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Abstract

The paper studies equilibria for economies with imperfect competition

and non-convex technologies. Following Negishi, firms maximise profits un-

der downward-sloping perceived demand functions. Negishi’s assumptions, in

particular the assumption of a single monopolistic competitor in each market,

are relaxed. Existence of equilibria is obtained, under otherwise standard as-

sumptions, for productions sets defined in each firm by the union of a convex

technology and a technology subject to fixed costs. In the light of a coun-

terexample, it is assumed that fixed factors are distinct from variable factors.

Technically, the proof rests on pricing rules.
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2CORE, Université catholique de Louvain, Louvain-la-Neuve, Belgium
3Meiji-Gakuin University, Tokyo, Japan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/9316009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Imperfect Competition à la Negishi,
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1 Motivation and Guidelines

This paper is a modest contribution to the challenging topic of general equilib-

rium under imperfect competition and non-convex technologies. The topic is

important because fixed costs and increasing returns to scale – hence, barriers

to entry and concentrated production – are a major source of market power.

Currently available results are meager. Without attempting to review these,

we note that some models - e.g. Novshek and Sonnenschein (1978) or Hart

(1979) – deal with many firms tat are or become small relative to the aggregate

economy. In contrast, others – e.g. Heller (1993) – concentrate on a single

monopolist embedded in an otherwise competitive economy. Others still - e.g.

Blanchard and Kiyotaki (1987, section IV) – rely on specific models endowed

with strong symmetry properties. In contrast, we introduce a methodological

approach that holds promises of substantial generality, comparable to that of

competitive analysis – even if we do not exploit these promises fully here.

Our approach builds on two main contributions: (i) the perceived-demand

approach to monopolistic competition, introduced in the seminal paper by

Negishi (1961); (ii) the pricing-rules approach to firm behaviour, introduced

in the seminal paper by Dierker, Guesnerie and Neuefeind (1985) and applied

to competitive-like equilibrium under non-convex technologies by Bonnisseau

and Cornet (1988), Dehez and Drèze (1988a,b).

The motivation for adopting the perceived-demand approach is twofold.

First, it simplifies the general equilibrium analysis, a welcome feature given the

analytical difficulties introduced by non-convexities. Second, it is in our opin-

ion more realistic, in many situations, than the alternative, objective-demand

approach. Endowing firms with the ability to compute general equilibrium

reactions to their own market behaviour typically stretches the concept of ra-

tionality far beyond realistic limits.1 Of course, Negishi’s formulation has its
1Negihsi (1972, p. 107) goes as far as as claiming: “It is widely agreed that the only
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own shortcomings, in particular bounded rationality (more on this below) and

failure to model the uncertainties surrounding the estimation of demand elas-

ticities.2 But the gain in realism remains substantial. And the two approaches

are not logically inconsistent, as evidenced by the work of Silvestre (1977) and

Gary-Bobo (1989) who impose that perceived demand curves reflect correctly

both the level and the slope of demand at equilibrium. We retain the former

requirement; we have not attempted to incorporate the latter.

Pricing rules provide a powerful tool in modeling firm behaviour. A pricing

rule associates, with every point on the frontier of a firm’s production set, the

set of prices at which the firm is willing to produce at that point. In the case

of smooth convex technologies, the pricing rule of a competitive firm gives the

unique relative prices at which a production point yields maximum profit.3

This suggests an alternative interpretation of the competitive equilibrium:4

firms meet demand and adjust prices towards competitive levels – thus by-

passing the contradiction between price setting and competition stressed by

Arrow (1959).

Pricing rules have proved valuable in the general-equilibrium analysis of

economies with non-convex technologies.5 Their use rests on a suitably defined

normal cone to an arbitrary closed set. One example is the work of Dehez and

Drèze (1988a,b) on “competitive equilibria with quantity-taking producers”:

(i) producers announce prices for their outputs and satisfy the demand which

materialises at these prices; (ii) these output prices are competitive, in the

demand (supply) function that is relevant in the theory of monopolistic (monopsonic) com-
petition is the perceived, imagined or subjective demand (supply) functions which express
the expectation of the firm as to the relationship between the price it charges (offers) and
the quantity of its output (input) the market will buy (sell)”. In a footnote, he quotes
Bushaw-Clower, Davis-Whinston, Kaldor and Triffin in support of his assertion. Contempo-
rary authors, including ourselves, would be less sanguine...

2For a very modest step in that direction, see Drèze (1979).
3These relative prices are given by the normal vector to the production set.
4That alternative interpretation is given in Dehez and Drèze (1988a).
5Cf. Journal of Mathematical Economics 17-1(1988) and in particular Bonnisseau and

Cornet (1988), Vohra (1988).
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sense that they are the lowest prices at which the producers remain willing

to satisfy demand. The pricing rules formalise condition (ii). An equilibrium

exists, under otherwise standard assumptions, whether production sets are

convex or not. Two properties of the pricing rules are used in the existence

proof: (P1) the rules are defined by correspondences which are upper hemi-

continuous (u.h.c), convex-, compact- and non-empty valued (c.c.n.v); (P2)

the rules imply non-negative profits.

Under monopolistic competition à la Negishi, condition (ii) above must be

modified to become: (ii’) at these output prices, profits, evaluated on the basis

of the perceived-demand functions, are maximal. Such a condition raises a

specific difficulty. A pricing rule must be defined at every point on the frontier

of the firm’s production set. For some of these points, there do not exist non-

negative prices sustaining the point as a profit maximising production plan.

For instance, if marginal revenue becomes negative when output y exceeds

some level y, then the set of non-negative prices defined by (ii’) is empty for

all y > y. Yet, the pricing rule should be non-empty valued also there.

To resolve that dilemma, we define pricing rules under which the prices

stipulated at points where (ii’) is violated cannot prevail at equilibrium. The

rules are defined everywhere, but market equilibrium is not possible every-

where. In this exploratory paper, we assume strict monotonicity of prefer-

ences, so that equilibrium prices are strictly positive. And we impose: (P3)

the rules are such that the first-order conditions (FOC) for profit maximisa-

tion under subjectively-perceived demand functions are verified, or else some

price is non positive. Accordingly, the FOC are verified at equilibrium.

The resulting equilibria thus have a “bounded rationality” connotation,

because: (i) first-order conditions are by nature local, and a local optimum

need not be global; (ii) the demand elasticities need not be perceived correctly.

Item (i) seems inescapable, in the absence of convexity. From a technical view-
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point, existence of several isolated local optima, only some of which are global,

introduces discontinuities in the profit-maximising supply correspondence that

preclude recourse to Kakutani’s fixed-point theorem. From an economic view-

point, global optimisation imposes two unrealistic demands on firm behaviour,

namely ability to solve a global optimisation problem not always amenable to

standard techniques; and ability to perceive demand characteristics at alloca-

tions arbitrarily remote from experience.

In section 2, we record the immediate result that an equilibrium exists,

under otherwise standard assumptions plus strict monotonicity of preferences

(A1), when firms hold pricing rules verifying (P1), (P2) and (P3).6 The rest

of the paper deals with primitive assumptions under which such pricing rules

exist.

In order to pave the ground, we first develop a pricing-rule approach to

Negishi’s model, under convex technologies (section 3). Negishi (1961, 1972)

assumes that: (i) there is at most one monopolistic competitor in each market;

(ii) perceived demand functions are linear and consistent with observations (in

levels, not necessarily slopes); (iii) the perceived-demand coefficients are con-

tinuous functions of market prices and market net demands to the firm. We

generalise (i) by allowing every firm to hold non-competitive net-demand per-

ceptions on all markets but one;7 and we generalise (iii) by allowing the coeffi-

cients to depend – continuously – on the full allocation. These generalisations

are of interest in their own right.

But we use three ancillary assumptions:

(A1) every commodity is strictly desired by at least one consumer;

(A2) perceived inverse demand functions are continuous;

(A3) each firm holds competitive price perceptions for at least one commodity.
6Reminder: pricing rules are an abstract tool of the economist exploring a technical issue;

in particular, they may be devoid of behavioural connotations out of equilibrium.
7This generalisation defines in what sense we extend Negishi’s approach from monopolistic

to imperfect competition.
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(A1) has been motivated above. (A2) and (A3), already used by Negishi,

are clearly innocuous. Under standard assumptions plus (A1)-(A3), a Negishi

equilibrium exists, when production sets are convex (theorem 3.1).

Turning to non-convex technologies, the challenge is to ascertain the exis-

tence of pricing rules endowed with properties (P1), (P2), (P3). Under linear

demand functions, whether or not properties (P1)-(P3) are mutually consis-

tent depends upon the production set. We give in section 4 a simple example

of a production set for which there does not exist a pricing rule with the de-

sired properties. In the light of that example, we define a restricted class of

technologies, for which (P1)-(P3) are mutually consistent.

Our restricted class consists of technologies with fixed costs where (A4) ,

for each firm: (i) the fixed inputs are distinct from the variable inputs or the

outputs; and (ii) the production set is the union of two convex sets, one and

one only of which contains the origin. The extension to an arbitrary finite

union of convex sets, each allowing for fixed costs, is at hand. Unless one

of these contains the origin, there always exist (local) equilibria where the

firm is inactive: upper hemi-continuity implies that the pricing rule places no

restriction on admissible prices there (see section 4 for illustration); and there

will exist an equilibrium for the sub-economy from which a given firm, or set

of firms, is deleted.8

In section 5, we construct pricing rules verifying (P1)-(P3) for the case

where the fixed inputs consist of a single commodity with competitive price

perceptions. These two restrictions are used for expositional convenience and

are amenable to generalisation. Under standard assumptions and (A1)-(A4),

a Negishi equilibrium exists (theorem 5.1).
8An alternative, introduced in Madden (1984), consists in showing that an equilibrium

with non-zero production (hence fixed investments) exists, provided the consumption sector
of the economy is large enough. Madden verifies this by replicating the consumption sector
n times and proving the existence of a finite integer n such that, ∀ n ≥ n, the economy
replicated n times admits an equilibrium with positive production. The same route could
be followed here.
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Our excuse for introducing property (i) is simple: it holds trivially when-

ever fixed costs correspond to investments in facilities giving access to supe-

rior operating technologies. Because investments precede operations in time,

the fixed inputs are automatically separated from variable inputs and outputs

through time indices.9 Thus, our specification covers in particular all the cases

where increasing returns result from fixed investments; that is, it covers many

(most?) interesting cases.

2 Existence of Equilibria with Pricing Rules

Following Bonnisseau and Cornet (1988)10 or Dehez and Drèze (1988a), here-

after DD, to which we refer for details, consider an economy with � commodi-

ties, n producers and m consumers. Producer j is characterised by a produc-

tion set Y j , a closed subset of R� such that Y j+R�
− ⊂ Y j (free disposal)11 and

Y j ∩R�
+ = {0} (absence of free production, possibility of inaction). Consumer

i is characterised by:

- a consumption set Xi, a closed subset of R�, convex and bounded below;

- a preference relation �∼ i
on Xi, complete, continuous and convex;12

- an initial endowment ωi in the interior of Xi;

- shares in firm profits θi = (θi1, · · · , θin) ≥ 0, Σi θ
ij = 1, j = 1, · · · , n.

It is further assumed that, ∀ k ∈ R�, the set

{(y1, · · · , yn) ∈ Π Y j | Σ yj ≥ k} is bounded ⊂ R�n,

9An interesting set of technologies close to our class consists of ex ante convex technologies
with fixed costs ex post. Under incomplete markets, these technologies may lead to second-
best efficient departures from marginal cost pricing in some states, as suggested in Drèze
(2001, section 3.3).

10Bonnisseau and Cornet do not impose non-negative profits, only bounded losses; but the
rules of income formation for households do not embody limited liability of shareholders.

11Alternatively stated, Y j is “comprehensive”.
12DD assume non-satiation; we substitute (A1) for that requirement.
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implying that the set of feasible allocations

Z = {(x1, · · · , xm, y1, · · · , yn) ∈ ΠXi ×ΠY j |Σxi ≤ Σωi + Σyj}

is a bounded set ⊂ R�(m+n).

We refer to that set of assumptions as (DD), and we add the following:13

(A1) For each commodity k ∈ {1, · · · , �}, there exists a consumer i ∈ {1, · · · ,m},
whose preferences are strictly monotonic with respect to xk :

x > x̂ with xk > x̂k implies x �i x̂ ∀ x, x̂ ∈ Xi.

Let

∂Y j := {y ∈ Y j | � ∃ ŷ ∈ Y j , ŷ � y},

ι′ := (1, · · · , 1) ∈ R�
+,

S := {v ∈ R�
+| ι′v = 1},

S := {v ∈ R� | ι′v = 1};

denote by p a price vector in R�
+ and by z = (x1, · · · , xm, y1, · · · , yn) an

allocation in Z.

Definition 2.1 A pricing rule for firm j φj : ∂Y j × Z × R�
+ → S is a

correspondence assigning to each production plan yj ∈ ∂Y j a set of prices

φj(yj ; z, p) ∈ S, given the market data (z, p).14

We formalise the assumptions (P1)-(P2) as follows, for each j:

(P1) The correspondence φj : ∂Y j × Z ×R�
+ → S, is u.h.c. and c.c.n.v.

(P2) For all p ∈ φj(yj ; z, p), p′yj ≥ 0.

As for assumption (P3), it is implicit in the following

Definition 2.2 An equilibrium with pricing rules is defined by a price vector

p ∈ S and an allocation z ∈ Z such that:
13Vector inequalities are ≥, >, � . Rows vectors are primed.
14See remark 2.1 below. In DD, φj = φj(yj), but the immediate generalisation to φj =

φj(yj ; z, p) is mentioned in footnote 18 there.
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(E1) for each i, xi is �∼ i
- maximal in {xi ∈ Xi | p′xi ≤ p′ωi + Σjθ

ij p′ yj};
(E2) p� 0 and, for each j, p ∈ φj(yj ; z, p);

(E3) Σix
i ≤ Σiω

i + Σjy
j .

Theorem 2.1 Under assumptions (DD), (A1), (P1) and (P2), there exists

an equilibrium.

Proof Follows from existence theorem 2 in DD. All the assumptions there are

retained, and (P1) validates the generalisation from φj(yj) to φj(yj ; z, p).One

only needs to verify that p� 0. As noted above, the set of feasible allocations

is bounded in R�(m+n). But (A1) implies unbounded demands xij (some i) at

pj ≤ 0, contradicting (E3).

Remark 2.1 DD define a pricing rule as a correspondence with values in S,

the unit simplex. Careful examination of the proof of their theorem 2 reveals

that our alternative definition is still conducive to existence. If φj : ∂Y j ×
Z × R�

+ → S satisfies (P1)-(P2), the result still holds. This mildly surprising

remark, which allows for pricing rules specifying some negative prices, will

prove essential to our analysis in section 3.

Remark 2.2 As noted above, DD assume that the set of feasible alloca-

tions, Z, is bounded. Accordingly, the proof of theorem 2 there relies on the

standard technique of restricting attention to allocations belonging to a com-

pact set. Consequently, we need only verify the properties of pricing rules

over compact sets, in order to invoke theorem 2.1. Although S is not com-

pact, our correspondences φj(y; z, p) will be compact-valued, and the image

in S of a compact set of triplets (y; z, p) is itself compact (Hildenbrand, 1974,

proposition 3, p.24).
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3 Negishi Equilibria under Convex Technology

3.1

In order to apply theorem 2.1 to imperfect competition à la Negishi, it is nec-

essary and sufficient to specify pricing rules that satisfy postulates (P1)-(P2)

and that (i) embody profit maximisation under downward sloping perceived-

demand functions; (ii) entail some non-positive prices at production plans

incompatible with profit maximisation.

At a market allocation (z, p), Negishi (1961, 1972) considers indirect per-

ceived-demand functions defined as

pj(yj ; z, p) = Hj(z, p)yj + Kj(z, p), (3.1)

where the matrix Hj(·) is negative semi-definite.15 The interpretation is that

the r.h.s of (3.1) gives the prices pj at which firm j expects to be able to trade

the quantities yj , when the market data are (z, p) ∈ Z×S. The vector Kj(z, p)

is such that pj(yj ; z, p) ≡ pj (consistency with observations).

Because Hj(·) is NSD, the profit function is concave, and the first-order

conditions (FOC) are sufficient for global profit maximisation, when Y j is con-

vex. Accordingly, we may use that property in condition (i) above and rephrase

it as (i’) embody the FOC for profit maximisation under the perceived-demand

functions (3.1).

Remark 3.116 We have defined (3.1) with p ∈ S, thus under a specific price

normalisation. It is well known that an oligopolistic equilibrium is not in-

variant to the choice of a price normalisation. This has been brought out by
15Negishi (1972, p.111) assumes that the matrix Hj has zero entries for commodities of

which firm j is not the single monopolistic supplier, and owns a negative definite principal
minor for the other commodities. He invokes gross substitutability of direct demand func-
tions as a justification. If the matrix of partial derivatives of the direct demand functions
were negative definite, with non-positive off-diagonal elements, then its inverse H would
be negative definite with all entries non positive – by application of a theorem of Stieltjes
(1886-7).

16We thank an anonymous referee for prompting this clarification.
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Bronsard (1971) for the case of monopolies, then by Gabszewicz-Vial (1972)

for the case of Cournot-Nash oligopolistic equilibria. There are two dimensions

to price normalisation – one trivial and one substantive. The trivial dimension

concerns the overall price level. Instead of imposing p ∈ S, one could impose

kp ∈ S, k ∈ R+. This does not affect the real equilibria: relative prices remain

unaffected. The substantive dimension is the choice of p ∈ S as contrasted

with, say pi = 1 for some i in L = {1, · · · , �}, or (Σip
2
i ) = 1, for instance. As

shown in the references above, oligopolistic or monopolistic equilibria are not

invariant to these alternative specifications. As one transparent illustration

of the unavoidable arbitrariness in the choice of normalisation, let p ∈ S and

recognise that the bearing of that specification depends upon the arbitrary

quantity units in which commodities are measured. By inflating the quantity

unit of commodity i, one can bring the condition p ∈ S arbitrarily close to

imposing pi = 1, with consequences for equilibrium brought out in the refer-

ences above.17 The normalisation issue is basically the same under perceived-

demand functions as under objective demand-functions: just consider the case

where perceived and objective demands coincide! Thus, the Negishi equilibria

inherit the normalisation-dependence of Cournot-Nash equilibria. The present

paper is no exception.

Returning to (3.1), the fact that p ∈ S does not imply that pj(yj ; z, p) ∈ S.

(Think about a single output with inelastic demand and inputs supplied at

constant prices; the output price varies with yj at unchanged input prices, so

that pj �∈ S for yj �= yj .) But irrelevance of the overall price level requires
17The practical side of the normalisation issue is intriguing, since economic agents in a

market economy are not aware of any price normalisation. But it is suggestive to think about
oligopolistic or monopolistic firms as pursuing a real (as opposed to nominal) profit motive.
In a monetary economy, they will accordingly deflate future (possibly state-contingent) prof-
its by a price index. The weights of individual commodities in the price index play a role
comparable to the quantity units of the previous paragraph. Thus, indices with different
weights may lead to different oligopolistic equilibria.
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that (3.1) be homogeneous of degree 1 in p. That is, ∀ k ∈ R+ :

pj(yj ; z, kp) = Hj(z, kp)yj + Kj(z, kp)

= kHj(z, p)yj + kKj(z, p) = kpj(yj ; z, p). (3.2)

The perceived-profit function is

Πj(yj ; z, kp)) = y′jpj(yj ; z, kp) = ky′jpj(yj ; z, p). (3.3)

The FOC for a maximum of Πj on Y j are again independent of the price level

k. They require existence of a vector qj in the normal cone to Y j at yj , N j(yj),

such that18

pj(yj ; z, kp) + Hj(z, kp)yj = qj . (3.4)

Because Y j is comprehensive convex, qj > 0 for every qj ∈ N j(yj), and

N j(yj) ∩ S �= ∅.
In (3.4), the norm of qj is implicitly related to k. Let

qj ∈ N j(yj) ∩ S, ι′qj = 1,

and write (3.4) as

kpj(yj ; z, p) + kHj(z, p) yj = λkq
j ,

pj(yj ; z, p) + Hj(z, p) yj =
λk
k

qj . (3.5)

In order to obtain pj(yj ; z, p) ∈ S, it is necessary that

λk
k

= 1 + ι′Hj(z, p) yj . (3.6)

This yields the first-order conditions in normalised form:

pj(yj ; z, p) = qj(1 + ι′Hj(z, p)yj)−Hj(z, p)yj

:= qjaj(yj ; z, p)−Hj(z, p)yj (3.7)
18See e.g., Clarke (1983), proposition 2.3.1 and corollary to proposition 2.4.3.
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for yj such that aj(yj ; z, p) > 0 (see below).

These expressions admit standard interpretations. Looking at the i-th

component of the vector equalities (3.4), for yji > 0 (i is an output), the l.h.s.

measures the marginal revenue of yji and the r.h.s. its marginal cost, in a

multi-product framework.

The term

Hj
i (z, p)y

j := Σk Hj
ik yjk = Σk

∂pji
∂yjk

yjk

measures the difference between the selling price and the marginal revenue, a

negative term under normal circumstances. The same difference is added to

the marginal cost in the r.h.s. of (3.7); it corresponds there to the monopolistic

markup of price above marginal cost.19

Less familiar is the term 1 + ι′Hj(z, p)yj := aj(yj ; z, p), which multiplies

qj in the r.h.s. of (3.7). Its presence is due to the fact that qj ∈ S is a

measure of relative, not absolute marginal costs. The additional term scales

marginal cost commensurably with pj . But a new issue arises: is that term

positive? We have argued above that Hj
i (z, p)y

j ≤ 0 should be the rule for

an output i “under normal circumstances”. That term is proportional to yj ,

and could become large negative for large yj , entailing 1 + ι′Hj(z, p)yj < 0.

Because qj > 0, aj(yj ; z, p) > 0 is necessary for qjaj(yj ; z, p) ∈ N j(yj), hence

is necessary for (3.7) to represent correctly the FOC.

The interpretation of this issue is straightforward. If yji > 0 is so large

that 1 + ι′Hj(z, p)yj < 0, the production plan yj generates negative marginal

revenues “overall”,20 and yj cannot be a profit-maximising production plan.21

19For yji < 0 (i is an input), Hj
i measures the difference between the buying price and the

marginal cost of procurement, a positive term under normal circumstances for a monopsonist.
20“Overall”: 1 + ι′Hj(·)yj = Σi[p

j
i + Hj

i (·)yj ] = sum of marginal revenues of outputs
and marginal procurement costs of inputs. The sum over commodities of these terms is
meaningful in the same sense that a sum of prices defines a meaningful price index. If
Hj
i (·)y

j
i is normally negative for outputs and positive for inputs, aj(·) < 0 is normally

brought about by negative marginal revenues for outputs.
21At yj ∈ ∂Y j , profits increase in a direction pointing inward the comprehensive set Y j
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(We have already alluded to that situation in section 1.) The pricing rule will

have to specify some non-positive prices at such a yj .

Remark 3.222 The FOC (3.4), hence (3.7), do not embody the requirement

(3.1) that pj = Hj(z, kp)yj+Kj(z; kp). Indeed, that requirement is meaningful

only when pj = kp, a property that holds only at equilibrium, where further-

more k = 1, pj = p. To repeat, the pricing rule is a technical device used by

the economist to prove existence of equilibria. Consistency requirements need

only be verified at equilibrium. Such is indeed the case here, because Hj(z, p)

and Kj(z, p) are assumed to verify p = Hj(z, p)yj + Kj(z, p) identically in

z, p and yj consistent with z : at equilibrium, yj = yj enters the definition of

z = (x1, · · · , xm, y1, · · · , yn). Accordingly, at equilibrium, the FOC for profit

maximisation will be satisfied, for the normalisation ι′p = 1 (see remark 3.1

above).

3.2

We now state formally:

(A2) For each j, the mapping (z, p)→ Hj(z, p) is continuous, and the matrix

Hj(z, p) is NSD finite identically in (z, p).

(A3) For each j, the matrix Hj(z, p) owns at least one row with zero entries

identically in (z, p).

Our pricing rule is

φj(yj ; z, p) =
{
p ∈ R� | ∃ q ∈ N j(y) ∩ S :

p = qj max(0, 1 + ι′Hj(z, p)yj)− Hj(z, p)yj

max(1,−ι′Hj(z, p)yj)

}
. (3.8)

Lemma 3.1 Under assumptions (A2) and (A3), the pricing rules (3.8) sat-

isfies (P1), (P2) and (P3), with ι′p ≡ 1, for yj , z and p in compact sets.

(a direction bringing about production inefficiency); thus, yj is not profit maximising.
22We thank an anonymous referee for prompting this clarification.
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Proof We omit the superscript j and, where unnecessary, the reference to

(z, p).

(1) Ad ι′p ≡ 1.

ι′p = ι′qmax(0, 1 + ι′Hy)− ι′Hy
max(1,−ι′Hy) with ι′q = 1;

If 1 + ι′Hy > 0,−ι′Hy < 1, then ι′p = 1 + ι′Hy − ι′Hy = 1;

if 1 + ι′Hy < 0,−ι′Hy > 1, then ι′p = 0− ι′Hy
−ι′Hy = 1;

if 1 + ι′Hy = 0,−ι′Hy = 1, then ι′p = 0− ι′Hy = 1.

(2) Ad (P1).

For any given (z, p) ∈ Z × S, and for all y in a closed cube in R� with

finite length, every entry Hiy, i = 1, · · · , �, is uniformly bounded; also,

N(y) is closed; so φ is compact-valued. It is convex-valued because N(y)

is convex-valued. It is non-empty by construction. It is u.h.c in y be-

cause

- N(y) is u.h.c in y, max(0, 1+ ι′Hy) is continuous, and so their product

is u.h.c (Hildenbrand, 1974, p.25);

- −Hiy
max(1,−ι′Hy) is continuous in y;

- the sum of these two terms is u.h.c (Hildenbrand, 1974, p.25).

The correspondence φ(y; z, p) is u.h.c in (z, p) forall y, because p is con-

tinuous in H(z, p) and H is continuous by (A2).

(3) Ad (P2).

Profits, Π(y, p) = y′p = y′q max(0, 1 + ι′Hy) − y′Hy
max(1,−ι′Hy) , are non-

negative:

- y′q ≥ 0 by definition of N(y), and 0 ∈ Y ;

- −y′Hy ≥ 0 since H is NSD (A2).

(4) Ad (P3).

When 1 + ι′Hy > 0, the pricing rule implements the FOC (3.7), which

14



is equivalent to (3.4) at equilibrium (see remark 3.2 above). When 1 +

ι′Hy ≤ 0, pi = −Hiy
−ι′Hy and pi ≡ 0 for i such that Hi = 0 (A3).

3.3

Definition 3.1 A Negishi equilibrium is defined by a price vector p ∈ S and

an allocation z ∈ Z such that:

(E1) For each i, xi is �∼ i
- maximal in

{xi ∈ Xi| p′xi ≤ p′ωi + Σjθ
ijp′yj};

(E2) For each j, yj maximises locally on Y j

Πj(yj ; z, p) = p′j(yj ; z, p)yj = [Hj(z, p)yj + Kj(z, p)]′ yj ;

(E3) Σix
i ≤ Σiω

i + Σjy
j .

Theorem 3.1 Under assumptions (DD), (A1), (A2) and (A3), if each Y j

is a convex set, there exists a Negishi equilibrium, and the maximum in (E.2)

is global.

Proof Follows from theorem 2.1, remarks 2.1-2.2 and lemma 3.1.

4 A Pricing Rule May not Exist with Fixed Costs

In this section, we provide an elementary example of a production set for which

there does not exist a pricing rule verifying (P1)-(P3) of section 1.

There are two commodities, an output y and an input x, with respective

prices p and r. The production set, also depicted in figure 1, is defined by:

Y = {(y, x) ∈ R×R− | y ≤ max[0,−(x + c)]}.
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Thus, y ≤ 0 ∀ x ≥ −c, y ≤ −(x+ c) ∀ x ≤ −c. The perceived inverse demand

function is here defined, for a fixed (z, p), by

p(y) = p + b(y − y), b < 0; r(x) = r.

Profits are

Π(x, y) = p(y)y + rx =




rx if x ≥ −c
p(y)y − r(y + c) if x ≤ −c.

The first-order condition for profit maximisation, given x ≤ −c, is

dΠ
dy

= by + p(y)− r = 0, p(y) = r − by. (4.1)

This corresponds to the normalised vector in S

p =
1− by

2
, r =

1 + by

2
. (4.2)

The corresponding profits are

Π =
1− by

2
y − 1 + by

2
(y + c) = −by2 − 1 + by

2
c.

Profits are non-negative, hence maximal at a solution of (4.1), provided

−b−1 ≥ y ≥ {[bc− (b2c2 − 8bc)1/2] / 4b} := ŷ.

To illustrate, if b = −1, then 1 ≥ ŷ ≥ 0 for c ≤ 1.

We wish to construct, on the boundary ∂Y of Y, a pricing rule which

is u.h.c (P1), which yields non-negative profits (P2), and is such that either

p = 1−by
2 , r = 1+by

2 ≥ 0, or else pr ≤ 0 (P3). In attempting to do so, a

contradiction arises a the point (ŷ,−ŷ − c), labeled a in figure 1. For −1
b ≥

y ≥ ŷ, the FOC imposes the unique prices given by (4.2). In particular,

p̂ = p(ŷ) = 1−by
2 > 0 and r̂ = r(ŷ) = 1+by

2 > 0 for ŷ < −1
b . For ŷ > y ≥ 0, the

FOC yields negative profits, and (P2)-(P3) impose pr ≤ 0 with p ≥ 0, r ≤ 0.

16



Let yν , ν = 1, 2, · · ·, tend to ŷ, with yν < ŷ ∀ ν; and let (pν , rν) ∈ φ(yν), so

that pν ≥ 0, rν ≤ 0. If φ(y) is u.h.c, there exists a limit (p, r) (not necessarily

unique), with p ≥ 0, r ≤ 0. In order for φ(y) to be u.h.c and c.c.n.v at ŷ, it must

be the case that (pα, rα) = α(p̂, r̂) + (1− α)(p, r) belongs to φ(ŷ) ∀ α ∈ [0, 1].

But this allows for strictly positive (pα, rα) different from (p̂, r̂), which violates

(P3). So, there does not exist a pricing rule satisfying (P1)-(P3), in this

example.

This explains why we introduce the restriction that fixed inputs and vari-

able inputs be disjoint sets of commodities.

5 Negishi Equilibria with Fixed Costs

We now prove existence of equilibria à la Negishi for a class of technologies

with fixed costs, where for each firm fixed inputs are distinct from variable

inputs or outputs, and the production set is the union of two convex sets of

which one contains the origin. For simplicity of exposition, we consider a single

fixed input, and a fixed investment threshold. We leave open the extension

to more complex technologies - where for instance fixed investments could be

chosen from some feasible set, each choice giving access to a convex production

set for variable inputs and outputs;23 or where Y is the union of several convex

sets, each allowing for fixed investments.

More specifically, let f(j) be the index of the fixed input to firm j, and

write yj = (yjf , y
j
−f ) where the subscript f stands for f(j).

(A4) For each j, Y j = Y j1 ∪ Y j2, where

Y j1 =
{
yj ∈ R� | yjf ≤ −cj ≤ 0, yj−f ∈ Y j1

−f ⊂ R�−1
}
,

23The extension to several fixed inputs with fixed investment thresholds is straightforward,
but the expository cost exceeds the benefits.
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Y j2 =
{
yj ∈ R� | yjf ≤ 0, yj−f ∈ Y j2

−f ⊂ R�−1
}
,

Y ji
−f is a closed convex set such that Y ji

−f + R�−1
− ⊂ Y ji

−f ,

Y ji
−f ∩R�−1

+ = {0}, i = 1, 2, and Y j1
−f + Y j2

−f ⊂ Y j1
−f .

That is, Y j is the union of two convex sets, one of which (Y j1) stipulates

a “fixed cost” yjf ≤ −cj , while the other (Y j2) contains the origin.24 Both

sets satisfy free disposal and admit y−f = 0. The inclusion Y j1
−f + Y j2

−f ⊂ Y j1
−f

reflects the elementary fact that a production plan which is feasible without

fixed investments remains feasible with fixed investment. (This is not essential,

but natural.)

(A3’) For each j, the matrix Hj(z, p) owns at least two rows with zero

entries identically in (z, p), one of these being row f.

This imposes competitive price perceptions for the fixed input - a conve-

nient, though not essential specification.

The boundary ∂Y j = {yj ∈ Y j | � ∃ ŷ ∈ Y j , ŷ � yj} of Y j can be de-

scribed as follows in terms of Y j1
−f , Y

j2
−f and their boundaries ∂Y ji

−f ⊂ R�−1, i =

1, 2 :

∂Y j = {yj ∈ R� | yjf < −cj , y
j1
−f ∈ ∂Y j1

−f} ∪

{yj ∈ R� | yjf = −c, yj1−f ∈ ∂Y j1
−f \ (Y j2

−f \ ∂Y
j2
−f )} ∪

{yj ∈ R� | 0 > yjf > −c, y
j
−f ∈ ∂Y j2

−f )} ∪

{yj ∈ R� | yjf = 0, yj−f ∈ Y j2
−f}.

To define a pricing rule φj : ∂Y j × Z × S → S, we can rely on (3.8) for

the first and third elements in the union of sets defining ∂Y j ; but we need to

extend that specification so as to cover the second and fourth elements, while

preserving upper hemi-continuity at yjf = −cj and at yjf = 0.

24The total cost function implied by (A4) is not convex for cj > 0. It contains the origin.
Fixed costs, a property of Y j1, are avoided when yj ∈ Y j2.
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Lemma 5.1 Under (A2), (A3’) and (A4), there exist pricing rules verifying

(P1), (P2) and (P3), for y, z and p in compact sets.

Proof The proof is constructive. A suitable pricing rules is defined succes-

sively for all yj ∈ ∂Y j such that:

1. 0 > yjf > −cj ;
2. yjf < −cj ;
3. yjf = −cj ;
4. yjf = 0.

The proof applies to an arbitrary firm, so we omit the superscript j. Sim-

ilarly, we omit explicit reference to (z, p). We write N i(y−f ) for the normal

cone to Y i
−f at y−f and φi−f (y−f ) for the correspondence defined by (3.8) with

q ∈ N i(y−f ) ∩ S.
1. When 0 > yf > −c, then y−f ∈ ∂Y 2

−f . We set pf = 0, p−f ∈ φ2
−f (y−f );

that is

φ(y | 0 > yf > −c, y−f ∈ ∂Y 2
−f ) = {p ∈ S | pf = 0, p−f ∈ φ2

−f (y−f )}. (5.1)

Because lemma 3.1 applies to φ2
−f (y−f ), it applies to (5.1).

2. When yf < −c, then y−f ∈ ∂Y 1
−f , and we define:

φ(y | yf < −c, y−f ∈ ∂Y 1
−f ) = {p ∈ S | pf = 0, p−f ∈ φ1

−f (y−f )}. (5.2)

Again, lemma 3.1 applies to (5.2).

3. When yf = −c, then y−f ∈ Y 1
−f \ (Y 2

−f \ ∂Y 2
−f ), and y is efficient in

production if and only if y−f ∈ ∂Y 1
−f . Otherwise, the FOC conditions cannot

be satisfied at strictly positive prices, and y cannot be part of an equilibrium.

This provides leeway in the (purely technical) definition of the pricing rule.

We use that leeway, when y−f �∈ ∂Y 1
−f , by setting pf = 0 and extending the

correspondence suitably. It is then convenient to distinguish three subcases.

3.1 For y−f ∈ ∂Y 1
−f , set pf ∈ [0,

p′−fy−f
c ] and p−f = (1 − pf )p̂−f with

p̂−f ∈ φ1
−f (y−f ); alternatively stated, for some p̂−f ∈ φ1

−f (y−f ), set pf ∈
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(
0,

p̂′−fy−f
c+p̂′−fy−f

)
and p−f = (1− pf )p̂−f . This defines the composition of corre-

spondences:

φ(y | yf = −c, y−f ∈ ∂Y 1
−f ) =

{
p ∈ S | ∃ p̂−f ∈ φ1

−f (y−f ) :

pf ∈
(
0,

p̂′−fy−f
c + p̂′−fy−f

)
, p−f = (1− pf )p̂−f

}
, (5.3)

which is u.h.c (Hildenbrand, 1974, p.22) and n.c.c.v. To verify convex val-

uedness, let p̂i−f ∈ φ1
−f (y−f ), i = 1, 2; and let pi verify pi−f = (1 − pif )p̂

i
−f

with pif ∈
(
0,

p̂′i−fy−f
c+p̂′i−fy−f

)
. Then, for all λ ∈ [0, 1], pλ := λp1 +(1−λ)p2 verifies

pλ−f = (1−pλf )p̂λ−f for p̂λ−f = νλp̂1
−f+(1−νλ)p̂2

−f with νλ =
λ(1−p1f )

λ(1−p1
f
)+(1−λ)(1−p2

f
)
,

implying pλf ∈
(
0,

p̂′λ−fy−f
c+p̂′λ−fy−f

)
. Also, the upper bound on pf guarantees p′y ≥ 0.

Lemma 3.1 thus applies to the pricing rule (5.3).

3.2 For y−f �∈ ∂Y 1
−f , y−f ∈ ∂Y 2

−f , let

φ(y | yf = −c, y−f ∈ ∂Y 2
−f ) = {pf ∈ S | p−f = 0, p−f ∈ φ2

−f (y−f )}. (5.4)

Again, lemma 3.1 applies.

3.3 For y−f �∈ ∂Y 1
−f ∪ ∂Y 2

−f , the construction of the pricing rule is more

intricate. For given y = (−c, y−f ), we define:

ŷ1
−f = y−f + ι−fd1 ∈ ∂Y 1

−f , d
1 > 0;

ŷ2
−f = y−f − ι−fd2 ∈ ∂Y 2

−f , d
2 > 0.

That is, ŷ1
−f is the intersection of the half-ray y−f + ι−fd1 with ∂Y 1

−f .

The intersection is non empty because Y is closed and {ŷ ∈ Y |ŷ ≥ y} is

bounded; it is unique, by definition of ∂Y 1
−f ; ŷ

1
−f is a continuous function of

y, for parallel half rays.

Similar properties hold for Ŷ 2
−f , since y−f �∈ ∂Y 2

−f and Y 2
−f ⊃ R�−1

− . There

exists p̃2
−f = y−f−ι−f d̃2 ∈ Y 2

−f (for instance, ỹ2
−f ∈ R�−1

− for d̃2 large enough).

If ỹ2
−f ∈ ∂Y 2

−f , take ŷ2
−f = ỹ2

−f . Otherwise, there exists (by the reasoning of

the previous paragraph) y2
−f = ỹ2

−f + ι−f d̂2 ∈ ∂Y 2
−f , d̂

2 > 0. Thus, ŷ2
−f =

y−f − ι−fd2 − d̂2 = y−f − ι−fd2, where d2 > 0 because y−f �∈ Y 2
−f .
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Let

φ(y | yf = −c, y−f ∈ Y 1
−f \ (∂Y 1

−f ∪ ∂Y 2
−f )) = {p ∈ S| p−f = 0,

∃ p1
−f ∈ φ1

−f (y−f + ι−fd
1), d1 > 0 � y−f + ι−fd

1 ∈ ∂Y 1
−f ,

∃ p2
−f ∈ φ1

−f (y−f − ι−fd
2), d2 > 0 � y−f − ι−fd

2 ∈ ∂Y 2
−f :

p−f =
d2

d1 + d2
p1
−f +

d1

d1 + d2
p2
−f}. (5.5)

Thus, φ(−c, y−f ) is a set of vectors (0, p−f ) where p−f is a convex combi-

nation of elements from φ1
−f (ŷ

1
−f ) and φ2

−f (ŷ
2
−f ) for ŷ1

−f , ŷ
2
−f as defined above.

The weights, d2

d1+d2
= 1− d1

d1+d2
and d1

d1+d2
= 1− d2

d1+d2
, are declining functions

of the relative distances of y−f from ∂Y 1
−f and ∂Y 2

−f respectively. If yν−f , ν =

1, 2, · · · , tends to y−f ∈ ∂Y i
−f , i ∈ {1, 2}, then 1 − diν

d1ν+d2ν
→ 1, ŷiν−f → y−f ,

and φ(−c, yν−f )→ {p ∈ S | pf = 0, p−f ∈ φi−f (y−f )}.
So, the correspondence φ(y) defined by (5.5) is u.h.c – see proposition 5 in

Hildenbrand (1974, p.25). It is clearly compact- and non-empty valued; it is

convex-valued, because the set of convex combinations of elements from two

convex sets is itself convex. So (P1) is verified by (5.5).

Ad (P2), note that p′i−f ŷ
i
−f ≥ 0 for pi−f ∈ S, by construction of φi−f (ŷ

i
−f ), i =

1, 2, hence for all p ∈ φ(y) as defined by (5.5), and

p′y = p′−fy−f =
d2

d1 + d2
p′1−f (y−f − ι−fd

1) +
d1

d1 + d2
p′2−f (y−f + ι−fd

2)

≥ −d2d1

d1 + d2
+

d1d2

d1 + d2
= 0.

So, (P2) is verified by (5.5). And (P3) is verified because pf ≡ 0. Thus, lemma

3.1 holds for φ(y) defined by (5.5).

It may also be noted that (5.4) is a special case of (5.5), which could as

well have been defined for y−f ∈ Y 1
−f \ ∂Y 1

−f .

4. When yf = 0, y−f ∈ Y 2
−f , it is again convenient to distinguish two sub-

cases.
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4.1 For y−f ∈ ∂Y 2
−f , let

φ(y | yf = 0, y−f ∈ ∂Y 2
−f ) = {p ∈ S | ∃ p̂−f ∈ φ2

−f (y−f ) :

pf ∈ [0, 1], p−f = (1− pf ) p̂−f}. (5.6)

By the argument spelled out under 3.1 above, lemma 3.1 applies to this cor-

respondence.

4.2 For y−f �∈ ∂Y 2
−f , let

φ(y | yf = 0, y−f ∈ Y 2
−f \ ∂Y 2) = {p ∈ S | pf = 1, p−f = 0}. (5.7)

Lemma 3.1 now applies trivially.

5. The correspondence φ(y) defined by (5.1)-(5.7) satisfies (P1), (P2) and

(P3) on the seven regions – labelled 1, 2, 3.1, 3.2, 3.3, 4.1 and 4.2 – defining

a partition of ∂Y. Accordingly, it satisfies (P2) and (P3) everywhere, and it

is c.c.n.v everywhere. To verify upper hemi-continuity at the common bound-

aries of these seven regions, we note the following:

(1) the relevant connections (the common boundaries) concern 1 and 3.2, 1

and 4.1, 2 and 3.1, 3.1 and 3.3, 3.2 and 3.3, 4.1 and 4.2;

(2) 1 and 3.2 rely on the identical pricing rules (5.1) and (5.4);

(3) 1 connects to 4.1 for pf = 0 in (5.6);

(4) 2 connects to 3.1 for pf = 0 in (5.3);

(5) 3.1 connects to 3.3, hence also to 3.2, for pf = 0 in (5.3) with d1 = 0 in

(5.5);

(6) 3.2 connects to 3.3 with d2 = 0 in (5.5);

(7) 4.1 connects to 4.2 for pf = 1 in (5.6).
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This completes the proof of lemma 5.1

Theorem 5.1 Under assumptions (DD), (A1), (A2), (A3’) and (A4), there

exists a Negishi equilibrium.

Proof Follows from theorem 2.1, remarks 2.1-2.2 and corollary 5.1.

The pricing rule is summarised in table 1 and illustrated in figures 2 and

3 for � = 3 : one output 1, one variable input 2 and one fixed input 3. The

technology without fixed costs is linear, for ease of interpretation of the figure.

Similarly, it is assumed that the matrix H verifies H11 = b < 0, Hij = 0 other-

wise. Accordingly, the locus “1+ι′Hy = 0” is simply 1+by1 = 0, y1 = −b−1. It

is represented by the dashed lines along which the horizontal plane y1 = −b−1

intersects the boundary of the production set. Figure 2 identifies the seven

regions 1, 2, ..., 4.2 of table 1. Figure 3 records the non-positive prices that

implement (P3) when the FOC are not satisfied. Only the conditions holding

in the general case are used.

6 Summary

We have investigated the existence of imperfect-competition equilibria à la

Negishi under some non-convexities in production. We rely on “pricing rules”,

which have proved useful in earlier work on equilibria with non-convex tech-

nologies. Under our rules, either profits are locally maximal given linear

perceived-demand functions, or else some price is zero or negative. Assum-

ing that all commodities are strictly desired, profits are locally maximal at

equilibrium. (A global maximum is not at hand without convexity.)25

We focus on production sets consisting of the sum of two convex sets, one of

which allows for fixed costs. Our methodology lends itself to generalisations,
25An equilibrium with yj ∈ ∂Y j1 could yield lower profits than some element of ∂Y j2 and

conversely; such global comparisons are not introduced here.
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like a finite sum of convex sets, each allowing (or not) for fixed costs. In

the light of an example (section 4), we assume that fixed costs (investments)

involve specific commodities. As an intermediate step, we study existence

of Negishi equilibria under convex technologies. Our assumptions generalise

those of Negishi. We do not retain his requirement of a single monopolistic

competitor in each market. Under extremely general assumptions, Negishi

equilibria exist, both in the convex case and in the presence of fixed costs.

(Competitive equilibria are a special case of Negishi equilibria.)
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TABLE 1

Case yf y−f ∈ pf p−f

(5.1) 1 0 > yf > −c ∂Y 2
−f 0 φ2

−f

(5.2) 2 < −c ∂Y 1
−f 0 φ1

−f

(5.3) 3.1 = −c ∂Y 1
−f [0, p̂−fy−f

c+p̂−fy−f
] (1− pf )φ1

−f

(5.4) 3.2 −c ∂Y 2
−f 0 φ2

−f

(5.5) 3.3 −c Y−f \ (∂Y 1
−f ∪ ∂Y 2

−f ) 0 see (5.5)

(5.6) 4.1 = 0 ∂Y 2
−f [0, 1] (1− pf )φ2

−f

(5.7) 4.2 0 Y 2
−f \ ∂Y 2

−f 1 0
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