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Abstract. Recently there has been some interest in the credit risk lit-
erature in models which involve stopping times related to excursions.
The classical Black-Scholes-Merton-Cox approach postulates that de-
fault may occur, either at or before maturity, when the firm’s value
process falls below a critical threshold. In the excursion approach the
duration of default, the time period from the financial distress announce-
ment through its resolution, is explicitly modeled. In this contribution,
we provide a review of the literature on excursion time models of credit
risk. Moreover, we examine the effects on credit spreads structure of
different specifications of the event that triggers default.
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1 Introduction

Default risk is a crucial determinant of the values of bonds. A variety of ap-
proaches have been proposed in the literature with the aim of evaluating de-
faultable debt and trying to better explain the process that drives default.

In the class of structural credit risk models, based on the works of Black and
Scholes (1973) [3], Merton (1974) [24], and Black and Cox (1976) [2], default
occurs, either at or before maturity, if the firm’s value is below a certain level,
which represents liabilities (or part of them), or some safety covenant, which
provides debt-holders with the right to force firm into bankruptcy.

First-passage time models1, introduced by Black and Cox (1976) [2], allow
for firm bankruptcy prior to maturity. More precisely, the time of default is
1 A selection of important contributions in this class includes, but it is not limited to,

Black and Cox (1976) [2], Kim et al. (1993) [20], Nielsen et al. (1993) [27], Shimko
et al. (1993) [31], Longstaff and Schwartz (1995) [23], Bryis and de Varenne (1997)
[4], Cathcart and El-Jahel (1998) [6], Saá-Requejo, Santa-Clara (1999) [30], Taurén
(1999) [32], Collin-Dufresne and Goldstein (2001) [8], Hsu et al. (2003) [16], and Hui
et al. (2003) [18].
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the first instant at which the firm’s value process (or another relevant process)
reaches a critical threshold, called the default boundary. Such a boundary can
be assumed either deterministic (a constant threshold or a time-varying barrier)
or stochastic. It may even be determined endogenously as the solution of an
optimal decision problem2.

In practice, once a firm has encountered financial distress, it may be either
reorganized or liquidated. In first-passage time modeling of credit risk, no dis-
tinction is made between the time at which a firm enters bankruptcy and the
time at which it is either liquidated or the reorganization plan is accepted and
the firm exits bankruptcy. In the excursion time approach, the time spent in
default (from the bankruptcy announcement through its resolution) is explicitly
modeled.

Some empirical works (among which we mention Eberhart et al. (1999) [10]
and Helwege (1999) [15]) investigate firms emerging from bankruptcy, and find
that the time period spent in financial distress is in some cases of a few months,
on average it ranges from two to three years, and that longest defaults lasted up
to several years.

Recently, there has been some interest in the credit risk literature in models
which involve stopping times related to excursions. Within this class of models,
we may cite the contributions of Galai et al. (2003) [12], Moraux (2003) [25],
Paseka (2003) [28], François and Morellec (2004) [11], Broadie et al. (2004) [5],
and Yu et al. (2004) [33].

In this contribution, we provide a review of excursion time methods for credit
risk. In particular, we study an approach that accounts for the severity of the
financial distress. The main focus is on the definition of the timing of default. We
then examine the effects on credit spreads structure of different specifications of
the event that triggers default within a particular structural model.

The remainder of the paper is organized as follows. Section 2 introduces the
general valuation framework. Section 3 briefly reviews the first-passage approach.
Section 4 is dedicated to the excursion approach. Section 5 presents an excursion
time model in which the severity of the financial distress is expressly modeled.
In Section 6 some results of the simulation analysis are presented. Section 7
concludes.

2 The valuation framework

In credit risk models, important features derive from the crucial assumptions
made about the following elements: the dynamics of the process that governs
default, the default boundary, the (possibly random) variable that describes the
recovery value upon default, and the dynamics of the default-free interest rate.

We need to define a value process X, whose passage through a prespeci-
fied boundary signals a credit event, such as financial distress or a change in
creditworthiness.
2 See, e.g., Leland (1994) [21], and Leland and Toft (1996) [22].
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Formally, let us consider a continuous time model on the time horizon [0, T ].
Assume that a probability space (Ω,F ,P) is equipped with a filtration (Ft; t ≥
0), provided some technical conditions, where Ft represents the information set
at time t.

In a contingent claims framework (provided the usual assumptions of perfect
and frictionless markets), consider a firm with a single issue of debt in the form
of a zero-coupon bond (hereafter ZCB) promising to pay the face value (which is
assumed to be one euro) at the maturity date T . Let p(t, T ) and v(t, T ) denote
the price at time t ≤ T of default-free and defaultable ZCBs, respectively, with
maturity T . Assume, moreover, that ZCBs are traded for all maturities. Both
defaultable and default-free bonds markets are assumed to be arbitrage-free, so
there exists an equivalent martingale measure Q3.

In this setting, consider a stochastic process X = (Xt)t≥0 (continuous and
adapted), which describes the firm’s value (or another relevant firm’s feature,
such as assets value, solvency ratio, cash balances, etc.). Then, the information
set at time t will be Ft = σ(Xu; u ≤ t). In first passage and excursion approaches,
we need some assumptions on the default boundary H = (Ht)t∈[0,T ]. Note that,
when the default boundary is driven by a stochastic process, the information set
is Ft = σ(Xu,Hu; u ≤ t).

At this stage, no assumption is made about the spot rate dynamics. Let r =
(rt)t≥0 denote the default-free spot interest rate, r will be either deterministic
(constant in the simplest case, or a time-varying function) or governed by some
stochastic process. In this latter case, r will depend on a Wiener process, possibly
correlated with the process X governing default.

3 First-passage time approach

In first-passage time models, the time of default is a random variable whose
distribution is that of the first-hitting time of the value process X to the default
boundary (Ht)t∈[0,T ]. Formally,

τH = inf{t ∈ [0, T ) : Xt = Ht}, (1)

with inf ∅ = ∞.
The random time τH is a predictable stopping time4. This means that default

is not completely a surprise, but can be anticipated by observing the path taken
by the process X.

Note that, at maturity of the debt default has to be specified carefully to avoid
inconsistencies (see Giesecke (2004) [13]): at time T , typically default occurs if
3 This probability measure may not be unique (see Jarrow and Protter (2004) [19]).
4 Given a complete probability space (Ω,F ,P), furnished with a filtration (Ft)t≥0, a

random variable τ : Ω → [0,∞] is a stopping time if the event {ω ∈ Ω : τ(ω) ≤
t} ∈ Ft, for every t ≥ 0.

A stopping time τ is predictable if there exists a sequence of stopping times (τn)n≥1

such that τn is increasing, τn < τ on {τ > 0}, for all n, and limn→∞ τn = τ a.s. The
sequence (τn) is said to announce τ (See Protter (2004) [29]).
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assets value is less than the face value of the debt F . Let τT denote the random
variable defined as follows

τT =
{

T if XT ≤ F
∞ otherwise . (2)

Then the default time τ∗ may be defined as

τ∗ = min{τH , τT } , (3)

and the default probability is given by Qt[τ∗ ≤ T ] = EQt [1{τ∗≤T}], where EQt (·)
denotes expectation under the probability measure Q5, conditional on no current
default, and 1A is the indicator function of A.

The default probability can be evaluated analytically in some special cases.
As an example, assume a constant interest rate r > 0, and let X satisfy the
following stochastic differential equation

dXt

Xt
= rdt + σdWt, X0 > 0, (4)

where σ > 0, and W = (Wt)t≥0 is a standard Wiener process under the risk
neutral measure. If we assume that the default threshold is constant, Ht = H
for every t ∈ [0, T ], and that the recovery value upon default is constant and
equal to the boundary value H, then we have the following well known results6

for the value at time t of a defaultable ZCB expiring at time T and the default
probability Qt(τH ≤ T ),

v(t, T ) = He−r(T−t)Qt(τH ≤ T ) + e−r(T−t)[1−Qt(τH ≤ T )], (5)

where

Qt(τH ≤ T ) = Φ(h1) +
(

Xt

H

)−2
(r−σ2/2)

σ2

Φ(h2), (6)

h1,2 =
− log(Xt/H)∓ (r − σ2/2)(T − t)

σ
√

T − t
, (7)

and Φ( · ) is the standard normal distribution function.
In general, no closed form solutions are known for the default probability

(in particular when some simplifying assumptions regarding default-free interest
rate dynamics are relaxed) and numerical computations are required. Monte
Carlo simulation can be used in order to estimate the default probability and
the average time of default.

5 We will write simply Et(·) shorthand for EQt (·).
6 See e.g. Bielecki and Rutkowski (2002) [1], and Giesecke (2004) [13].
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4 Excursion time approach

First-passage approach does not distinguish between the time at which a firm
enters bankruptcy and the time at which it is either liquidated or reorganized.
In the classical Black-Scholes-Merton-Cox approach, a firm defaults when its
assets are too low according to some criterion, and it is immediately liquidated:
this definition of default no longer reflects economic reality. Bankruptcy laws
commonly grant an extended time period for the resolution of financial distress.
In practice, upon default creditors have the right (not the obligation) to exercise
their claims. When some debt covenant is violated, debt-holders could defer the
decision of forcing firm into liquidation. They may try to enforce their position
in order to interfere in the decisions of the debtor and require, for instance,
troubled firm to maintain a certain financial ratio. While, in case of failure, the
bankruptcy procedure could be accelerated.

In the excursion time approach, the duration of the default is a key element
of the model. Recently, a few models have been proposed in the credit risk
literature which involve excursions of a value process in a certain region and
related stopping times. The excursion or Parisian time can be defined as the
first instant when a relevant stochastic process (typically a Brownian motion)
spends a given amount of time (the window) consecutively beyond a certain
barrier. This stopping time has been used by Chesney et al. (1997) in order to
define Parisian barrier options7.

Compared to the models based on first-passage times, in which a simple
hitting of the barrier causes default with immediate liquidation of the firm, this
formulation does not suffer from a threshold effect8. Even if the value process has
crossed the barrier, default has not necessarily occurred yet. Unlike first-passage
time approach, excursion approach allows for a non-absorbing state of default,
and seems attractive in order to assessing default risk when a grace period is
granted.

Excursion times could be useful in modeling real situations when delays,
between the indication of financial distress and its resolution are involved. The
delay could be a parameter exogenously specified, possibly prescribed by a debt
covenant, or which has to be estimated from market data. As an alternative,
the duration of the default (together with the default boundary) could also be
endogenously determined (see Paseka (2003) [28]).

In the following, we assume that the delay is constant and denote it by ∆.
For simplicity, and without loss of generality, let us consider a constant default
boundary, H. Suppose also X0 > H.

Let
τH
t = sup{u ≤ t : Xu = H} (8)

be the last time, before t, that the process X hits the threshold H.
7 Parisian options are financial derivatives for which the barrier in- or out-feature is

activated when the underlying price process spent continuously a certain amount of
time beyond the barrier.

8 See Haber et al. (1999) [14].
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Define the excursion (or Parisian) time

τH
∆ = inf{t ≥ 0 : (t− τH

t )1{Xt≤H} ≥ ∆} . (9)

The default time is defined as the random time τH
∆ and the default probability

is Q[τH
∆ ≤ T ] = E[1{τH

∆≤T}].
Le us observe that the default probability in the excursion approach lies

between two limit cases. When the time window ∆ is zero, we recover the simple
first-passage case, while when ∆ is very large and approaches T , one has to check
for default only at maturity of the debt, hence the probability of default reduces
to that in the Black-Scholes-Merton model.

Define now the random quantity, called the distress clock,

∆t = t− τH
t t ∈ [0, T ] . (10)

∆t is the length of time the process X has spent below the default barrier in the
current excursion9.

Starting from X0 > H, the dynamics of ∆t are described by (see Haber et
al. (1999) [14])

d∆t =





dt Xt < H
−∆t− Xt = H
0 Xt > H ,

(11)

where ∆t− is the left limit of ∆t. The clock ∆t is reset to zero when the barrier is
reached from below, and does not change when the process is above the barrier.
Default occurs only if the length of the current excursion exceeds the maximum
time allowed in default, ∆t ≥ ∆, and the probability of default is Q[∆t ≥ ∆].

As already observed, the triggering of the barrier is fairly robust, nevertheless,
the approach based on Parisian times suffers from another drawback. As pointed
out by Haber et al. (1999) [14] and Moraux (2003) [25], the resetting of the
distress clock is still sensitive to short-term movements of the value process X,
which makes the model non-suitable in at least the following cases. First, consider
a distressed firm that exits bankruptcy before the grace period has elapsed. At
the maturity of the debt the firm will meet its obligations, even if it has spent
in financial distress a long time period. As a second case, consider a firm that
experienced successive defaults, this without causing liquidation.

An alternative approach to the problem is to consider the cumulative excur-
sion (or occupation) time instead of the continuous excursion time10. In such a
way, one accounts for the whole past financial distress of the firm by considering
the total time spent by the value process beyond the default threshold over the
monitored time interval. This approach seems more suitable in order to study
the financial history and distress periods of the debt issuer.

Formally, let H denote the barrier, T the maturity, and ∆ the maximum
duration of time allowed below the barrier, the distress clock (occupation time)
9 Note that, if the process X is currently above the default threshold, then ∆t = 0.

10 Financial options linked to cumulative excursions are called ParAsian options in
Haber et al. (1999) [14] or occupation time derivatives in Hugonnier (1999) [17].
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is defined as follows

∆T
0 =

∫ T

0

1{Xu≤H}du . (12)

∆T
0 is a measure of the time the process X spends below the barrier during

the time interval [0, T ]. The probability of default is defined by Q[∆T
0 ≥ ∆] =

E[1{∆T
0 ≥∆}].

In this formulation, the clock is not reset to zero, and the default time is
defined as the first instant the process X has spent totally an amount of time
∆ below the default boundary,

τ∗ = inf{t ∈ [0, T ] : ∆t
0 ≥ ∆} . (13)

The excursion approach, based on both Parisian and occupation times, can
be generalized in several ways. Possible extensions of such a method are based
on weighted excursions.

Let ϕ be a non-negative function, bounded on [0, +∞)× [0, +∞). Consider,
for simplicity, a constant boundary H. Define the distress clock

∆̃T
0 =

∫ T

0

ϕ(u, T )1{Xu≤H}du . (14)

Note that, when ϕ is constant (and equal to 1) we recover the definition of
occupation time given above.

When, for instance,

ϕ(u, t) = e−γ(t−u) u ≤ t γ ≥ 0 , (15)

∆̃T
0 can be considered as a weighted occupation time, being ϕ a weight function11.

A generalization of the weighted occupation time approach has been proposed
by Galai et al. (2003) [12], in which past excursions “weight less” than the current
excursion.

When
ϕ(u, t) = e−γ(t−u)1{τH

t ≤u} , (16)

where τH
t is defined as in (8), we obtain a weighted version of the Parisian time

approach discussed above12, with

∆̃t
0 =

∫ t

τH
t

e−γ(t−u) 1{Xu≤H}du. (17)

In the weighted excursion time approach, the default time is defined as the
following random time

τ∗ = inf{t ∈ [0, T ] : ∆̃t
0 ≥ ∆} . (18)

11 More generally, one may consider ϕ(u, t) = exp
n
− R t

u
γ(s)ds

o
, being γ a non-

negative function.
12 Note that, when γ = 0, we have exactly the Parisian time specification.
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Of course, we always have to define the event that triggers default at ma-
turity in a consistent way. The default time will be the minimum between the
(weighted) excursion time and τT , where

τT =
{

T if XT ≤ HT

+∞ otherwise . (19)

HT can coincide with the face value of the debt.
In general, one can use Monte Carlo simulation in order to compute an esti-

mate of the average time of default and the default probability.

5 Modeling the severity of the financial distress

In the previous sections we considered alternative specifications of the event
that triggers default: first-passage time approach, which seems more favorable to
bondholders, and the excursion time approach which, allowing for a grace period,
favors debtor’s rights. Occupation time approach lies somewhere between the
classical first-passage and the Parisian time approaches. Generalizations based
on a weighted definition of the distress clock are also possible.

Nevertheless, all these approaches do not take into account the severity of
the financial distress. Nardon (2005) [26] defines the default time as the first
instant when a relevant process either stays continuously for a certain time period
beyond the distress threshold, or reaches another lower barrier. The hitting of
such a lower barrier signals severe financial distress, causing immediate default
of the debtor. This specification of the default time generalizes both the Parisian
and first-passage time definitions.

In order to model the severity of the financial distress one may, alternatively,
weight more strongly large deviations below the default boundary. As suggested
by Haber et al. (1999) [14], the speed at which the distress clock ∆̃T

0 changes
could be proportional to the distance of the value process from the default bar-
rier.

A model that takes into account the severity of the distress is based on the
weighted shortfall, which is a measure of the area of excursion. The weighted
cumulative shortfall over the time interval [0, T ] is defined by

∆̃T
0 =

∫ T

0

e−γ(T−u)(H −Xu)+du , (20)

which derives from considering ϕ(u, t) = e−γ(t−u)(H −Xu) (see Giesecke (2004)
[13]). A weighted shortfall based on the definition of Parisian time may be con-
sidered as well by defining ϕ in a proper way. γ may be interpreted as decay
factor (as defined by Galai et al. (2003) [12]) of the excursion.

Galai et al. (2003) [12] define the distress clock as follows

∆̃t
0 =

∫ τH
t

0

e−β(t−u) f(Xu) du +
∫ t

τH
t

e−γ(t−u) f(Xu) du , (21)



9

where β ≥ 0 and γ ≥ 0 are the decay factors for the past and last excursions,
respectively, and the function f(Xt) models the severity of the distress. The
authors consider the function

f(Xt) = eα
Ht−Xt

Ht 1{Xt≤Ht} , (22)

where α ≥ 0, and H is a time dependent threshold.
This approach could be applied in conjunction with the definition of multiple

boundaries that signal different levels of severity (see Nardon (2005) [26]) and
different weights assigned to excursions in given regions.

6 Simulation analysis

In this section we examine the effects of different default time specifications on
credit spreads structure. In particular, in the numerical experiments we adopt
the model proposed by Saá-Requjo and Santa-Clara (1999) [30], and the model of
Cox et al. (1985) [9] for the short term interest rate, which are briefly summarized
in the Appendixes A and B. Some results of the simulation analysis are then
presented.

In order to evaluate the default probability we used analytical formulas (in
the first-passage case) and Monte Carlo simulation in all other cases. In the
simulation, we generated 100 000 paths (50 000 antithetic) of the process X. We
considered a time step equal to ∆t = 1/250 (which approximatively corresponds
to daily observations of the process X) and bond maturities (in years) that
range in the interval [0, 20]. The default probability is simply approximated by
the relative frequency of the default event.

Figure 1 shows the term structure of credit spreads, as the writedown and
the solvency ratio vary, for different specifications of the default time. More
precisely, within the framework of Saá-Requejo and Santa-Clara (1999) [30], we
considered the first-passage time case (first two figures), the Parisian time case
(second two figures), and the occupation time case (last two figures). The delay
parameter is set at ∆ = 0.5 (six months). In Figure 2 we propose a similar
experiment, letting the solvency ratio vary. In Figure 3 we reported the results
of the same experiment, where we considered the weighted distress clock both in
the consecutive and cumulative excursion cases. Figure 4 depicts credit spreads
when we account for the severity of the distress13. Two different values of the
parameter γ are considered.

In all cases, the obtained term structures of credit spreads present the typical
shape which is common in structural credit risk models14. We notice that, the
introduction of a delay in the timing of default has the effect of changing both

13 In particular, we use as distress clock ∆̃t
0 =

R t

0
e−γ(t−u)e−Xu1{Xu≤0}du, being Xt =

ln Vt/Ht.
14 Many authors argue that such term structures of default probabilities and credit

spreads are not supported by empirical observations. In particular, the probability
of default in reality is non-null as the time to maturity tends to zero.
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Fig. 1. Credit spreads structure for different values of the writedown w ∈
{0.25, 0.5, 0.75, 1}, in the first-passage, Parisian, and occupation time models, with
X0 = ln 1.5 in case (a) and X0 = ln 2 in case (b). The other parameters are: µ = 0.02,
σ = 0.2, ∆ = 0.5, r0 = 0.02, θ = 0.04, κ = 0.5, σr = 0.03, and ρ = 0 .

the shape and level of credit spreads. In the model under consideration, when
the barrier is set at zero, and being other model factors unchanged, as expected,
we obtain higher bond values and consequently lower credit spreads. What is
not highlighted by the pictures, is the fact that different hypothesis made on the
events that triggers default, have an effect in the timing of default (intuitively,
in the consecutive excursion approach the average default time is higher that in
the cumulative excursion and, of course, in the first-passage approaches), and
the probability of early default or default at maturity.
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Fig. 2. Credit spreads structure for different values of the solvency ratio V0/H0 ∈
{1.5, 2, 2.5}, in the first-passage, Parisian, and occupation time models. The other
parameters are: µ = 0.02, σ = 0.2, w = 0.5, ∆ = 0.5, r0 = 0.02, θ = 0.04, κ = 0.5,
σr = 0.03, and ρ = 0 .

7 Conclusions

A number of approaches aim to capture the dynamics that lead to default.
Excursion approach attempts to distinguish different credit events, such as the
signaling of financial distress, or the filing for bankruptcy, from liquidation.

In this contribution, we considered a stylized model based on excursion times
in order to evaluate defaultable debt. We then examined, through a simulation
analysis, how different default time specifications affect credit spreads. We ob-
served that, within the particular model we adopted, the introduction of a delay
in the timing of default results in a significant decline of credit spreads.

As a final consideration, the approach based on excursions and related stop-
ping times, is quite flexible and can be applied in conjunction with a rich class of
models. A significant extension, left for future research, is the study of a model
with endogenous default boundary.
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Fig. 3. Credit spreads structure for different values of the solvency ratio V0/H0 ∈
{1.5, 2, 2.5}, in the weighted Parisian time (a) and occupation time (b) approaches,
with γ = 0.05. The other parameters are: µ = 0.02, σ = 0.2, ∆ = 0.5, r0 = 0.02,
θ = 0.04, κ = 0.5, σr = 0.03, and ρ = 0 .
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Fig. 4. Credit spreads structure for different values of the solvency ratio V0/H0 ∈
{1.5, 2, 2.5}, when the distress clock is defined as a weighted shortfall in the Parisian
(a) and occupation time (b) cases, with γ = 0 (solid line) and γ = 0.25 (dashed line).
The other parameters are: µ = 0.02, σ = 0.2, ∆ = 0.5, r0 = 0.02, θ = 0.04, κ = 0.5,
σr = 0.03, and ρ = 0 .

Appendix A: Cox, Ingersoll and Ross (1985) model

According to Cox, Ingersoll and Ross (1985) [9] (hereafter CIR), the default-free
spot interest rate r = (rt)t≥0 is assumed to follow a mean reverting square root
process. Its risk-adjusted dynamics is given by

drt = κ(θ − rt) dt + σr
√

rt dW r
t , (23)

where r0 > 0, κ, θ and σr > 0 are constant parameters, and W r is a standard
Wiener process. The parameters θ and κ are the long-term mean value of r and
the speed of adjustment to θ, respectively.

Let p(t, T ) denote the price at time t of a default-free ZCB with maturity
date T . In CIR model, the value of the bond is given by

p(t, T ) = A(τ) e−B(τ)rt , (24)
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where τ = T − t,

A(τ) =

[
2γe(γ+κ)

τ
2

2γ + (γ + κ)(eγτ − 1)

]2κθ/σ2
r

, (25)

B(τ) =
2(eγτ − 1)

2γ + (γ + κ)(eγτ − 1)
, (26)

and γ =
√

κ2 + 2σ2
r .

Appendix B: Saá-Requejo and Santa-Clara (1999) model

The model proposed by Saá-Requejo and Santa-Clara (1999) [30] is a general-
ization of the model of Nielsen et al. (1993) [27] and subsequently developed
by Hsu et al. (2003) [16]. In these contributions, default-free interest rates are
assumed stochastic.

We closely follow Saá-Requejo and Santa-Clara (1999) [30]. An important
feature of the model under consideration is the definition of the default boundary
(Ht), which is a stochastic process. Ht represents the total value at time t of
the liabilities (or part of them) in Saá-Requejo and Santa-Clara (1999) [30], the
bankruptcy value of the firm in Hsu et al. (2003) [16].

As in Longstaff and Schwartz (1995) [23], the writedown w is an exogenously
given constant15. The recovery value upon default is then the quantity 1 − w
per units of face value of a default-free ZCB with maturity T . In particular, this
assumption allows to valuing a security (even a complex liability) independently
from other liabilities issued by the firm. A general assumption that is retained
is the simultaneous default on all liabilities.

Let v(t, T ) denote the value at time t of a defaultable ZCB with maturity at
time T . v(t, T ) can be written as follows16:

v(t, T ) = Et

[
(1− w1{τ∗≤T})e−

R T
t

r(u)du
]

= p(t, T )− Et

[
w1{τ∗≤T}e−

R T
t

r(u)du
]

,
(27)

where p(t, T ) is the time t value of a default-free ZCB, τ∗ is the time of default,
and r is the default-free instantaneous interest rate. Et(·) here means expectation
(conditional to the information set at time t) under the risk neutral measure Q.
All the processes in the following are defined with respect to such a martingale
measure.

Let V denote the process that describes firm’s assets value, which satisfies
the following stochastic differential equation

dVt = (rt − δV )Vtdt + σV VtdWV
t V0 > 0 , (28)

15 As an alternative, w(T ) could be a random variable (FT -measurable), not correlated
with other processes of the model. When it is assumed constant, w is a parameter
that has to be estimated.

16 At maturity one has v(T, T ) = 1− w1{τ∗≤T}.
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where σV > 0, and δV is the payout rate to the firm’s investors. WV is a standard
Wiener precess.

The default-free interest rate uncertainty depends on a Wiener process W r,
which is assumed correlated with WV , being ρrV the correlation coefficient.

The stochastic default boundary H = (Ht)t∈[0,T ] is modeled as follows

dHt

Ht
= (rt − δH)dt + σHrdW r

t + σHV dWV
t H0 > 0 , (29)

where σHr and σHV are two positive constants, δH is a payout rate to the firm’s
bondholders. H is modeled as a joint diffusion process whose uncertainty depends
on both V and r.

In this setting, default occurs at the first instant the value process V falls
below the liabilities value H. The default time is then defined as the following
hitting time

τ∗ = inf{t ≥ 0 : Vu = Hu} . (30)

It is convenient to define a new process X,

Xt ≡ ln
Vt

Ht
= ln Vt − ln Ht , (31)

which allows us to write

τ∗ = inf{t ≥ 0 : Xu = 0} . (32)

The default time is defined as the first instant at which the log-solvency ratio
reaches level zero.

It can be shown that X, as defined by (31), satisfies the stochastic differential
equation17

dXt = µdt + σdWX
t X0 > 0 , (33)

with
µ = δH − δV − 1

2
(
σ2

V − (σ2
HV + σ2

Hr + 2ρrV σHV σHr)
)

, (34)

σ2 = (σV − σHV )2 + σ2
Hr − 2ρrV (σV − σHV )σHr . (35)

WX is a Wiener process, defined such that

σWX
t = (σV − σHV )WV

t − σHrW
r
t , (36)

and correlated with the Wiener process W r, with correlation coefficient

ρ =
ρrV (σV − σHV )− σHr

σ
. (37)

In the special case ρ = 0, default is independent of default-free interest rate;
as a result, defaultable ZCBs can be evaluated in closed-form:

v(t, T ) = p(t, T )− w p(t, T )Qt(τ∗ ≤ T ) , (38)
17 See Saá-Requejo and Santa-Clara (1999) [30].
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where the probability of default is given by18:

Qt(τ∗ ≤ T ) = Φ

(−Xt − µ(T − t)
σ
√

T − t

)
+ e−

2µXt
σ2 Φ

(−Xt + µ(T − t)
σ
√

T − t

)
. (39)

If ρ 6= 0, no closed-form solutions are known19. If we adopt the model of Cox
et al. (1985) [9] for r, when ρ 6= 0, we have to jointly consider the dynamics of
the processes r and X:

drt =
[
κ(θ − rt) + σ2

rB(τ)rt

]
dt + σr

√
rtdW 1

t , (40)

dXt = [µ + ρσσr
√

rtB(τ)] dt + ρσdW 1
t +

√
1− ρ2σdW 2

t , (41)

where W 1 and W 2 are two independent Wiener processes. B(τ) is calculated
using formula (26) in the CIR model.

In this case, the value of the defaultable ZCB is given by

v(t, T ) = p(t, T )− w p(t, T )QT
t (τ∗ ≤ T ), (42)

where QT
t (τ∗ ≤ T ) is the forward risk adjusted probability of default (i.e.

the probability measure under which asset values normalized by the price of
a default-free ZCB with maturity T are martingales).
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