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Abstract

In this paper, by applying the potential approach to characterizing default risk, a
class of simple affine and quadratic models is presented to provide a unifying frame-
work of valuing both risk-free and defaultable bonds. It has been shown that the
established models can accommodate the existing intensity based credit risk mod-
els, while incorporating a security-specific credit information factor to capture the
idiosyncratic default risk as well as the one from market-wide influence. The models
have been calibrated using the integrated data of both treasury rates and the average
bond yields in different rating classes. Filtering technique and the quasi maximum
likelihood estimator (QMLE) are applied jointly to the problem of estimating the
structural parameters of the affine and quadratic models. The asymptotic proper-
ties of the QMLE are analyzed under two criteria: asymptotic optimality under the
Kullback-Leibler criterion, and consistency. Relative empirical performance of the
two models has been investigated. It turns out that the quadratic model outperforms
the affine model in explaining the historical yield behavior of both Treasury and cor-
porate bonds, while producing a larger error in fitting cross-sectional bond spread
curves. Moreover, a modified fat-tail affine model is also proposed to improve the
cross-sectional fitting abilities of the exist models. Meanwhile, our empirical study
provides complete estimates of risk-premia for both market risk and credit default
risk including jump event risk.



1 Introduction

Research in modeling and pricing of credit default risk has made a great progress
during the past few decades. Since the ground breaking studies of Black and Scholes
(1973) and Merton (1974), much of the literature has followed their steps to mea-
sure a firm’s credit risk using its asset value and debt information. Although this
“structural” framework has a sound economic interpretation of default, this type of
models turns out to be less successful in practical applications due to the difficulties
of obtaining the accurate asset value information and providing a realistic default
boundary condition. Moreover, since in the traditional structural models, the default
of a firm is anticipated by bond holders; or more strictly speaking, the default time
is predictable, and thus the model implies the credit spread must approach to zero
at the short end, which can hardly match the empirical observations. Although some
alternative models have extended the existing framework to overcome this “short-
term deviation,”1 the lack of tractability prevents their extensive implementations in
practice.

In response to the imperfections of the structural models, another different mod-
eling strategy is pursued in the recent research works, in which a so-called “reduced-
form” model is proposed to price credit risk. Compared with solid economic argu-
ments in the structural models, a default event in the “reduced-form” framework is
modeled as a Poisson-type jump which occurs completely unexpectedly. The stochas-
tic structure of default is prescribed by an exogenously given intensity process. As
pioneered by Jarrow and Turnbull (1995), Madan and Unal (1994), Lando (1998), and
Duffie and Singleton (1999), the reduced-form framework is much more tractable than
the structural model in that it provides a tractable credit risk valuation methodology,
which has already been widely used in the risk-free interest rate models.

Besides an extensive discussion on how to refine the reduced-form models to bet-
ter interpret the nature of credit risk, several empirical implementations of this type
of models are carried out following the similar approaches in estimating the risk-free
term structure models. Duffee (1999) build and test a three-factor affine model using
the time-series of treasury rates and the corporate bond yields across investment-
graded firms. The model produces a quite good fit for corporate bond yields. How-
ever, the model specifies the default risk premium only as a drift adjustment from
the diffusion variable, which can not fully explain the excessive return on defaultable
bonds. In the light of the work by El Karoui and Martellini (2002), and Jarrow,
Lando and Yu (2003), Driessen extends the analysis of Duffee (1999) by introducing
a constant jump event risk premium into the original model, the empirical results
show that this default jump risk premium is statistically significant and serves as a
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crucial determinant of excess defaultable bond returns.
However, as the empirical evidence provided by Duffee (2002) and Cheridito,

Filipović and Kimmel (2003), a reasonable risk premium structure should be flexible
enough to produce a time-varying expected returns. Therefore the assumption of
the constant jump risk premium may seem not appropriate. Moreover, Yu (2002)
argues that in order to accurately estimate the credit risk premium, it is necessary to
know the credit spread that is only caused by default risk, since as shown in Huang
and Huang (2003), some non-default factors such as liquidity and tax effects are the
main source of the actual spreads observed in the market. In this paper, we develop a
potential approach to modeling the default risk. We will show this new framework can
not only accommodate the existing reduced-form (intensity-based) credit risk models,
but also provide us a more flexible risk premium structure given the recent results in
Cheridito and Filipović (2003). As demonstrated by our empirical tests, the default
jump risk premium turns out to be time varying and the physical default intensity
is mainly determined by firm specific factors rather than the market-wide factors.
Moreover, our tests also strongly reject the constant ratio assumption between the
real world jump intensity and the risk-neutral one.

For simplicity of empirical implementations, a class of two-factor models is pro-
posed. Both the short rate and a firm-specific credit related factor have been con-
sidered to capture the idiosyncratic default risk as well as the one from market-wide
influence. The firm-specific variable characterizes the financial quality of a firm,
which is called the firm’s “credit index.” In fact, this concept is originally proposed
by Hull and White (2001), in which it is used to measure the distance to default of
a firm2. By appropriately modeling the credit index of a firm, Chen and Filipović
(2003a) proposes a simple model for credit migration and spread curves, in which the
explicit formulas of corporate bond prices are derived with consideration of default
risk. Furthermore, by adding another default indicator variable, the model has been
demonstrated to be a hybrid of a structural and a reduced-form model in that the
default can be triggered either by the successive credit downgradings or by an un-
predictable jump of default indicator process. With the same setting as in Chen and
Filipović (2003a), it is assumed that the higher the credit index value, the worse a
firm’s financial situation, and the zero-value of the corresponding credit index implies
the perfect financial health of a firm. This model assumption allows us to consider
the non-default factors, when analyzes the components of the credit spreads.

Besides using the popular affine framework to model these two factors, an alter-
native quadratic model is also established to compare their empirical performance.
As documented in Ahn, Dittmar and Gallant (2002), Chen and Poor (2002), Leip-
pold and Wu (2001, 2002), quadratic models not only empirically outperform the
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affine model in interpreting the historical Treasury yield movements, but also exhibit
a nice analytical tractability comparable to affine models. The extension of exist-
ing risk-free quadratic term structure models to incorporate default risk has been
discussed in Chen, Filipović and Poor (2003). We apply the filtering technique and
quasi-maximum likelihood estimator (QMLE) to estimating both affine and quadratic
models using the 25-year time series of Treasury rates and corporate bond yields. Our
empirical results show that quadratic models provide a better description than the
affine model not only for the dynamics of historical Treasury rates but also for the
credit spreads.

Although the time-series properties of the models are usually the main concerns
because of their implications in long-term investments and risk management, for the
short term trading and pricing purposes, it is more interesting to see the models’
cross-sectional term structure fitting ability. To serve this need, we also re-construct
one-time Treasury yield curve and credit spread curves for four different rating classes
using the current snapshot of more than 700 Treasury and corporate bond prices in
the market. Moreover, a new affine fat-tail model is proposed here to capture the
fat tail distribution of the short rate, and this fat-tail model together with the affine
and quadratic diffusion models have been tested. It turns out that the affine fat-tail
model shows the best cross-sectional fitting capacity.

Both the QMLE algorithm that is used to examine the time-series properties of the
models and the nonlinear least squares method for fitting the current cross-sectional
term structures are finally induced to an optimization problem. With regard to a fair
large number of the parameters to estimate, here we apply a genetic algorithm (GA)
instead of the gradient search method for the optimization purpose. The genetic
algorithm performs a parallel and comprehensive search for the global optimum that
uses a set or population, of points to conduct a search, not just a single point in
the parameter space. The algorithm views the optimization process as a competition
among the population of evolving candidate problem solutions. Four operations are
applied to every generation of the search - evaluation, selection, crossover, and mu-
tation. These operations are modeled after the evolutionary process of organisms in
nature. This gives us the power to search noisy spaces littered with local optimum
points and especially helpful in finding a global optimal solution.

The remainder of the paper is organized as follows. In Section 2, we propose
the models used in the testing, and discuss the risk premium specifications and the
related bond valuation problems. Section 3 introduces nonlinear filtering technique
and the quasi maximum-likelihood estimator used to estimate the quadratic model.
In Section 4, we briefly describe the estimation methodology and the dataset we
use. The summary of the results on the models’ time-series properties is presented
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in Section 5, while the cross-sectional properties of the models are investigated in
Section 6. The appendix describes the asymptotic properties of the quasi maximum-
likelihood estimator.

2 The Models

In this section, a class of simple two-factor affine and quadratic models are established
for characterizing the joint dynamics of the risk-free spot interest rate and credit
migration of a single firm, which provides a unifying framework of pricing both risk-
free and defaultable bonds.

Consider a continuous trading economy with finite time horizon [0, T ∗] and a
filtered probability space (Ω, (Ft)0≤t≤T∗ ,F ,P) representing the randomness in the
economy during this time horizon. Let B(t) denote the money market account and
B(t) = exp

(∫ t

0
rsds

)
, where rs denotes the risk-free spot rate. Suppose there is no

(approximate) arbitrage in the sense of Clark (1993), and thus we have an equivalent
martingale measure Q, under which the discounted gain processes on any traded asset
is a Q-martingale.

2.1 The Affine Model

Let us consider a two-factor affine model with a state process Y := (Y 1, Y 2) taking
values in R̄2

+ := R2
+ ∪∆, which is the one-point compactification of R2

+. The default
time is defined by

TD := inf{t : Yt ∈ {∆}}, (1)

and {∆} is an absorbing state. Here Y 1 represents the risk-free short rate up to the
default time3; i.e.,

Y 1
t = rt, ∀ t ∈ [0, TD], (2)

and Y 2 := Zt, where Zt denotes the credit index of a firm (or index). Under the
real world measure P, the joint dynamics of the regular affine process Y is uniquely
characterized by its generator

La
Pf(y) = α1y1∂

2
y1

f(y) + (b̃1 + β̃1y1)∂y1f(y) + α2y2∂
2
y2

f(y)

+ (b2 + β̃21y1 + β̃22y2)∂y2f(y)− (c̃ + γ̃1y1 + γ̃2y2)f(y), ∀ f ∈ C2
2 (R2

+),
(3)

where α1, b2, β̃21, α2, c̃, γ̃1, and γ̃2 are all positive, and

b̃1 ≥ α1.
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The first two terms on the right hand side (RHS) of (3) characterize the diffusion
and drift of the short rate, which are same as the Cox-Ingersoll-Ross model (1985).
The third and fourth terms characterize the dynamics of the credit index process
Y 2, which admits the correlation with the short rate Y 1 given by the mean reversion
level β21Y

1. The last term on the RHS represents the potential used for modeling the
default risk. The default intensity depends on firm-specific factor Y 2 and market-wide
factor Y 1, as given by killing rate c̃ + γ̃1Y

1 + γ̃2Y
2.

Remark 2.1. By convention, each measurable function f on R2
+ (or R2) is extended

into R̄2
+ (or R̄2) by setting f(∆) = 0. Especially, we can write 1{Y 6=∆} = e〈0,Y 〉.

In order to calculate the default probability and bond prices, we need to apply
the basic affine property frequently, which is given by the following lemma. A general
proof can be found in Duffie, Filipović and Schachermayer (2003, Theorem 2.7).

Lemma 2.2. Given the affine state process defined in (3) under P, for any u, v ∈ R2
−,

we have

EP
[
e
R T

t
〈u,Ys〉dse〈v,YT 〉 | Ft

]
= eϕa(T−t)+ψa(T−t)Y 1

t +φa(T−t)Y 2
t , (4)

where ϕa(t), ψa(t), and φa(t) solve the Riccati equations

∂tϕa = b̃1ψa + b2φa − c̃, ϕa(0) = 0,

∂tψa = α1(ψa)2 + β̃1ψa + β̃21φa − γ̃1 + u1, ψa(0) = v1,

∂tφa = α2(φa)2 + β̃22φa − γ̃2 + u2, φa(0) = v2.

(5)

Therefore given the affine model with the state process Y defined in (3), the
default probability at time t with maturity T (≥ t) is given by

Πa(t, T ) = 1− EP[1{YT 6=∆}]

= 1− eϕp
a(T−t)+ψp

a (T−t)Y 1
t +φp

a(T−t)Y 2
t 1{TD>t},

(6)

where ϕp
a(t), ψp

a (t), and φp
a(t) solve (5) with u = v = 0.

2.2 Measure Change and Risk Premia Specifications

Using the potential approach to modeling default risk facilitates us to consider the
different types of risk premia. Following the work done by El Karoui and Martellini
(2002) and Jarrow, Lando and Yu (2003), the risk involved in credit products usually
can be decomposed into three parts: market risk premium, diffusion default risk
premium (through the drift adjustment from the diffusion) and jump default risk
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premium (through the jump intensity adjustment). In order to capture these three
types of risk, we apply the recent results on the measure change for jump-diffusion
(possibly non-conservative) processes in Cheridito and Filipović (2003), as given by
the following Lemma.

Lemma 2.3. Given state process Y as defined in (3) and suppose b̃1 ≥ α1 and
b̃2 ≥ α2, then for each b1, β21, c, γ1, γ2 ∈ R+ and β1, β22 ∈ R, satisfying

b1 ≥ α1,

there exists an equivalent probability measure Q, under which the dynamics of state
process Y is given by

La
Qf(y) = α1y1∂

2
y1

f(y) + (b1 + β1y1)∂y1f(y) + α2y2∂
2
y2

f(y)

+ (b2 + β21y1 + β22y2)∂y2f(y)− (c + γ1y1 + γ2y2)f(y), ∀ f ∈ C2
2 (R2

+).
(7)

From Lemma 2.3, it is easy to see that the market risk premium is given by
1√

2α1y1
[b̃1 − b1 + (β̃1 − β1)y1]; the diffusion default risk premium is represented by

√
y2√
2α2

[(β̃22−β22)]+
√

y1√
2α1

[β̃21−β21]; and the jump risk premium is equal to c̃+γ̃1Y 1+γ̃2
c+γ1y1+γ2y2

.
As argued by Jarrow et al. (2003), by adding a systematic jump risk premium, the
model has a more flexible structure of default risk premia. For example, the model
can imply a larger instantaneous intensity, and thus a larger spread as maturity
approaches zero, which is demonstrated in Yu (2002). It will also generate a higher
volatility in the intensity process suggesting larger fluctuations in yield spreads than
what can be inferred from fluctuations of observed default intensities alone.

2.3 Valuing Treasury and Corporate Bonds

Given the dynamics of state process Y under the equivalent martingale measure Q,
we can derive the treasury bond prices and corporate bond prices of a firm using the
affine property specified in Lemma 2.2.

Proposition 2.4. Given the affine model (7), the time t-price of a zero-coupon
treasury bond with maturity T ≥ t is given by

P tr
a (t, T ) = EQ

[
e−
R T

t
rsds | Ft

]
= eϕtr

a (T−t)+ψtr
a (T−t)rt (8)
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where

ϕtr
a (t) =

b1

α1
log

(
2ρ0e

1
2 (ρ0−β1)t

(ρ0 − β1)(eρ0t − 1) + 2ρ

)
,

ψtr
a (t) = − 2(eρ0t − 1)

(ρ0 − β1)(eρ0t − 1) + 2ρ0
,

with ρ0 =
√

β2
1 + 4α1, and the corporate bond price with zero-recovery assumption

can be obtained as

P co
a (t, T ) = EQ

[
e−
R T

t
rs ds1{T≤TD} | Ft

]

= EQ
[
e−
R T

t
Y 1

u du1{YT 6=∆} | Ft

]

= eϕco
a (T−t)+ψco

a (T−t)Y 1
t +φco

a (T−t)Y 2
t 1{TD>t},

(9)

where ϕco
a (t), ψco

a (t) and φco
a (t) solve the Riccati equations:

∂tϕ
co
a = b1ψ

co
a + b2φ

co
a − c, ϕco

a (0) = 0,

∂tψ
co
a = α1(ψco

a )2 + β1ψ
co
a + β21φ

co
a − γ1 − 1, ψco

a (0) = 0,

∂tφ
co
a = α2(φco

a )2 + β22φ
co
a − γ2, φco

a (0) = 0.

(10)

Remark 2.5. Given Proposition 2.4, the corresponding treasury yields and corporate
bond yields are derived as

Dtr
a (t, T, rt) = − 1

T − t
[ϕtr

a (T − t) + ψtr
a (T − t)rt], (11)

Dco
a (t, T, Yt) = − 1

T − t
[ϕco

a (T − t) + ψco
a (T − t)Y 1

t + φco
a (T − t)Y 2

t ]. (12)

And then the spread is given by

Sa(t, T, Yt) = Dco
a (t, T, Yt)−Dtr

a (t, T, rt). (13)

Moreover the coefficient function ϕco
a has an explicit formula as

φco
a (t) = − 2γ2(eρ1t − 1)

(ρ1 − β22)(eρ1t − 1) + 2ρ1
,

with ρ1 =
√

β2
22 + 4α2γ2.

As defined in (7), the affine state process Y with potential can accommodate
an intensity based default risk model in the sense of Lando (1998), and Duffie and
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Singleton (1999). Indeed, let Ỹ denote the conservative regular affine process with
generator

L̃a
Qf(ỹ) = α1ỹ1∂

2
ỹ1

f(ỹ) + (b1 + β1ỹ1)∂ỹ1f(ỹ) + α2ỹ2∂
2
ỹ2

f(ỹ)

+ (b2 + β21ỹ1 + β22ỹ2)∂ỹ2f(ỹ), ∀ f ∈ C2
2 (R2

+),

with which we construct a two-factor risk-free affine model. Then we define the
default time (on an enlarged probability space)

T{D} := inf
{

t

∣∣∣∣
∫ t

0

λ(Ỹs)ds ≥ e
}

,

where e is a standard exponential random variable which is independent of F , and

λ(Ỹ ) := η(c + γ1Ỹ
1 + γ2Ỹ

2)

models the intensity of default. By Proposition 2.4, the time t price (9) equals

EQ
[
e−
R T

t
rsdse−

R T
t

λ(Ỹs)ds 1(ỸT )
∣∣∣Ft]

which is the same as

EQ
[
e−
R T

t
rsds EQ

[∫ T

t

λ(Ỹs)ds < e | F
]
|Ft

]
= EQ

[
e−
R T
0 rsds1{T≤TD}

]

= P co
a (t, T ).

Remark 2.6. To accommodate the model proposed in Duffie and Singleton (1999),
one can take λ(Ỹ ) as the product of the hazard rate and the loss function.

Therefore we can see that the potential approach is essentially equivalent to the
intensity based models for credit risk.

2.4 Alternative Affine Fat-Tail Model

As argued in the current literature (e.g., see Brigo and Mercurio (2001)), the tradi-
tional term structure models can not produce the market-implied short rate distribu-
tion as far as the tail distribution is concerned. Instead of the affine diffusion model
in (7), here we replace the diffusion part by a specific jump in order to increase the
weight in the tails of the state process Y . The basic jump measure introduced here
is of the form

µζ(dξ) :=
ζ(ζ − 1)
Γ(2− ζ)

dξ

ξ1+ζ
, ∀ ζ ∈ (1, 2),
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where Γ(·) denotes the Gamma function. This jump measure satisfies

∫ ∞

0

(
ξ ∧ ξ2

)
µζ(dξ) < ∞.

Therefore by Duffie et al. (2003, Lemma 9.2), replacing the diffusion part αiyi∂
2
yi

f(y)
in (7) by the jump

αiyi

∫

R++

(f(y + ξei)− f(y)− ∂yi
f(y)ξ)µζi

(dξ),

for i ∈ {1, 2}, leads to another positive affine process. Moreover as justified in Chen
and Filipović (2003b), the alternative model produces a heavier tail distribution of
Y i

t in general and the smaller ζi, the more weight in the tail of Y i
t .

Since ∫ ∞

0

(
evξ − 1− vξ

)
µζ(dξ) = (−v)ζ , v ∈ R−,

according to Duffie et al. (2003, Theorem 2.7), the treasury bond price at time t with
maturity T ≥ t is given by 4

P tr
a (t, T ) = eϕtr

af(T−t)+ψtr
af (T−t)rt (14)

where

∂tϕ
tr
af = b1ψ

tr
af , ϕtr

af(0) = 0,

∂tψ
tr
af = α1(−ψtr

af)
ζ1 + β1ψ

tr
af − 1, ψtr

af(0) = 0.

Moreover, the corporate bond price with zero-recovery assumption can be obtained
as

P co
af (t, T ) = eϕco

af (T−t)+ψco
af (T−t)Y 1

t +φco
af (T−t)Y 2

t 1{TD>t} (15)

where ϕco
af (t), ψco

af (t) and φco
af (t) solve the Riccati equations:

∂tϕ
co
af = b1ψ

co
af + b2φ

co
af − c, ϕco

af (0) = 0,

∂tψ
co
af = α1(−ψco

af )
ζ1 + β1ψ

co
af + β21φ

co
af − γ1 − 1, ψco

af (0) = 0,

∂tφ
co
af = α2(−φco

af )
ζ2 + β22φ

co
af − γ2, φco

af (0) = 0.

(16)

Finally, it should be noted that the limit case ζi → 2, for each i ∈ {1, 2}, corresponds
to the diffusion setup (7).
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2.5 The Quadratic Model

As mentioned before, since our main focus is on the comparison of the empirical
performance between the affine and quadratic models, we also propose a two-factor
quadratic model with the same number of parameters as the previous affine models.
Under the real world measure P, the state process X := (X1, X2) follows a regular
quadratic process5 in the state space R̄2 := R2 ∪∆ with the infinitesimal generator

Lq
Pf(x) = α1∂

2
x1

f(x) + (b̃1 + β̃1x1)∂x1f(y)

+ α2∂
2
x2

f(x) + (b2 + β̃21x1 + β̃22x2)∂x2f(x)

− (c̃ + γ̃1(x1)2 + γ̃2(x2)2)f(x), ∀ f ∈ C2
2 (R2),

(17)

where α̃1, α̃2, c̃, γ̃1, and γ̃2 are all positive. For simplicity it is further assumed that
the risk-free short rate rt := (X1

t )2 up to the default time and the credit index is
given by Zt := (X2

t )2. It is easy to see that this quadratic framework embedded
the short rate model as a generalized SAINTS model (e.g. see Ahn (1997)), and the
default jump intensity given by c̃ + γ̃1(x1)2 + γ̃2(x2)2. Since we can write the default
indicator function as

1{TD>t} = e〈0,Xt〉,

following the quadratic property (see e.g. Chen, Filipović and Poor (2003), Theorem
3.4), we can accordingly derive the default probability Πq(t, T ) as given by

Πq(t, T ) = 1− eϕp
q(T−t)+〈Ψp

q(T−t),Xt〉+〈Φp
q(T−t)Xt,Xt〉1{TD>t}, (18)

where ϕp
q(t) ∈ R, Ψp

q(t) ∈ R2, and Φp
q(t) ∈ R2×2 solve the Riccati equations

∂tϕ
p
q = 〈αΨp

q,Ψp
q〉+ 2tr(α, Φp

q) + 〈b̃,Ψp
q〉 − c̃, ϕp

q(0) = 0,

∂tΨp
q = 4αΦp

qΨp
q + (β)′Ψp

q + 2Φp
q b̃, Ψp

q(0) = 0,

∂tΦp
q = 4Φp

qαΦp
q + Φp

qβ̃ + (β̃)′Φp
q − γ̃q, Φp

q(0) = 0,

(19)

where

α =

(
α1 0
0 α2

)
, b̃ =

(
b̃1

b̃2

)
, β̃ =

(
β̃1 0
β̃21 β̃22

)
, γ̃q =

(
γ̃1 0
0 γ̃2

)
.

Under the risk-neutral measure Q, it is assumed that state process X also follows
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a regular quadratic process with generator

Lq
Qf(x) = α1∂

2
x1

f(x) + (b1 + β1x1)∂x1f(y)

+ α2∂
2
x2

f(x) + (b2 + β21x1 + β22x2)∂x2f(x)

− (c + γ1(x1)2 + γ2(x2)2)f(x), ∀ f ∈ C2
2 (R2

+).

(20)

Then following the quadratic property, we can also derive the treasury bond prices
and corporate bond prices.

P tr
q (t, T ) = EQ

[
e−
R T

t
rsds | Ft

]
= eϕtr

q (T−t)+ψtr
q (T−t)X1

t +φtr
q (T−t)(X1

t )2 (21)

where

ϕtr
q (t) =

∫ t

0

(
α1ψ

tr
q (s)2 + 2α1φ

tr
q (s) + b1ψ

tr
q (s)

)
ds,

ψtr
q (t) =

L1(t)
L2(t)

, φtr
q (t) =

L3(t)
L2(t)

,

and

L1(t) :=
β1

2α1

(
2ρ2e

ρ2t/2 − L2(t)
)

−
(

β1b1

2α1

)
4
ρ2

(
eρ2t/2 − 1

) (
β1

(
1− eρ2t/2

)
+

ρ2

2

(
1 + eρ2t/2

))
,

L2(t) := ρ2

(
eρ2t + 1

)− 2β1

(
eρ2t − 1

)
,

L3(t) := 2
(
1− eρ2t

)

with ρ2 := 2
√

(β1)2 + 4α1. The corporate bond price with zero-recovery assumption
can be obtained as

P co
q (t, T ) = EQ

[
e−
R T

t
rs ds1{T<TD} | Ft

]

= eϕco
q (T−t)+〈Ψco

q (T−t)Xt〉+〈Φco
q (T−t)Xt,Xt〉1{TD>t}

(22)

where ϕco
q (t) ∈ R, Ψco

q (t) ∈ R2 and Φco
q (t) ∈ R2×2 solve the Riccati equations:

∂tϕ
co
q = 〈αΨco

q ,Ψco
q 〉+ 2tr(αΦco

q ) + 〈b,Ψco
q 〉 − c, ϕco

q (0) = 0,

∂tΨco
q = 4αΦco

q Ψco
q + (β)′Ψco

q + 2Φco
q b, Ψco

q (0) = 0,

∂tΦco
q = 4Φco

q αΦco
q + Φco

q β̃ + (β̃)′Φco
q − γq, Φco

q (0) = 0,

(23)
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where

b =

(
b1

b2

)
, β =

(
β1 0
β21 β22

)
, γq =

(
1 + γ1 0

0 γ2

)
.

Given (58) and (22), the corresponding treasury yields and corporate bond yields
are derived as

Dtr
q (t, T, X1

t ) = − 1
T − t

[ϕtr
q (T − t) + ψtr

q (T − t)X1
t + φtr

q (T − t)(X1
t )2], (24)

Dco
q (t, T, Xt) = − 1

T − t
[ϕco

q (T − t) + 〈Ψco
q (T − t)Xt〉+ 〈Φco

q (T − t)Xt, Xt〉],(25)

Sq(t, T, Xt) = Dco
q (t, T,Xt)−Dtr

q (t, T, X1
t ). (26)

Remark 2.7. Since the potential approach for the quadratic model is equivalent to
the intensity based models, the state process X = (X1, X2) is equivalent to a simple
two-factor Itô process before the default time, as given by

dXt = (b̃ + β̃Xt)dt +
√

2αdWt, (27)

where
√

2α =

(√
2α1 0
0

√
2α2

)
,

and Wt is a standard 2-dimensional P-Brownian motion.

It is worth noting that the parameters in the models are not fully identifiable,
since the state variable X2 (or Y 2 in the affine model) is subject to arbitrary scale.
Without loss of generality, in what follows, we will fix γ2 to be equal to 1. Then the
remaining parameters are identifiable.

3 The Nonlinear Filtering Technique and Quasi Max-

imum Likelihood Estimator

3.1 Nonlinear Filtering

For affine models, the linear Kalman filter has been widely used for calibrating the
joint specification of the model under both real-world measure P and risk-neutral
measure Q. (See e.g., Chen and Scott (1995), Duan and Simonato (1999) for its
applications in risk-free affine term structure models, and Duffee (1999), Driessen
(2002) for those in credit risk models). Therefore we will only illustrate the nonlinear
filtering approach to estimating the quadratic model in this section. A general time-

12



homogenous state-space model with the discrete observations {Dti
} at an increasing

sequence of times {ti}0≤i≤n is given by

dXt = F (Xt, θ)dt + G(Xt, θ)dWt (28)

Dti
= H(Xti

, θ) + ni(θ), for every ti ≥ 0, (29)

where H : RN ×Θ 7→ Rm, is an m-dimensional nonlinear function of the state vector
and the parameter vector θ, which is assumed to lie in the compact parameter space
Θ. {ni(θ)} is an independently and identically distributed (i.i.d.) Gaussian noise
sequence with means zero and covariance matrices {Qi(θ)}. Here we assume that
Qi(θ) = ε2Im for all i, and that t0 = 0.

According to Remark 2.7, for the specific case of the quadratic model proposed
in the previous section, we have

F (Xt, θ) = b̃ + β̃Xt, (30)

and G(Xt, θ) =
√

2α, (31)

where θ := (α, b, b̃, β, β̃, c, c̃, γ, γ̃) and we set

Hk(Xt, θ) = Dtr
q (t, Tk, X1

t ), ∀ k = {1, 2, ..., d}, (32)

Hk(Xt, θ) = Dco
q (t, Tk, Xt), ∀ k = {d + 1, d + 2, ..., m}, (33)

where Hk(Xt, θ) represents the k-th component of the function H(Xt, θ) . In this
case, {Dti} is a set of both risk-free and corporate bond yields with different time to
maturities {T1, ..., Tm}, which can be observed from the market.

3.1.1 Time Propagation

Given the above model, for each i, the conditional density of Xt given Xti−1 and θ

evolves according to the Kolmogorov forward equation:

∂p(Xt|Xti−1 , θ))
∂t

= −
N∑

k=1

∂

∂xk
t

{p(Xt|Xti−1,θ)Fk(Xt, θ)}

+
1
2

N∑

j=1

N∑

k=1

∂2

∂xj
t∂xk

t

{p(Xt|Xti−1,θ)[G(Xt, θ)G
′
(Xt, θ)]jk},

(34)

for t ∈ [ti−1, ti] and with the initial condition

p(X|Xti−1 , θ) = δ(X −Xti−1) (35)
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where δ(·) denotes the Dirac measure. This equation describes the propagation of
the conditional density through the inter-sample interval [ti−1, ti].

Since the computation of the entire density function is infeasible, we resort in-
stead to the conditional mean as an estimator of the state vector. In particular, for
i = 1, 2, ..., n, let X̂t|ti

denote the estimator of Xt conditioned on {Dtj
}0≤j≤i and

Σ̂t|ti
denote the covariance matrix of Xt conditioned on {Dtj}0≤j≤i. Then, the prop-

agation of the conditional mean and covariance over [ti−1, ti] can also be derived from
(34) (see, e.g., Maybeck (1982), Vol 2):

dX̂t|ti−1

dt
= ̂F (Xt, θ) (36)

and

dΣ̂t|ti−1

dt
= { ̂F (Xt, θ)X ′(t)− ̂F (Xt, θ)X̂ ′

t|ti−1
}

+{ ̂XtF ′(Xt, θ)− X̂t|ti−1
̂F ′(Xt, θ)}

+ ̂G(Xt, θ)G(Xt, θ)
′

(37)

where ~Dti = {Dtk
}0≤k≤i, and a carat over a quantity denotes conditional expectation

of that quantity given ~Dti ; i.e.,

·̂ = EP
{
·| ~Dti

}
(38)

By substituting (30) and (31) into (36) and (37), we have the following proposition.

Proposition 3.1. Given the quadratic model of (17), we have the following time-
updates:

X̂ti|ti−1 = UΛ(∆i)U−1X̂ti−1|ti−1 + UV −1(Λ(∆i)− I2)U−1b̃ (39)

and Σ̂ti|ti−1 = U(Λ(∆i)U−1Σ̂ti−1|ti−1(UΛ(∆i)U−1)′

+U

[
νij exp((vi + vj)∆i)− 1

vi + vj

]

NN

U ′ (40)

for 0 ≤ ti ≤ tn

where ∆i = |ti−ti−1|, U := (u1, ..., uN ) ∈ RN×N , V := diag[vi]N , Λ(t) := diag[exp(vit)]N ,
such that

U−1β̃U = V,

and
V := [νij ]NN = 2U−1α(U−1)′.
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3.1.2 Measurement Updating

As to the measurement update, the conditional mean and covariance are given by
the following equations:

X̂ti|ti
=

∫
Xp(X| ~Dti

)dX (41)

and Σ̂ti|ti
=

∫
XX ′p(X| ~Dti

)dX − X̂ti|ti
X̂ ′

ti|ti
(42)

According to Bayes’ formula, we have

p(Xti | ~Dti) =
p(Dti

|Xti
, ~Dti−1)p(Xti

| ~Dti−1)

p(Dti | ~Dti−1)
(43)

=
p(Dti

|Xti
)p(Xti

| ~Dti−1)

p(Dti | ~Dti−1)
(44)

and
p(Dti | ~Dti−1) =

∫
p(Dti |Xti)p(Xti | ~Dti−1)dXti , (45)

so that

X̂ti|ti
= ̂

Xtip( ~Dti |Xti)/
̂

p( ~Dti |Xti) (46)

and Σ̂ti|ti
= ̂

XX ′p( ~Dti |Xti)/
̂

p( ~Dti |Xti)− X̂ti|ti
X̂ ′

ti|ti
(47)

Maybeck (1982) pointed out that approximating the updating expectation by
a series expansion of p(X| ~Dti) would incur a considerable measurement error. He
assumes, instead, that the conditional mean and covariance can be expressed as power
series of the innovations {Dti−E{Dti | ~Dti−1}}, and uses a linear approximation, since
the innovations are relatively small.

Here we restate the final results for the updating step according to Maybeck
(1982):

X̂ti|ti
= X̂ti|ti−1 + Kti [Dti −H(X̂ti|ti−1 , θ)− γti|ti−1(θ)] (48)

and Σ̂ti|ti
= Σ̂ti|ti−1 −Ktih(X̂ti|ti−1 , θ)Σ̂ti|ti−1 , (49)

where
Kti = Σ̂ti|ti−1h(X̂ti|ti−1 , θ)

′A−1
ti

(50)
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with

Ati = h(X̂ti|ti−1 , θ)Σ̂ti|ti−1h(X̂ti|ti−1 , θ)
′

−γti|ti−1(θ)γti|ti−1(θ)
′ + Qi(θ) (51)

h(X̂ti|ti−1 , θ) =
∂H(X̂ti|ti−1 , θ)

∂X
(52)

and γk
ti|ti−1

(θ) =
1
2
tr

[
∂2Hk(X̂ti|ti−1 , θ)

∂X2
Σ̂ti|ti−1

]
(53)

for 1 ≤ k ≤ m.

3.2 Quasi-Maximum Likelihood Estimator(QMLE)

Given θ, using the above filtering technique, we can calculate the conditional mean
estimator of the state vector {X̂ti|ti

}0≤i≤n. In order to estimate the parameter vector
θ, we will use a quasi-maximum likelihood estimator. The asymptotic properties of
this estimator are given in the appendix. Let {n̂i(θ)} denote the one-step prediction
error defined by

n̂i(θ) = Dti −H(X̂ti|ti−1 , θ), (54)

and let ln̂i(n̂i, θ) denote the true log-likelihood function for n̂i(θ). Since it is quite
difficult to obtain an analytical expression for ln̂i(n̂i, θ), we instead give a quasi log-
likelihood function l̂n̂i(n̂i, θ) as follows:

log p({n̂i(θ)}) =
n∑

i=1

l̂n̂i(n̂i, θ)

=
n∑

i=1

−1
2
(log |Mi(θ)|+ (n̂i(θ)− γti|ti−1(θ))

′
Mi(θ)−1

(n̂i(θ)− γti|ti−1(θ)) + m log(2π)) (55)

where γti|ti−1(θ) is given by (53) and

Mi(θ) = h(X̂ti|ti−1 , θ)Σ̂ti|ti−1h(X̂ti|ti−1 , θ)
′ + Qi(θ). (56)

Here we are essentially assuming that the {n̂i(θ)} are mutually independent Gaus-
sian random variables with means {γti|ti−1(θ)} and covariances {Mi(θ)}. The ratio-
nale for this assumption will be discussed in the following section.

Since the Jacobian transfer matrix is given by

∂(n̂1, n̂2, ..., n̂n)
∂(Dt1 , Dt2 , ..., Dtn)

= In (57)
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we have

log p(Dt1 , Dt2 , ..., Dtn
; θ) =

n∑

i=1

log qi( ~Dti
, θ)

=
n∑

i=1

ln̂i
(Dti

−H(X̂ti|ti−1 , θ), θ)

∼=
n∑

i=1

l̂n̂i
(Dti

−H(X̂ti|ti−1 , θ), θ) (58)

where

qi( ~Dti , θ) =

{
p(Dti

| ~Dti−1 , θ), for i > 1
p(Dt1 , θ), for i = 1

(59)

After filtering {X̂ti|ti−1}0≤i≤n, by using this quasi log-likelihood function, we can
obtain the QMLE from the nonlinear optimization:

θ̂n = arg max
θ

{
1
n

n∑

i=1

l̂n̂i(Dti −H(X̂ti|ti−1 , θ), θ)

}
(60)

For implementing the QMLE, since Qi(θ) = ε2Im, by applying Woodbury’s for-
mula, M−1

i can be simplified as

M−1
i = ε−2[Im − hi(ε2Σ̂−1

ti|ti−1
+ hih

′
i)
−1h

′
i]. (61)

Similarly, we can simplify |Mi| as

|Mi| = ε2(m−N)|Σ̂ti|ti−1 ||ε2Σ̂−1
ti|ti−1

+ h(ti, X̂ti|ti−1 , θ)
′
h(ti, X̂ti|ti−1 , θ)|. (62)

4 Estimation Methodology and Data Description

4.1 Data

As we need to test two different aspects of the empirical properties of the models:
time-series property and cross-sectional fitting ability, two different datasets are con-
structed and used. In order to compare the performance of the affine diffusion (AD)
model and quadratic (QD) model in explaining the historical movements of treasury
yields and credit spreads, we apply the time series of monthly observations on trea-
sury yields with maturity 3 month, 1 year, 10 year and 30 year, and the average
1-year credit spreads from four different Moody’s rating classes: Aaa, Aa, A, Baa.
The data are collected from the Global Insight (formerly DRI) and provided by Whar-
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ton Research Data Services. The sampling period ranges from January 1978 through
December 2002 with totally 300 samples from each different type of the time series.
Since the corporate bond yields are subject to a large liquidity effect, by choosing the
1-year average corporate bond spread data to estimate the two models’ structural
parameters instead of using the individual bond prices, we can avoid the possible
measurement errors caused by the stale price problems in the individual bond price
data. To estimate the default event risk premium γ, we use the dataset of historical
default records for four different rating categories given by Moody’s special comment
(2002), which contains the cumulative default rates from 1970-2001.

When examining the term structure fitting abilities of the affine diffusion (AD)
model, the affine fat-tail (AF) jump model and the quadratic model (QD), we col-
lect both treasury and corporate bond data from www.Bondpage.com. This dataset
includes a snapshot of 50 observations of treasury note and bond prices and more
than 600 month-end quoted prices of corporate bonds issued by the investment-grade
firms. All the bonds are non-callable, non-convertible, and without sinking fund pro-
visions. They all have at least one year remaining to maturity and share the same
settlement date.

The summary statistics of all sample data are shown in Table 1- Table 2.

[Table 1 about here.]

[Table 2 about here.]

4.2 Estimation Methodology and Two-Step Optimization Al-

gorithm

As described above, filtering technique together with QMLE is applied to estimating
the model using the 25-year time-series of monthly bond yields. Different from many
existing literature in empirical estimations of credit risk, where the risk-free param-
eters and defaultable parameters are estimated separately (e.g., see Driessen (2002),
and Duffee (1999)), we jointly estimate the risk-free parameters and defaultable pa-
rameters instead of separately, which would be more efficient since the corporate
bond price depends on both the risk-free rate and the credit index.

Meanwhile, a nonlinear least squares algorithm is applied to estimating the pa-
rameters to fit the term structure of both treasury rates and the corporate bond
spreads using a snapshot of the market data. the corresponding objective function
can be written as

F (θ) =
N∑

i=1

(pi − Pi(θ, ~Ti, ci))2,
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where pi denotes the observed price of bond i, and P (θ, ~Ti, ci) denotes the model-
implied bond price with the parameter set (θ), the semiannual coupon rate ci and
coupon payment dates ~Ti = (Ti,1, Ti,2, ..., Ti,mi). Here without loss of generality, zero-
recovery at default is assumed when calculating corporate bond prices (see, Remark
2.6). Therefore the estimator is given by

θ∗ = arg min
θ
{F (θ)} .

However, two problems come up. First, although the data includes 600 non-
callable corporate bond prices, no individual firm has more than 10 observations.
Hence the credit index estimation for each individual firm is subject to substantial
uncertainty. Duffee (1999) encountered the similar problems when estimating the
default intensity of each firm. A way to overcome this problem is to form four rating
groups, Aaa, Aa, A, Baa, and estimate a typical credit index value, Y 2

Aaa, Y 2
Aa, Y 2

A,
Y 2

Baa, for each of these groups, respectively.
The second problem is in estimating the AF model with the difficulty of esti-

mating the jump parameter ζ. The parameter ζ turns out to be dominant over the
other parameters. Changing the value ζ results in significant value changes of other
parameters, but the differences between measurement errors are rather small, which
implies that estimating the parameter ζ by minimizing the mean square error is in-
feasible. Therefore, instead we fix both ζi, (i = 1, 2) at 1.1, when implementing the
optimization algorithm.

Finally, both empirical tests finally lead to an optimization problem. With regard
to a fair large parameter set θ, the traditional gradient search methods are susceptible
to getting ’stuck’ at local optima. Here we apply a genetic algorithm (GA) for
optimization that uses a set, or population, of points to conduct a search, not just a
single point in the parameter space. This gives us the power to search noisy spaces
littered with local optimum points. Instead of relying on a single point to search
through the space, the GA looks at many different areas of the parameter space at
once, and uses all of this information to guide it. Four operations are applied to every
generation of the search: evaluation, selection, crossover, and mutation. This makes
the GA especially helpful in finding a global optimal solution. Although the search
is not precise meaning that there is no guarantee that the global maximum will be
found, the result should still be a good approximation of the optimum. In order to
refine the optimal solution, a two-step optimization method is employed. First, we
apply the genetic algorithm to search for a global optimal solution6. Then we use the
gradient search method to improve the accuracy of the optimization by starting from
this solution. Given the explicit formulas for bond prices, this optimization method
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becomes quite fast and efficient.

5 Estimation Results

5.1 Time Series Properties of the Affine and Quadratic Mod-

els

The estimation results and the summary statistics of the fitting errors are displayed
in Table 3 and Table 4.

The risk-free parameters of both affine and quadratic models are estimated using
the 25-year time series of monthly treasury yields with maturity 3-month, 1-year,
10-year and 30-year. Under both the real world and risk-neutral measures, the short
rate follows a mean-reverting process, while the real world dynamics shows a much
larger mean-reverting rate (i.e., |β̃11| > |β11|), which implies the existence of a posi-
tive market risk premium for Treasury bonds. It is worth noting that we also provide
the estimates of the risk compensation on the mean level of the interest rate. This
risk premium is independent of the interest rate volatility, which substantially im-
proves the model’s performance in forecasting future yields as demonstrated in Duffee
(2002). As shown in Table 3 and Table 4, the difference between b̃1 and b1 are signif-
icantly positive as 0.03249 on average for the affine model and at average 0.00977 for
the quadratic model, which constitutes an extra excess return for Treasury bonds.
The results also indicate that one-factor affine and quadratic short rate model are in-
capable to price the short-term bonds accurately with regard to the relative large root
mean square errors (RMSE): the RMSE for 3-month bills is 48.342 b.p. for the affine
model and 30.353 b.p. for the quadratic model. However, this performance of both
models becomes reasonably well at pricing the long-term instruments in view of the
RMSE for fitting 30-year Treasury yields is only around 15 b.p. for the affine model
and 12 b.p. for the quadratic model. It is also noticed that the fitted yield curves are
consistently higher than actual yields (with the mean fitting error for 3-month bill
at -28.482 b.p. (-12.132%) for the affine model and -22.372 b.p. (-5.132%) for the
quadratic model at the short end and are underpriced for long-maturity bonds. The
similar error patterns are also documented in Duffee (1999), which was taken as the
evidence of the models’ misspecification. Finally, in terms of the pricing performance
for treasury bonds, the quadratic model generally outperforms the affine model in
that it might be able to capture the nonlinearity of the relevant time series.

Table 3 and Table 4 also summarize the defaultable parameter estimates for the
affine and quadratic model, respectively. For both the affine model and the quadratic
model, the second state variable exhibits a strong mean reversion trend under the
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real world measure, where the mean reversion rates |β22| are around 5 for both the
affine model and the quadratic model. Our empirical results also imply a mean
reversion dynamics for the second state variable under the risk-neutral measure, al-
though rather weak compared with the one under the real world measure with the
half life around 1.08 year for the affine model and and almost 4-year for the quadratic
model. However, in contrast, Driessen (2002) and Duffee (1999) documented a weak
mean-averting risk-neutral dynamics of the credit-related factor for most individual
corporate bonds. The difference may come from the different data source used in the
test. Since instead of using the yield data of individual corporate bonds in Driessen
(2002), we use the average bond yields for four rating classes, which generate a more
stable dynamics of the credit-related variable. Some of the parameter estimates show
a systematic tendency across the four rating classes. For both models, the mean level
of the parameter b1 increases as the credit rating decreases, which is consistent with
our assumption that the higher the credit index value, the worse the credit quality.
For the quadratic model, the diffusion parameter α2 also increases as the credit rating
goes down, which implies a higher volatility for the lower rated bonds. For the affine
model, since the volatility also depends on the state variable Y 2, the estimates of α2

are similar for all rating classes. Finally, the results also show that both models can
explain quite well the historical credit spread dynamics with regard to less than 15
b.p. RSME for fitting errors of all four rating classes. However, the quadratic model
once again shows a relatively better empirical pricing performance than the affine
model.

[Table 3 about here.]

[Table 4 about here.]

Figure 1 through Figure 4 provide the comparison between the fitted yields
{H(X̂ti|ti−1 , θ)} and actual yields {Dti} observed from the market. The plots suggest
that the quadratic model fares better in capturing the first conditional moment of
yield changes for both Treasury bonds and corporate bonds even for the high-rate
regime 1979-1982. Moreover the plots also show that both the affine and quadratic
models fit the long-term bond dynamics better than short term.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]
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5.2 Jump Risk Premium and Non-Default Factors

In the previous part, the default intensity under risk-neutral measure has been esti-
mated for both affine and quadratic models. Given Moody’s historic default rates,
we can perform the estimation for the physical default intensity for the two models.
Actually in Driessen (2002), the author estimated the default risk premium when
considering a simple relationship of the intensities under the two measures; that is

hPt
hQt

= µ,

which means that the ratio between the intensities are constant over time. However,
as argued in Jarrow, Lando and Turnbull (2001) and Yu (2002), simply taking this
constant µ as the default jump risk premium is doubtful. First, the constant ra-
tio would imply a simple dependent structure between the term structure of credit
spreads and default rates which is inconsistent with the actual market data. More-
over, as demonstrated in Delianedis and Geske (2001), and Huang and Huang (2003),
credit risk accounts for only a small fraction of the observed corporate-Treasury yield
spreads for investment grade bonds of all maturities, while a major portion of the
spread is attributable to some non-Default factors such as taxes, liquidity and market
risk factors. In order to refine the default risk factor, Jarrow et al. (2001) propose to
subtract the average value of the Aaa-implied intensity from the intensities implied
from other ratings. Yu (2002) further suggests to subtract the non-default factor
from the default intensity, although a fully specified model of non-default sources of
the spread remains elusive.

Since our models already assume that the zero-value of the credit index implies
the perfect financial health of a firm, we naturally conjecture that the default risk
part of the corporate bond spread is given by

Sd(t, T, Xt) = S(t, T, X1
t , X2

t )− S(t, T, X1
t , 0),

where S is defined in (13) for the affine model and (26) for the quadratic model,
which means the spread related to non-default factors is given by these formulas
when setting the credit index Z to be zero. Figure 5 compares the corporate bond
spreads and their non-default part for the affine model and similar result holds for
the quadratic model. It is interesting to see that for the Aaa and Aa rated bonds, the
model implied spreads are almost solely contributed by the non-default part, which
is consistent with the findings in the empirical literature (e.g., see Huang and Huang
(2003)).
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[Figure 5 about here.]

As to determining the intensity structure under the real world, we use annually
default rate data given by Moody’s. The approach is same as the one applied in
Driessen (2002), except that our real world default intensity structure is more flexible
with three parameters c̃, γ̃1 and γ̃2 to estimate. For the detail of the methodology,
we refer to Driessen (2002). The results are summarized in Table 5 and Figure 6-8
display the default probability structures for Aa, A and Baa rated bonds, where ’Q-
Prob’ denotes the risk-neutral default probability, ’Unadjusted P-Prob’ denotes the
physical default probability without adjusting the default intensities, and ’Adjusted
P-Prob’ represents the one using our estimates of the real world default intensities.

[Table 5 about here.]

[Figure 6 about here.]

We find our estimate results strongly reject the constant ratio assumption between
the two intensities in Driessen (2002). As shown in Table 5, constant default intensity
c̃ and the intensity parameter γ̃1 influenced by the market decreases significantly
compared the ones under the risk-neutral measure. However, the firm-specific default
factor γ̃2 only has a small change. This result implies the physical default risk is
relatively more influenced by the firm-specific factors than other factors with respect
to the risk-neutral situation.

6 Fitting the Term Structure of Credit Spreads

In the previous section, we examine the time-series properties of the affine and
quadratic models, which is relevant to their implications in long-term investments
and risk management. However, for the short term trading and pricing purposes, it
is more interesting to see the term structure fitting ability of the models. Here we in-
vestigate the cross-sectional properties of the three models: the affine diffusion (AD)
model, the affine fat-tail (AF) model and the quadratic (QD) model using a snap-
shot of the market data including 50 Treasury bonds and more than 650 corporate
bonds from the four Moody’s rating classes. As described in Section 4.2, a simple
nonlinear least square optimization is applied. In order to test the robustness of this
nonlinear optimization method, thirty independent experiments are performed and
the estimate results are summarized in Table 6.

[Table 6 about here.]
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We can see that for all the three models, the credit index processes are mean
reverting under the risk-neutral measure , which is consistent with the previous es-
timate results using historic yield data. The significant non-zero estimate values for
β21 confirms the fact that the short rate does impact on the dynamics of credit in-
dices. Now we examine the performance of our model fitting the yield curves. The
averaged fitting error for short term corporate (treasury) bonds (with time to ma-
turity less than four years) is around 15 b.p. (3 b.p.) for the AD and AF models
and around 17 b.p. (3 b.p.) for the QD model as shown in Table ??. These results
indicate that there exists a severe short-term distortion between model implied yields
and the actual yields, which might be caused by the innate defects of our one-fact
short rate model and the illiquidity of short term corporate bonds. However, all the
three models exhibit a good fitting ability for long term yields with less than 2 b.p.
RMSE for Treasury bonds and less than 8 b.p. for corporate bonds. It is also noticed
that among all the three models, the affine fat-tail model has the best goodness-of-fit
performance with regard to its smallest mean fitting error for all different bonds.

Another way to speak for the quality of a model is to see whether the values for
credit indices vary too much for firms within one rating class. Therefore by fixing
all the remaining parameters given by the preceding estimation, it is an interesting
test to inversely solve for the credit index Y 2 (or X2) of every individual bond. The
summary statistics of the implied credit indices are shown in Table 7 and their term
structures are displayed in Figure 9 – Figure 11.

As we expected, the values of credit indices increase as the corresponding invest-
ment grades go down. Aaa rated bonds have the lowest (best) mean value (around
0.03 for the AD and AF models, and around 0.6 for the QD model), while Baa rated
bonds have the highest (worst) mean values (around 0.55 for the AD model, 0.3 for
the AF model, and 0.95 for the QD model).

[Table 7 about here.]

As illustrated in Figure 9 – Figure 11, the AD model has quite a few Aaa-rated
bonds imply negative credit index values, which is not allowed in our affine setup.
This means that the fixed yield spread part explained as tax and liquidity effects is too
large and has to be compensated by subtracting the credit-sensitive part. However,
for the QD model, there exists a significant upward drift of the credit index value
from short-term bonds to long-term bonds. This means that T 7→ − 1

T Φ̃co
q (T ) is

too flat, resulting in an underestimate of long term credit spreads which has to be
compensated by larger values of credit indices. Finally, we concluded the AF model
clearly outperforms AD and QD in terms of their flat term structure and relatively
low standard deviations across all different time to maturities.
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[Figure 7 about here.]

A Asymptotic Properties of the QMLE

Since we apply the quasi log-likelihood function instead of the true one to implement
the QMLE, we need to verify its validity. We now consider this issue.

First we give the following lemma.

Lemma A.1. Given a sequence of random variables {Dti
}i≥1, suppose {gn( ~Dtn

, θ)}
and {kn( ~Dtn , θ)} are two sequences of measurable functions ( ~Dtn

= {Dti
}1≤i≤n) that

satisfy the following conditions
i)

gn( ~Dtn
, θ) → s(θ) i.p. (63)

and kn( ~Dtn , θ) → s(θ) i.p., (64)

as n →∞.

ii) {gn( ~Dtn , θ)}, {kn( ~Dtn , θ)} and s(θ) are identifiable and smooth on Θ. (Note:
the appropriate definitions of ”identifiable” and ”smooth” can be found in Peracchi
(2000))

iii) The sequences {θ̂g
n} and {θ̂k

n} defined as follows,

θ̂g
n = arg max

θ∈Θ
{gn( ~Dtn , θ)}, n = 1, 2, ... (65)

and θ̂k
n = arg max

θ∈Θ
{kn( ~Dtn , θ)}, n = 1, 2, ..., (66)

are convergent.
Then

lim
n→∞

(θ̂g
n − θ̂k

n) = 0 i.p. (67)

Proof : Since we have

p lim
n→∞

gn(~Ytn , θ) = p lim
n→∞

kn(~Ytn , θ) = s(θ), (68)

where p lim means the limit in probability, then it is easy to prove that

|max
θ

gn(~Ytn , θ)−max
θ

kn(~Ytn , θ)| → 0 i.p.. (69)

Using the definitions (65) and (66), we can rewrite (69) as

|gn(~Ytn , θ̂g
n)− kn(~Ytn , θ̂k

n)| → 0 i.p. (70)
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Because

|s(θ̂g
n)−s(θ̂k

n)| ≤ |s(θ̂g
n)−gn(~Ytn , θ̂g

n)|+|gn(~Ytn , θ̂g
n)−kn(~Ytn , θ̂k

n)|+|s(θ̂k
n)−kn(~Ytn , θ̂k

n)|
(71)

and all of the three terms on the right-side of the above equation converge to zero in
probability, as n goes to infinity, we have

|s(θ̂g
n)− s(θ̂k

n)| → 0 i.p. as n →∞. (72)

This is equivalent to

θ̂g
n − θ̂k

n → 0 i.p. as n →∞ (73)

if s(θ) is identifiable on Θ. ¤

A.1 Optimality under the Kullback-Leibler Criterion

The quantity p( ~Dtn , θ0) (see (58)) is the true likelihood function of the observation
vector ~Dtn = (Dt1 , Dt2 , ..., Dtn). From (59), we can write

p( ~Dtn , θ0) =
n∏

i=1

qi( ~Dti , θ0). (74)

A natural way to analyze the consistency of the QMLE is to evaluate the di-
vergence between the true likelihood functions and the likelihood function used in
computing the QMLE, as n → ∞. Here we will apply the Kullback-Leibler (K-L)
divergence defined for a probability density p1 with respect to a probability density
p2 as

DKL(p1, p2) =
∫

log
p1(x)
p2(x)

p1(x)dx. (75)

In our setting, we define an estimator θ̄n via the Kullback-Leibler criterion (Kullback-
Leibler, 1951) as

θ̄n = arg min
θ

{
Dn

KL[p( ~Dtn , θ0), p̂( ~Dtn ; θ)]
}

, (76)

where

log p̂( ~Dtn ; θ) =
n∑

i=1

l̂n̂i(Dti −H(X̂ti|ti−1 , θ), θ). (77)
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Following (76), we have

θ̄n = arg min
θ

{
1
n

DKL

{
p( ~Dtn , θ0), p̂( ~Dtn ; θ)

}}

= arg min
θ

{
1
n

E

{
log

∏n
i=1 pi( ~Dti

, θ0)∏n
i=1 p̂i( ~Dti

, θ)

}}

= arg min
θ

{
1
n

E

{
n∑

i=1

log pi( ~Dti
, θ0)− 1

n

n∑

i=1

l̂i( ~Dti
, θ)

}}

= arg max
θ

{
1
n

E

{
n∑

i=1

l̂i( ~Dti
, θ)

}}

= arg max
θ

{
1
n

n∑

i=1

l̄i(θ)

}
(78)

where l̄i(θ) = E
{

l̂i( ~Dti
, θ)

}
=

∫
l̂i( ~Dti

, θ)p( ~Dti
)d ~Dti

(79)

with log q̂i( ~Dti , θ) = l̂i( ~Dti , θ) = l̂n̂i(Dti −H(X̂ti|ti−1 , θ), θ). (80)

The third step of the above deduction is true because E{∑n
i=1 log pi( ~Dti , θ0)} is

unconditional on θ.
As shown in (Gallant and White, 1988), under regularity conditions, we have the

generalized version of the uniform law of large numbers:

1
n

n∑

i=1

l̂i( ~Dti , θ)−
1
n

n∑

i=1

l̄i(θ) → 0 a.s. (81)

Thus according to Lemma A.1, we have

(θ̂n − θ̄n) → 0 i.p. (82)

This means that the QMLE θ̂n will asymptotically minimize the K-L divergence
between p( ~Dtn) and p̂( ~Dtn); i.e., it is asymptotically optimal under the K-L criterion.

A.2 General Consistency and Asymptotical Normality

As mentioned in Bollerslev and Wooldridge (1992), since the score of the normal
log-likelihood has the martingale difference property when the first two conditional
moments are correctly specified, the Gaussian distributed QMLE is generally con-
sistent and asymptotically normally distributed. In particular we have the following
result from Bollerslev and Wooldridge (1992):
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Lemma A.2. Given a quasi log-likelihood function, if the first two conditional mo-
ments are correctly specified, under regularity conditions (for the sake of readability,
these are listed in the appendix) we have

A−1
n BnA−1

n

√
n(θ∗n − θ0) → N (0, I) (83)

where

An =
1
n

n∑

i=1

E

{(
∂µi(θ0)

∂θ

)′
Ω−1

i (θ0)
∂µi(θ0)

∂θ

+
1
2

∂Ωi(θ0)′

∂θ
[Ω−1

i (θ0)⊗ Ω−1
i (θ0)]

∂Ωi(θ0)
∂θ

}
(84)

and

Bn =
1
n

n∑

i=1

E

{
∂l̂i(θ0)′

∂θ

∂l̂i(θ0)
∂θ

}
(85)

where µi(θ) and Ωi(θ0) represent the conditional mean and covariance respectively,
given the observations {Dk}1≤k≤i, l̂i(θ) is the quasi-likelihood function given the ob-
servations {Dk}1≤k≤i, and ⊗ represents the Kronecker product.

The validity of the assumed quasi-likelihood function (defined in (55)) is shown
by the following derivation. According to (28) and (54), we have

n̂i(θ) = ni(θ) + [H(Xti , θ)−H(X̂ti|ti−1 , θ)]. (86)

Because, in our case, H is a quadratic function of the state vector, we can rewrite
the above equation as

n̂k
i (θ) = nk

i (θ) + hk(X̂ti|ti−1 , θ)
′(Xti − X̂ti|ti−1)

+
1
2
(Xti − X̂ti|ti−1)

′hk
2(X̂ti|ti−1 , θ)(Xti − X̂ti|ti−1)

for 1 ≤ k ≤ m.

(87)

where

hk
2(X, θ) =

∂2Hk(X, θ)
∂X2

, for 1 ≤ k ≤ m.

Now we can prove that {n̂i(θ)} are mutually independent random variables that
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satisfy:

E{n̂i(θ)} = γti|ti−1(θ) (88)

and V ar(n̂i(θ)) = Mi(θ) + Ni(θ) (89)

where

Ni(θ) = E{(n̂i(θ)− ni(θ))(n̂i(θ)− ni(θ))′} − {γti|ti−1(θ)γti|ti−1(θ)
′}. (90)

Define {l′n̂i
( ~Dti , θ)} to be a sequence of Gaussian log-likelihood functions with

means and variances defined in (88) and (89). Thus, according to Lemma 2, if we
apply

∑n
i=1 l′n̂i

( ~Dti , θ) to the QMLE, the obtained estimator θ̂n is generally consistent

and asymptotical normally distributed. Here we assume that
{

l′n̂i
( ~Dti , θ)

}
satisfies

the regularity conditions in Lemma 2.
However, because we are unable to calculate {Nn(θ)}, instead as shown in (55),

we take V ar(n̂i(θ)) as Mi(θ) which means that the second moment is misspecified.
But we can still achieve the consistency under certain conditions according to Lemma
A.1.

Proposition A.3. Suppose l′n̂i
( ~Dti , θ) and l̂n̂i( ~Dti , θ) satisfy the conditions in Lemma

1, and for any θ ∈ Θ,

lim
n→∞

E[||Xtn − X̂tn|tn−1 ||3] = 0 (91)

and lim
n→∞

E[||Xtn − X̂tn|tn−1 ||4] = 0, (92)

where || · || denotes the Euclidean norm. Then

θ̂n → θ0 i.p. . (93)

Proof : Since l′n̂i
(~Yti , θ) is a Gaussian log-likelihood function whose first two con-

ditional moments are correctly specified, according to Lemma A.1 and Lemma A.2,
we need only to prove that

1
n

n∑

i=1

l′n̂i
(~Yti , θ)−

1
n

n∑

i=1

l̂n̂i(~Yti , θ) → 0 i.p., (94)

uniformly in Θ. This is equivalent to showing that l′n̂i
(θ)− l̂n̂i(θ) converges uniformly

to zero in probability as i goes to infinity. Since the only difference between l′n̂i
(θ) and

l̂n̂i(θ) is their covariance, we need to show that the differences of those covariances
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will vanish uniformly as n goes to infinity. So what we need to prove is that

ϕi(θ) → 0 as i →∞, uniformly on Θ (95)

where ϕi(θ) is defined in (90).
According to (87) and (90), we have that

||ϕn(θ)|| → 0, (96)

if

lim
i→∞

E{||Xti − X̂ti|ti−1 ||3} = 0 (97)

and lim
i→∞

E{||Xti − X̂ti|ti−1 ||4} = 0, (98)

where || · || denotes the Euclidean norm. This completes the proof. ¤
Since generally we cannot guarantee the conditions (91) and (92), in the next

section, we will use Monte Carlo analysis to confirm the performance of the proposed
estimator.
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Notes

1Recent work can be found in Zhou (1997), and Duffie and Lando (2001).

2Similar concept has also been used in Albanese et al. (2003).

3The existence of the extended risk-free short rate process rt that satisfies (2) and
(3) has been proved in Chen and Filipović (2003a), Lemma 4.1.

4The deductions can be found in Chen and Filipović (2003b).

5For the notion and general results of quadratic processes, we refer to Chen,
Filipović and Poor (2003).

6For the detail of genetic algorithm for optimization, we refer to Goldberg (1989).
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Figure 1: Comparison of Actual Yields and Fitted Yields for the Affine Model
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Figure 2: Comparison of Actual Yields and Fitted Yields for the Affine Model
(Cont’d)

1980 1985 1990 1995 2000
6

8

10

12

14

16

18

Y
ie

ld
s
 (

%
)

One−year Zero−Coupon Aa Corporate Bond Yields (1978−2002)

Actual yields
Fitted yields

1980 1985 1990 1995 2000

8

10

12

14

16

18

Y
ie

ld
s
 (

%
)

One−year Zero−Coupon A Corporate Bond Yields (1978−2002)

Actual yields
Fitted yields

1980 1985 1990 1995 2000

8

10

12

14

16

18

Y
ie

ld
s
 (

%
)

One−year Zero−Coupon Baa Corporate Bond Yields (1978−2002)

Actual yields
Fitted yields

38



Figure 3: Comparison of Actual Yields and Fitted Yields for the Quadratic Model
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Figure 4: Comparison of Actual Yields and Fitted Yields for the Quadratic Model
(Cont’d
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Figure 5: Corporate Bond Spreads with the Non-Default Part
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Figure 6: Default Probabilities for Aa Rated Bonds
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Figure 7: Default Probabilities for A Rated Bonds
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Figure 8: Default Probabilities for Baa Rated Bonds
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Figure 9: Credit Indices for the Affine Diffusion Model
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Figure 10: Credit Indices for the Affine Fat-Tail Model
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Figure 11: Credit Indices for the Quadratic Model
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Table 1: The Summary of Statistics of Interest Rates

Treasury Rates (%) 3 month 1 Year 10 Year 30 Year
Period of Time Series 01/78-12/02 01/78-12/02 01/78-12/02 01/78-12/02
Number of Obs. 300 300 300 289
Mean 6.592 7.264 8.244 8.526
Std. Dev. 3.008 3.188 2.618 2.357
Median 5.77 6.52 7.86 8.14
Minimum 1.19 1.45 3.87 5.01
Maximum 16.3 16.32 15.32 14.68

1-Yr Corporate Bond Yields (%) Aaa Aa A Baa
Period of Time Series 01/78-12/02 01/78-12/02 01/78-12/02 01/78-12/02
Number of Obs. 300 300 300 300
Mean 9.206 9.504 9.837 10.298
Std. Dev. 2.266 2.578 2.534 2.637
Median 8.755 8.995 9.345 9.765
Minimum 6.15 5.93 6.42 7.09
Maximum 16.39 16.47 16.97 17.18

Means, standard deviations, and other statistics of the Treasury rates and the averaged
1-Yr. Corporate Bond Yields are summarized. The Treasury rates are collected with
four different maturities 3-month, 1-year, 10-year, and 30-year.The corporate bond years
are collected from four rating classes: Aaa, Aa, A, and Baa. The sample period ranges
from January 1978 to December 2002 with totally 300 observations for all different rates.
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Table 2: Summary of Statistics for a Snapshot of the Market Rates

Maturity (years)
Quality 0-2 2-4 4-6 6-8 8-10 10-20 Total
Treasury 3 12 8 6 4 17 50
Aaa 20 24 34 31 32 26 166
Aa 19 30 24 37 22 30 162
A 17 38 28 32 24 20 159
Baa 17 32 46 30 18 16 159

The snapshot of treasury and corporate bond price data are down-
loaded from www. Bondpage. com. This dataset includes over 700
month-end quoted prices of treasury bonds and corporate bonds
issued by the investment-grade firms. Each bond contains the in-
formation about the rating given by Moody’s, the maturity date,
the coupon rate and payment frequency, and the bond’s clean and
dirty price. All the bonds are non-callable and have at least one
year remaining to maturity. All the bonds share the same settle-
ment date.

46



Table 3: Estimates of the Affine Model Using Filtering Technique and QMLE

Rating Aaa Aa A Baa
b1 0.00156 0.00155 0.00156 0.00157

(0.00021) (0.00016) (0.00018) (0.00023)

b̃1 0.0352 0.0325 0.0335 0.0350
(0.0012) (0.0015) (0.0018) (0.0013)

β̃11 -0.0744 -0.0831 -0.0729 -0.0717
(0.0064) (0.0068) (0.0067) (0.0051)

β11 -0.103 -0.117 -0.104 -0.103
(0.051) (0.052) (0.068) (0.045)

α1 1.168e-4 7.046e-4 1.021e-4 8.544e-4
(0.12e-5) (0.16e-5) (0.22e-5) (0.32e-5)

b2 0.0254 0.0328 0.0380 0.0422
(0.014) (0.016) (0.015) (0.019)

β22 -0.725 -0.620 -0.614 -0.602
(0.15) (0.18) (0.19) (0.25)

β̃22 -5.401 -5.741 -5.263 -5.812
(1.32) (2.09) (2.01) (1.83)

β21 0.0595 0.190 0.481 0.638
(0.063) (0.073) (0.064) (0.098)

β̃21 0.00352 0.00366 0.00381 0.00396
(0.00021) (0.00019) (0.00012) (0.00024)

α2 4.658 4.766 4.714 4.643
(0.43) (0.49) (0.46) (0.45)

c 0.00115 0.00379 0.00221 0.000560
(0.0011) (0.0009) (0.0016) (0.0005)

γ1 0.0248 0.0343 0.0481 0.0743
(0.0034) (0.0028) (0.0044) (0.0064)

Yields Mean Error Mean Percentage Error
√

Mean Square Error
(basis points) (%) (basis points)

3-mo. treasury -28.482 -12.453 48.342
1-yr. treasury -22.806 -11.638 43.109
10-yr. treasury 6.1456 0.5404 27.639
30-yr. treasury 5.1374 0.2321 15.684
1-yr. Aaa rating bonds -8.5162 -0.47533 15.064
1-yr. Aa rating bonds 7.7607 0.55684 14.651
1-yr. A rating bonds -5.7947 -0.31322 14.444
1-yr. Baa rating bonds -4.8276 -0.22293 14.073

The parameters are estimated from 25-year time-series of monthly treasury yields with
maturity 3-month, 1-year, 10- year and 30-year and the 1-year corporate bond yields
from four different Moody’s rating classes: Aaa, Aa, A, Baa. The estimated values
together with the standard errors (in parentheses) are presented. The standard errors
are computed as with QMLE and corrected for heteroskedasticity as described in White
(1982). Moreover the fitting error are presented with three different measures: mean error
(actual-fitted), mean percentage error ((actual-fitted)/actual) and the square root of the
mean square errors.
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Table 4: Estimates of the Quadratic Model Using Nonlinear Filtering Technique and QMLE

Rating Aaa Aa A Baa
b1 0.00404 0.00405 0.00354 0.00489

(0.00062) (0.00054) (0.00034) (0.00042)

b̃1 0.0133 0.0141 0.0134 0.0148
(0.0042) (0.0048) (0.0068) (0.0057)

β11 -0.000104 -0.000166 -0.000103 -0.000132
(0.000075) (0.000072) (0.000078) (0.000053)

β̃11 -0.00200 -0.00231 -0.00437 -0.00282
(0.0045) (0.0058) (0.0050) (0.0055)

α1 0.00141 0.00117 0.000745 0.000391
(0.00022) (0.00023) (0.00019) (0.00018)

b2 0.119 0.194 0.230 0.295
(0.084) (0.073) (0.068) (0.063)

β22 -0.188 -0.175 -0.168 -0.163
(0.35) (0.29) (0.29) (0.28)

β̃22 -5.221 -5.307 -5.340 -5.548
(2.21) (2.10) (1.91) (1.95)

β21 0.000932 0.000934 0.000955 0.000964
(0.0034) (0.0023) (0.0026) (0.0028)

β̃21 0.00352 0.00366 0.00381 0.00396
(0.0022) (0.0018) (0.0023) (0.0025)

α2 0.0124 0.0138 0.0342 0.0413
(0.0076) (0.0077) (0.0066) (0.0075)

c 9.40e-7 7.62e-7 6.34e-6 4.22e-6
(1.43e-6) (0.94e-6) (1.6e-6) (1.5e-6)

γ1 0.00479 0.00679 0.0112 0.0148
(0.00043) (0.00038) (0.00042) (0.00046)

Yields Mean Error Mean Percentage Error
√

Mean Square Error
(basis points) (%) (basis points)

3-mo. treasury -22.372 -5.132 30.353
1-yr. treasury -21.156 -4.589 28.137
10-yr. treasury 5.993 1.283 16.473
30-yr. treasury 4.343 0.332 12.420
1-yr. Aaa rating bonds -7.443 -1.709 13.034
1-yr. Aa rating bonds 3.321 1.853 12.651
1-yr. A rating bonds -2.158 -0.218 10.444
1-yr. Baa rating bonds -0.048273 0.17175 9.899

The parameters are estimated from 25-year time-series of monthly treasury yields with
maturity 3-month, 1-year, 10- year and 30-year and the 1-year corporate bond yields
from four different Moody’s rating classes: Aaa, Aa, A, Baa. The estimated values
together with the standard errors (in parentheses) are presented. The standard errors
are computed as with QMLE and corrected for heteroskedasticity as described in White
(1982). Moreover the fitting error are presented with three different measures: mean error
(actual-fitted), mean percentage error ((actual-fitted)/actual) and the square root of the
mean square errors.
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Table 5: Estimates of the Real World Default Intensity

Parameter Affine Quadratic
c̃ 1.267e-7 (2.5e-6) 1.343e-6 (9.2e-6)
γ̃1 0.00344 (0.0032) 0.000898 (0.0048)
γ̃2 0.772 (0.12) 0.815 (0.31)
RMSE (b.p.) 3.3 b.p. 2.8 b.p.
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Table 6: Parameter Estimates for Fitting the Current Term Structure of Treasury Rates
and Credit Spreads

Parameter AD AF QD
b1 0.00952 0.0116 -0.0578

(0.00024) (0.000013) (0.0087)
β11 -0.0690 -0.151 -0.247

(0.0050) (0.0027) (0.81)
α1 0.00783 0.000673 0.00985

(0.00034) (0.00021) (0.0014)
r 0.0117 0.0109 0.0195

(0.00041) (0.00072) (0.00039)
b2 0.0118 0.0197 0.37465

(0.048) (0.027) (0.057)
β22 -1.5697 -1.3606 -2.4328

(1.03) (0.73) (0.92)
β21 0.124 0.194 0.124

(0.032) (0.053) (0.042)
α2 5.323 2.501 0.00771

(0.63) (0.71) (0.0047)
c 9.132e-7 1.570e-6 3.075e-5

(0.13e-6) (0.27e-6) (9.5e-6)
γ1 0.00153 0.00101 0.0296

(0.00064) (0.00042) (0.00065)

Yield RMSE (basis points)
Maturity AD Model AF Model QD Model
0-4 yr. Treasury 3.281 3.089 4.109
4-20 yr. Treasury 0.992 0.852 1.292
0-4 yr. Aaa rated bonds 14.689 9.477 17.870
4-20 yr. Aaa rated bonds 6.235 4.918 6.912
0-4 yr. Aa rated bonds 5.517 5.013 6.939
4-20 yr. Aa rated bonds 2.477 1.311 2.767
0-4 yr. A rated bonds 19.176 17.234 19.798
4-20 yr. A rated bonds 5.435 5.088 6.888
0-4 yr. Baa rated bonds 24.764 23.88 24.627
4-20 yr. Baa rated bonds 6.394 6.165 7.092

The parameters are estimated using the price data of more than 650
treasury and corporate bonds. Thirty independent experiments are
performed. The mean estimates together with the standard errors (in
parentheses) are presented. The fitting errors (RMSE) are also pre-
sented with respect to different maturities and four rating classes.
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Table 7: Summary Statistics of Credit Indices

AD AF QD
Rating Mean (Stdev) Mean (Stdev) Mean (Stdev)
ZAaa 0.0250 (0.0282) 0.0290 (0.0174) 0.660 (0.122)
ZAa 0.0864 (0.0306) 0.0596 (0.0247) 0.727 (0.120)
ZA 0.275 (0.0504) 0.156 (0.0336) 0.814 (0.144)
ZBaa 0.554 (0.131) 0.300 (0.0372) 0.948 (0.159)
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