
Nonparametric estimation of diffusion process:

a closer look

Orazio Di Miscia∗

20 December 2004

∗This research was carried out when the author was visiting the School of Economics
and Management at the University of Aarhus. This research has been supported by a Marie
Curie Fellowship of the European Community Programme Improving the Human Research
Potential and the Socio-Economic Knowledge Base under contract number HPMT-CT-
2000-00139. I would like to thank Bent Jesper Christensen and participants at the work-
shop “Topics in Applied Economics and Finance”, University of Aarhus. Only the author
is responsible for any omission and mistakes. E-mail orazio.dimiscia1@bancaintesa.it

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/9315985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

A Monte Carlo simulation is performed to investigate the finite sample
properties of a nonparametric estimator, based on discretely sampled
observations of continuous-time Ito diffusion process. Chapman and
Pearson (2000) studies finite-sample properties of the nonparametric
estimator of Aı̈t-Sahalia (1996) and Stanton (1997) and they find that
nonlinearity of the short rate drift is not a robust stylized fact but
it’s an artifacts of the estimation procedure. This paper examine the
finite sample properties of a different nonparametric estimator within
the Stanton (1997)’s framework.
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1 Introduction

The purpose of this paper is to design and perform a small Monte Carlo
simulation experiment to investigate the finite sample properties of a partic-
ular nonparametric estimator, based on discretely sampled observations, of a
continuous-time Ito diffusion process represented by the following stochastic
differential equation (SDE):

dXt = µ(X, t; θ)dt + σ(X, t; θ)dWt (1)

where {Wt, t ≥ 0} is a standard Brownian motion. The functions µ(·)
and σ2(·) are respectively the drift (or instantaneous mean) and the diffusion
(or instantaneous variance) functions of the process.

In particular, using the same philosophy of Stanton (1997) the simulation
study aims to investigate the performance of a slight different nonparametric
estimator for diffusion and drift functions.

The estimator is developed when only discretely sampled data of the
continuous-time diffusion process are available. The continuous record of
observations of the process between the sampling points is unobservable.
Therefore the data generating process (DGP) in this simulation study re-
quires that the explicit transition density functions of the diffusion processes
is known, in order that the realizations of the process can be observed at
discrete time along the exact continuous sampling path.

For this reason, the stochastic process is the Cox-Ingersoll-Ross squared-
root process for which the DGP is well-known.

Section 2 is devoted to summarize some theoretical aspects about the
estimation of the diffusion process from discretely sampled data, pointing
the attention to the difficulties to estimate the drift coefficient. Section 3
explains the nonparametric estimator and the strategies to select the optimal
bandwidth element. Section 4 show the Monte Carlo simulation results.

2 Estimation of the Diffusion Process from

Discretely Sampled Data

Estimation of the Ito diffusion process or stochastic differential equation
(SDE) has been considered in the literature for many years, with most of
the papers being concerned with estimating the drift and diffusion functions
from continuously sampled data. Unfortunately, in practice, more often than
not we can only obtain data in discrete time since the dynamics of the process
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can be much faster than the sampling rate. With discretely sampled observa-
tions from the continuous sampling path, identification and estimation of the
continuous-time Ito diffusion process proves to be much more complicated
and difficult.

Table 1— Some specifications of the interest rate process

µ(r) σ(r) Reference
β(α − r) σ Vasicek (1977)
β(α − r) σr1/2 Cox, Ingersoll, and Ross (1985)
β(α − r) σr Courtadon (1982)
β(α − r) σrλ Chan, Karolyi, Longstaff, and Sanders (1992)

β(α − r)
√

σ + λr Duffie and Kan (1996)

The first parametric estimator of the coefficients of a stationary diffusion
process from discretely sampled observations is the maximum likelihood es-
timator proposed by Dacunha-castelle and Florence-Zmirou (1986). Other
parametric estimators include the maximum likelihood estimators derived by
Lo (1988) for more general jump-diffusion processes, the method of moments
based on simulated sampling paths from given parameter values proposed by
Duffie and Singleton (1993) and many others.

The importance of the problem is also related to the wide usage of dif-
fusion processes in the finance literature, to model the dynamics of certain
financial variables, e.g., the stock prices, the exchange rates, and the term
structure of interest rates. Due to the estimation problem, however, all the
diffusion models in the finance literature have to rely on parametric or semi-
parametric specifications for the drift and diffusion functions in order to
implement available estimation methods based on discretely observed data
(see table (1) for some parametric specifications related to term structure
interest rate estimation).

Such specifications allow estimation of the parameters via the use of com-
mon parametric estimators, such as MLE, NLS (or OLS), or GMM. However,
the discussions and empirical results show that both parametric and semi-
parametric specifications impose very strong and unrealistic assumptions on
the underlying process of the model.

Even if the researcher takes into account these difficulties he should keep
in mind that the identification and estimation of the drift function requires
stronger conditions than the diffusion function. This is the so-called “alias-
ing problem” for a system of linear stochastic differential equations (SDE), as
discussed in Phillips (1973) and Hansen and Sargent (1983). Phillips (1973)
points out that, unless there are sufficient a priori restrictions on the pa-
rameters of a system of linear stochastic differential equations, we cannot
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distinguish between structures generating cycles whose frequencies differ by
integer multiples of the reciprocal of the observation period. Similarly, it
is impossible to identify a nonlinear diffusion process without imposing any
structural restrictions on the model. Especially, the drift term of the diffu-
sion process (univariate or multivariate) cannot be directly identified on a
fixed time interval, no matter how frequently the observations are sampled,
as the Cameron-Martin-Girsanov transformation (see Oksendal (1995)) can
always be applied to give an otherwise unnoticeable change in the drift.

Moreover to highlight again the difficulties about drift estimation, as
some authors have already observed (see Merton (1980)), even though the
diffusion term of a stochastic process can be estimated very precisely when
the sampling interval is small, the estimates of the drift term tend to have
low precision. The parametric estimates of the drift function specification
can perform very poorly even with large samples of data, no matter how
frequently the observations are sampled over a short sampling period. The
following example can help to illustrate the problem. Suppose that the short
term interest rate follows a Brownian motion with drift process:

dXt = µdt + σdWt

where µ and σ are constants. The maximum likelihood estimator of µ
from equispaced discretely sampled observations {Xt1=0

, Xt2 , . . . , Xtn=T
} is

the average of the log difference of short rate:

µ̂ = (1/T )
n

∑

i=1

log

(

Xti

Xti−1

)

µ̂ = (log XT − log X0)/T

It’s easy to verify that µ̂ is a consistent estimator of µ as µ|X ∼ N(µ, σ2/T ).
However, it is also very easy to see that, for any finite sample of observations,
µ̂ is very sensitive to the first and last observations of the sample and is ac-
tually determined only by these two values. Thus, if we have a sample of,
say, 5,000 observations, it is only the first and last observations that matter
for the estimate of µ. Moreover, µ̂ has no efficiency gains even if we increase
the sample size by reducing the sampling interval over fixed T .

Thus, it is not hard to see that the estimate of µ will not be robust in that
it will be very sensitive to the sampling path and/or the discrete observations
along the sampling path.

However, these difficulties has no worried the researcher since that great-
est attention was devoted to the diffusion function estimation.

One reason is that the diffusion function, as the second moment and
the measurement of instantaneous volatility of the stochastic process, is of
more interest in modelling the movements of interest rates, asset prices, or
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exchange rates. For instance, the volatility of the riskless interest rate is
one of the key determinants of the value of contingent claims and one of the
key factors determining optimal portfolio hedging strategies for risk-averse
investors. Therefore, to predict the movements of derivative security prices,
to hedge an investment portfolio, or to create a certain leverage within a
portfolio, the volatility of the prices of underlying assets is the major factor to
be considered. Another and maybe more direct reason is that, in the famous
Black-Scholes option pricing formula, the prices of derivative securities are
affected by the price of underlying assets only through its instantaneous
volatility, i.e. the diffusion function. The drift function does not appear in
the option pricing formula at all due to an assumption that, in the economy,
there exists a risk-free asset with non-stochastic rate of return.However as
Lo and Wang (1995) point out, predictability of an asset’s return is typically
induced by the drift and will affect the prices of options on that asset, even
though the drift term does not enter the option pricing formula. Moreover,
in models with stochastic spot interest rates, both the diffusion function and
drift function will enter the derivative security pricing formulation. Therefore
the prices of derivative securities in these cases are explicitly affected by the
price of underlying assets through not only the diffusion function but also
drift function. From this point of view, the drift function estimation is as
important as the diffusion function estimation.

However, to avoid some of the problems due to the parametric specifi-
cation of the diffusion process, a nonparametric approach has been recently
used.

The first nonparametric diffusion function estimator is proposed by Florens-
Zmirou (1993) which imposes no restriction on either the drift term or dif-
fusion term, but the procedure leaves the drift term unidentified and the
diffusion function estimator can not be used for the construction of the drift
function estimator. Aı̈t-Sahalia (1996) proposes a nonparametric diffusion
function estimator based on the linear mean-reverting drift function for the
strictly stationary diffusion processes. Stanton (1997) develops approxima-
tions to the true drift and diffusion functions and estimates these approxi-
mations nonparametrically.

3 The nonparametric estimator

Let {rt; t ≥ 0} be defined as the unique, time homogeneous Markov process
that solves a stochastic differential equation (SDE) of the form:

drt = µ(rt) + σ(rt)dBt
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where rt is the “instantaneous” or “short” rate, {Bt; t ≥ 0} is a scalar Brow-
nian motion, µ : R → R is the drift function and σ : R → R+. Following
Stanton (1997), drift and diffusion function are approximate using the fol-
lowing equation (first order approximation):

µ(rt) =
1

∆
Et[rt+∆ − rt] + O(∆)

σ(rt) =

√

1

∆
Vart(rt+∆ + O(∆)

where Et[·] and Vart(·) are the first and second conditional moments.
The essence of Stanton’s approach is to apply the Nadaraya-Watson (see

Nadaraya (1964) and Watson (1964)) kernel regression estimator to construct
nonparametric estimates of the conditional moments above.

The nonparametric estimator for the conditional moments used in this
paper is the local linear regression (see Loader (1999) and Härdle (1990)
for an extensive treatment). In this framework the analysis start with the
general form of the regression function:

Y = f(X) + ε (2)

where Y ∈ R
n is the response variable related to the sample predictor vari-

ables X = (x′

1,x
′

2, . . . ,x
′

n) with xi ∈ R
d and ε is an error term. The goal is

to estimate f(X) since that:

f(x) = E(Y|X = x)

the conditional moment used to approximate drift and diffusion function of
diffusion process.

Taylor’s theorem says that under mild condition is possible to approxi-
mate f(·) “locally” around a point, xi by a polynomial:

f(u) ≈ a0 + a1(u − xi) +
1

2
a2(u − xi)

2 + O(∆n)

with n = 2, . . ., u ∈ [(xi − h), (xi + h)] and h the width of the interval of xi.
A compact vector notation for polynomials is:

a0 + a1(u − xi) +
1

2
a2(u − xi)

2 = 〈a,A(u − xi)〉

where 〈·〉 is the inner product in the euclidean space and
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The coefficient vector, a, must be estimated for each point by minimizing
the locally weighted sum of squares. To implement the estimator is necessary
to fix a set of N grid points, {zi}N

i=1 defining an equally spaced partition of
a subset of the domain of f(·). The procedure minimize the sum of square
distance between each grid point, {zi} and the whole sample of predictor
variables. The sum of squares is weighted in order to impose less weight to
the sample points far from the {zi}.

It’s possible to restate the problem in matrix form. Rewrite the matrix
X in order to consider the polynomial approximation of f(X):

X =









A(x1 − zi)
′

A(x2 − zi)
′

· · ·
A(xn − zi)

′









Let consider the diagonal matrix W with the j-th entries wj(zi) = W (
xj−zi

h
).

The weighted sum of squares in order to estimate the coefficient vector a can
be written in matrix form:

arg min
a

(Y − Xa)′W(Y − Xa)

If WX has full column rank, least squares theory give the explicit expression:

â = (X′WX)−1X′WY

Considering zi = xi then the local regression estimation is:

â = e
′

1(X
′WX)−1X′WY

When matrix A has only one column it’s possible to show that â is the
Nadaraya-Watson estimator. This paper consider also the second column of
matrix A that permit to estimate the local linear regression.

The choice of the local linear regression is due to the well-known “bound-
ary bias” problem of the Nadaraya-Watson estimator and the superior per-
formance of local linear regression in this case. Chapman and Pearson (2000)
consider a boundary correction of the Nadaraya-Watson estimator but the
local linear regressor is simpler to estimate, due to the closed form and give
the same solution to the boundary-bias mentioned above.
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3.1 The optimal choice of the bandwidth parameter

In a kernel regression framework, the “parameters” to estimate are the kernel
function and the bandwidth (or smoothing) element. Empirical researches
confirm that the optimal kernel function does not improve significantly the
“fitting” but the bandwidth estimation is crucial (see Härdle (1990) and
Loader (1999) for details).

There is no single accepted approach to its selection and sometimes the
better choice depend on a visual inspection of the results obtained.

In this paper a data-dependent bandwidth selectors are used according
to different aspects to take into account1. For example, one element is the
selection of a bandwidth parameter when the kernel regression residuals are
correlated with the regressors. This is particular relevant when the researcher
analyze a time-series with short/long-rate dependency, a well-known empir-
ical regularity showed by almost all high frequency financial time series.

Opsomer, Wang, and Yang (2001) show that the presence of correlation,
if ignored, causes the break down of the commonly used automatic tuning
bandwidth selection. The bandwidth tend to be too small compared with
the theoretical optimal bandwidth. Roughly speaking, the nonparametric
regression “interpolate” instead of “fit” the data.

A common selection method is to use a version of the rule called cross-
validation, the “leave-k-out cross-validation” (hereafter LMO-CV where M
is for “many”). The first step in this procedure is to estimate the regression
function for a set of bandwidths {h1, . . . , h2}. The LMO-CV bandwidth is
the solution of the following problem:

arg min
hi

n−1

n
∑

t=1

(yt − f̂i(xt; hi))
2 (3)

where f̂i(xt; hi) is the “leave-k-out” estimator2. In particular, the conditional
moments at each data point is estimated using the entire sample, except for
the actual data point and its nearest neighbors3.

1The analysis of the statistical properties of different bandwidth selectors is not pursued
in this paper

2To be precise, it’s possible to rewrite the bandwidth element as: hi = c ∗ σ̂n−5 and
the algorithmic find the optimal ĉ (see Wand and Jones (1995))

3Due to serial dependence of the simulated data, the cross-validation is performed
omitting 100 observations, i.e., four months is either direction of the particular data point
in question. Even if the number of omitted observations should be calculated or “cali-
brated” in some way, this is what other authors do with interest rate data (see Boudoukh,
Richardson, Stanton, and WhiteLaw (1999) among others)
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An other selector method is the Partial Cross-Validation (PCV). It is
performed using eq. (3), without “leave-k-out” estimator. The strategy is
to partition the sample into N sub-samples and for each of j-th sub sample
find the minimum hi,j. The optimal bandwidth is the average of the single
hi,j (for detatils about LMO-CV and PCV see Loader (1999) and Plutowski
(2000)) .

In the paper other bandwidth choices have been used. The IID band-
width is optimal for IID data and it is defined as hIID = σ̂n−1/5, where σ̂
is the sample standard deviation of the data and n is the sample size. Fol-
lowing what is said above, it seems a poor choice but is useful to compare
the other bandwidths. The “Stanton bandwidth” is also used: it is the same
bandwidth used in Stanton (1997). In private communications with Chap-
man and Pearson he reported that the formula is the result of a heuristic
approach and it is equal to hStanton = 4σ̂n−1/5 (see Chapman and Pearson
(2000)).

The Monte Carlo simulations terminate analyzing the behaviour of other
three bandwidth parameter values: h(6) = 6σ̂n−1/5, h(8) = 8σ̂n−1/5, h(10) =
10σ̂n−1/5, h(14) = 14σ̂n−1/5. According to what has been said above, increas-
ing levels of the bandwidth give the possibility to take into account the serial
dependence that will be introduced in the simulation of the square-root pro-
cess with an ad-hoc choice of parameter set. Obviously this is an heuristic
way to evaluate the effect of the serial dependence on the bandwidth choice,
but on the other hand there is no single and accepted method to do this4.

4 Monte Carlo Study

4.1 Simulating a square-root process

In order to evaluate the performance of the Stanton (1997)’s estimator, this
paper consider the square-root process introduced in the term structure lit-
erature by Cox, Ingersoll, and Ross (1985) (CIR model):

dXt = κ(θ − xt)dt + σ
√

XtdBt

where θ defines the long-run mean of Xt, κ determines the speed at which
the process returns to the long-run mean, and σ is the instantaneous vari-
ance of the process. By construction, the drift of this process is linear. The
aim of the Monte Carlo study is to examine the finite sample properties of

4The last bandwidth use a scaling factor equal to 14. It is higher than the level used
by other authors with data-driven bandwidth selectors applied to interest rate data (see
Boudoukh, Richardson, Stanton, and WhiteLaw (1999)).
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the nonparametric diffusion function and drift function estimators. For a
set of parameter values, a simulated sample path is generated and based on
this sample the nonparametric estimators are applied. The simulated sample
paths are constructed assuming that the length of time between observations
of diffusion is ∆ = 1/250 corresponding to daily observations. Each path
simulate a daily time series of 7500 observations that correspond to an hy-
pothetical data set starting in 1973. The choice about the length is due to
the consideration that there are no longer and reliable data sets for proxies
of the short rate.

Practical implementation of the stochastic process simulation require the
specification of the data generating process (DGP) that is given by its transi-
tion probability density function and based on its eventual Markovian prop-
erty. In the case of CIR process the transition density is a non-central chi
squared). In all simulation, the first 1000 observations are discharged to
eliminate any start-up effects.

The unconditional moments of the square-root process are:

E(X) = θ

Var(X) =
θσ2

2κ

and
Corr(Xt+∆, Xt) = e−κ∆

The choice of κ, the parameter that determines the persistence of the
process, is particularly important. It is fixed at the value of 0.21459 that
implies a (monthly) autocorrelation of the short rate of 0.982, which is con-
sistent with U.S interest rate (see also Chapman and Pearson (2000)). θ is
not particular important and it is fixed to 0.085711 that correspond to the
level estimated in other papers (see Chapman and Pearson (2000)). Given
the value of θ and κ, σ is fixed in order to set the unconditional variance
equal to the sample variance in the Stanton (1997) data set (σ = 0.138213)

4.2 The Results

The results from applying the Stanton’s approximation to estimate the drift
and diffusion coefficients, using the local linear regression to estimate the
conditional moment, are shown in figure 1 through 4.

The figures have the following structure: figure 1 and 2 report the drift
coefficient estimates using 8 different bandwidths, while figure 3 and 4 are
relative to diffusion coefficient estimates.

11



In each pane, the solid line is the theoretical drift/diffusion coefficient.
The dash-dotted and two dotted lines are respectively the pointwise average
and the 2.5 th and 97.5 th percentile points at each grid point5.

Figure 1 and 2 show that, in all cases, the estimates exhibit some spurious
nonlinearities.

The PCV bandwidth delivers the best performance, but the average drift
function diverges from the linear drift for value of the short rate in excess
of 0.15 (15%). The IID bandwidth presents the most spectacular evidence
of spurious nonlinearity in the drift, Clearly hIID is a poor choice. This is
the proof that serial dependency can create serious problem for bandwidth
selection.

If drift estimation is the sole objective of the analysis, the prediction from
these simulations is clear: choose a large bandwidth that oversmooths the
kernel regression function (see figure 2). Of course, this is valid only if the
true drift is linear, because a large bandwidth obliterate all of the detail
in the estimated function. Even if the true drift had been nonlinear, the
oversmoothed estimator would have suggested linearity.

Figure 3 and 4 show the results for the diffusion function. Generally
speaking, they are the opposite of the drift case.

Using a PCV bandwidth is possible to obtain an estimate that mimic the
behaviour of theoretical diffusion coefficient. Also the IID estimator provides
an accurate estimate of the diffusion function. The nonparametric approach
seems particular indicated to estimate the instantaneous volatility of the
square-root process.

To conclude, the spurious nonlinearities exhibited by the kernel regression
at high and low level of the data range, are not related to the boundary-
bias problem that is eliminated using the local linear regression. Chapman
and Pearson (2000) give a possible explanation of these nonlinearities: the
truncation of the upper limit of any finite sample. Roughly speaking, if we
do not consider a theoretical infinite sample, the realizations of the process
cannot have a value greater than the highest value of the sample and this
generate the finite sample bias.

5 Conclusion

Robinson (1983) and Robinson (1986) establishes the pointwise consistency
of kernel regression estimators in a time series context. Therefore, a possible
explanation to spurious nonlinearities showed by drift coefficient estimates
could be the finite sample performance of the estimator.

5In the analysis the grid points are 32
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However, it is not possible to reject nonlinearities in the data: these tech-
nique seems ill equipped to provide reliable information about the properties
of any time series in the extreme tails of the distribution (see Chapman and
Pearson (2000)). This means that the statistical tools are inadequate to in-
vestigate the nonlinearity of the drift but this is not a proof for its linearity.

On the other hand, the local linear regression estimate the diffusion coef-
ficients in a good way and this is one of the advantage to use nonparametric
methods to estimate diffusion processes.

The conclusion is that, with the statistical tools adopted in this paper, is
not possible to obtain reliable conclusion about drift coefficient that seems
hard to estimate (see Merton (1980)). Even if recent researches have used
nonparametric techniques to reduce the number of arbitrary parametric re-
strictions imposed on the underlying process, there are some drawbacks, in
finite sample, that must be considered and eliminated.

Next step will be to consider a bandwidth selectors with a superior per-
formance when the data show short/long-rate dependency: in my opinion it
could be a great improvement.
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Figure 1— Drift function using local linear regression
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Figure 2— Drift function using local linear regression

0 0.05 0.1 0.15 0.2

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

r
t

µ

T=7500  Scale factor = 6

0 0.05 0.1 0.15 0.2

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

r
t

µ

T=7500  Scale factor = 8

0 0.05 0.1 0.15 0.2

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

r
t

µ

T=7500  Scale factor = 10

0 0.05 0.1 0.15 0.2

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

r
t

µ

T=7500  Scale factor = 14

16



Figure 3— Diffusion function using local linear regression
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Figure 4— Diffusion function using local linear regression
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