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Design and Estimation of
Quadratic Term Structure Models

ABSTRACT

We consider the design and estimation of quadratic term structure models. We start

with a list of stylized facts on interest rates and interest rate derivatives, classified into

three layers: (1) general statistical properties, (2) forecasting relations, and (3) conditional

dynamics. We then investigate the implications of each layer of property on model design

and strive to establish a mapping between evidence and model structures. We calibrate

a two-factor model that approximates these three layers of properties well, and illustrate

how the model can be applied to pricing interest rate derivatives.

JEL Classification Codes: G12, G13, E43.

Keywords: quadratic model; term structure; positive interest rates; humps; expectation hy-
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Term structure modeling has enjoyed rapid growth during the last decade. Among the

vast number of different models, the affine class stands out as the most popular class due to

its analytical tractability. Duffie and Kan (1996)’s characterization of the complete class has

spurred a stream of studies on its empirical applications and model design. Examples include

general econometric estimations by Chen and Scott (1993), Duffie and Singleton (1997), Dai

and Singleton (2000b), and Singleton (1999), applications to the predictability of interest rates

by Frachot and Lesne (1994), Roberds and Whiteman (1999), Backus, Foresi, Mozumdar, and

Wu (2001), Duffee (1999), and Dai and Singleton (2000a), and currency pricing by Backus,

Foresi, and Telmer (2001). While these applications claim success in one or two dimensions,

inherent tension exists when one tries to apply the model to a wider range of properties.

Even more troublesome, however, is a seemingly irreconcilable tension between delivering a

relatively good empirical performance and excluding negative interest rates. Indeed, all of

the relatively “successful” model designs within the affine framework, in terms of empirical

performance, imply positive probabilities of negative interest rates. Examples include Backus,

Foresi, Mozumdar, and Wu (2001), Backus, Foresi, and Telmer (2001), Dai and Singleton

(2000b), Dai and Singleton (2000a), Duffee (1999), Duffie and Singleton (1997), and Singleton

(1999).

Leippold and Wu (1999a) identify and characterize an alternative class, the quadratic class

of term structure models, where bond yields and forward rates are quadratic functions of the

state vector. Their property analysis indicates that the quadratic class is comparable to the

affine class for analytical tractability but is more flexible for model design. In particular,

positive interest rates can be guaranteed with little loss of generality or flexibility. In this

paper, we consider the model design and estimation problem within the quadratic framework.

Although examples of quadratic models have appeared in the literature since the late

eighties,1 empirical applications have at best been sporadic. The most systematic empirical

study, and hence the most germane to our work, is by Ahn, Dittmar, and Gallant (2001).

1Early examples include Longstaff (1989), Beaglehole and Tenney (1991), Beaglehole and Tenney (1992),

El Karoui, Myneni, and Viswanathan (1992), Constantinides (1992) Jamshidian (1996), Rogers (1997), Ahn

(1998), Leippold and Wu (1999b), and Leippold and Wu (1999a).
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They apply the efficient methods of moments (EMM) of Gallant and Tauchen (1996), calibrate

the maximally flexible three-factor quadratic model and various restricted versions to the US

Treasury data, and compare their performance with that of affine models. Our approach goes

in the opposite direction. We start with a list of what we view as the salient features of interest

rates and interest rate derivatives and attempt to find a parsimonious quadratic specification

which accounts for them. What we gain are some helpful insights into the mapping between

parameters and data. The approach also highlights the impact of different pieces of evidence on

model structure. Furthermore, while Ahn, Dittmar, and Gallant (2001) focus on the time series

property of the interest rate data, we also consider the model’s application in option pricing.

We apply the transform method proposed in Leippold and Wu (1999a) to price interest rate

caps and investigate the implications of the salient features of the interest rate derivatives on

model design.

We take a series of steps that we think serve to integrate evidence with theory. In the first

step, we classify the properties of interest rates into three categories: (1) general statistical

properties, (2) forecasting relations, and (3) conditional dynamics. The most significant statis-

tical properties, in our view, include an upward sloping mean yield curve, high (but different)

persistence in yields of different maturities, and positive skewness in interest rate distributions.

For forecasting relations, we examine the violations of the various forms of the expectation hy-

potheses (EH). We find that underlying all interest rates is a common feature revealed by a

single-period forward rate regression. That is, violations of the EH are mainly at the short end.

However, even at the short end, the EH violation is not statistically significant for eurodollar

interest rates. Overall, the evidence on EH violations is much weaker for eurocurrencies than

for US Treasuries. On conditional dynamics, we find that the mean hump-shaped term struc-

ture for conditional variance not only shows up in the implied volatility quotes of interest rate

derivatives, but also reveals itself vividly in the variance of multi-period changes. We docu-

ment the evidence using interest rate and interest rate derivatives (caps and floors) data on

eurocurrencies (US dollar and Deutsche mark), but similar stylized behaviors have also been

observed in US Treasuries and in other currencies.
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With facts in hand, we turn to the model. We analyze the properties of bond yields

and forward rates under the quadratic class and examine the implications of the documented

evidence on model design. The quadratic relation between interest rates and the state variables

not only provides a convenient approach to guarantee positive interest rates, but also directly

incorporate nonlinearity in interest rate dynamics. Furthermore, the affine specification on

market price of risk plays an important role in accounting for the violations in the expectation

hypotheses while flexible interactions between state variables are indispensable in generating

the observed hump-shaped dynamics. Finally, the affine specification in market price of risk

also governs the difference in conditional dynamics between the objective measure and the risk

neutral measure. It links and distinguishes the hump dynamics observed in the time series and

that observed in implied volatility quotes of interest rate derivatives.

In the third step, we transform the property analysis into moment conditions and calibrate

a two-factor quadratic model by generalized methods of moments (GMM). While three or even

more factors might be necessary to fully capture the interest rate dynamics [e.g. Litterman

and Scheinkman (1991), Knez, Litterman, and Scheinkman (1994)], a two-factor model is

the minimum required to capture the stylized evidence listed above. The calibration exercise

confirms with the property analysis on the relative contribution of each component of the model

to different features of interest rates. We find that fitting the large hump shape observed in the

annualized variance of multiperiod interest rate differences asks for strong interaction between

state variables; the weak EH violation for eurodollar interest rates, on the other hand, reduces

the significance of the estimates for the affine part of the market price of risk.

In the final step, given the parameter estimates, we explore the model’s implications on

pricing interest rate derivatives. Under the quadratic model, the implied volatility is a biased

estimator of the conditional variance rate of interest rates under the risk neutral measure.

The bias is mainly a result of the violation of the Black model’s assumption on conditional

log-normality on simply compounded LIBOR rates. The magnitude of the bias differs across

strikes, resulting in the famous implied volatility smile across strikes. Nevertheless, for at-the-

money spot interest rate caps, the term structure of the implied volatility quotes approximates

the term structure of the conditional variance of interest rates. In particular, a hump in the
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term structure of conditional variance transfers to a hump in the term structure of implied

volatility.

Recently, Filipović (2001) proves, under certain regularity conditions, that if one represents

the forward rate as a polynomial function of the diffusion state vector, then the maximal order

of the polynomial is two for the model to be consistent. Consistency in this context, as

discussed as in Bjórk and Christensen (1999) and Filipović (2000), means that the interest

rate model will produce forward rate curves belonging to the parameterized family. Thus,

the affine class of Duffie and Kan (1996) and the quadratic class of Leippold and Wu (1999a)

essentially complete the search for consistent polynomial term structure models. This is a

remarkable result as many functional forms can be approximated by a polynomial series. It

also stresses the potentially important role played by quadratic models.

The structure of the paper is as follows. The next section documents the evidence using

more than 10 years of interest rates on eurodollar and euromark, as well as five years of data on

interest rate caps and floors. Section II lays out the framework for the quadratic term structure

models. Section III analyzes the implications of the quadratic model on the three layers of

evidence. Section IV transforms the analysis into moment conditions, calibrates a two-factor

quadratic model by generalized methods of moments, and tests various parameter restrictions.

Section V investigates the implications of the model estimates on the cross-sectional and term

structure behavior of cap implied volatilities. Section VI concludes.

I. Evidence

We document the salient features of interest rates and interest rate derivatives on two eurocur-

rencies: US dollar and Deutsche mark. We collect from Datastream monthly LIBOR (London

Inter Bank Offer Rate) rates with one, three, six, and twelve months of maturity, and swap

rates with two, three, four, five, seven and ten years of maturity. We then extract the term

4



structure of spot rates at each date by fitting the extended Nelson-Siegel function to the spot

rate:

yn = β0 + β1
1− e−n/τ1

n/τ1
+ β2

(
1− en/τ2

n/τ2
− e−n/τ2

)
,

where yn denotes the spot rate with maturity n and Θ = [β0, β1, β2, τ1, τ2]
> is the parameter

vector, which is obtained by minimizing the sum square errors between the observed and

implied LIBOR and swap rates. The day counting conventions for LIBOR rates are actual

over 360 for US dollar and Deutsche mark while that the swap rates is 30/360 with semi-

annual compounding payments for US dollar and annual compounding for Deutsche mark.

The data starts in April 1987 and ends in September 2000 (162 observations).

In discrete time notation, we denote the continuously compounded spot rate on an n-period

bond at date t as yn
t . It is defined as

yn
t = −n−1 ln Pn

t ,

where Pn
t denotes the dollar price at date t of a claim to one dollar at t + n. Here the discrete

period is in number of months, corresponding to the monthly data. Forward rates are defined

by

fn
t = ln

(
Pn

t /Pn+1
t

)
,

so that spot rates are averages of forward rates:

yn
t = n−1

n−1∑

i=0

f i
t .

We use the one-month spot rate as a proxy for the instantaneous interest rate, or the short

rate: rt = y1
t = f0

t .

We have also downloaded from Datastream the daily implied volatility quotes for at-the-

money spot caps on the two eurocurrency LIBOR rates with maturities of one, two, three,

four, five, seven, and ten years. The data are from February 1st, 1995 to October 17th, 2000

5



(1490 observations). A cap consists of a series of caplets. Let R denote the simply compounded

LIBOR rate. The payoff of the ith caplet is given by

Πi = τL (Rt+iτ −K)+

where τ is the tenor (payment interval) of the cap contract, it is six month (τ = 1/2) for dollar

LIBOR and one year (τ = 1) for mark. L denotes the notional amount of the contract. K is

the strike rate and is set equal to the current LIBOR rate Rt for at-the-money spot contracts.

The payment is made is in arrears, i.e. the payment of the ith caplet is made at t + (i + 1) τ .

The implied volatility quotes are obtained under the framework of the Black model, where the

LIBOR rate is assumed to follow a geometric Brownian motion with constant diffusion v. The

price of a cap contract with maturity N (periods) under such a model is given by

CN
t =

N−1∑

i=1

ci = τ
∑

i

P i+1
t

[
F i

t N (d1i)−KN (d2i)
]
,

where F i
t is the simply compounded forward rate between the ith and (i + 1)th payment period

1 + τF i
t = P i

t /P i+1
t

and

d1i =
lnF i

t /K + v2 (iτ) /2√
iτv

, d2i = d1i −
√

iτv.

The implied volatility is an estimate for v such that the cap price implied by the Black formula

is equal to the market price.

A. Statistical Properties of Interest Rates

Table I provides the summary statistics of the spot rates on the two eurocurrencies. The most

significant features include:
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Figure 1. Term Structure of Interest Rates on Eurocurrencies
The gray lines in the background are term structures of interest rate on two eurocurrencies
(US dollar in the left panel, Deutsche mark in the left panel) at each month from April 1987
to September 2000 (162 observations). The bold solid lines represent the mean yield curve.

1. While at each date, the term structure exhibits various shapes, the mean term structure

is upward sloping. Figure 1 depicts the term structure at each date in the background

(gray lines) and the mean term structure with a bold solid line.

2. Bond yields are highly persistent and the persistence varies across maturities. The first-

order (monthly) autocorrelations range from 0.972 to 0.985 for the dollar rates and from

0.980 to 0.992 for the mark rates.

3. The past decade has been relatively uneventful for both interest rates. While the interest

rates are positively skewed, the tails are no thicker than that of a normal distribution.

B. Violations of Expectation Hypotheses

A long established fact about interest rates is that the current term structure contains infor-

mation about future interest rate movements. While the expectation hypothesis (EH) has long

been regarded as a poor approximation of the evidence, it presents useful forms for interest

rate forecasting. An enormous body of research to this effect has been surveyed repeatedly,

most recently by Bekaert, Hodrick, and Marshall (1997), Campbell (1995), Campbell and

Shiller (1991), and Evans and Lewis (1994). Recently, Frachot and Lesne (1994), Roberds and
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Whiteman (1999), Backus, Foresi, Mozumdar, and Wu (2001), Duffee (1999), and Dai and

Singleton (2000a) have tried to explain the evidence within the affine framework of Duffie and

Kan (1996).

Many forecasting relations have been formulated based on various forms of the expectation

hypothesis. The most common ones include: (i) one-period forward rate regression, (ii) one-

period yield regression, (iii) multiperiod forward rate regression, and (iv) multi-period yield

regression. They can be denoted, respectively, as

fn−1
t+1 − rt = an + cn (fn

t − rt) + en
t+1,

yn
t+1 − yn

t = an + dn

(
yn+1

t − rt

n

)
+ en

t+1,

rt+n − rt = an + en (fn
t − rt) + et+n,

n∑

i=1

(
1− i

n + 1

)
(rt+i − rt+i−1) = an + gn

(
yn+1

t − rt

)
+ et+n.

We abuse the notation by using the same letter an for the intercepts and e for the residuals

of all four regressions, as our focus is on the slopes. The one-period forward rate regression

is proposed recently by Backus, Foresi, Mozumdar, and Wu (2001). The study of the one-

period yield regression dates back at least to Roll (1970). Recent empirical studies include

Bekaert, Hodrick, and Marshall (1997), Campbell and Shiller (1991), and Evans and Lewis

(1994) for the US and Bekaert, Hodrick, and Marshall (1996) and Hardouvelis (1994) for other

countries. The multi-period forward rate regression has been estimated by Fama (1984), Fama

and Bliss (1987), and Mishkin (1988). The multi-period yield regression has also been studied

by Campbell and Shiller (1991) with US data and Bekaert, Hodrick, and Marshall (1996) with

data for the US, UK, and Germany.

Of all the regressions, the single period forward rate regression of Backus, Foresi, Mozum-

dar, and Wu (2001) possesses the simplest form, based on the martingale property of forward

rates under the expectation hypothesis. Figure 2 reports the regression slopes on the two eu-

rocurrencies, together with their 95% confidence band. Regressions on the two eurocurrencies

exhibit a similar feature: while deviations from the EH are largest at short maturities, evidence

converges to the hypothesis at long maturities.
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Figure 2. Single Period Forward Rate Regression Slopes

The solid lines depict the slopes of the single period forward rate regression:

fn−1
t+1 − rt = an + cn (fn

t − rt) + en
t+1,

on euro dollar (left) and mark (right). The dashed lines are the 95% confidence intervals
constructed from the standard error estimate for each slope point estimate, with a normal
distribution assumption. Standard errors are computed following Newey and West (1987)
with six lags.

Backus, Foresi, Mozumdar, and Wu (2001) report similar qualitative properties for US

Treasuries; however, the magnitude of the violations of the EH is much more significant in

the US Treasuries data than implied by our estimates on eurocurrencies. For example, the

one-month regression slope, c1, is 0.5184 (0.1054) for US Treasuries (standard error in the

parentheses),2 significantly different from the null value of one, but our estimate for eurodollar

is 0.7715 (0.1223), not significantly different from one under the 95% confidence level. The

estimate for the mark c1 = 0.5832 (0.1207) is significantly different from one; nevertheless, as

maturity increases, the estimates for both eurocurrencies converge to one much faster than

those for US Treasuries. For example, c60 = 0.9897 (0.0155) for eurodollar and 0.9901 (0.0097)

for euro mark, neither of which is significantly different from unity; yet for US Treasuries, c60 =

0.9635 (0.0124), which is significantly different from unity. The two series have mismatching

subperiods. As we have the updated data set on US Treasuries, we re-estimate the regression

2Numbers for US Treasuries are from the last column of Table 1 in Backus, Foresi, Mozumdar, and Wu

(2001).
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Figure 3. Single Period Yield Regression Slopes
The solid lines depict the slopes of the single period yield regression:

yn
t+1 − yn

t = an + dn

(
yn+1

t − rt

n

)
+ en

t+1,

on euro dollar (left) and mark (right). The dashed lines are the 95% confidence intervals
constructed from the standard error estimate for each slope point estimate, with a normal
distribution assumption. Standard errors are computed following Newey and West (1987)
with six lags.

slopes for the US Treasury data with the sample period approximately matching that of our

eurocurrencies. The discrepancy observed above remains. In short, the EH violations observed

in the eurocurrencies are not as significant as in the US Treasuries.

Longstaff (2000) discovers even more striking results at very short maturities. Using

overnight, weekly, and monthly repo rates, he finds that the EH hypothesis cannot be re-

jected at both the unconditional level (i.e., the mean curve is flat) and the conditional level.

He attributes the difference between his result and the US Treasuries to the idiosyncratic be-

havior of US Treasury bills. Our findings here is not as extreme. The mean yield curves are

upward sloping for both eurocurrencies, indicating the existence of at least a constant risk

premium. The single period regression slopes are significantly different from the null value of

unity at least for euro mark at short maturities, implying that the risk premium may be time

varying.

Figure 3 reports the slope estimates for the single period yield regression. In contrast to

the forward regression, the deviations of the slope from one increase with maturity; however,
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the standard errors also increase with maturity and hence make it hard to explain. The term

structures of the slope estimates (not reported) of the multiperiod regressions take on more

complicated forms. The accuracy of the estimates also deteriorates as maturity increases due to

the significant overlapping. Backus, Foresi, Mozumdar, and Wu (2001) illustrate the inherent

links between different forms of EH regressions and argue that they contain similar information

content. In particular, they show that how a slight change in the forward regression slope can

be transferred into a big swing in the yield regression. In our estimation, we follow Backus,

Foresi, Mozumdar, and Wu (2001) and focus on the one-period forward regression.

C. Interest Rate Derivatives and The ‘Hump’ Dynamics

It has been widely noted that the conditional volatility of interest rates has a “hump-shaped”

mean term structure. The conditional volatility first increases with horizon, reaches a plateau,

and then decreases. While systematic documentation is rare, casual observations and modeling

efforts abound, particularly among practitioners, illustrating its practical importance in risk

management and option pricing. Examples include Amin and Morton (1994), Backus and

Wu (1998), Bouchaud, Cont, El-Karoui, Potters, and Sagna (1998), Bühler, Uhrig-Homburg,

Walter, and Weber (1997), Heath, Jarrow, Morton, and Spindel (1992), Hull and White (1996),

Khan (1991), Mercurio and Moraleda (1996), Moraleda and Vorst (1997), and Ritchken and

Chuang (1996).

The hump-shaped dynamics shows up in the data in a variety of ways. The most obvious is

from the mean term structure of the Black implied volatilities of interest rate caps, floors, and

swaptions. Figure 4 depicts the mean term structure of the Black implied volatility quotes for

caps on dollar and mark LIBORs. While the volatility level differs across currencies, the mean

hump shape is ubiquitous. Similar hump shapes are also observed in the implied volatility of

interest rate floors and swaptions, as well as in other eurocurrencies.

A less direct approach comes from multiperiod differences of interest rates: changes yt−yt−k

over periods of length k. If the conditional volatility of y has hump-shaped dynamics, the
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Figure 4. Hump-Shaped Conditional Dynamics In Interest Rate Caps
Solid lines are the mean term structure of at-the-money implied volatility quotes for interest
rate caps for U.S. dollar (left) and Deutsche mark (right). Dashed lines depict the 95% and 5%
quantiles. The data are from February 1st, 1995 to October 17th, 2000 (1490 observations).

variance of the multiperiod differences increases initially at a rate faster than k.3 Equivalently,

the annualized variance Var(yt − yt−k)/(kh) is hump shaped. Figure 5 depicts the annualized

variance over k for the six-month spot rate on the two eurocurrencies, where h = 1/12 is the

fraction of year per period. The hump shapes are very prominent for both currencies.

While both measures are approximations of the conditional dynamics,4 the similarities are

suggestive. The fact that hump dynamics are observed across different currencies and from

different measures implies that it is a robust feature of the interest rate data.

3The unconditional variance of the difference captures the conditional variance of the level if yt can be

approximated as

yt = θ + φyt−1 + σεt,

with φ = 1. It can be used as an approximation for very persistent series such as interest rates when φ is less

than but very close to one.
4The two measures differ, among other things, in both units and measures. The variance of multiperiod

changes approximates the conditional variance of continuously compounded spot rates under the objective

measure while the implied volatility approximates the conditional volatility rate of the simply compounded

LIBOR rate under the risk neutral measure.
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Figure 5. Hump-Shaped Dynamics In LIBOR Rates
Lines are annualized variance estimates of multiperiod changes in six-month spot rates (in
annualized percentage), Var (yt − yt−k) /(kh) for LIBOR rates on US dollar (left) and Deutsche
mark (right). Data are monthly, from April 1987 to September 2000 (162 observations).

While the three dimensions do not exhaust the known properties of interest rates, they

represent three layers of the data that a reasonable model should reproduce. The first layer

summarizes the general statistical features of the time series and imposes minimal structure to

the analysis. The second layer deals with predictability of interest rates and has far-reaching

implications for interest rate forecasting. The third layer of property is even more subtle. It

concerns with the conditional dynamics of the second moments, which has strong implications

for model design and even more so for applications in risk management and derivatives pricing.

II. Quadratic Models

Let (Ω,F , {Ft}0≤t≤T ,P) be a stochastic basis. The filtration {Ft}0≤t≤T satisfies the usual

conditions of right-continuity and completeness. We fix a strictly positive horizon date T > 0.

The process W is a d-dimensional Wiener process defined on (Ω,F ,P). We assume that

the underlying filtration {Ft}0≤t≤T coincides with the usual P-augmentation of the natural

filtration of W . We introduce uncertainty in our economy by assuming that all assets are

functions of an underlying Markov process X valued in some open subset D of Rd.
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A. Bond Pricing

Suppose that for any time t ∈ [0, T ] and time-of-maturity T ∈ [t, T ], the market value at time t

of a zero-coupon bond with time-to-maturity τ = T − t is fully characterized by P (Xt, τ). The

discrete-time notation Pn
t then corresponds to P (Xt, nh) with h = 1/12 denoting the monthly

time interval.

Definition 1 In the quadratic class of term structure models, the prices of zero-coupon

bonds, P (Xt, τ), are exponential-quadratic functions of the Markov process Xt:

P (Xt, τ) = exp
[
−X>

t A (τ)Xt − b (τ)>Xt − c (τ)
]
, (1)

where A(τ) is a nonsingular d× d matrix, b(τ) is a d× 1 vector, and c(τ) is a scalar.

Leippold and Wu (1999a) have identified the quadratic class in terms of the Markov process

Xt, the instantaneous interest rate function r(Xt), and the market price of risk γ(Xt):

dXt = −κXtdt + dWt;

r(Xt) = X>
t ArXt + b>Xt + cr, (2)

γ(Xt) = AγXt + bγ ,

where κ,Ar, Aγ ∈ Rd×d, br,bγ ∈ Rd, and cr ∈ R. Due to the symmetric nature of the quadratic

models, we symmetrize Ar and A(τ) with no loss of generality. For the Markov process to be

stationary, we also require that all the eigenvalues of κ be positive. We further normalize the

diffusion of Xt to an identity matrix and its long run mean to zero.

As long as one is allowed to hold cash without cost, the instantaneous interest rate has to

stay positive to guarantee no-arbitrage. A sufficient condition for the instantaneous interest

rate to be positive is to restrict Ar to be positive definite and cr ≥ 1
4b

>
r A−1

r br.

Straightforward application of Girsanov’s theorem shows that, under the risk neutral mea-

sure P∗, the drift of the Markov process remains affine with κ∗ = κ + Aγ and κ∗θ∗ = −bγ .
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Stationarity for the Markov process under the risk neutral measure requires that all the eigen-

values of κ∗ = κ + Aγ be also positive.

Under the above specification, the coefficients for the bond price are determined by the

following ordinary differential equations (ODE):

∂A(τ)
∂τ

= Ar −A (τ) κ∗ − (κ∗)>A (τ)− 2A (τ)2 ;

∂b(τ)
τ

= br − 2A(τ)bγ − (κ∗)> b(τ)− 2A (τ)b (τ) ; (3)

∂c(τ)
τ

= cr − b(τ)>bγ + trA (τ)− b(τ)>b(τ)/2,

subject to the boundary conditions: A(0) = 0, b(0) = 0, and c(0) = 0. In calibration,

corresponding to the monthly data we use, we adopt a discrete-time version of the model. In

particular, we choose monthly frequency, use the one-month rate as a proxy for the short rate,

and solve the ODEs numerically by the Euler’s method.5 Given bond prices, bond yields are

obtained straightforwardly:

y(Xt, τ) = −1
τ

ln P (Xt, τ) =
1
τ

(
X>

t A(τ)Xt + b(τ)>Xt + c(τ)
)

. (4)

The discrete-time notation for the monthly yield, yn
t , corresponds to y(Xt, nh), with h = 1/12.

The monthly forward rate, fn
t , denotes the time t forward rate between t+nh and t+(n+1)h:

fn
t =

1
h

ln P (Xt, nh)/P (Xt, (n + 1)h) = X>
t Af

nXt + X>
t bf

n + cf
n, (5)

with

Af
n =

A((n + 1)h)−A(nh)
h

, bf
n =

b((n + 1)h)− b(nh)
h

, cf
n =

c((n + 1)h)− c(nh)
h

.

The free parameters of the quadratic model include: Θ = (κ,Aγ ,bγ , Ar,br, cr). Given

these parameters and the current state vector Xt, bond prices, yields, and forward rates can

be determined by (1), (4), and (5).

5Refer to Sewell (1988) for a standard reference.
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B. Pricing State-Contingent Claims

Under the quadratic class, Leippold and Wu (1999a) prove that, for any asset with an exponential-

quadratic terminal payoff structure at time T :

exp
(
−q1(XT )−

∫ T

t
q2(Xs)ds

)
, (6)

its time-t price is also exponential-quadratic in the current state Xt:

ψ(q1 +
∫ T

t
q2, τ) ≡ E

[
ξT

ξt
exp

(
−q1(XT )−

∫ T

t
q2(Xs)ds

)∣∣∣∣Ft

]

= exp
(
−X>

t A(τ)Xt − b(τ)>Xt − c(τ)
)

, (7)

where ξt denotes the pricing kernel at time t and qj(X) denotes a quadratic function of X,

namely qj(X) = X>AjX + b>j X + cj . The coefficients A(τ), b(τ) and c(τ) also satisfy the

ordinary differential equations in (3), but with different boundary conditions, A(0) = A1,

b(0) = b1, and c(0) = c1, to reflect the different terminal payoff structure. Furthermore, the

short rate coefficients {Ar,br, cr} need to be replaced by {Ar + A2,br + b2, cr + c2} in the

ordinary differential equations to reflect the integral on q2(Xs).

The quadratic form qj(Xt) can either be regarded as interest rates (bond yield or forward

rate) or rates of return on other assets. The integral can be regarded either as an average rate

in Asian style payoffs or as a cumulation of continuous payoffs.

This result can be applied to price state-contingent claims of the general type:

Gqi,qj (y, τ) ≡ E
[
ξT

ξt
e−qi(XT )Iqj(XT )≤y|Ft

]
, (8)

where y can be regarded as some transform of a strike and Ix is an indicator function: it equals

one when x is true and zero otherwise. As an example, when y = ∞, the claim reduces to

the asset priced in (7): Gqi,qj (∞, τ) = ψ(qi, τ). When we further assume qi = 0, the claim is

equivalent to a zero-coupon bond: G0,qj (∞, τ) = P (Xt, τ). On the other hand, for any fixed

number y, if we set qi = 0, G0,qj (y, τ) represents a state price: the price of an asset that pays
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one dollar if and only if the state event qj(XT ) ≤ y occurs. In what follows, we would refer to

Gqi,qj (y, τ) as a state price in its broadest meaning. We also relax the notation on quadratic

forms and let qi and qj denote any quadratic forms, or integral of quadratic forms, or any affine

combinations of them.

In general, we cannot directly solve the state price G(y) in closed form, but we can do so

for its Fourier transform χ(z), defined as

χqi,qj (z) ≡
∫ +∞

−∞
eizydGqi,qj (y) , z ∈ R,

where we omit the second argument in τ in the state prices and their transforms in case no

confusion occurs. Under the quadratic class, such a Fourier transform can be computed as the

price of an asset with an exponential-quadratic terminal payoff:6

χqi,qj (z) = ψ(qi − izqj). (9)

Of course, the term “asset price” has to be used with caution since the “asset” has a complex-

valued payoff function. But more importantly, the equality in (9) implies that the Fourier

transform of the state-contingent claim retains the exponential quadratic form and hence the

tractability of the quadratic class.

Given the Fourier transform χqi,qj (z), the state price Gqi,qj (y) can be obtained by an

extended version of the Lévy inversion formula,

Gqi,qj (y) =
χqi,qj (0)

2
+

1
π

∫ ∞

0

R(z) sin yz − I(z) cos yz

z
dz, (10)

where R(z) and I(z) denote the real and imaginary part of χqi,qj (z), respectively. The above

inversion formula involves only one numerical integration, regardless of the dimension of the

state space. The prices of many interest rate derivatives such as European options on zero-

coupon bonds, interest rate caps and floors, exchange options, and even Asian style options can

6Refer to Leippold and Wu (1999a) for a proof.
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all be expressed in terms of such a general state price. We can therefore price them efficiently

via the inversion formula in (10). We apply the method to interest rate caps pricing.

III. Property Analysis

In this section, we analyze the implications of quadratic models on the three layers of properties

of interest rates. The analysis lays a foundation for moment choices in our generalized method

of moments (GMM) estimation in the subsequent section. More importantly, we ask what

requirements the stylized evidence imposes on model design.

A. Statistical Properties

With the Markov process specified in (2), the state vector X is both conditionally and un-

conditionally normally distributed. In our discrete-time version with monthly intervals, let

Φ = e−κh with h = 1/12 denote the monthly autocorrelation matrix of the state vector, we

can then write the unconditional and conditional variance as

vec (V ) = (I − Φ⊗ Φ)−1 vec (I)h; Vk =
k−1∑

j=0

Φj
(
Φj

)>
,

where the subscript k denotes the conditional variance in k discrete periods (months). The

k-period conditional mean is µt,k = ΦkXt while the unconditional mean is zero.

Let qn
t denote a generic quadratic form of normal variates:

qn
t = X>

t AnXt + b>n Xt + cn,
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for any (An,bn, cn). qn
t can be a bond yield, a forward rate, or the short rate. Fully utilizing the

well-documented properties of quadratic forms of normal variates,7 we can derive the following

properties for qn
t :

E [qn
t ] = tr (AnV ) + cn;

V ar [qn
t ] = 2tr

(
(AnV )2

)
+ b>n V bn;

Cov
(
qn
t+k, q

n
t

)
= 2tr

((
Φk

)>
AnΦkV AnV

)
+ b>n ΦkV bn.

The monthly kth-order autocorrelation, ρ(k), of a quadratic form qn
t is then given by

ρ(k) =
2tr

((
Φk

)>
AnΦkV AnV

)
+ b>n ΦV bn

2tr
(
(AnV )2

)
+ b>n V bn

.

In the case of a one-factor model, the autocorrelation function, ρ(k), can be written as a

weighted average of the autocorrelation and its square of the Markov process:

a(n)φ2k + b(n)φk = ρ(k), (11)

with φ ≡ exp(−κh) being the monthly autocorrelation of the Markov process X, and

a(n) =
2(AnV )2

2(AnV )2 + b2
nV

; b(n) =
b2
nV

2(AnV )2 + b2
nV

.

Therefore, in contrast to the AR(1) type behavior of one-factor affine models, bond yields

under quadratic models enjoy a richer, nonlinear dynamics. In particular, the autocorrelation

function of bond yields under a one-factor quadratic model can vary across maturities, in

conformity with the data, while all one-factor affine models imply the same autocorrelation

function across yields and forward rates of all maturities. Within the affine class, multiple

factors are needed to generate the observed nonlinearities in the interest rate dynamics. In

7See, for example, Holmquist (1996), Johnson and Kotz (1970), Kathri (1980), and Mathai and Provost

(1992).
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contrast, nonlinearity is intrinsically built into the quadratic model through the quadratic

term.

B. Forecasting Relations

To derive the EH regression slopes, we apply two important properties of quadratic forms of

normal variates:

Cov(qm
t , qn

t ) = 2tr (AmV AnV ) + b>mV bn;

Cov(qm
t+k, q

n
t ) = 2tr

((
Φk

)>
AmΦkV AnV

)
+ b>mΦkV bn.

We start with the single period forward rate regression. The slope of such a regression, cn, can

be written as

cn =
Cov

(
fn−1

t+1 − rt, f
n
t − rt

)

V ar (fn
t − rt)

=
2tr

[(
Φ>Af

n−1Φ−Ar

)
V AfrnV

]
+ b>frnV

(
Φ>bf

n−1 − br

)

2tr (AfrnV )2 + b>frnV bfrn

, (12)

where Afrn = Af
n − Ar and bfrn = bf

n − br. The relation is relatively opaque, but its

convergence to the stationary state is not. Suppose indeed that a stationary state exists, as

n →∞, Af
n → 0 and bf

n → 0, the regression slope converges to one:

lim
n→∞ cn =

2tr(ArV )2 + b>r V br

2tr(ArV )2 + b>r V br
= 1.

This results confirms with the analysis of Dybvig, Ingersoll, and Ross (1996). As long as the

interest rate processes are stationary, the variance of the forward rate falls with maturity.

Therefore, for very long maturities, we are essentially regressing −r on itself.

Backus, Foresi, Mozumdar, and Wu (2001) illustrate that intrinsic tension exists for a one-

factor Cox, Ingersoll, and Ross (1985)(CIR) model to simultaneously fit the mean yield curve

and the regression slope. To make c1 < 1, the market price risk needs to be greater than zero

while an upward sloping mean yield curve requires it to be negative. To release the tension,
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they propose a negative CIR model, where the short rate is proportional to the negative of a

CIR factor.

Duffee (1999) further illustrates that the inherent tension remains even for multi-factor

CIR models when one tries to match the properties of the whole term structure of excess

returns. To release the tension, he proposes the application of Gaussian state variables with a

flexible affine market price of risk specification. Dai and Singleton (2000a) incorporates such a

specification to explain the EH violations. In particular, Dai and Singleton (2000a) show that

such a specification also releases the tension identified by Backus, Foresi, Mozumdar, and Wu

(2001) as bγ controls the shape of the mean yield curve (and hence should be negative) while

the slope parameter Aγ controls the regression slope (and should be positive).

Note, however, that the one-factor affine example of Dai and Singleton (2000a) is merely

a degenerating case of a one-factor quadratic model with Ar = 0. Under the quadratic class,

we only use Gaussian state variables. Affine market price of risk is naturally incorporated into

the framework. The incorporation of the quadratic term Ar further enriches the interest rate

dynamics and can prevent the interest rate from being negative.

The slope coefficients of the other three types of regressions can also be derived analogously

under the quadratic framework:

dn =
2tr

[(
Φ>Ay

nΦ−Ay
n

)
V AyrnV

]
+ b>yrnV

(
Φ>by

n − br

)

n
[
2tr (AyrnV )2 + b>yrnV byrn

] ,

en =
2tr

[(
(Φn)>ArΦn −Ar

)
V AfrnV

]
+ b>yrnV

(
(Φn)>bf

n − br

)

2tr (AfrnV )2 + b>frnV bfrn

,

gn =

∑n
i=1

(
1− i

n+1

) [
2tr

[(
(Φi)>ArΦi − (Φi−1)>ArΦi−1

)
V AyrnV

]
+ b>r

(
Φi − Φi−1

)
V byrn

]

2tr (AyrnV )2 + b>yrnV byrn

,

where Ay
n,by

n are coefficients on the bond yield yn, Ayrn = Ay
n+1 −Ar, and byrn = by

n+1 − br.
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C. The Hump Dynamics

Conditional dynamics in general and conditional variance in particular have far-reaching impli-

cations in risk management and option pricing. A central feature of the conditional dynamics

for bond yields, as we observed earlier, is that the conditional volatility or variance of bond

yields has a hump-shaped mean term structure. Let cv(k)n = E
[
V art

[
yn

t+k

]]
denote the

mean conditional variance of n-month yields with a conditional horizon of k periods. Let

av(k)n = cv(k)n/(kh) denotes the annualized mean conditional variance. The hump-shaped

conditional dynamics implies that av(k) increases with k at first, reaches a plateau, and then

decreases as k further increases.

The conditional moments of quadratic forms of normal variates are given by

Et

[
qn
t+k

]
= µ>t,kAnµt,k + tr (AnVk) + b>n µt,k + cn;

V art

[
qn
t+k

]
= 2

[
tr

(
(AnVk)

2
)

+ 2µ̃>t,kAnVkAnµ̃t,k

]
,

where µ̃t,k = µt,k + 1
2A−1

n bn and µt,k = ΦkXt. The mean term structure of the conditional

variance under the quadratic class can be written as

cv (k)n = 2tr

[
(AnVk)

2 + 2
(
Φk

)>
AnVkAnΦkV

]
+ b>n Vkbn. (13)

Proposition 1 Strong interdependence between elements of the state vector is essential in gen-

erating a hump-shaped conditional dynamics. Neither one-factor nor independent multifactor

quadratic models are capable of generating the hump.

Refer to appendix A for the proof. Similar necessary conditions are also required for affine

models. However, the correlation structures between multi-factor CIR models are restricted.

For example, Dai and Singleton (2000b) and Backus, Foresi, and Telmer (2001) both observe

that the unconditional correlation between two square-root state variables can only be positive.

Hence, while multi-factor CIR models in theory can generate a hump shape, the hump is

often not large enough to match the evidence. In contrast, quadratic models only incorporate

Ornstein-Uhlenbeck processes as the driving Markov process, the correlation structure between
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state variables can be chosen freely. Fitting the hump shape hence becomes a relatively easy

task.

From the time series data, the conditional dynamics can be approximately captured by

the annualized variance of multiperiod changes. Under the quadratic model, the variance of

k-period changes in yields or forward rates qn
t is given by

v(k)n = V ar(qn
t+k − qn

t ) = 2
[
V ar(qn

t )− Cov(qn
t+kh, qn

t )
]

= 4tr

((
An −

(
Φk

)>
AnΦk

)
V AnV

)
+ 2b>n

(
I − Φk

)
V bn.

One can readily prove that similarly strong interactions between state variables are required

for the annualized variance of multi-period changes to be hump-shaped.

Nevertheless, conditional dynamics implied from options prices and conditional dynamics

inferred from the time series are dynamics under two different measures. The former is under

the risk-neutral measure while the latter is under the objective measure. The correlation

structure is hence captured by κ∗ = κ + Aγ in the former and by κ in the latter. Therefore, to

simultaneously capture the observed conditional dynamics in both the time series and option

prices, one also imposes constraints on the specification of the market price of risk.

In summary, the quadratic class of term structure models exhibits great potentials in si-

multaneously (1) matching the mean yield curve and the forecasting relations through the

specification of the affine market price of risk AγXt + bγ , and (2) generating the observed

hump-shaped conditional dynamics by the flexible specification of the correlation structures

between the state variables. Furthermore, the quadratic term enriches the dynamics of the

interest rate by incorporating nonlinearity between state variables and interest rates and also

provides a consistent approach to guarantee positive interest rates. In the next section, we

further illustrate these properties by calibrating the quadratic model to the times series data

on eurodollar interest rates.
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IV. GMM Estimation

This section corroborates the property analysis in the previous section with empirical estima-

tion. For this purpose, we choose the simplest model within the quadratic class which can

approximate the three layers of properties of interest rates. As demonstrated in Dai and Sin-

gleton (2000a), a one-factor quadratic model suffices in capturing both the mean yield curve

and the EH regression slopes. To capture the hump dynamics, however, we need at least a two-

factor model to incorporate non-trivial correlation structures between state variables. Moment

conditions are chosen based on the property analysis in the previous section. We calibrate the

model to the time series of interest rates on euro dollars.

A. Moment Conditions and Inference

The parameter set of the quadratic model is: Θ ≡ (κ,Ar,br, cr, Aγ ,bγ). We choose 40 moment

conditions for the GMM estimation. These are taken from

1. Mean yield curve: Mean yields with maturities of 1, 3, 6, 12, 24, 60, and 120 months.

2. Forecasting relations: One period forward regression slopes, cn, with maturities n =

1, 3, 6, 12, 24.

3. Variance of multiperiod changes: Variance of k-period (month) changes of 1-month

and 6-month yields with k from 6 to 58 with an equal interval of 4.

Furthermore, given other parameters, we set cr to match the mean short rate (µr), cr =

µr − tr (ArV ). We hence have 39 moment conditions left for the GMM estimation. The

moment conditions and their values as functions of parameters are summarized in Table II.

Let sn
t = yn

t −rt denote the yield spread and ∆(k)yn
t the k-period change of the yield yn

t . Let

µ(x), cn, and v(k)n denote, respectively, the mean of x, the slope of the forward regression with

maturity n, and the variance of k-period changes in yn
t , all implied from the model parameters

24



and computed based on the formulae in Table II. Given these notations, the three types of

moment conditions can be written as:

h1
t (n) = sn

t − µ(sn), (n = 3, 6, 12, 24, 60, 120)

h2
t (n) =

[(
fn−1

t − rt−1

)− cn

(
fn

t−1 − rt−1

)] (
fn

t−1 − rt−1

)
, (n = 1, 3, 6, 12, 24)

h3
t (n, k) = v(k)n −

(
∆(k)yn

t

)2
, (n = 1, 6; k = 6, 10, · · · , 58)

where k denotes the order and n denotes the maturity. The forward rate and the short rate in

h2
t are demeaned: fn

t = fn
t − f̄n

t . The moment conditions are further scaled to have roughly

unit variance. The first type of moment conditions captures the mean level of interest rates;

the second type captures the cross-correlation between interest rates of different maturities;

the third type captures the auto-correlation of interest rates. To reduce the persistence of the

moment conditions, we construct the moment conditions on spreads (h1 and h2) or differences

(h3), instead of on levels.

We estimate one unrestricted and three restricted versions of the two-factor model:

• Model A (unrestricted two-factor quadratic model);

• Model B (independent two-factor quadratic model): κ(1, 2) = Aγ(1, 2) = Ar(1, 2) = 0;

• Model C (two-factor quadratic model with constant market price of risk): Aγ = 0;

• Model D (two-factor Gaussian affine model): Ar = 0.

For identification reasons, we normalize κ and Aγ to be upper triangular and Ar symmetric.

Model B disallows any interactions between the two state variables and hence serves as an

over-identification test on how important such interactions are in capturing the properties of

eurodollar interest rates. Model C, on the other hand, provides a test on the significance of

the affine market price of risk Aγ . Finally, Model D tests the significance of the contribution

of the quadratic term Ar.

Excluding cr as a free parameter and the mean short rate as a moment condition, we

have 39 orthogonality conditions and 13 free parameters in the unrestricted model (Model A).

Hence, the model is over-identified and has 26 over-identification restrictions. Each of the
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three restricted models (B, C, and D) has three more constraints on parameters. The number

of over-identification restrictions increases to 29.

For inference, let T denote the number of observations and let eT = [ej(n, j)] ∈ R22×1,

with

ej(n, k) =
1
T

T∑

t=1

hj
t (n, k), j = 1, 2, 3,

denote the sample average of the orthogonality conditions. Let Θ̂T be the parameter estimates

that minimize the objective function:

e>T WeT .

We normalize the orthogonality conditions to have unit variance and then set W = I for the

estimation. Asymptotically, under certain technical conditions (Hamilton, 1994), the estimator

has a normal distribution:

Θ̂T ∼ N (Θ, V/T ) , where V =
[
D′WD

]−1
D′WSWD

[
D′WD

]−1
, (14)

where S is the spectral density matrix, estimated following Newey and West (1987) with 12

lags, and D is the Jacobian matrix, defined as

D =
∂e>T
∂Θ

∣∣∣∣
Θ=Θ̂T

.

Under certain technical conditions, the moment conditions also have an asymptotic normal

distribution,

eT ∼ N (0,M/T ) , where M =
[
I −D(D′WD)−1D′W

]
S

[
I −D(D′WD)−1D′W

]>
.

When the model is over-identified, as is the case in this paper, a χ2 test can be constructed

for the over-identifying restrictions,

Te>T (M)−1eT ∼ χ2(r − a),
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where r = 39 is number of orthogonality conditions and a is number of free parameters (13 for

Model A and 10 for Models B, C, and D).

B. Performance Analysis

Table III reports the GMM estimates and standard errors of the four two-factor quadratic

models. Also included are the J-statistics and the probability of negative interest rates. Based

on the J-statistics, all models are overwhelmingly rejected, indicating the need for more fac-

tors to fully capture the interest rate dynamics. Nevertheless, as illustrated by Figure 6, an

unrestricted two-factor quadratic model (Model A) approximates very well the three layers

of stylized evidence: the mean yield curve (top panel), the forward regression slopes (middle

panel), and hump-shaped dynamics (bottom panel). The solid lines in the figure are implied

by the model estimates in Table III. The dash-dotted lines correspond to the 10% and 90%

quantiles. They are computed by the delta method, based on the covariance matrix of the

parameter estimates and an asymptotic normal distribution assumption.

In Model B, we restrict the off-diagonal terms of κ, Aγ , and Ar all to zero. As a result,

the two state variables do not interact with each other and do not interact in their impacts

on the behavior of interest rates. In absence of such interactions, Model B fails to generate

the hump-shaped dynamics observed in the interest rate data. Of the four models tested, the

J-statistic is largest for Model B. Figure 7 depicts the fit of the hump-dynamics by the four

models with parameter estimates from Table III. Of all the models tested, Model B stands

out by its apparent failure in capturing the hump shape in the interest rate dynamics. For

the other three models (A,C,D), the estimates of κ12 are all large and statistically significant,

demonstrating the important role played by strong interactions between state variables in

generating the hump dynamics.

Dai and Singleton (2000b) also find that the correlation structure between state variables

plays an important role in improving the general empirical performance of affine models. Ahn,

Dittmar, and Gallant (2001) have similar findings for the quadratic class. The analysis here
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Figure 6. Performance of a Two-Factor Quadratic Model
Lines represent the performance of the unrestricted two-factor quadratic model (Model A) in
matching the mean yield curve (top), the forward regression slope (middle), and the annualized
variance of multiperiod changes of the six-month yield (bottom). Stars are data estimates. The
solid lines correspond to the point estimates of Model A reported in Table III. The dashed
lines correspond to the 10% and 90% quantiles, computed by the delta method based on the
covariance matrix of the parameter estimates and an asymptotic normality assumption.
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Figure 7. Fitting The Hump Dynamics for US LIBORs
The dashed and solid lines represent the performance of the four models: A (top left), B
(top right), C (bottom left), and D (bottom right), in matching the annualized variance of
multiperiod changes in one-month and six-month spot rates, respectively. Circles and stars
are data estimates for the one-month and six-month spot rates. Parameter estimates of the
models are reported in Table III.
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pinpoints a dimension of the data which specifically requires such interactions and therefore

provides an explanation as to why the general performance is improved.

In Model C, we set Aγ = 0. The market price of risk is therefore reduced to a constant

vector. As illustrated in Figure 8 and the j-statistics in Table III, such a restriction does not

deteriorate the model performance dramatically. The largest impact of such a restriction is

on the confidence band of the regression slopes. As Aγ plays an important role in the EH

regressions, setting Aγ = 0 significantly reduces the confidence band for the regression slopes.

However, since the deviations from the EH are not statistically significant for eurodollars

interest rates, a time-varying risk premium, as captured by a non-zero Aγ , is not called for.

Indeed, the estimates for Aγ in the unrestricted model (Model A) are not significantly different

from zero. Our experience, however, indicates that simultaneously fitting the mean yield curve

and the regression slopes on the US Treasuries is extremely difficult with Aγ = 0. As we

discussed in the data section, violations of EH is much more severe for US Treasuries than

for eurocurrencies: the regression slope is much lower than one and the mean yield curve is

also steeper. Simultaneously fitting them then often requires more time-variability in the risk

premium and hence asks for a non-zero Aγ .

In Model D, we set Ar = 0. The model hence degenerates to a two-factor Gaussian affine

model. One key weakness of such a model is the unrealistic implication that interest rates are

normally distributed:

r ∼ N
(
cr,b>r V br

)
,

where V is the unconditional covariance matrix of the state vector Xt. Furthermore, the

quadratic term also plays a role in keeping interest rate positive. For example, if we restrict

the quadratic term Ar to be positive definite, we can rewrite the short rate function as

r(Xt) =
(

Xt +
1
2
A−1

r br

)>
Ar

(
Xt +

1
2
A−1

r br

)
+ cr − 1

4
b>r A−1

r br.

Obviously, as long as Ar is positive definite and cr ≥ 1
4b

>
r A−1

r br, the short rate is guaranteed to

be positive. Parameter estimates for Models A, B, and C in Table III all satisfy this positivity

constraint for the short rate. In contrast, for Model D, as Ar is restricted to zero and interest

30



0 20 40 60 80 100 120
5.5

6

6.5

7

7.5

8

8.5

Maturity in Months

M
ea

n 
Yi

el
d

0 20 40 60 80 100 120
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Maturity in Months

R
eg

re
ss

io
n 

Sl
op

e

0 10 20 30 40 50 60
−1

0

1

2

3

4

5

6

Number of Lags

An
nu

al
ize

d 
Va

ria
nc

e

Figure 8. Performance of Model C with Aγ = 0
Lines represent the performance of Model C in matching the mean yield curve (top), the
forward regression slope (middle), and the annualized variance of multiperiod changes of the
six-month yield (bottom). Stars are data estimates. The solid lines correspond to the point
estimates of Model A reported in Table III. The dashed lines correspond to the 10% and 90%
quantiles, computed by the delta method based on the covariance matrix of the parameter
estimates and an asymptotic normality assumption.
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rates are normally distributed, positivity cannot possibly be satisfied. Under the estimates in

Table III, Model D implies a probability of 23.21% at which the short rate can be negative.

C. Small Sample Bias

Due to the high persistence of interest rates and the small sample size on our interest rate data,

concerns on small sample bias arise naturally. In particular, Bekaert, Hodrick, and Marshall

(1997) and Bekaert and Hodrick (2000) find that the small sample bias can be significant for

the EH regression slope estimates. Backus, Foresi, Mozumdar, and Wu (2001) confirm their

results based on estimates on an affine model. In this section, we use Model A as a benchmark

to investigate the small sample bias problem. In particular, we use the parameter estimates

for Model A and generate 5,000 samples of 162 observations each for the state vector X. The

state vector is simulated based on the following discrete approximation of the Markov process

on a monthly interval:

Xt+1 = ΦXt +
√

hεt+1,

with ε ∼ NID(0, I). From the simulated series on the state vector, we calculate the spot rates

and forward rates, and estimate the mean yield curve, hump dynamics, and the regression

slopes from each sample. The small sample bias is then captured by the difference between the

population values implied by Model A and the mean values from the simulation. In Figure 9,

we plot together the data estimates (stars), the population values implied by Model A (solid

lines), and the mean estimates from the 5,000 simulated series (dashed line). To demonstrate

the sampling variability, we also plot the 10% and 90% percentiles (dash-dotted lines) for the

estimates on the simulated series.

Consistent with the analysis in both Bekaert, Hodrick, and Marshall (1997) and Backus,

Foresi, Mozumdar, and Wu (2001), the small sample bias for the forward rate regression is

positive at the short end, implying that the violation of the EH might be more severe than

it looks. However, the sampling variability is huge at short maturities, thus weakening the

evidence on EH violations.
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Figure 9. Sampling Variability and Small Sample Bias
Stars are estimates from the data. The solid lines are implied by Model A with estimates
reported in Table III. The dashed lines are the mean values from a Monte Carlo simulation
while the dash-dotted lines depict the 10% and 90% percentile.

V. Pricing Interest Rate Caps

To this point, we have focused exclusively on the time series properties of interest rates in

guiding the deign and estimation of the quadratic model. Given our emphasis on the hump

conditional dynamics, it is natural to exploit information from option markets as well. In this

section, we investigate the option pricing performance of our estimated model by examining

whether it can generate the average hump shape of the term structure of implied volatilities

on interest rate caps.

The average shape of the term structure of implied volatilities will primarily be affected

by two forces. The first is the conditional dynamics of the state vector under the risk neutral

measure, captured mainly by κ∗ = κ + Aγ . We expect the term structure of the implied

volatility to be an approximate representation of the conditional volatility rate of the LIBOR

rate. The difference between the conditional volatility and the implied volatility represents the

second source: the pricing bias of the Black model due to conditional non-normality in the log

of the simple rate. The simply compounded interest rate is log-normally distributed under the

Black model but the deviation is obvious under the quadratic class. While we have analyzed

the importance of a flexible correlation structure between the state variables in generating the
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hump-shaped conditional dynamics, the role played by conditional non-normality is relatively

opaque and calls for a numerical exercise.

Consider a cap contract written on the six-month euro dollar LIBOR rate, Rτ , with τ = 1/2.

The simple rate relates to the continuously compounded spot rate yτ by

Rτ =
1
τ

(
eτyτ − 1

)
.

Let t denote today, t1 = t + iτ the settlement date, and t2 = t + (i + 1)τ the payment date of

the ith caplet. The price of such a caplet, ct, is

ci
t = LE

[
ξt2

ξt

(
exp(τyτ

t1)− (1 + τK)
)+ |Ft

]
= LE

[
ξt1

ξt
(1− (1 + τK)P (Xt1 , τ))+Ft

]
.

The last equality is obtained by principle of conditional expectation. Straightforward applica-

tion of the state price definition in (8) yields

ci
t = L [G0,−q(− ln(1 + τK), t1)− (1 + τK)Gq,−q(− ln(1 + τK), t1)] ,

with q = − lnP (Xt1 , τ). We can therefore compute the caplet price from the transform method

proposed in Section II. Furthermore, by virtue of linearity, we also have the Fourier transform

on any affine combinations of the state price:

χ(z) ≡
∫ ∞

−∞
eizyd

(
b>Gqi,qj

)
= b>ψ(qi − izqj , τ),

where qi and qj denote vectors of quadratic forms. The caplet price is an affine combination

of two state prices. We can hence compute the Fourier transform of the caplet first and then

obtain the caplet price by one numerical integration. The numerical integration is performed

using a higher order adaptive quadrature method.

The caplet price ct depends on both the model parameters and the current state vector Xt.

As we are interested in the average shape of the implied volatility, we set the state vector to

its long run mean: Xt = 0, and price caps based on the term structure implied by Model A

with parameter estimates reported in Table III.
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A. Conditional Non-Normality and Volatility Smile

Under the Black model, the log of the LIBOR rate Rτ
t is assumed to be normally distributed.

Therefore, conditional non-normality results in a pricing bias on the part of the Black model.

Such a pricing bias is most vividly shown by the so-called “implied volatility smile” across

moneyness (strike): when the implied volatility is plotted against moneyness, one often observes

a smile (and sometimes a smirk) pattern while such a plot should generate a flat line under the

conditional-normality assumption of the Black model. Thus, any non-flat pattern for such a

plot becomes an indication of conditional non-normality for the underlying distribution under

the risk neutral measure.

As an illustration, we compute caplet prices at different strikes based on the parameter

estimates for Model A and X = 0. We then infer the Black implied volatility for each caplet

and plot the implied volatility against a moneyness measure, which is defined as

Moneyness =
ln K/Rt

σ
√

iτ
,

where iτ is the maturity of the i-th caplet, and σ = 10% is some fixed volatility level. While

moneyness has been defined in many different ways in the literature, we use the above definition,

and the
√

iτ scaling in particular, to facilitate comparison across maturities. The choice of

σ = 10% is arbitrary, unless one intends to compare implied volatility patterns across different

underlying interest rates.8

Figure 10 represents such a plot for Model A. We see that the implied volatility increases

as the strike (moneyness) increases (further out of the money). Such a pattern implies that the

Black model underprices out-of-the-money caplet contracts relative to at-the-money contracts.

It indicates that Model A implies a thicker right tail (positive skewness) compared to the

normal assumption of the Black model for the log LIBOR rate.

8One may then want to use σ to capture the average volatility level differences across different underlyings.

Such practices have become industry standard.
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Figure 10. Caplet Volatility Smile
Implied volatility across moneyness are inferred from caplet prices, computed based on Model
A, with parameter estimates reported in Table III and assuming X = 0. The maturities are
one year (solid line), four years (dashed line), and ten years (dotted line). Moneyness is defined
as (lnK/R) /σ

√
iτ , with σ = 10% and iτ being the maturity of the contract.

B. The Hump-Shaped Term Structure

To compare the model with the cap data, we also compute the Model A-implied prices of

at-the-money interest rate caps at maturities from one year to ten years. We then infer the

Black implied volatility from these cap prices. As we set X = 0 at its long run mean, we

expect to obtain an average term structure for the implied volatility.9 Figure 11 captures such

a model-implied mean term structure. The figure illustrates a distinct hump shape that is

reminiscent of those observed in the interest rate cap data in Figure 4.

A major source of this hump shape is from the conditional dynamics of the six-month

LIBOR rate. In Figure 12, we plot the term structure of the annualized conditional volatility

of the six-month spot rate under both the risk neutral measure (solid line) and the objective

9We recognize the potential differences incurred by averaging on different metric spaces: the mean term

structure of implied volatility on the cap data in Figure 4 is obtained by averaging on implied volatility quotes

while the mean term structure in this section computed from the quadratic model is obtained by averaging

on the state vector X. Nevertheless, we do not expect the different averaging schemes to alter the qualitative

feature of the hump shape.
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Figure 11. Hump Shape in Cap Implied Volatility
Implied volatilities at different maturities are inferred from at-the-money cap prices, computed
based on Model A, with parameter estimates reported in Table III and with X = 0.

measure (dashed line). With X = 0, the conditional volatilities under the risk neutral measure

are given by

σ∗(k) =
√[

2tr
(
A6V ∗

k

)2 + b>6 V ∗
k b6

]
/(kh),

where (A6,b6) are the coefficients of the quadratic function for the six-month spot rate (contin-

uously compounded) and V ∗
k =

∑k−1
j=0(Φ∗)j((Φ∗)>)j is the k-period ahead conditional variance

matrix of the state vector under the risk neutral measure. The conditional volatility under the

objective measure is obtained analogously with V ∗
k replaced by Vk =

∑k−1
j=0 Φj(Φ>)j

Compare the solid line in Figure 12 with that in Figure 11, we see the close correspondence

between hump shape in the conditional volatility under the risk neutral measure and the

hump shape in the implied volatility. We recognize that, even in absence of the pricing bias,

the implied volatility and σ∗ measure different things: the implied volatility measures the

conditional volatility of the log of the simply compounded interest rate while σ∗ measures

the conditional volatility of the continuously compounded interest rate. Nevertheless, the two

conditional volatilities capture the same dynamics of the interest rate and exhibit very similar

behaviors.

37



1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16

Maturity, Years

C
on

di
tio

na
l V

ol
at

ili
ty

, %

Figure 12. Annualized Conditional Volatility of 6-Month Spot Rate
Annualized conditional volatility under the risk neutral measure (solid line) and the objective
measure (dashed line) are computed based on Model A, with estimates reported in Table III,
assuming X = 0.

Note also that, in our estimation, we capture the hump shape dynamics in the interest

rate by fitting the variance of multiperiod changes in interest rates. However, the variance

of multiperiod changes only captures the conditional dynamics of the interest rate under the

objective measure (the dashed line) but not that under the risk-neutral measure (the solid

line). The moment conditions therefore only impose direct constraints on κ but not κ∗. The

difference is captured by the affine market price of risk term Aγ = κ∗ − κ. In our calibration,

we intend to capture the market price of risk Aγ by matching the mean yield curve and the

slopes of the single-period forward rate regressions. For future research, it would be interesting

to investigate the implications of the options data on the market price of risk.

VI. Concluding Remarks

We document the stylized evidence on interest rates and interest rate derivatives, study its

implications on model design, and calibrate a two-factor quadratic term structure model that

approximates the stylized evidence relatively well. Along the way, however, we ignore a number

of issues that deserve comment. First, a time-homogeneous two-factor model obviously cannot
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match perfectly the whole term structure of interest rates at each day, let alone the term

structure of interest rate caps. Factor analysis by, for example, Litterman and Scheinkman

(1991) claims the existence of at least three factors. Furthermore, as a standard practice in

the industry for derivatives pricing, one almost always takes the observed interest rate term

structure as given, with minimal or no smoothing. To reconcile the observed term structure

with a model such as ours, one often incorporates some time-inhomogeneous (and maybe also

maturity-inhomogeneous) drift terms (fudge factors). Our choice of two factors represents the

minimum number of factors required to capture the hump dynamics. Another issue is about

the moment conditions for the GMM estimation, the selection of which is almost never unique.

Ours is no exception. Admittedly, we could have used more “efficient” methods such as the

maximum likelihood estimation, or the efficient methods of moments applied by, for example,

Ahn, Dittmar, and Gallant (2001) and Dai and Singleton (2000b). Our choice of GMM and the

particular moment conditions, on the other hand, highlights the mapping between the stylized

evidence and the model structure, which is the focus of our paper.
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Appendix A. Proofs

Proof of Proposition 1:

Recall from (13) that the k-period conditional variance of a quadratic form q(Xt) = X>
t AXt +

b>Xt + c is given by

cv(k) ≡ E [q(Xt+k)|Ft] = 2tr
[
(AVk)2 + 2

(
Φk

)>
AVkAΦkV

]
+ b>Vkb. (A1)

For the term structure to exhibit a hump shape, we need the annualized variance cv(k)/(kh) to increase

initially with k, which implies that

cv(2)− 2cv(1) > 0.

In a one-factor case, from (A1), we have

cv(2)− 2cv(1) =
2A2(1 + φ2)(1 + φ4)

1− φ2
+ b2(1 + φ2)− 4A2(1 + φ2)

1− φ2
− 2b2

= −2A2(1 + φ2)2 − b2(1− φ2) < 0. (A2)

as φ < 1 for a stationary Markov process. Hence, the initial term structure is downward sloping. No

hump can be generated from a one-factor model. The same is also true for completely independent

multifactor models with Ar, κ, Aγ being diagonal matrices, in which case, the last line in (A2) represents

the contribution from each diagonal element, which is negative as long as that element is stationary.

cv(2)−2cv(1) can become positive only when the off-diagonal terms becomes dominating. Hence, strong

interdependence between elements of the state vector is essential to generate hump dynamics.

The same argument also holds, almost in parallel, for the variance of multiperiod changes of q(Xt),

v(k) ≡ V ar (q(Xt+k)− q(Xt)) = 4tr
((

A− (
Φk

)>
AΦk

)
V AV

)
+ 2b>

(
I − Φk

)
V b. (A3)

For the term structure to exhibit a hump shape, we need the annualized variance to increase initially

with periods k, or v(2)− 2v(1) > 0. Yet, for a one-factor model, we have again

v(2)− 2v(1) = −4
(
1− φ2

)2
V 2A2

n − 2 (1− φ)2 b2
nV < 0.

Hence, the initial term structure is also downward sloping. No hump can be generated from a one-factor

model. And the same conclusion holds for completely independent multifactor models.
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Table I
Summary Statistics of Interest Rates

Entries report summary statistics of annualized spot rates in euro US dollar and euro Deutsche
Mark. The spot rates are estimated by the extended Nelsen-Siegel method from LIBOR rates
and swap rates. Data are monthly, from April 1987 to September 2000 (162 observations).
Our estimates replace population moments with sample moments.

Mat Mean Std Skew Kurt Autocorrelation

(Month) (%) (%) 1 2 3 4 5

Panel A: US Dollar

1 5.923 1.709 0.330 2.604 0.978 0.964 0.947 0.922 0.899
3 5.968 1.681 0.312 2.569 0.985 0.965 0.944 0.919 0.893
6 6.007 1.637 0.271 2.615 0.983 0.960 0.935 0.908 0.880
9 6.093 1.607 0.264 2.604 0.980 0.953 0.925 0.896 0.867
24 6.606 1.527 0.288 2.273 0.973 0.934 0.898 0.863 0.831
48 7.111 1.440 0.313 1.972 0.971 0.932 0.896 0.860 0.828
84 7.462 1.370 0.315 1.881 0.973 0.938 0.906 0.873 0.842
120 7.647 1.333 0.284 1.904 0.972 0.939 0.909 0.879 0.849

Panel B: Deutsche Mark

1 5.469 2.342 0.532 1.748 0.992 0.982 0.971 0.958 0.942
3 5.477 2.296 0.539 1.770 0.992 0.982 0.970 0.957 0.942
6 5.468 2.240 0.548 1.801 0.992 0.980 0.967 0.953 0.938
9 5.476 2.183 0.558 1.837 0.991 0.978 0.965 0.950 0.934
24 5.674 1.906 0.559 1.953 0.988 0.971 0.953 0.933 0.912
48 6.054 1.570 0.422 2.091 0.985 0.964 0.941 0.917 0.890
84 6.444 1.269 0.099 2.382 0.982 0.960 0.937 0.910 0.879
120 6.677 1.100 -0.165 2.622 0.980 0.960 0.937 0.908 0.878
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Table II
Summary of Moment Conditions for GMM Estimation

The left hand side of the equations denotes the moment conditions while the right hand side
denotes them as functions of parameters of the quadratic term structure models. µn denotes
the mean, ρ(k)n the kth order autocorrelation, and v(k)n the variance of the k-period changes,
of the n-month bond yield. gn denotes the forward regression slope. (An,bn, cn) denote the
coefficients of the n-month bond yield.

Mean yield curve µn = tr(AnV ) + cn

Forward Regression cn =
2tr
h�

Φ>Af
n−1Φ−Ar

�
V AfrnV

i
+b>frnV

�
Φ>bf

n−1−br

�
2tr(AfrnV )2

+b>frnV bfrn

Hump dynamics v(k)n = 4tr
((

An −
(
Φk

)>
AnΦk

)
V AnV

)
+ 2b>n

(
I − Φk

)
V bn
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