
IMPERFECT INFORMATION LEADS TO COMPLETE
MARKETS IF DIVIDENDS ARE DIFFUSIONS

By Frank Riedel 1

A pure exchange economy with a financial market is studied

where aggregate dividends are modeled as a diffusion. The dy-

namics of the diffusion are allowed to depend on factors which

are unobservable to the agents and have to be estimated. With

perfect information, the asset market would be incomplete

because there are more factors than traded assets. Imper-

fect information reduces the number of observable risks, but

also the number of admissible portfolio strategies. It is shown

that, as long as the observable dividend stream is a diffusion,

the asset market is complete. It is therefore possible to estab-

lish the existence of an equilibrium with dynamically complete

markets that leads to the same allocation as the Arrow-Debreu

equilibrium.

1. Introduction

It is known since the seminal work of Arrow (1953) that an asset mar-

ket reduces substantially the number of markets needed to reach effi-

ciency. In a continuous-time setting, an infinite number of contingent

forward markets is needed to establish an Arrow-Debreu-equilibrium

whereas a finite number of assets is sufficient to establish the same
1The author is grateful to Hans Föllmer, Thorsten Hens, and especially Marcel

Rindisbacher, my discussant at NASM 98 in Montreal, for useful advice. Finan-
cial support from Deutsche Forschungsgemeinschaft, Graduiertenkolleg Angewandte
Mikroökonomik, is gratefully acknowledged.
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Pareto-optimal allocation. In Brownian frameworks, the number of as-

sets needed to span a complete market is equal to the number of inde-

pendent Brownian motions plus one. If there are less assets, however,

some risks cannot be hedged, and markets are incomplete. Our point is

that imperfect information may help to overcome this deficiency of the

market.

The model starts with a market that contains some unhedgeable risks.

Essentially, this is displayed by the fact that there are more independent

Brownian motions than non-numéraire assets. I assume that the infor-

mation available to the agents is given by dividends and stock prices only.

All other risks are unobserved.

Imperfect information has two effects. First, it reduces the dimension

of the consumption space, because a consumption plan must be formu-

lated in observable terms. In this sense, it is easier to have a complete

asset market, since the number of observable risks to hedge is smaller.

On the other hand, the space of admissible portfolios is also smaller.

This makes it more difficult to have a complete market.

The question naturally arises which one of the effects dominates and

whether complete markets might result. We show that one has almost

always complete markets if trading occurs continuously and dividends

and asset prices are continuous semimartingales.

Continuous-time asset markets with imperfect information have been

previously studied in a number of papers. The contributions of Detemple

(1986), Dothan and Feldman (1986) and Feldman (1989) study a produc-

tion economy where an unobservable factor is explicitly modeled as an

autoregressive process. They describe the filtering procedure used by
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the agents and derive the corresponding equilibria. They assume, how-

ever, that a complete asset market is exogenously given whether there is

perfect information or not.

Karatzas and Xue (1991) have a model where the number of indepen-

dent Brownian motions also outnumbers the number of assets. They take

asset prices as exogenously given and show that the utility maximization

problem of a single agent, who observes asset prices only, is equivalent

to the corresponding problem with complete asset markets and a smaller

consumption space. Their paper inspired my approach. The difference

is that I develop the full equilibrium with heterogeneous agents where

asset prices are derived endogenously.

The paper is organized as follows. The next section describes the

model. In Section 3, the estimating procedure of rational Bayesian agents

is developed. An important martingale representation result is imported

from Filtering Theory which is the key fact needed to show market com-

pleteness later on. The well known Negishi method is used in Section 4 to

find an Arrow-Debreu equilibrium for the economy. Section 5 is devoted

to the proof of market completeness. The well-known argument of Duffie

and Huang (1985) is used to show how the Pareto efficient allocation of

the Arrow-Debreu equilibrium can be supported by a Arrow-Radner equi-

librium.

2. A Competitive Financial Market with Imperfect Information

Some people come together on a market place. All of them own a share

of a stock paying aggregate output of the economy as a dividend. Agents

know the dividends paid by the index in the past. There may be other fac-

tors determining the course of the economy, but these are not observable
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to the agents in my model.

There is one perishable good for consumption and investment. The

horizon of the economy is T < ∞. Uncertainty is modeled by a filtered

probability space (Ω,A, P , (Ft)t≥0) endowed with a k-dimensional Brow-

nian motion W adapted to F . In addition, there is a F0-measurable ran-

dom variable η taking values in Rl. Being F0-measurable, η is indepen-

dent of the Brownian motion W .

Aggregate output K of the economy is exogenously given and grows

at a rate X, that is

dKt
Kt

= dXt , K0 = 1 .(1)

The evolution of X is described by the stochastic differential equation

dXt = φ(X,Y)tdt +
k∑
ι=1

ξι(X)tdWι
t

X0 = 0 .(2)

X depends in general also on other factors, Y , described as an Rl-valued

stochastic process. Y is modeled as the solution to

dY ι = µι(X, Y)tdt +
k∑
κ=1

ζικ(X, Y)tdWκ
t (ι = 1 . . . l)

Y0 = η .(3)

Here, φ and µ are R and Rl-valued, respectively. The diffusion coeffi-

cients ξ and ζ take their values in Rk and Rl×k, resp. It is assumed that

the functionals φ,µ, ξ,and ζ appearing above are nonanticipative, and

satisfy a global Lipschitz condition in the sense of the following defini-

tion(compare (Protter 1995, p. 195)):

Definition 2.1 Let L be the space of continuous, F -adapted processes.

A functional υ : Lm → Ln is called
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• nonanticipative, iff for all A,B ∈ Lm and all stopping times τ ,

Aτ = Bτ ⇒ υ(A)τ = υ(B)τ ,

• Lipschitz, iff there exists an increasing process K such that for all

A,B ∈ Lm,

‖υ(A)t − υ(B)t‖Rn ≤ Kt sup
s≤t

‖As − Bs‖Rm a.e.

The system (2) (3) has a pathwise unique, strong solution, compare Prot-

ter, Theorem 7, p. 197.

Remark 2.1 It is crucial for our result, that the diffusion coefficients ξι(X)t

do not depend on the unobservable process Y , see (Kunita 1979). The

author is grateful to Marcel Rindisbacher for pointing this out.

The random variable η may be interpreted as containing the values

of some unknown parameters of the diffusion model.

Next, we assume that the diffusion coefficient is bounded away from

zero:

Assumption 2.1 The diffusion coefficient ξ is strongly nondegenerate:

there is an ε > 0 with
∥∥ξ(X)t∥∥ ≥ ε a.e.(4)

Finally we impose an integrability condition on the solution X of the

stochastic differential equation (2):

Assumption 2.2

E
∫ T

0

∣∣φ(X,Y)t∣∣dt < ∞

E
∫ T

0

∥∥ξ(X)t∥∥2dt < ∞ .
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This assumption is satisfied, if the coefficients of the stochastic differen-

tial equation satisfy a linear growth condition.

All publicly available information is contained in the growth rate of

aggregate output X, the factors Y are unobservable. Denote by Gt = FXt+
the right-continuous filtration generated by X. Let O(G) denote the σ -

field of all events A ∈A⊗B([0, T ]) which are progressively measurable

with respect to the observation filtration G. Henceforth, every event A ∈
O(G) and every O(G)-measurable process are called observable.

I agents live in the economy characterized by a state-independent

felicity function ui(t, c). Agents are risk averse and felicity functions

are smooth:

Assumption 2.3 The felicity functions ui : R+ × R+ → R are in C2,3; for

all t, ui(t, ·) is strictly increasing and strictly concave.

In addition, we impose the Inada-condition2 on the felicity function to

simplify the analysis:

Assumption 2.4 Marginal felicity is infinite at zero:

lim
c→0

∂
∂c
ui(t, c) = ∞ .

According to their preferences, agents choose a consumption rate

(ct(ω)) which has to be an observable, square integrable process. The

consumption space is

L =
{
c ∈ L2(Ω × [0, T ],O(G), P ⊗ dt) : c ≥ 0 P ⊗ dt − a.e.

}
.

2The assumption 2.4 leads to interior solutions for the maximization problems
and allows the use of differential methods. In principle, it is possible to treat the
case of finite marginal utility at zero, too, cf. (Karatzas, Lehoczky, and Shreve 1990).
However, we did not want to burden the argument with the technical difficulty of a
mixture of both types of felicity functions because it is not the essential point in the
argument.
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This space is smaller than the space with perfect information since con-

sumption plans are not allowed to depend on the unobservable factors Y .

The felicity function ui induces a preference ordering over L represented

by a von Neumann-Morgenstern type utility function Ui:

Ui(c) = E
∫ T

0
ui(t, ct)dt .(5)

In the literature on existence of equilibria it is typically assumed that

the aggregate output process K is bounded away from zero, cf. (Duffie

1986), (Duffie and Zame 1989) and (Karatzas, Lehoczky, and Shreve 1990).

Here, K is strictly positive because it is equal to

Kt = exp
(
Xt − 1

2
[X]t

)

= exp

(∫ t
0
ξ(X)udWu +

∫ t
0

(
φ(X,Y)u − 1

2

∥∥ξ(X)u∥∥2 du
))
,(6)

but it need not be bounded away from zero. We replace the boundedness

assumption with the weaker

Assumption 2.5 Marginal felicities of initial endowments are square in-

tegrable:
∂
∂c
ui(t, eit) ∈ L .

The assumption ensures that marginal felicities give rise to positive

and linear price functionals on L. This is needed to ensure the existence

of an Arrow-Debreu equilibrium for the economy, compare (Aliprantis

1997) and (Mas-Colell and Zame 1991, especially Example 6.5).

Agents have two investment possibilities. On the one hand, there is

the risky stock yielding the dividend K. It is traded at some price S.

Moreover, there is a market for lending and borrowing at a short rate r ,

an observable process. βt = exp(
∫ t
0 rudu) is called the money market
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account. The space of admissible asset prices is the space of observable

Itô-processes. This class is large enough to contain possible equilibrium

prices S and β, which are determined endogenously.

Agent i initially owns a share si of the index, 0 < si ≤ 1. If she does

not trade at all, she receives dividends at a rate eit = siKt. The shares

add up to 1,
∑I
i=1 si = 1.

A spot market for the consumption good opens at every point in time

t where the consumption good is traded at a price ψ, taken here to be

an Itô-process like S. Using ψ as a state-price deflator, the deflated gain

process for the index is

Gt = Stψt +
∫ t

0
Kuψudu

and the deflated value of the money market account is

Ht = βtψt .

Definition 2.2 The triple of observable processes
(
θ1, θ2, c

)
is called a

portfolio/consumption strategy at initial cost x ≥ 0 if

c ∈ L(7) ∫ T
0

∣∣∣θ1
u

∣∣∣2
d[G]u < ∞ a.e.(8)

∫ T
0

∣∣∣θ2
u

∣∣∣2
d[H]u < ∞ a.e.(9)

and the deflated value of the portfolio Vt = (θ1
t St + θ2

t βt)ψt satisfies

Vt = x +
∫ t

0
θ1
udGu +

∫ t
0
θ2
udHu −

∫ t
0
cuψudu(10)

for all t Vt ≥ 0 a.e.(11)

If (θ1, θ2, c) is a portfolio/consumption strategy at cost x̃ ≤ x, then c

is said to be affordable at cost x.The set of all consumption streams

affordable at cost x if prices are (S, β,ψ) is denoted by C(x, S, β,ψ).
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Remark 2.2 To avoid the usual change of numéraire argument, the de-

flated model is used right from the definition of portfolio processes.

Given the initial value S0 of the index, agents are endowed with a cap-

ital xi = siS0. They choose a consumption strategy that maximizes their

utility over all strategies which are affordable at cost xi. In equilibrium,

markets clear.

Definition 2.3 An Arrow-Radner equilibrium consists of asset prices (S,

β), a spot price for the consumption goodψ and portfolio/consumption

strategies
(
θ1i, θ2i, ci

)
i=1,...,I such that agents are rational,

ci ∈ arg maxd∈C(xi,S,β,ψ)Ui(d) ,

and all markets clear:

I∑
i=1

θ1i = 1 P ⊗ dt − a.e.
I∑
i=1

θ2i = 0 P ⊗ dt − a.e.
I∑
i=1

ci = K P ⊗ dt − a.e.

Since our focus is on market completeness, we give the definition of

completeness we need here:

Definition 2.4 Let the prices (S, β,ψ) be given. The asset market is

called complete if for all c ∈ L there exists a portfolio (θ1, θ2) that fi-

nances c at some initial cost x, formally

L = ∪x≥0C(x, S, β,ψ) .

3. Updating Your Beliefs - The Innovation Process
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Faced with imperfect information, the agents engage in Bayesian in-

ference. They do not observe the drift coefficientφ, but rather estimate it

on the basis of the observed realizations (Xs)s≤t of the rate of aggregate

output growth. The difference between the observed growth rate and the

estimated drift, dXt−πtdt, is white noise in the sense that it is a martin-

gale differential. This martingale is a stochastic integral with respect to

an observable Brownian motion Ŵ , called the innovation process in Fil-

tering Theory. As we shall show, it has an important spanning property,

also called the martingale representation property; every observable lo-

cal martingale is a stochastic integral with respect to Ŵ . The spanning

property is the key to complete markets, as the following sections will

demonstrate.

We start by simplifying a bit the representation of the observed pro-

cess X. Set σ(X)t =
∥∥ξ(X)t∥∥.

Lemma 3.1 The process

Bt :=
k∑
ι=1

∫ t
0

ξι(X)u
σ(X)u

dWι
u

is a Brownian motion with respect to (Ft).

Proof : By assumption 2.1, σ(X) > 0a.e. Moreover,

E
∫ T

0

ξι(X)2u
σ(X)2u

du ≤ T <∞ .

B is therefore well defined and a continuous martingale with quadratic

variation [B]t = t. By Lévy’s theorem (Theorem 3.16 of (Karatzas and

Shreve 1991)), B is a Brownian motion. �

The observed process has a representation

Xt =
∫ t

0
φ(X,Y)udu+

∫ t
0
σ(X)udBu
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according to the preceding Lemma. Let

πt = E
[
φ(X,Y)t

∣∣Gt]

be the agents’ estimate of the unobservable driftφ. The remainder which

is not ”explained” by the estimate π is Mt = Xt −
∫ t
0 πudu.

Lemma 3.2 M is an observable martingale with quadratic variation

[M]t =
∫ t

0
σ(X)2udu .

Proof : M is observable, since so are X and π . By Assumption 2.2,

M is integrable. For t, s > 0, we have

E [Mt+s −Mt|Gt] = E
[∫ t+s

t
σ(X)udBu +

∫ t+s
t
(φu −πu)du

∣∣∣∣∣Gt
]
=

= E
[
E
[∫ t+s

t
σ(X)udBu

∣∣∣∣∣Ft
]∣∣∣∣∣Gt

]
+
∫ t+s
t
E
[
E [φu|Gu]−πu

∣∣Gt]du = 0 .

Hence,M is a martingale. Its quadratic variation is equal to the quadratic

variation of X, since the difference M −X is of bounded variation. �

Corollary 1 The process

Ŵt =
∫ t

0

1
σ(X)u

dMu(12)

is an observable Brownian motion.

Proof : The stochastic integral is well defined because of

E
∫ T

0

1
σ(X)2u

d [M]u = T <∞.

Moreover, the process Ŵt defined by (12) is a continuous martingale with

quadratic variation [
Ŵ
]
t
= t .
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We conclude, again by Lévy’s theorem, that Ŵ is a Brownian motion. �

According to the preceding Corollary, the canonical decomposition of

X in observable terms is

Xt =
∫ t

0
πudu+

∫ t
0
σ(X)udŴu.

In principle, we are now back in the standard model with perfect infor-

mation. The only thing which remains to be shown, is the martingale

representation property. It is, a priori, not clear, whether the innovation

process Ŵ is a basis for the space of observable martingales. However,

this is, as long as the diffusion coefficient depends only on the observable

process X, the case:

Theorem 3.1 Every observable local martingale N admits a representa-

tion

Nt = N0 +
∫ t

0
θudŴu(13)

for some observable process θ with

∫ T
0
θ2
t dt <∞ P − a.e.

The proof is given in the Appendix.

4. Existence of an Arrow-Debreu Equilibrium

In the last section, it was demonstrated how the agents deal with

the arrival of new information. A second important step is to establish

the existence of an Arrow-Debreu equilibrium. If the asset market is

complete, a point which shall be demonstrated in the next section, it
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is possible to implement the allocation of this equilibrium in an Arrow-

Radner equilibrium.3

Imperfect information poses no problem to general equilibrium the-

ory. The agents know that they can only demand consumption streams

of the type ct = ct((Xs)s≤t) which depend on the information carried by

X only. Thus, the filtration F one uses for defining the concept of equi-

librium given perfect information is replaced with the smaller filtration

G. The same argument as in the case of perfect information yields the

existence of an equilibrium.

In the general equilibrium framework, ei = siK is the endowment of

agent i. Equilibrium is defined thus

Definition 4.5 An Arrow-Debreu equilibrium consists of a positive lin-

ear functional Ψ : L → R and an allocation (ci)1≤i≤I such that the con-

sumption market clears,
∑
i ci = K , and agents maximize utility over all

consumption bundles d, which are budget feasible:

ci ∈ arg max
Ψ(d)≤Ψ(ei)

Ui(d)

Remark 4.3 The classical existence proof of (Arrow and Debreu 1954) is

not valid here because the consumption space is infinite dimensional. Yet,

the existence theory for infinite dimensional commodity spaces with a finite

number of agents is by now well understood, even though infinite marginal

felicity at zero was not covered by the first proofs. For a survey of general

equilibrium theory with infinite dimensional commodity spaces, refer to

3This argument has been introduced into the literature on continuous-time markets
by (Duffie and Huang 1985). The idea goes back to (Radner 1972) and (Arrow 1953),
who proved in a discrete-time setting how financial assets economize on the number
of markets needed to reach efficiency.
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the article by (Mas-Colell and Zame 1991). (Dana 1993) treats the case of

additive smooth felicity functions with infinite derivative at zero.

The method of proof we use to establish the existence of an Arrow-

Debreu equilibrium was invented by Negishi (1960). It uses the social

welfare properties of equilibria to establish the existence of an equilib-

rium.

Definition 4.6 An allocation (ci)i=1,...,I ∈ LI is Pareto efficient if it is

market clearing,
∑
i ci = K , and it solves the social welfare problem

∑
i

λiUi(di) = max∑
di=K

(14)

for some vector λ ∈ ∆I−1 = {z ∈ RI ;zi ≥ 0,
∑
zi = 1

}
.

Remark 4.4 The set of efficient allocations is described by vectors λ in

a compact, convex subset of the finite dimensional space RI . The typi-

cal fixed-point argument will be carried out on this space. By use of this

trick, the problems caused by the infinite dimensional commodity space

are avoided.

Let us solve the social welfare problem (14) for arbitrary aggregate

endowments e.

Lemma 4.3 Let λ� 0. The value function

Ū(e;λ) = max∑
i di=e,di∈L

∑
λiUi(di)

has a von Neumann-Morgenstern representation

Ū(e;λ) = E
∫ T

0
v(t, et, λ)dt .
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The felicity function v(t, x,α) is the solution of

v(t, x,α) = max∑
yi=x

∑
i

αiui(t,yi) .(15)

v is strictly increasing and strictly concave in x. It is three times contin-

uously differentiable in x and α and twice continuously differentiable in

t.

The solutions yi(t, x,α) of (15) are determined by the conditions

αi
∂
∂y
ui(t,yi) = ν(16)

∑
yi = x(17)

for a suitable Lagrange multiplier ν . The marginal felicity is

∂
∂x
v(t, x,α) = ν .(18)

The proof is standard.

The function Ū has the properties of a utility function as the preceding

lemma shows. Therefore, it is usually interpreted as the utility function

of a representative agent.

The Negishi method is inspired by the second welfare theorem: Every

Pareto efficient allocation can be sustained as an equilibrium with trans-

fer payments. It is possible to redistribute wealth among the agents and

to define a price Ψ in a manner that Ψ is an equilibrium price for the

allocation. If for some allocation, no transfer payments are needed, an

equilibrium is found.

Denote by ci(λ)t = yi(t,Kt, λ) the Pareto efficient allocation associ-

ated with λ. The candidate for the price process ψ(λ) is the marginal

felicity of the representative agent at aggregate endowment. Set

ψ(λ)t = ∂
∂x
v(t,Kt, λ) .(19)
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The money agent i needs in addition to his endowment ei to buy the

consumption stream ci(λ) is given by bi(λ) = E ∫ T0 ψ(λ)t(ci(λ)t − eit)dt.
If bi(λ) units of money are given to or taken from agent i, then she is

able to afford ci(λ). Note that the sum of payments is
∑
i bi(λ) = 0. The

final step consists in looking for a zero of the transfer map b.

Theorem 4.2 There is a strictly positive vector λ? � 0 with b(λ?) = 0.

In particular, (Ψ(λ?), c(λ?)) is an Arrow-Debreu equilibrium.

The proof follows from the standard fixed-point argument applied

to the (finite-dimensional) function ε defined by ε(λ)i = 1
λi b

i(λ), which

has the properties of an excess demand function, compare (Dana 1993,

Section 2, especially Theorem 2.5).

5. Completeness of the Market and Existence of a Financial

Equilibrium

The Arrow-Debreu equilibrium derived in the last section yields an effi-

cient allocation c(λ) which is achieved if a complete set of forward mar-

kets exists at time 0. In the following, the Arrow-Debreu price process

ψ = ψ(λ) is used as a state-price deflator. Note that by (19)

ψ(λ)t = ∂
∂x
v(t,Kt, λ)(20)

and according to Lemma 4.3 ψ is a smooth function of Itô-processes,

hence itself an Itô-process with some representation dψ = α1dt+α2dŴ .

If ψ is used as a deflator, βψ is a local martingale. Having this in

mind, define the short rate r and the market price of risk p as

r = −α
1

ψ
(21)
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and

p = −α
2

ψ
,

hence

dψ
ψ

= −rdt − pdŴ .(22)

Note thatψ is continuous and strictly positive. For almost allω, the path

(ψt) is bounded away from zero. Therefore, the integrals
∫ T
0 |ru|du and∫ T

0 p2
udu exist almost surely.

Thus,

Ht = exp

(
−
∫ t

0
pudŴu − 1

2

∫ t
0
p2
u du

)

and βt = exp
(∫ t

0 rudu
)

are well defined. Note thatH is the deflated value

of the money market account β because of

ψβ = H .

Define the ex-dividend price of the index as

Stψt := E
[∫ T

t
Kuψu du

∣∣∣∣∣Gt
]
.(23)

The associated deflated gain process G is the observable martingale

Gt = E
[∫ T

0
Kuψu du

∣∣∣∣∣Gt
]
.

Being a positive martingale, G has a representation

Gt = G0 −
∫ t

0
γuGudŴu(24)

by Theorem 3.1.

The two assets give rise to two local martingales and there is one

Brownian motion Ŵ which generates the space of martingales. The usual
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argument along the lines of Black and Scholes (1973) allows to establish

the completeness of the market as long as the diffusion coefficients sat-

isfy a certain condition.

Theorem 5.3 If

pSψ 6= γG P ⊗ dt − a.e.(25)

holds, then the asset market is complete. The initial capital needed to

finance a consumption stream c ∈ L is given by the Arrow-Debreu price

Ψ(c) = E ∫ T0 ψtct dt.
Proof : Let c ∈ L be given. The martingale

Mt = E
[∫ T

0
ctψtdt

∣∣∣∣∣Gt
]

(26)

is a stochastic integral by Theorem 3.1:

Mt = Ψ(c)+
∫ t

0
mudŴu .(27)

Set

Vt = E
[∫ T

t
cuψu du

∣∣∣∣∣Gt
]

(28)

For (t,ω) fixed, let θ1, θ2 be the solution to the linear system

− θ1γG − θ2pH = m(29)

θ1Sψ+ θ2H = V .(30)

The system has almost always a solution because the determinant is

H(−γG + pSψ) 6= 0
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by assumption (25). V is the deflated value of the portfolio formed by

(θ1, θ2) because of (30). By (28), V is nonnegative and equal to

Vt = Mt −
∫ t

0
cuψudu ,

by (26). (27) yields

Vt = Ψ(c)+
∫ t

0
mudŴu −

∫ t
0
cuψudu .

Use (29) to obtain

Vt = Ψ(c)−
∫ t

0
(θ1
uγuGu + θ2

upuHu)dŴu −
∫ t

0
cuψudu

= Ψ(c)+
∫ t

0
θ1
udGu +

∫ t
0
θ2
udHu −

∫ t
0
cuψudu .

Hence, (θ1, θ2) finances c at initial cost Ψ(c). �

With complete asset markets, it is possible to finance all consumption

streams by trading in the asset market. It is no wonder then, that the

Pareto efficient allocation of the Arrow-Debreu equilibrium is also the

allocation of a financial equilibrium. Denote by

C̃(e,Ψ) = {c ∈ L;Ψ(c) ≤ Ψ(e)}

the budget set of an agent with endowment e in the Arrow-Debreu frame-

work where Ψ is the price functional associated with ψ.

Lemma 5.4 The budget sets in the Arrow-Debreu- and the Arrow-Radner

framework coincide:

C(x, S, β,ψ) = C̃(ei,Ψ) .

Proof : Remember that the initial capital is the same in both cases:

xi = siS0 = siE
∫ T

0
Ktψt dt = Ψ(ei) .
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If c is budget-feasible in the Arrow-Debreu sense, c ∈ C̃(ei,Ψ), then, by

Theorem 5.3, there exists a portfolio (θ1, θ2) that finances c at initial cost

Ψ(c) ≤ Ψ(ei) = xi. Hence, c ∈ C(xi, S, β,ψ).
If, on the other hand, (θ1, θ2, c) is a portfolio at initial cost x ≤ xi,

then the sum of the deflated value V of the portfolio and cumulated

consumption is

Vt +
∫ t

0
cuψudu = x +

∫ t
0
θ1
udGu +

∫ t
0
θ2dHu .

Because of V ≥ 0, the right-hand side is a nonnegative local martingale,

hence a supermartingale. It follows

Ψ(c) = E
∫ T

0
ctψt dt ≤ E

(
VT +

∫ T
0
cuψudu

)
≤ x

and c ∈ C̃(ei,Ψ). �

The Arrow-Radner equilibrium cannot be far away - and here it is:

Theorem 5.4 If the condition (25) holds, there is an Arrow-Radner equilib-

rium with the allocation c(λ) of the Arrow-Debreu equilibrium of Theorem

4.2 and asset prices S and β as defined in (23) and (21).

Proof : Choose portfolio strategies (θ1i, θ2i) that finance ci for agent

i at cost xi = siS0 as in the proof of Theorem 5.3. In particular, the

deflated value of i’s portfolio is

Vit = E
[∫ T

t
ciuψudu

∣∣∣∣∣Gt
]
.(31)

Since the budget sets coincide by Lemma 5.4, ci maximizes utility over all

affordable consumption streams for agent i. The consumption market

clears because c is the allocation of an Arrow-Debreu equilibrium. It
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remains to show that the asset market clears. Set θ1 =∑i θ1i, θ2 =∑i θ2i

and V =∑i V i. Then

Vt =
∑
i

(
siS0 +

∫ t
0
θ1i
u dGu +

∫ t
0
θ2i
u dHu −

∫ t
0
ciuψudu

)

= S0 +
∫ t

0
θ1
udGu +

∫ t
0
θ2
udHu −

∫ t
0
Kuψudu

= S0 +Gt −G0 +
∫ t

0
(θ1
u − 1)dGu +

∫ t
0
θ2
udHu −

∫ t
0
Kuψudu

= Stψt +
∫ t

0
(θ1
u − 1)dGu +

∫ t
0
θ2
udHu .

On the other hand, (31) and the clearing of the consumption market imply

Vt = E
[∫ T

t
Kuψudu

∣∣∣∣∣Gt
]
= Stψt .(32)

Hence, for all t

0 =
∫ t

0
(θ1
u − 1)dGu +

∫ t
0
θ2
udHu .

Therefore, the quadratic variation is zero, too:

(θ1 − 1)2γ2G2 + (θ2)2p2H2 = 0a.e.

pt = γt = 0 is precluded almost everywhere by condition (25); Therefore,

θ1
t = 1 or θ2

t = 0 and what is needed is that both equations hold. But if

θ1
t = 1 then by the definition of the portfolio value Vt = Stψt +θ2

t Ht and

by (32), θ2
t = 0. If θ2

t = 0, then Vt = θ1
t Stψt and again by (32) θ1

t = 1. The

asset market clears. �

6. Conclusion

The main result of the paper is that imperfect information can lead to

dynamically complete asset markets if the only information available to

the agents is the dividend stream paid by the traded assets and if this
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dividend stream is a diffusion, that is a continuous stochastic process

whose dynamics are driven by a Brownian motion. Faced with imper-

fect information, rational agents engage in Bayesian inference about the

unobservable factors. In particular, they are able to obtain an observ-

able white noise process - called the innovation process in filtering the-

ory. It turns out that this process is sufficient to describe all the ob-

servable noise - technically, this process is a martingale generator. As

long as a genericity condition holds, it follows that the equilibrium stock

price is also a martingale generator and by the familiar argument one can

construct an Arrow-Radner type stochastic equilibrium that leads to the

same allocation as the Arrow-Debreu equilibrium.
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APPENDIX

1. Proof of the Martingale Representation Property

Let G∞ = σ
(⋃∞

t=0Gt
)

be the information generated by the observed

process from zero up to infinity. Consider the measurable space (Ω,G∞)
in conjunction with the filtration G and the observed process X.

Definition A.7 Let A,B be two continuous, observable processes and

x ∈ R. A probability measure Q on (Ω,G∞) is called a solution to the

martingale problem (x,X,A, B),if

1. X0 = x Q− a.e.,

2. Mt := Xt − x −At is an observable local martingale with respect to

Q,

3. [M]t = Bt Q− a.e.

It is clear from (2) and Lemma 3.2, that P is a solution to the martingale

problem
(
0, X,

∫ t
0 πsds,

∫ t
0 σ(X)2sds

)
.

Lemma A.5 P is the unique solution (on G∞) of the martingale problem(
0, X,

∫ t
0 πsds,

∫ t
0 σ(X)2sds

)
.

Proof : Let Q be a solution of the martingale problem(
0, X,

∫ t
0 πsds,

∫ t
0 σ(X)2sds

)
. Then, the process Mt = Xt −

∫ t
0 πsds is a lo-

cal martingale under Q with quadratic variation [M]t =
∫ t
0 σ(X)2udu .

Proceeding as in Corollary 1, one shows that W̃t =
∫ t
0 σ(X)−1

u dMu is a

Brownian motion under Q. The stochastic differential equation

Zt =
∫ t

0
πsds +

∫ t
0
σ(Z)sdŴs(33)
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has a pathwise unique, strong solution, compare Protter, Theorem 7,

p.197. By a result of Yamada and Watanabe (1971), pathwise unique-

ness yields uniqueness in the sense of probability law. Since(
(X, Ŵ), (Ω,G∞, P), (Gt)

)
and

(
(X, W̃), (Ω,G∞,Q), (Gt)

)
are two weak so-

lutions of the stochastic differential equation (33), we have L(X|P) =
L(X|Q) , and P = Q (on G∞) follows. �

Corollary 2 For every observable local martingale N there exists an ob-

servable process θ with
∫ T

0
θ2
udu < ∞ P − a.e.

Nt = N0 +
∫ t

0
θudŴu .

Proof : By Theorem 2 of (Jacod 1977) and the preceding Lemma A.5,

every locally square integrable martingaleN can be written as a stochastic

integral with respect to the martingale Mt = Xt −
∫ t
0 πsds :

Nt = N0 +
∫ t

0
θ̂udMu(34)

for some M-integrable process θ̂. Since we have dMt = σ(X)tdŴt,

Nt = N0 +
∫ t

0
θudŴu

follows with θt = θ̂tσ(X)t. It remains to extend this property to all local

martingales. This is done by showing that the martingale representation

of locally square integrable martingales implies the continuity, hence lo-

cal square-integrability, of all local martingales(compare the methodol-

ogy in Protter, Section IV.,3). Let N be a local martingale and (τn) a

fundamental sequence. For fixed n, set Z := Nτn∞ 1{τn<∞}. Define

ÑJt := E [Z1{|Z|≤J}
∣∣Gt] .
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Then ÑJ is a bounded martingale, hence continuous by the martingale

representation (34). By Doob’s submartingale inequality,

P
(

sup
t≤T

∣∣∣ÑJt −Nτnt
∣∣∣ > ε

)
≤ ε−1E

[∣∣∣ÑJ∞ −Nτn
∣∣∣] -→J→∞ 0 .

Hence, there is a subsequence (ÑJk) which converges uniformly to Nτn

a.e., and Nτn is continuous. This property extends to N and we are done.

�
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