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Abstract

This paper explains how to calculate convexity adjustment for interest
rates derivatives when assuming a deterministic time dependent volatility,
using martingale theory. The motivation of this paper lies in two direc-
tions. First, we set up a proper no-arbitrage framework illustrated by a
relationship between yield rate drift and bond price. Second, making ap-
proximation, we come to a closed formula with specification of the error
term. Earlier works (Brotherton et al. (1993) and Hull (1997)) assumed
constant volatility and could not specify the approximation error. As an
application, we examine the convexity bias between CMS and forward swap
rates.
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1 Introduction

The motivation of this paper is to provide a proper framework for the convexity
adjustment formula, using martingale theory and no-arbitrage relationship. The
use of the martingale theory initiated by Harrison, Kreps (1979) and Harrison,
Pliska (1981) enables us to define an exact but non explicit formula for the con-
vexity. We show that making approximation, we can derive previous results, first
discovered by Brotherton-Ratcliffe and Iben (1993) and later by Hull (1997) and
Hart (1997). The approach hereby considered has the great advantage to enables
us to specify the error of the approximation. We extend results derived in the
Black Scholes framework to time dependent volatility, often referred as the model
of Black (1976). This is more in agreement with the consideration of practitioners
who commonly use time dependent volatility to best fit the market prices.

The convexity adjustment hereby derived is of considerable interest to measure
the convexity adjustment required by a security paying only once a swap rate.
The rate of this kind of security is named in the fixed income market as the CMS
rate.

The formula, first discovered by Brotherton-Ratcliffe and Iben (1993) and
later by Hull (1997), is an analytic approximation of the difference between the
expected yield and the forward yield, collectively referred to as the convexity
adjustment. It assumes a constant yield volatility o. Brotherton-Ratcliffe and
Iben (1993) show that the convexity adjustment for yield bond was given by:
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where y{; denotes the value today of the forward bond yield, h(y) the price
of the bond that provides coupons equal to the forward bond yield and that is
assumed to be a function of its yield y, b’ (y) and A" (y) the first and second partial
derivatives of the bond price h (y) with respect to its yield. Hull (1997) shows that
this convexity adjustment can be extended to derivatives with payoff depending
on swap rates. Hart (1997) sharpened the approximation with a Taylor expansion
up to the four terms. However, all proofs, based on Taylor expansion, never
introduced any error of the approximation. This was precisely the motivation
of this paper. It shows that, when a proper no-arbitrage framework is assumed,
formulae similar to (1) can be derived with an exact definition of the error term.

The remainder of this paper is organized as follows. In section 2, we give
some insight about convexity. In section 3, we derive convexity adjustment from
a no-arbitrage proposition implied by martingale condition. We show how to
derive an approached formula, with a control on the error term. Monte Carlo
simulations confirm the efficiency of the approached closed formula. In section
4, we explicit the convexity adjustment required for a CMS rate. We conclude
briefly giving some further developments.
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2 Insights about convexity

Convexity is a puzzling notion, which has been gained many meanings. In this
section, we give a more specific definition and explain on a rough model how to
lock in the convexity adjustment using a static hedge.

2.1 The definition of the convexity

For fixed income markets, convexity has emerged as an intriguing and challenging
notion. Taking correctly this effect into account could provide competitive ad-
vantage for financial institutions. This paper tries to give insights and intuition
about convexity.

One main difficulty is to give a unified framework for all the different mean-
ings of convexity. Indeed, it is true that the notion of convexity refers to different
situations, which can be sometimes seen as having almost nothing in common.
Sometimes used as the gamma ratio for interest rate options, as an indicator
of risk for bonds portfolios, as a measurement of the curvature of some finan-
cial instruments or as a small adjustment quantity for a wide variety of interest
rate derivatives, convexity has become a synonym for small adjustment in fixed
income markets, related somehow to the notion of mathematical convexity and
more generally related to a second order differentiation term. A more restrictive
definition would lead to abandon some particular case of the notion of convex-
ity. Furthermore, the notion of convexity is quite disturbing since concavity is
sometimes seen as a negative convexity, leading to quid pro quo and misunder-
standings. The situations which are of particular interest for practitioners can be
classified into two types with different causes of adjustment:

e the bias due to correlation between the interest rate underlying the financial
contract and the financing rate. An example is the bias between forward
and futures contracts. This correlation, capitalized by the margin calls
of the futures contract, leads to a more expensive (respectively cheaper)
futures contract in the case of positive (respectively negative) correlation.

e the modified schedule adjustment. Even if the analysis is the same for the
two sub-cases above, it is traditionally divided into two categories depending
on the type of rates:

— One period interest rate (money market rates, zero coupon rate) and
bond yield. An example is the difference between plain vanilla prod-
ucts and in-arrear ones, or in advance ones. Another one is the differ-
entiation between forward yield rate and expected bond yield. Fur-
thermore, a modified formula for every type of path dependent interest
rate option, like Asian options, multi European options is required.



— Swap rates. These products are called by the market CMS products for
constant maturity swap. A convexity adjustment is required between
forward swap rate and expected swap rate, often called in the markets
the CMS rate. Indeed, this analysis is very similar to the previous
case. It comes as well from a modified schedule.

For practitioners, the two sub-cases have long been separated because they
were concerning different products. As a result, they were seen as two types of
adjustment. Indeed, the two required convexity adjustments are coming from a
modified schedule of the rate.

In this paper, we concentrate on the distinction between forward and expected
bond yield as well as swap rate.

2.2 A rough model

As pointed out in our definition section, one should make a distinction between
the convexity adjustment required between futures and forward contract (corre-
lation convexity) and the other adjustment (modified schedule adjustment). As
a general rule for the second type of situation, it is necessary to make a convex-
ity adjustment when an interest rate derivative is structured so that it does not
incorporate the natural time lag implied by the interest rate. This is the case
obviously of in-arrears and in-advance products where the rate is observed and
paid at the same time. This is as well the case of the CMS rate where the swap
rate instead of being paid during the whole life of the swap is only paid once.

Let us now explain intuitively the convexity defined as the difference between
forward rate and expected rate. We examine the case of bond but it is exactly
the same analysis for swap rate. Since the relationship between bond price and
the bond yield Y is non-linear, it is not correct to say that the expected yield is
equal to the yield of a forward bond, and called the forward yield. Similarly, it
is not correct to say that the expected swap rate should be equal to the forward
swap rate.

This can be well understood by taking a two states world. The bond price
can be either P;, P, with equal probability % The corresponding yields are Y7,
Y5. In this binomial world, the expected price P. is given by the different possible
price with their corresponding probabilities P, = %Pl + %Pg. The forward yield
Y7 is the yield corresponding to the expected price P,. The expected yield Y, is
the one given by the expected value of the yield Y, = %Yl + %Yg

However, since the relationship between price and yield is decreasing and
convex, the two given yields, forward and expected one, are not equal and the
expected yield Y, is above the forward one as figure 1 shows it.
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Figure 1: Convexity of the bond price with respect to its
yield. This graphic shows that the expected yield denoted by
Y, is higher than the corresponding forward yield Y/

These results can be derived in a more general stochastic framework. The
Jensen inequality on convex functions tells us that the forward price defined as
the expected value under the risk neutral probability of the price E (P (Y')) should
be higher than the bond price with a yield equal to the expected rate P (E (Y))

E(P(Y)) > P(E(Y))

Using the fact that the bond price is a decreasing function, we get that the
expected bond rate defined as the expected value of the yield E(Y') is higher
than the forward bond rate corresponding to the forward price E (P (Y)) (Y/ =
PH(E(P(Y)))). The difference between the expected yield and the forward
yield Y¢ — Y/ is called the convexity adjustment and defined by

Ye-Y/ =E(®)- P (E(P(Y))) (2)

With these rough modelling framework, we can already get interesting results.
When a bond or a security price is a convex function of the interest rate, the ex-
pected bond yield E (V) is always above the forward bond yield P~ (E (P (Y))).

This can as well applied to swap rates. Indeed, a receiver swap, swap where
one receives the fixed rate and pays the floating one, is also a convex decreasing
function of the swap rate. The only difference comes from the fact that the swap
price contrary to the bond price can be negative. This is illustrated by figure
2. Since only hypotheses on the monotony and convexity of the function are
required for deriving our result above (2), we conclude that the expected swap
rate is above the forward swap rate.
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Figure 2: Convexity of the swap price with respect to its swap
rate: The relationship between the receiver swap price and
the swap rate is convex and decreasing. The only difference
between swap and bond contract lies in the possible negative
values of the receiver swap

As a general conclusion of this subsection, expected bond yield or swap rate
should be higher than the corresponding forward for convex contract and lower
for concave one.

2.3 Static hedge: locking the convexity

Intuitively, the difference between the forward yield and the expected yield is
due to the fact that the underlying bond price is a decreasing convex function
of the yield. We can take advantage of this by a static hedge. Let us consider
a continuous trading economy. The uncertainty in this economy is characterized
by the probability space (€2, F, Q) where €2 is the state space, F' is the c—algebra
representing measurable events, and () is the risk neutral probability measure.

We denote by y{ the value of the forward yield at time ¢. We denote by h (y{ ) the

pay-off of a security depending on the forward yield. We denote by y(’; the value
today of the forward yield. We define by o the constant volatility of the forward
yield at time 7" when compared with the today forward yield. This means that
the square difference between the forward yield at time T and the today value
is proportional to the volatility times the time elapsed times the square of the
today value of the forward yield:




All this analysis is made for yield bond for clarity reason. However, this can
be adapted easily to swap rate. We consider the following portfolio:

- a forward contract on the forward yield with a strike at the today value
of the forward yield. The payoff at time T is simply the difference between the
forward yield at time T : yg; and the strike: today value of the forward yield y(’; .

- a hedging portfolio composed of n forward contract(s) on the bond set at
at-the-money strike. The payoff of the forward contract is therefore the difference

between the non-linear security pay-off at time 7" h <y§:> and the price if the yield
were the value of the today forward yield h (yg ) This is an hedging portfolio

since the variation of the forward contract on the forward yield y% are offset by
the variation of the forward contract on the bond. Since the forward contract is
set at at-the-money strike, this contract is of zero value.

Since the value of the total portfolio is equal to the sum of its two components,
with the second one of zero value, the total value of the portfolio is equal to the
value of the first portfolio, given at maturity time 7' by the expected difference
between the forward yield and the today value of the forward yield, which is
exactly the definition of the convexity adjustment. The value today of the total
portfolio is therefore the convexity adjustment times the zero coupon maturing at
time T'. The determination of the convexity adjustment is consequently equivalent
the one of the global portfolio. Its expression is given by the following proposition:

Proposition 1 Convezity adjustment
The value of the portfolio denoted by P is given by

" ()
P 1 Yo < f) 2 O-2T (4)
B(0,7T) 2 1% <y[J;>
Proof: By means of a change of probability measure, from risk neutral to
forward neutral probability measure, the price P of the all portfolio can be written
as the expected value of the payoff under the forward neutral probability measure
Q7 times the zero-coupon bond maturing at the payment time 7"

P =B(0,T)Eq, <<y§ —yc’;> +nx <h <y{“> —h <y§>>>

Using a Taylor expansion up to the second order around the today forward yield,
we get that the pay-off of the hedging portfolio at time 7' can be expressed as a
simple function of the difference between the forward yield at time T : y{ﬂ and
the today value of the forward yield y(’; .

n (k) =n(vl) = (vh—od) 1 (od) +% (v} - yS)Qh" () +o ((yé: - y5)2>



we can assume that the difference between the value at time T of the forward
yield y% and its today value y(’; is small since the forward yield at time 7' should
be close to its initial value. This is a not very rigorous assumptions but it is
an assumption often used by practitioners. The total value of the portfolio can
therefore be expressed as a quadratic function of the difference between the value
at time T of the forward yield y% and its today value yg

P—B(0,T)Eq, {(ygli_yg) <1+nh' (y{f)) +%n (y%—yg)Qh” (yéc)}

To eliminate the first order risk (role of our hedging strategy), the quantity of the
hedging portfolio should exactly offset the variation of the forward contract(up

to the first order):
1

The quantity n is positive and confirms that the second component of the global
portfolio is a hedge against the variation of the first one. The value of the global
portfolio is therefore coming only from the second order risk or gamma risk.
Getting all the deterministic term out of the expectation leads to the following

expression:
hu <yf>
1 0 2
P=-5B0.T)—<Eo l(y:]; - y{f) }
t (u4)

n=—

Using the strong assumption (3) about the pseudo ”volatility” o, we get that the
price of the total portfolio can be expressed as a function of the today value of
the forward yield y(’; and the parameter of ”volatility” o

pP= —%B (0,7) M <y§>2aT

i (vh)

which is exactly the result (4).00

3 Calculating the convexity adjustment

In this section, we show how to derive the convexity adjustment required when
assuming a time dependent volatility, hypotheses similar to the Black model.
The difference between our model and the Black model lies in the fact that in
our model, the drift term is supposed to be stochastic. However, when we take
a deterministic approximation of our drift term, our model becomes a standard
Black model.



Our proof is based on the martingale theory. We obtain that the martin-
gale condition implies a strong condition on the drift term of the forward yield.
Making approximations, we obtain as a particular case (when the volatility is
constant) the traditional formula for the convexity adjustment (1), obtained by
Brotherton-Ratcliffe and Iben (1993) and later by Hull (1997). However, the
motivation of this approach is to specify the error of the approximation. Monte
Carlo simulations prove that the error is relatively small.

3.1 Pricing framework

We consider a continuous trading economy with a limited trading horizon [0, 7|
for a fixed 7 > 0. The uncertainty in the economy is characterized by the proba-
bility space (€2, F, Q) where (2 is the state space, F' is the o—algebra representing
measurable events, and () is the risk neutral probability measure uniquely de-
fined in complete markets (Harrison, Kreps (1979) and Harrison, Pliska (1981)).
We assume that information evolves according to the augmented right continu-
ous complete filtration {F},t € [0, 7]} generated by a standard one-dimensional
Wiener Process (W4) (0., -

We assume as well that the price at time ¢ of the bond can be defined as a

function A (.) of the bond yield at time ¢ : (ygc ) i h (y{ ) The two stochastic
t<t

variables (y{ ) , (h (y{ )) are supposed to be adapted to the information
t<t t<t

structure (F}),po - We examine a bond security which payoff is paid at time T.
Following the work of El Karoui et al. (1995), the no-arbitrage condition and the
markets’ completeness assumption enable us to define a unique forward neutral

probability measure ()7, under which the price h (yg ) is a martingale. Under this

probability measure ()7, the volatility of the forward yield rate y{ is supposed to
have a deterministic volatility function depending only on the time, leading to
the following diffusion:

dy/ _

ul
where the drift term is stochastic. Since the volatility is supposed to be a deter-
ministic function of time, this is sometimes referred as a ”Black” model. How-
ever, the drift is stochastic. It is therefore different from the standard Black
model where a deterministic drift. We denote zero coupon bond price at time ¢,
maturing at time 7" > ¢ by B (¢,T). The following theorem gives us the necessary

[Ltdt + O'tth

condition for the drift term so that the price h y{ ) is a martingale.

3.2 Convexity adjustment formula

Theorem 2 Convexity Adjustment formula
Under the hypotheses above, the drift term should satisfy the following non-
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arbitrage condition

Proof: the Ito lemma gives
an (yf ) =1 () gl ordw; + lytf W (o) o+ %h" (o) (o )2} dt

Under the forward neutral probability ()7, the price of the bond h (ygc ) is a

1" 2
martingale. This implies that the drift term ygc ' (y{ ) My + %h (ytf ) (atyg )

should be equal to zero, which leads to the necessary condition (5).0]
We take the following definition of the convexity adjustment:

Definition 3 The convexity adjustment is defined as the difference between the
expected yield under the forward neutral probability measure and the forward yield,
leading to the exact but non explicit formula:

Bo, (vf/Fo) — ol (6)

The above definition provides us with an exact but not tractable formula of
the convexity adjustment. Assuming that the drift term can be approximated
by its value with the forward yield equal to the today forward yield yg , we get a
closed and tractable formula given the following theorem:

Theorem 4 Under the assumptions above, we can prove that the convexity ad-
Justment for the expected bond yield can be approached by

1 v
yh (e " 00) -1 ™)

where h' (y[{) and h" (y(’;) denote the first and second derivatives of the bond
price with respect to its yield y taken at the point y{; .

Proof: Calculating the expected yield under the forward neutral probability
gives:
r T
Eqr <y§~/Fo> = Eqg, <ygefo (=507 )dt+ [ crtth>

Using the fact that we assume that the drift term can be approximated by a
purely deterministic formula given when approximating the forward yield rate ytf
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by its initial value y[’; (very rough approximation) u, —

14 (vd)

T
Eq, (y%/F()) ~ y(’; exp —57]03/5/ afdt
w(uf)

Consequently, using its definition (3), the convexity adjustment is given by the
final result (7).0

An approximation of the theorem formula is then given by a Taylor expansion
of the exponential up to the first order, leading to an extension, to time dependent
volatility, of the formula Iben (1993)

h" y(’; o T ,
%%@5) / - (s)

Corollary 5 Black Scholes formula

When the volatility is constant, the convexity adjustment derived here leads exactly
to the one obtained by Brotherton-Ratcliffe and Iben (1993) and later by Hull
(1997)

1 2 1
70 I
leads to

Proof: Using the approximation formula (8) with a constant volatility leads
to the result.[]

The calculation in the proof is not very rigorous in the sense that we assumed

that the drift term p, could be approximated by the initial deterministic value

_lpnm f fa'2 . .
equal to % A more complex framework should take into account this
0

approximation. This implies two interesting remarks. First, it means that the
Black Scholes convexity adjustment used by markets is a very rough approxi-
mation formula when assuming a deterministic volatility. One assumes that the
stochastic drift term is indeed deterministic. Second, this approximation is highly
depending on the initial value of the forward yield rate y[’; . If this forward yield
rate is unstable, one should think about using an average of the past observations.

We can now specify the error term as the difference between our closed formula
(7) and the intractable one (6). We can see that in the difference the two term
y[’; simplify each other, leading to an error term given by:

B h”(yé)

Eo, |yl | e (e-tet)ais’ oawi _ "2 w(id)

T
yg fo ofdt

N[=

Using a change of probability measure (Girsanov theorem), we can see that this
expression is under a probability measure denoted by () a difference between two
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terms, where the Radon Nykodim derivative of @ with respect to Q7 is given by
elo otdWi=3 [g otdt, Using the Taylor Lagrange theorem, we get that there exits a
parameter ¢, between 0 and ¢ so that this difference of terms can be expressed
as the difference between the two rates y; and y[’)c times the derivatives of the
exponential:

yf
B A . Ff
! / g<y9t) dt (yt —yo)
0

%hn (y) y

X
respect to y. This is not very satisfactory but it is the only result vs(/g>get for an
estimate of the error term. Indeed, results could be derived with more knowledge
about the function h. This implies of course to specify more the diffusion equation
of y. Without any further information, nothing very specific can be derived on
the error term. Another way to measure the error term is by means of Monte
Carlo simulations.

where the function g () denotes the derivatives of the function o? with

3.3 Monte Carlo simulations of the error

In the previous section, we have assumed that the forward yield rate y{ can be
approximated by the today value of the forward yield y{; . In this subsection, we
analyze, by means of Monte-Carlo simulations how big the error is. We consider
a derivative that provides the payoff equal to the one-year zero coupon rate in
T years multiplied by a principal of 100. For the simplicity of the simulation,
we take a constant volatility (o, = o) equal to 20 % and a forward rate of 10%.
Since our bond is a one year zero coupon, its payoff is equal to the discounted
value of the unique unity coupon.

1

h(Q)Zm

The no-arbitrage condition (5) implies that the yield should have the following
diffusion

dyl _ oy
v 14yl
with the initial value y{ = y(’; . The aim of the Monte Carlo simulation is to
examine the quality of the approximation done for the convexity adjustment. We
compute the expected yield E® [yr] which is called in table 1 by theoretical yield

(calculated with a Sobol sequence Quasi-Monte Carlo with 20.000 draws) and
compare it to the approached formula for the convexity adjustment

dt + Uth

nt yf f
—% - ? y(};UzT Jy)TchT
yhe M) =yl e
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The results are given in the table 1. These are simulations for different value of
the expiry time 7' : 3, 5 and 10 years. It means that our derivatives is paying
the one-year zero-coupon rate determined at time 7' and paid at time 7. The
price of this derivative is therefore the forward rate with a convexity adjustment
times the principal 100 discounted by the zero coupon bond maturing at time 7.
The results show that the approximation is quite efficient and can therefore been
used as a good estimator of the convexity adjustment required for the derivatives
concerned.

Time Approached Theoretical Approached Theoretical
T yield yield (MC) Price Price (MC)
3 10.1097 10.1099 7.59556 7.59572
5 10.1835 10.1844 6.32314 6.32373
10 10.3703 10.3888 4.83783 4.84646

Table 1: Results of the simulation for the expected rate. The
simulations show that the rough approximation is quite valid.

4 CMS rate

Interest rate derivatives are often structured as to include a period of time be-
tween the date of the fixing of the interest rate and the date of the payment. In
general, when the payoff on a derivative depends on a t-period rate, it is common
to include a time lag of exactly the maturity of the rate between the fixing of the
rate and the corresponding payment. This is traditionally called as the natural
time lag. The interesting point is that each derivatives which includes a natural
time lag does not need a convexity adjustment (Hull (1997) page 407). However,
for some derivatives, this natural time lag is not respected. These derivatives
require a convexity adjustment. This is the case of in arrear products and CMS
products. This section targets at the problem of the CMS and shows how to
apply our results of the section 3 to this particular question.

4.1 Introduction

The CMS rate is the rate of a contract that pays only once the swap rate. Because
a regular swap rate should be paid during the whole period, this product includes
a modified schedule. Swap price are a convex function of the rates. Therefore, as
explained in the first section, the expected swap rate should not be equal to the
forward swap rate. The difference should be positive because of the convexity of
the function.

This result can be proved in a very basic way. We want to calculate the
expected value of an annual swap rate assumed to have n payments at date T+ ¢
with ¢ = 1..n. Let us denote by y(’; the forward swap rate, and by y{ the swap
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rate at time ¢t. A useful relationship between a receiver swap price with a fixed
rate equal to the forward swap rate and the swap rate is the following. The
receiver swap price Psy,q, is equal to difference between the forward swap rate
and the swap rate times the swap sensitivity.

Pwa () = D B (6T +1) (] —of ) )

Therefore, introducing this quantity, we get that the expected swap rate can be
calculated as:

Sy B(TT+1) (vl - f)
Z?:o B(T,T +1)

EQT [y{“} = EQT + y(J)c

Knowing that the swap sensitivity ., B (¢, + ) is positively correlated with
the receiver swap price > .- B (t,T + 1) (y{; —yl ) for every time ¢, we get that
the two variables, the opposite of the inverse of the sensitivity of the swap

—m and the receiver swap » ., B (T, T + 1) (yg — y%) are positively
correlated. A simple result is that when two stochastic variables X; and X, are
positively correlated, the expectation of their product is bigger than the product
of their expectation

E[X1Xo] > E[X1] E[X,)]

In the case of a strictly positive correlation, the inequality is strict. Since the
forward swap is exactly at the money (fixed rate equal to the forward rate), its
expected value should be equal to zero. This leads to the final result that the
expected swap rate should be higher than the corresponding forward swap:

EQT [yT] > y(j;

4.2 Hedging strategy

The hedging point of view is interesting as well. If an investor who is long a CMS
rate hedges it like a forward swap rate, he will make almost surely profit. Let us
show how to make an arbitrage in this situation. The hedging strategy should
cost today exactly the discounted swap rate y[’; B(0,7).

Take the following strategy. An investor is:

e long a CMS rate which maturity is denoted by 7, with an underlying swap
rate of an n years maturity.

He hedges it as if the CMS contract was giving him the forward swap rate. A
hedging strategy is to replicate synthetically the forward swap rate:

14



e long the corresponding forward receiver swap with an amount equal to the
. o . . 1 .
inverse of the forward swap sensitivity ST B BT with a fixed rate

equal to the forward swap rate. Since the receiver swap is with a fixed rate

equal to the forward rate, the value today of this swap is 0.

e short at the same time a risk free bond maturing at time 7" with an in-
vestment amount equal to the forward swap rate yg . The value of this zero
coupon bond is today y B (0,T).

We verify that the hedge cost, today, is the discounted forward swap rate
y[’; B (0,T). Let us now examine our total portfolio. It is long a CMS rate, long a
forward receiver swap, short a zero coupon. The total value Il1 of the portfolio

at time 7' is: P )
H:(f_f>+n Swap }
. { g > iz Bor [B(T,T + )]
using again the useful relationship between swap price and swap rate (9), we get

- [y D) + [

Using the fact that to be short the receiver swap is equivalent to be long the
corresponding payer swap, the first position is exactly long a payer swap with a
stochastic amount m Denoting by Pp guap (T') the price of the payer
swap, we get that our total portfolio can be decomposed into two sub-portfolios:

e portfolio 1: the sum of the CMS rate and the zero coupon bond times the
forward swap rate. Its value at time 7" is equal to a payer swap Pp_gyap (1)

with a stochastic amount m

e portfolio2: the forward receiver swap with an amount equal to the inverse

of the forward swap sensitivity ST g 1[ BETT
=1 T ’

Let us examine different scenari for the interest rates.

e If the swap rate realized at time T is exactly the forward swap rate, the
two portfolios have zero value.

e If the swap rate y{; is above the forward swap rate —y[’)c , the portfolio 1
increases because of two things: first, because the payer swap ends in the
money and second , because the sensitivity of the swap has decreased,
which is equivalent to an increase of the inverse of the swap sensitivity. In
contrast, the portfolio 2 decreases only because the receiver swap ends out
of the money, and which offsets only the profit realized on the payer swap.
Therefore, in this case, the total portfolio will increase.
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o If the swap rate is below the forward swap rate, the payer swap ends out
of the money whereas the receiver swap ends in the money by the same
amount. However, the loss on the payer swap of the portfolio 1 is offset
by the decrease of the inverse of the swap sensitivity, leading again, to a
positive value for the total portfolio.

As a conclusion, we can see that whenever the swap rate are above or below
the forward swap rate, our total portfolio ends in the money. This positive value
is due to the convexity effect. We see on this example that the static hedge does
not hedge against the convexity term. Since this effect is depending obviously
on the importance of the move between the swap rate and the forward one, in
either directions, this should be related somehow to the volatility. A hedging
strategy that hedges against the convexity term should therefore have a volatility
component by including some options like swaptions. However, since swaptions
are not perfect substitute for the convexity term, the hedge needs to be rebalance
dynamically. Many questions remain unsolved. Which option should I take
and more specifically which option maturity and strike should I choose? These
questions are depending mainly on the market data for the example examined.
The answer is outside from the scope of this paper.

4.3 Pricing CMS rate

The price of a bond that gives the forward swap rate at each different date, and
with no principal exchanged at the end of the swap is given by
F F

h(y)zm—i-...—Fm

This leads to the following calculation for the convexity adjustment denoted by
C'A (equation (8))

M+ 1) Th—L + o+ (T, + ) Ty —Ls

ca-1 (1450) () ™ (vd )2 / " ot
(1+4d) (1+4{)

This shows us that it is only because of some volatility on the swap rate that
the CMS rate is different from the forward swap rate. Our result shows that the
influence of the volatility is linear in the volatility of the whole process fOT odt.

5 Conclusion

In this paper, we have seen that using martingale theory enables us to give a
more robust proof of the convexity adjustment formula in the Black framework.
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Looking for a definition of convexity, we classify the convexity adjustments
into two categories: a correlation convexity, futures versus forward contracts and
a modified schedule convexity, mainly the rest of the convexity adjustments. We
explain on a static hedge the origin of the convexity. We derive convexity ad-
justment from a no-arbitrage proposition implied by martingale condition. This
enables us to give a definition of the convexity adjustment, with no approxi-
mation. Then making approximation, we show how to get a tractable closed
formula, which encompassed previous results. We specify the error term between
the approached closed formula and the exact but non explicit formula. We show
that under certain conditions, this error term can be bounded by a ”modified”
Laplace Transform of the yield variable. Monte Carlo simulations prove us that
the error is relatively small. One can consider the approached formula a good
estimate of the convexity adjustment.

There are many possible extensions to this paper. The first one is to relax
the hypothesis of a Black diffusion. This is more in agreement with the use of
term structure models by financial institutions. However, the problem turns to be
non-linear and complex. Its solving requires sophisticated approximation tech-
niques like Wiener chaos, Cramers-Moyal expansion or the theory of stochastic
perturbation (see Benhamou (2000) for a discussion and a solution by means of
Wiener Chaos). A second development concerns the pricing of in-arrear deriva-
tives. These derivatives are well known for their convexity component. An ap-
proximate pricing can be obtained by using forward rates modified by the correct
convexity adjustment, as explained in this article. Last but not least, the same
methodology could be applied to the convexity adjustment of futures against for-
ward contracts, fact that has been studied empirically by French (1983), Park
and Chen (1985) and Viswanath (1989) and that is still little explored.
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