2, ŝ4 = ŝ5 = 5 and ŝ6 = ŝ7 = ŝ8 =

7.

The self-stable voting rules are {5, 6, 7}.

Now let us adopt a longer time perspective. Suppose we are using the voting rule s = 5.

Consider a realization where society evenly splits between a and b, and in particular

voters 1 to 3 and 6 support a and 4, 5, 7 and 8 support b. Under the voting rule s = 5 the

status quo a will be chosen.

Consider the incentives of the voters to change the voting rule. If the rule is changed

from 5 to 4 then b would be chosen instead of a.

Voters 4 and 5 will gain 1 unit of utility today, but lose U4(5) − U4(4) in each of the

future periods. This expression is close to 0, and so for all except very high discount factors,

the time discounted future loss in expected utility from changing from a voting rule of 5 to

4 is less than 1. So, for discount factors that are not too high, voters 4 and 5 will support a

change to a voting rule of 4. Voters 7 and 8 would gain today and in the future such a change.

Voter 6 would lose 1 unit of utility today from such a change, but would gain U6(5)−U6(4)

discounted over the future horizon. While U4(5)− U4(4) is close to 0, U6(5)− U6(4) is not.

Thus for some range of discount factors, voters 4 to 8 would all support a change from 5 to

4.

Simple majority as a special rule: Efficiency and Immunity to Vote Trading

We close by pointing out two related important features, arising in the model that we

used here, that give a special status to smaj.

A first property was the focus of Rae (1969) (and later proven by Curtis (1972) and

Badger (1972)). It is that smaj maximizes total societal welfare, and it is essentially the only

rule to do so. More precisely, for any society (N, p), smaj uniquely maximizes
∑

i Ui(s), unless
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n is even in which case n
2

also maximizes
∑

i Ui(s). This property can also be seen as an

ex ante efficiency property (from the perspective before voters know their pi’s, where they

each have the same beliefs). There is a fairly direct proof of this property.23 Majority rule

maximizes total societal welfare at each ex post realization of preferences over a and b since

it maximizes the number of 1’s realized as utility compared to 0’s that are realized. Any

other rule (except n
2

when n is even) realizes a lower total utility at some ex post realization

of preferences as it will select one of the alternatives when a minority supports it (favoring

a if s > smaj or b if s < smaj).

A second property that is related to the utilitarian property of simple majority rule, is

that it is the only voting rule that is immune to the trading of votes by the grand coalition.

This point is made more precisely below. The intuition behind it is straightforward but is

still worth making, as it suggests that the utilitarian property of simple majority rule not

only has welfare implications, but also implications in terms of incentives.

Describe a realization of preferences by C ⊂ N , where C is the set of voters who support

the change over the status quo.

Consider the possibility that voters trade votes as follows. For each C that could be

realized, a randomization device says “trade” with some probability pC and “no trade” with

probability 1 − pC . “Trade” is then interpreted as having the voters in the minority group

reverse their votes. Under “no trade”, all voters vote in their own interest.

In the above situation vote trading is described by a randomization device, where in

some (random) circumstances the minority of voters are called on to reverse their votes.

They do this with the expectation that there are other situations where they will be in the

majority and benefit from having the minority reverse their votes. If the vote is only a one

time happening, then one would need a commitment to abide by the randomization device

in order to have such a scheme work. If there is a sequence of choices to be made (and not

too much discounting by voters), then the pC ’s can be thought of as frequencies and votes

can indeed be traded in a quid-pro-quo or self- sustaining manner.

So a vote trading scheme is a list {pC}C⊂N of the probabilities that votes are traded for

the various possible realized groups supporting change.

Note that when “trade” is in effect, the votes are cast unanimously and in favor of what

the majority of voters prefers. So effectively, a vote trading scheme transforms a voting rule

to choose as smaj would in a limited (random) set of circumstances. For every voting rule

except smaj this reverses the outcome in some scenarios.

23Much more complex proofs appear in Curtis (1972) and Badger (1972).
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A voting trading scheme {pC}C⊂N upsets a voting rule s, if every voter’s expected utility

is higher under the vote trading scheme given the rule s than if they voted in their own

interest under s.

A voting rule s is immune to vote trading if it is not upset by any vote trading scheme.

It is now easy to verify that simple majority rule is the only voting rule that is immune

to vote trading, unless n is even in which case n/2 is also immune to vote trading. (This is

proven in the appendix.)

While simple majority rule is uniquely immune to vote trading, we should point out that

the definition requires that all voters be made better off. We can also consider vote trading

by sub-coalitions. It turns out that no voting rule is immune to vote trading by sub-coalitions

(provided that n ≥ 4). This is seen as follows: pick an arbitrary sub-coalition of three voters,

say {1, 2, 3}. Operate a vote trading scheme as follows. Consider all situations where {1, 2}
are on the losing side of the vote and 3 is on the winning side and is pivotal - i.e., 3 is able

to change the vote by reversing her vote. With n ≥ 4 there is at least one such a scenario

for every voting rule s. Have a probability p3 that 3 reverses her vote conditional on being

in such a situation. Choose corresponding p1 and p2’s. These can be chosen so that the

probability that each of the voters 1,2, and 3 unconditionally expects to be on the benefiting

side of the vote more often than in the position of being called on to reverse their vote. Thus,

each of the voters in {1, 2, 3} would strictly benefit from following this scheme.

As we have seen simple majority is not perfect. It is not always self-stable and it is subject

to some forms of vote trading. But it is certainly a salient rule, for many reasons, including

those mentioned above, and can always be made part of a self-stable constitution. In fact, the

lack of self-stability of majority rule (as well as others) provides insight into the prevalence

of constitutions with separate voting rules for standard decisions versus amendments of the

constitution.
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Appendix

Proof of Theorem 1:

Let Di(s) = Ui(s)− Ui(s− 1). From equation (2) it follows that

Di(s) = (1− pi)Pi(s− 1)− piPi(s− 2). (5)

Thus,

Di(s) = Pi(s− 1)(1− pi
Pi(s− 1) + Pi(s− 2)

Pi(s− 1)
).

Note that Ui is single-peaked if there exists ŝi (possibly equal to 1 or n) such that Di(s) > 0

for every ŝi > s ≥ 2, Di(s) < 0 for every n ≥ s > ŝi, and Di(s) ≥ 0 at s = ŝi (with equality

holding only when there are twin peaks). Thus, if we can show that Di(s) has this form,

then we will have shown that Ui is single-peaked.

Note that the sign of Di(s) depends only on the size of Pi(s−1)+Pi(s−2)
Pi(s−1)

relative to 1
pi

. This

means that showing that Pi(s−1)+Pi(s−2)
Pi(s−1)

is increasing in s for n ≥ s ≥ 2 establishes that Di(s)

has the form specified above. Rewriting

Pi(s− 1) + Pi(s− 2)

Pi(s− 1)
= 1 +

Pi(s− 2)

Pi(s− 1)
,

means that we need only show that Pi(s−2)
Pi(s−1)

is increasing24 in s.

We follow a proof by induction on n. The case where n = 2 is trivial, since then

there is only one s that satisfies n ≥ s ≥ 2. Now for the induction step. Suppose that

Pi(s− 2)/Pi(s− 1) is increasing for any n′ ≥ s ≥ 2 for societies of size n− 1 ≥ n′. We show

that Pi(s− 2)/Pi(s− 1) is increasing for any n ≥ s ≥ 2.

Let

Pi,j(s) =
∑

C⊂N\{i,j}:|C|=s

×`∈Cp` ×k/∈C (1− pk).

Pi,j(s) is the probability that exactly s of the voters other than i and j support the change.

Pi(s− 2)

Pi(s− 1)
=

pjPi,j(s− 3) + (1− pj)Pi,j(s− 2)

pjPi,j(s− 2) + (1− pj)Pi,j(s− 1)
,

where Pi,j(s− 3) = 0 when s = 2. Rewrite the above equality as

Pi(s− 2)

Pi(s− 1)
=

pjPi,j(s− 3)

pjPi,j(s− 2) + (1− pj)Pi,j(s− 1)
+

(1− pj)Pi,j(s− 2)

pjPi,j(s− 2) + (1− pj)Pi,j(s− 1)
. (6)

24When we say “increasing” we refer to the strict sense, and we use the term “non-decreasing” to refer to
the weaker sense.
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We show that each term on the right hand side of (6) is increasing in s for n ≥ s ≥ 2.

Take the first term. It is clear that since Pi,j(s − 3) = 0 when s = 2, that it is increasing

from s = 2 to s = 3. So, we need only show that its inverse is decreasing in s for n ≥ s ≥ 3.

pjPi,j(s− 2) + (1− pj)Pi,j(s− 1)

pjPi,j(s− 3)
=

pjPi,j(s− 2)

pjPi,j(s− 3)
+

(1− pj)

pj

Pi,j(s− 1)

Pi,j(s− 3)

=
pjPi,j(s− 2)

pjPi,j(s− 3)
+

(1− pj)

pj

Pi,j(s− 1)

Pi,j(s− 2)

Pi,j(s− 2)

Pi,j(s− 3)
. (7)

Note that the induction step implies that Pi,j(s−2)

Pi,j(s−3)
is increasing in s for n ≥ s ≥ 3. So, each

expression on the right hand side is decreasing in s for each n− 1 ≥ s ≥ 3 by the induction

step, and so the overall expression is. So we only have to worry about the case where s = n

and the expression Pi,j(s−1)

Pi,j(s−2)
. Note that Pi,j(n− 1) = 0, and so this follows as well.

Recall that the expression in (7) is the inverse of the first term on the right hand side

of (6). A similar argument establishes that the second term on the right hand side of (6) is

increasing in s.

Proof of Theorem 2:

We first show that Ui(s) ≥ Ui(s− 1) implies that Uj(s) ≥ Uj(s− 1) for any j such that

pj ≥ pi. Recall that

Ui(s)− Ui(s− 1) = (1− pi)Pi(s− 1)− piPi(s− 2).

So, we write

Ui(s)−Ui(s−1) = (1−pi)(Pi,j(s−2)pj+Pi,j(s−1)(1−pj))−pi(Pi,j(s−3)pj+Pi,j(s−2)(1−pj)).

Likewise,

Uj(s)−Uj(s−1) = (1−pj)(Pi,j(s−2)pi+Pi,j(s−1)(1−pi))−pj(Pi,j(s−3)pi+Pi,j(s−2)(1−pi)).

It follows that

[Ui(s)− Ui(s− 1)]− [Uj(s)− Uj(s− 1)] = 2(pj − pi)Pi,j(s− 2).

Notice that the right hand side of the above equation is nonnegative, because pj ≥ pi.

So, we have shown that

Ui(s)− Ui(s− 1) ≥ Uj(s)− Uj(s− 1), (8)
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whenever pj ≥ pi. Note that if s > s′, then

Ui(s)− Ui(s
′) =

s∑
k=s′+1

Ui(k)− Ui(k − 1). (9)

So, (9) implies that

Ui(s)− Ui(s
′) ≥ Uj(s)− Uj(s

′), (10)

whenever pj ≥ pi, provided s > s′. This establishes that preferences satisfy the single-

crossing property.

We now show that this implies that preferences are intermediate.

First, consider the case where Ui(s) ≥ Ui(s
′), Uj(s) ≥ Uj(s

′), pj ≥ pk ≥ pi and s > s′.

Since Ui(s) ≥ Ui(s
′) and pk ≥ pi, (10) implies that Uk(s) ≥ Uk(s

′) (with strict inequality if

the strict inequality holds for i). So, the desired conclusion of intermediate preferences is

established for this case (and the corresponding strict inequality case). Next, consider the

case where Ui(s) ≥ Ui(s
′), Uj(s) ≥ Uj(s

′), pj ≥ pk ≥ pi and s < s′. Suppose to the contrary

that Uk(s
′) > Uk(s). Then since pj ≥ pk it follows from (10) (applied with the roles of s and s′

reversed) that Uj(s
′) > Uj(s), which is a contradiction. Thus, our supposition was incorrect

and so Uk(s) ≥ Uk(s
′). Finally, consider the case where Ui(s) > Ui(s

′), Uj(s) > Uj(s
′),

pj ≥ pk ≥ pi and s < s′. Suppose to the contrary that Uk(s
′) ≥ Uk(s). Then since pj ≥ pk it

follows from (10) (applied with the roles of s and s′ reversed) that Uj(s
′) ≥ Uj(s), which is

a contradiction. Thus, our supposition was incorrect and so Uk(s) > Uk(s
′). We have shown

that preferences are intermediate.

Proof of Theorem 3:smaj maximizes total societal welfare (see the concluding remarks),

as it always results in the maximal number of voters who get a utility of 1. Consider the

case where some voter j’s peak is greater than smaj. So, Uj(s
maj + 1) ≥ Uj(s

maj). As∑
i Ui(s

maj) >
∑

i Ui(s
maj +1), it follows that there exists some i with Ui(s

maj +1) < Ui(s
maj)

which by single-peaked preferences (Theorem 1) implies that smaj ≥ ŝi. We are left with the

case where all voters’ peaks are no more than smaj. Suppose to the contrary of Theorem 3

that all the peaks are strictly less than smaj. By the single-peakedness of preferences, this

implies that Ui(s
maj − 1) > Ui(s

maj) for all i, which contradicts the fact that smaj maximizes∑
i Ui(s). Thus our supposition was incorrect and the Theorem is established.

Proof of Theorem 5: Let n2 = #N2 and n1 = #N1, and without loss of generality take

p1 ≥ p2.

In the case where p1 = p2 it is easily checked that all preferences are identical with

ŝi = n/2 + 1 if n is even, and ŝi = (n + 1)/2 if n is odd. In that case, ŝi is self-stable. So,

we consider the case where p1 > p2, n1 ≥ 1, and n2 ≥ 1.
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Theorem 3 and Corollary 1 implies that ŝ2 ≥ smaj ≥ ŝ1, since p2 < p1. If n2 ≥ smaj, then

it must be that smaj > n1 and so ŝ2 is self-stable. Therefore, we need only examine the case

where n1 ≥ smaj > n2.

Suppose to the contrary that there is no self-stable voting rule. It must be that n2 ≥ ŝ1

and n1 ≥ ŝ2. Thus,

n1 ≥ ŝ2 ≥ smaj > n2 ≥ ŝ1 (11)

and p2 < p1.

For k ∈ {1, . . . , n}, let qb
i (k) be the probability that a voter of type i ∈ {1, 2} supports b

conditional on knowing that k voters support b. Correspondingly, let qa
i (k) be the probability

that a voter of type i ∈ {1, 2} supports a conditional on knowing that k voters support a.

By the definition of qa
i and qb

i it follows that

qa
i (k) = 1− qb

i (n− k). (12)

Note that i’s peak is the largest s′ such that qb
i (s

′) ≥ 1/2 and 1/2 ≥ qb
i (s) for s < s′.

Below we will establish that
qa
2(k)

k
>

qa
2(k + 1)

(k + 1)
. (13)

Before proving (13), let us argue that this will complete the proof. Since qb
2(ŝ2) ≥ 1/2 it

follows that 1/2 ≥ qa
2(n− ŝ2). So, by (13) (applied iteratively) it follows that

1/2 > qa
2(n− ŝ1)

n− ŝ2

n− ŝ1

.

From the inequality above, we then have

n2qa
2(n− ŝ1) <

n2

2

n− ŝ1

n− ŝ2

.

Since it must be that n1q
a
1(n− s) + n2q

a
2(n− s) = n− s, it follows that

n1q
a
1(n− ŝ1) > n− ŝ1 − n2

2

n− ŝ1

n− ŝ2

.

Noting that n − ŝ1 ≥ n1 (recall that n1 + n2 = n and n2 ≥ ŝ1 from inequality (11)), the

previous inequality requires that

qa
1(n− ŝ1) > 1− n2

2(n− ŝ2)
.

Since n − ŝ2 ≥ n2 (recall that n1 + n2 = n and n1 ≥ ŝ2 from inequality (11)), the above

inequality implies that qa
1(n− ŝ1) > 1/2. By the definition of ŝ1 we know that qb

1(ŝ1) ≥ 1/2,

but then qa
1(n− ŝ1) > 1/2 contradicts equation (12).
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Now, we complete the proof by showing that (13) holds. Let P a(n′, k) denote the proba-

bility that, in a society with n1 voters with p1 and n′ voters with p2, exactly k of the voters

support a. So in this calculation, the number of voters of type 1 is always fixed, but the

number of voters of type 2 is given by n′. Writing in the expressions for qa
2 from Bayes’ rule,

we need to show that

1

k

(
(1− p2)P

a(n2 − 1, k − 1)

p2P a(n2 − 1, k) + (1− p2)P a(n2 − 1, k − 1)

)
>

1

k + 1

(
(1− p2)P

a(n2 − 1, k)

p2P a(n2 − 1, k + 1) + (1− p2)P a(n2 − 1, k)

)
. (14)

Note that

P a(n′, k) = p2P
a(n′ − 1, k) + (1− p2)P

a(n′ − 1, k − 1). (15)

So substituting from (15) and simplifying, we rewrite (14) as

(k + 1)
P a(n2 − 1, k − 1)

P a(n2, k)
> k

P a(n2 − 1, k)

P a(n2, k + 1)
. (16)

We show this by induction on n2. A straightforward (but tedious) expansion of the expres-

sions (that we leave to the reader) verifies that (16) holds for n2 = 1 and any k ≥ 1 (set
P a(n2,k)

P a(n2,k+1)
= 0/0 = 1 when k > n1 + n2). We now show that if (16) holds for each n2 < n′

and k ≥ 1, then it holds for n′ and any k ≥ 1. Rewriting (16) at n′ and expanding using

(15) in each expression we obtain,

(k + 1)
(
p2

2P
a(n′ − 2, k − 1)P a(n′ − 1, k + 1) + p2(1− p2)P

a(n′ − 2, k − 1)P a(n′ − 1, k)

+p2(1− p2)P
a(n′ − 2, k − 2)P a(n′ − 1, k + 1) + (1− p2)

2P a(n′ − 2, k − 2)P a(n′ − 1, k)
)

> k
(
p2

2P
a(n′ − 2, k)P a(n′ − 1, k) + p2(1− p2)P

a(n′ − 2, k)P a(n′ − 1, k − 1)

+p2(1− p2)P
a(n′ − 2, k − 1)P a(n′ − 1, k) + (1− p2)

2P a(n′ − 2, k − 1)P a(n′ − 1, k − 1)
)

Using the induction hypothesis, we eliminate the first expression on each side of the inequal-

ity, and then collecting terms and simplifying we obtain

p2P
a(n′ − 2, k − 1)P a(n′ − 1, k) + (k + 1)p2P

a(n′ − 2, k − 2)P a(n′ − 1, k + 1)

+(1− p2)P
a(n′ − 2, k − 2)P a(n′ − 1, k)

> kp2P
a(n′ − 2, k)P a(n′ − 1, k − 1) + (1− p2)P

a(n′ − 2, k − 1)P a(n′ − 1, k − 1)
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Now, substituting for P a(n′ − 1, ·) from (15), we rewrite the above as

p2
2P

a(n′ − 2, k − 1)P a(n′ − 2, k) + p2(1− p2)P
a(n′ − 2, k − 1)P a(n′ − 2, k − 1)

+p2(1− p2)P
a(n′ − 2, k − 2)P a(n′ − 2, k) + (1− p2)

2P a(n′ − 2, k − 2)P a(n′ − 2, k − 1)

+(k + 1)p2
2P

a(n′− 2, k− 2)P a(n′− 2, k + 1) + (k + 1)p2(1− p2)P
a(n′− 2, k− 2)P a(n′− 2, k)

> p2(1− p2)P
a(n′ − 2, k − 1)P a(n′ − 2, k − 1) + (1− p2)

2P a(n′ − 2, k − 2)P a(n′ − 2, k − 1)

+kp2
2P

a(n′ − 2, k)P a(n′ − 2, k − 1) + kp2(1− p2)P
a(n′ − 2, k)P a(n′ − 2, k − 2)

Simplifying, we must only show the inequality

(k + 1)p2P
a(n′ − 2, k − 2)P a(n′ − 2, k + 1) + (k + 1)(1− p2)P

a(n′ − 2, k − 2)P a(n′ − 2, k)

> (k − 1)p2P
a(n′ − 2, k)P a(n′ − 2, k − 1) + (k − 1)(1− p2)P

a(n′ − 2, k)P a(n′ − 2, k − 2)

Using (15) at n′ − 1 we rewrite this as

(k + 1)P a(n′ − 2, k − 2)P a(n′ − 1, k + 1) > (k − 1)P a(n′ − 2, k)P a(n′ − 1, k − 1). (17)

So we need only show that (17) holds. By the induction hypothesis, we know that

(k + 1)P a(n′ − 2, k − 1)P a(n′ − 1, k + 1) > kP a(n′ − 2, k)P a(n′ − 1, k),

and

kP a(n′ − 2, k − 2)P a(n′ − 1, k) > (k − 1)P a(n′ − 2, k − 1)P a(n′ − 1, k − 1),

or

kP a(n′ − 1, k) > (k − 1)P a(n′ − 2, k − 1)P a(n′ − 1, k − 1)/P a(n′ − 2, k − 2).

Combined, these imply that

(k + 1)P a(n′ − 2, k − 1)P a(n′ − 1, k + 1)

> P a(n′ − 2, k)(k − 1)P a(n′ − 2, k − 1)P a(n′ − 1, k − 1)/P a(n′ − 2, k − 2),

which simplifies to

(k + 1)P a(n′ − 1, k + 1)P a(n′ − 2, k − 2) > (k − 1)P a(n′ − 2, k)P a(n′ − 1, k − 1).

This verifies that (17) holds and completes the proof.
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Proof of Theorem 9: First, note that given the single-peaked preferences (accounting for

the possibility of two peaks), (smaj, S) is self-stable if and only if

|{i : Ui(s
maj) ≥ Ui(s

maj − 1)}| > n− S and |{i : Ui(s
maj) ≥ Ui(s

maj + 1)}| > n− S. (18)

A sufficient condition for this is that

|{i : Ui(s
maj) ≥ Ui(s

maj − 1)}| > n− S and |{i : Ui(s
maj − 1) ≥ Ui(s

maj)}| > n− S.

which is in turn guaranteed by

S > |{i : Ui(s
maj − 1) ≥ Ui(s

maj)}| > n− S. (19)

Recall from (2) that

Ui(s)− Ui(s− 1) = (1− pi)Pi(s− 1)− piPi(s− 2).

Thus,

{i : Ui(s
maj − 1) ≥ Ui(s

maj)} =

{
i :

pi

1− pi

= zi ≥ Pi(s
maj − 1)

Pi(smaj − 2)

}
. (20)

From the definition of Pi(s) it follows that

Pi(s)

Pi(s− 1)
=

∑
C⊂N\i,|C|=s [×j∈Cpj ×j /∈C (1− pj)]∑

C⊂N\i,|C|=s−1 [×j∈Cpj ×j /∈C (1− pj)]

Dividing top and bottom by ×j 6=i(1− pj), this becomes

Pi(s)

Pi(s− 1)
=

∑
C⊂N\i,|C|=s×j∈Czj∑

C⊂N\i,|C|=s−1×j∈Czj

So, by the above equation and (20), we can rewrite (19) as

S > |{i : zi ≥
∑

C⊂N\i,|C|=n
2
×j∈Czj∑

C⊂N\i,|C|=n
2
−1×j∈Czj

}| > n− S. (21)

This can be rewritten as

S > |{i :
∑

C⊂N,i∈C,|C|=n
2

×j∈Czj ≥
∑

C⊂N\i,|C|=n
2

×j∈Czj}| > n− S,

which is the claimed expression.

A direct rewriting of (21) leads to the claimed expression in (4):

S > |{i : zi ≥
∑
k 6=i

λi
kzk}| > n− S,
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where

λi
k =

2

n

∑
|C|=n

2
−1;i,k/∈C(×j∈Czj)∑

|C|=n
2
−1;i/∈C(×j∈Czj)

.

Direct inspection shows that
∑

k 6=i λ
i
k = 1 for all i.

Proof of Vote Trading Claim: Given that pi ∈ (0, 1) for each i, every C has a positive

probability of being realized. For each C let πC denote the probability that C is realized.

Let p = minC πC .

If s is not the simple majority rule, identify the set of C’s where a minority ends up

having their alternative chosen. Let M denote this set of C’s.

For each C ∈ M , select pC > 0 so that the product pCπC is the same across all C’s in M ,

and set pC = 0 for any C /∈ M . This vote trading scheme upsets s. To see this, note that

M is a symmetric set as it will be all C’s of sizes that fall below s and are at least n+1
2

(or

above s and no more than n+1
2

if s is smaller than n+1
2

). Given this symmetry and the fact

that for each of these C’s, we have #C 6= #N \ C, it follows that there are more of these

sets C for which any fixed voter i is in the majority than in the minority. By the choice of

probabilities, the probabilities of vote trading are the same across all C ∈ M and so any

voter i expects to benefit since they are more often in the majority than the minority.
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