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Simulation-Based Pricing of Convertible Bonds

Abstract

We propose and empirically study a pricing model for convertible bondsdbais Monte Carlo simu-
lation. The method uses parametric representations of the early exercisiemneand consists of two
stages. Pricing convertible bonds with the proposed Monte Carlo apgpatiaws us to better capture
both the dynamics of the underlying state variables and the rich set of cell-wonvertible bond spec-
ifications. Furthermore, using the simulation model proposed, we prasemirical pricing study of
the US market, using 32 convertible bonds and 69 months of daily markes pagr results do not
confirm the evidence of previous studies that market prices of conebtiimds are on average lower
than prices generated by a theoretical model. Similarly, our study is nobgiygpof a strong positive

relationship between moneyness and mean pricing error, as argued inréiedée

1. Introduction

To raise capital on financial markets, companies may choose among threeassgoclasses: equity,
bonds, and hybrid instruments, such as convertible bonds. While isgaig drom valuing equity
and bonds are extensively studied by researchers in academia asthynéewer articles focus on
convertible bonds. This is surprising as convertible bonds cannot sireglgrisidered as a combination

of equity and bonds but present their own specific pricing challenges.

As hybrid instruments, convertible bonds are difficult to value becausediygend on variables
related to the underlying stock (price dynamics), the fixed income partdsiteates and credit risk),
and the interaction between these components. Embedded options, suclversion, call, and put
provisions often are restricted to certain periods, may vary over time rarsibject to additional path-
dependent features of the state variables. Sometimes, individual tiblevbonds contain innovative,
pricing-relevant specifications that require flexible valuation models. plinpose of this study is to

present a pricing model based on Monte Carlo Simulation that can deal wstnthkiation challenges.



We implement this model and use it to perform the first simulation-based pritinly f the US

convertible-bond market that accounts for early-exercise features.

Theoretical research on convertible bond pricing can be divided in&ethranches. The first
pricing approach implies finding a closed-form solution to the valuation equaliavas initiated by
Ingersoll (1977a), who applies the contingent claims approach to thatiaiuwf convertible bonds.
In this valuation model, the convertible-bond price depends on the firm ealtlee underlying state
variable. More recently, Lewis (1991) develops a formula for converbbnds that accounts for more
complex capital structures, i.e. multiple issuedihier and Koziol (2002) focus on the possibility of
non-block-constrained conversion and develop pricing formulasifigple convertible bonds. While
very fast in computation, closed-form solutions are not suitable for emapisitidies because they
fail to account for a number of real-world specifications. Especiallyddnds and coupon payments
are often modeled continuously rather than discretely, early-exer@asarés are omitted, and path-

dependent features are excluded.

The second pricing approach values convertible bonds numericallyy nsimerical partial dif-
ferential equation approaches. Commercially available models for pricingedible bonds, such
as Bloomberg OVCV, Monis, and SunGard TrueCalcTM Convertible, lgetorthis category. The
first theoretical model was introduced by Brennan and Schwartz J487@ apply a firm-value-based
approach and a finite-difference method for the pricing task. BrenndrSahwartz (1980) extend
their pricing method by including stochastic interest rates. However, thegluae that the effect of
a stochastic term structure on convertible-bond prices is so small that iecarglected for empir-
ical purposes. McConnell and Schwartz (1986) develop a pricing hieded on a finite-difference
method with the stock price as stochastic variable. To account for crddithisy use an interest rate
augmented by a constant credit spread. Since the credit risk of artibleséond varies with respect
to its moneyness, Bardhan et al. (1993) and Tsiveriotis and Fernél@#8) propose an approach that
splits the value of a convertible bond into a stock component and a straigéhcoonponent. Ammann
et. al. (2003) extend this approach by accounting for call features waitbus trigger conditions. Also
Hung and Wang (2002) propose a tree-based model that accoubtstificstochastic interest rates and
default probabilities but looses its recombining property. A further tieset model is presented by

Carayannopoulos and Kalimipalli (2003), who use a trinomial tree andpocates the reduced-form



Duffie and Singleton (1999) credit-risk model. Similar credit-risk appreadre followed by Davis
and Lishka (1999), Takahashi et al. (2001), and Ayache et ab3)2@ho explicitly allow for non-zero
recovery rates. To sum up, among numerical partial differential equafproaches, there are both
binomial/trinomial trees (e.g. Takahashi et al., 2001, Ammann et al., 2003 aryannopoulos and
Kalimipalli, 2003), finite difference (e.g. Brennan and Schwartz, 198@chAe et al., 2003, and An-
dersen and Buffum, 2004), and finite element methods (e.g. Barong-&idal., 2003). Some of the
proposed models provide sophisticated pricing and calibration solutiorfertUmately, in the face of
practical problems related to real convertible-bond specifications and ligstdavailability, the pro-
posed approaches turn out to be practicable only in very few casessknce, Andersen and Buffum
(2004) require for their calibration price series of several optiondigaal straight bonds - a situation
that is almost never given for typical convertible bond issuers. Finalljarical partial differential
equation approaches have to deal with some general challenges: cantpuérgrows exponentially
with the number of state variables, path dependencies cannot be irategbeasily, and the flexibility

in modeling the underlying state variables is low.

The third class of convertible bond pricing methods uses Monte Carlo Simukatdmay over-
come many of the drawbacks of humerical partial differential equatioroapphes. Monte Carlo Sim-
ulation is very well suitable for modeling discrete coupon and dividend patanéor including more
realistic dynamics of the underlying state variables, and for taking into at@aih-dependent call
features. Typically, path dependencies arise from the fact that estiymption may only be allowed
when the stock price exceeds a certain level for a pre-specified nwhdays in a pre-specified pe-
riod, usually at least 20 out of the last 30 trading days. Finally, the reitiprbetween the number of
state variables and computing time is almost linear in our Monte Carlo framewdrthigrcan become
advantageous when multiple state variables need to be modeled. Thus,pbsgatonodel has a high
degree of flexibility and is friendly with respect to future extensions. Respl the natural advan-
tages of the Monte Carlo approach, pricing American-style options sutiose present in convertible
bonds within a Monte Carlo pricing framework is a demanding task. In regsars, a considerable
number of important articles have addressed the problem of pricing Amestge option$ by using

a combination of Monte Carlo Simulation and dynamic programming. Bossae88)(19 and Zhang

In general, simulation techniques only allow for a finite menof early-exercise times and hence price
Bermudan options rather than continuously exercisable American optionsvéler, for a fairly large number of
early-exercise dates, the Bermudan price may serve as aoxapption for the price of the American option.
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(1996), Grant et al. (1996), Andersen (2000), and @af2003) represent the early exercise rule via a
finite number of parameters. The optimal exercise strategy and hencedb@pthe American-style
option is obtained by maximizing the value of the option over the parameter sGaceere (1996),
Tsitsiklis and Van Roy (1999), Longstaff and Schwartz (2001), arean@ht et al. (2002) apply stan-
dard backward induction and estimate the continuation value of the optiogiaseing future payoffs
on a set of basis functions of the state variables. Tilley (1993), Baaraand Martineau (1995),
Raymar and Zwecher (1997) present methods based on backwactiamdihat stratify the state space
and find the optimal exercise decision for each subset of state variaBlesdie and Glasserman
(1997a) and Broadie et al. (1997b) propose a method for calculatiogspof American-style op-
tions with simulated trees that generate two estimates, one biased high and one biased low. Broadie
et al. (1997a), Broadie and Glasserman (2004), Avramidis and Hy@£9}, and Boyle et al. (2000)
develop stochastic-mesh methods with different choices for mesh weightslyFBroadie and Cao
(2003), Haugh and Kogan (2004), and Rogers (2002) sugg@studasion method that uses a duality
approach for pricing Bermudan options. A numerical comparison ofrdiffeMonte Carlo approaches

is provided by Fu et al. (2001).

Previous research to value convertible bonds by Monte Carlo Simulatiomyidingted. Buchan
(1997, 1998) describes the application of the parametric optimization agppod@ossaerts (1989) to
convertible bonds by employing the firm value as the underlying state vagablallowing for senior
debt. However, in the empirical implementation, she assumes the conversion tmpbe European

rather than American.

This paper contains a theoretical and an empirical contribution. First, @mope a stock-based
pricing method for convertible bonds building on the enhanced Monte Carlal&ion method by
Garda (2003). This is a two-stage method designed to cope with the Monte Carlthhtas inher-
ent in one-stage methods. The two-step simulation method may be defingadrasnetric approach
because it uses a parametric representation for the early exercisemieciBhe first step is an opti-
mization, in which a set of Monte Carlo simulations is used to estimate parametes vajuesenting
strategies for early exercise and to generate an in-sample price. Ibhaahetion stage, the optimized
parameter space is applied to a second set of simulated stock-price pattexitoide an out-of-sample

model price for the convertible bond. The actual point estimate is then obthinaveraging the in-



sample and the out-of-sample estimates. The optimization method byaGae03) is preferred to
other approaches (simulated trees, stratification algorithms, and stochastieshbecause it is more
parsimonious in allowing for multiple exercise opportunities. While the regnessaihod by Longstaff
and Schwartz (2001) is another suitable technique, the optimization-bpgexhah by Garfa (2003)
has an attractive feature for empirical studies: the optimization algorithmectarininated once a cer-
tain level of accuracy is reached. As outlined above, the simulation agpeskopted in this paper has
an inherent strength as it is flexible in incorporating the dynamics of the statibles. Furthermore,
besides discrete coupon and dividend payments, the introduced mettmahtscfor path-dependent
call triggers as outlined in the offering circulars. Instead of using a fiaslneszmodel, the stock price
is modeled directly, as proposed by McConnell and Schwartz (1986¢r&%dhk the process parameters
of a model based on the stock price can easily be estimated with standard spetigofhct that firm
values are not observable makes firm-value models notoriously hard toatalilsince the presented
method is cash-flow based, credit risk can easily be incorporated byuditsicg the payoffs subject to

credit risk with the appropriate interest rate in the spirit of Tsiveriotis asmh&ndes (1998).

The second contribution in this paper is an empirical analysis of the US rtitindedond market.
Despite the large size of international convertible bond markets, very little madpiesearch has been
undertaken. Previous research in this area was performed by Kig$)1®ho examines a sample
of 103 American convertible bonds with a lattice-based method and the firma-galstochastic vari-
able. Using monthly price data and a convertible bond valuation model withi@gersoll, and Ross
(1985) stochastic interest rates (CIR), Carayannopoulos (1996Jieatly investigates 30 American
convertible bonds for a one-year period beginning in the fourth quaft&®89. Buchan (1997) uses
a simulation-based approach to implement a firm-value model with a CIR terntus&usodel for 35
Japanese convertible bonds. Buchan (1998) performs a pricing fsudy US convertible bonds is-
sued in 1994. However, the American property of convertible bondstiagumunted for in that study.
Carayannopoulos and Kalimipalli (2003) investigate 25 US convertible daviith a trinomial tree.
Ammann et al. (2003) investigate on a daily basis 21 French convertiblesbwitidl a binomial tree

using the stock price as stochastic variable.

A drawback of many of those pricing studies is the small number of data pantsgmvertible

bond: Buchan (1997) tests her pricing model only for one calendar(lo@yds priced per March



31, 1994), King (1986) for two days (bonds priced per March 3%, 71%nd December 31, 1977),
Carayannopoulos (1996) for twelve days (one year of monthly datd)Carayannopoulos and Kalim-
ipalli (2003) for approximately two years of monthly data. In contrast, thidystwvers a larger sample
using 69 months of daily price data, ranging from May 10, 1996, to Fepdf® 2002 and includes 32
convertible bonds in the US market. The US convertible bond market is ctiosés large size and

the high number of rated issues.

A second drawback of the previous pricing studies is the simple modeling ebthglity of the
underlying stock. This drawback is almost inherent to the lattice appresaatmpted by King (1986),
Carayannopoulos (1996), Carayannopoulos and Kalimipalli (2008) Aanmann et al. (2003). Al-
though Buchan (1997) uses a simulation-based approach, her megeiatdully exploit the potentials
provided by Monte Carlo Simulation as a constant volatility is assumed for thedynamics. To take
into account the clustering of stock volatility, we implement the model using a GARQ) specifica-

tion.

The paper is organized as follows: First, we introduce the convertibld paoing model that
will be applied in the empirical investigation. Second, we describe the dasémdgiresent the specific
characteristics of the convertible bonds examined. Third, we discussihig@l methodology applied
when implementing the model. Finally, the empirical study compares theoretical procks with

observed market prices and analyzes the results.

2. Pricing Convertible Bondswith Monte Carlo Simulation

2.1. The American Option Pricing Problem for Convertible Bonds

A standard, plain-vanilla convertible bond is a bond that additionally offexsnvestor the option to
exchange it for a predetermined number of stocks during a certainefpred period of time. The
bond usually offers regular coupon payments and, in case it is kept &ivedeemed at the time of
maturity T with a pre-specified amoumiN, whereN is the face value of the convertible bond and
is the final redemption ratio in percentage points of the face value. Althaughequal to one for

most convertibles, some issues are redeemed at premiunk \éther than one. Let us consider time



discretely with daily frequency, i.e. that timebelongs to a finite set, € [0,1,...T], wheret = 0
indicates today, antl= T the day of contractual maturity. In the case of conversion, the investor
receives S, where the conversion ratig is the number of stocks the bond can be exchanged for, and
S is the equity price (underlying) at timeIf the underlying stock differs from that of the issuing firm,
the instrument is commonly called archangeable. Usually, convertible bonds additionally contain

a call option, allowing the issuer to demand premature redemption in exchantieefcall priceK;
applicable at timé. The issuer is obliged to announce his intention to call a certain period imeglyva
referred to as theall notice period. If the convertible bond is called, the investor may want to exercise
his conversion option at any time during the call notice period to receiveotihacsion value instead of
the call price. Additionally, a putability feature is sometimes present. This entidaavbstor to force

the issuing firm to prematurely repurchase the convertible bonds fotarcpredefined pric&. All
these embedded options may be restricted to certain periods of time or spatgfic To facilitate the
formal exposition, we introduce three time s&gen, Qcal andQpy, that describe the dates at which
the corresponding option is exercisable. Typically, the first possibleersion date precedes the first

call opportunity and the last conversion opportunity is at maturity.

Thus, the payoff of a convertible bond depends on whether and wieeinvéstor and the issuer
decide to exercise their options and trigger the termination of the convertibte bett* be the optimal
stopping time, i.e. the time at which it is optimal for either the issuer or the investormintzte the
convertible bond. Hereby, the investor maximizes the value of the convertiblé whereas the issuer
acts in the opposite way. The resulting action may either be conversion, docedid conversion,
or regular redemption when the bond matures. Formally, the optimal stopping ttiime convertible
bond is defined as' = min{t : p(X,t) # 0}, wherep(X;,t) is the payoff resulting from the convertible
bond in stateX; at timet, given the optimal option-exercise behavior of both investor and isJiner.
alternatives presented in Table 1 stand for all events that will causenkertible bond to be terminated
and reflect boundary conditions that impede arbitrage opportunitiesdd®eshen reaching maturity,
the convertible bond can be ended by a conversion into stock, by a dajlaquut. The optimal exercise
decision critically depends on the value of continuatiini.e. the value of the convertible bond if it is
not exercised immediately. While the investor will convert (put) the bondas asn S >V, (R > V)
fort € Qeonv (t € Qpu), the issuer will call the convertible as soon\és> K; for t € Qcyj. Thus, at

each point in time, both investor and issuer decide whether they want toissxéneir option or not



Optimal exercise decision

This table presents the optimal option exercise behavibotf the issuer and the investor. The payoffs resulting
from the optimal exercise decisions are listed in the firdirom of the table. The second column displays the
conditions under which it is optimal to exercisBme restriction indicates whether the embedded option can be
exercised by the investor (issuer) at titne Six outcomes are possible: voluntary conversion, put, fraated
conversion, redemption at maturity, or continuation of doavertible bond.\/ is the conditional expected
value of continuation, i.e. the value of holding the coribdetbond for one more period instead of exercising

immediately.
Payoffp(X,t) Condition Time restriction Action
nS if eS >V fort € Qeonv Voluntary
andP <n§ fort € Qput N Qconv conversion
R if B>V fort € Qpu Put
andn§ < R fort € Qeom N Qput
Kt if Vi > Kq fort € Qca Call
andK; > n§ fort € Qcann N Qcorv
nS if Vi > Ky fort € Qe Forced
andn:§ > K; fort € Qeonv N Qcall conversion
KN if kS <kN fort =T € Qconv Redemption
0 otherwise Continuation




and this decision is dependent on the continuation value. In the case lofthemvestor will convert
the bond if the conversion value is above the call prfoecéd conversion), otherwise he will prefer to
have it redeemed. The entri€sndition and Time restrictions in Table 1 have to be read line by line,
i.e. the condition in the second column of the table is checked only if the conmdsyg time restriction
on the same line of the following (third) column is satisfied. Besides to certadefined times, the
possibility to call the convertible bond may be restricted by certain conditions satisfied, e.g. that
the conversion value exceeds a pre-specified call trigger. The inweiitonake use of the option to
put the convertible bond when the value of continuation falls below the jpce.plt follows that the
convertible bond will be kept alive as longesx (nS; R) < V{ <K, i.e. that neither the investor nor

the issuer will execute their options and cause the convertible bond to terminate

In addition to the payoff at the time of termination, the investor receives figradnvertible bond
investment all coupon payments that occurred prior to this date. Formallyutiogion h (X, T%)

represents the payoff from a convertible bond with embedded call optistatieX,- and at timer*:

h(%, T°) = p(%, ) +¢(T) (1)

wherep (X, T%) is the payoff from the convertible bond at the optimal time of terminatioand
c(t*) is the present value at timg of all coupon payments accumulated during the existence of the
bond, i.e. befora*. As will be seen later, whether(t*) contains also accrued interest payments is an

empirical matter that depends on the specification of the individual conleehiiimd.

The price of a convertible bond can be obtained by discounting all futash lows under the

risk-neutral measure. Thus, valuing convertible bonds implies determining

Vo=EC [e "0t (e 1) @

where\y is the current value of the convertible bondis the optimal stopping time taking values
in the finite sef0,1,..., T}, the functionh (X-,T*) represents the payoff from a convertible bond with
embedded call option in sta¥: and at timer*, and the expectatioB? [] is taken with respect to the

equivalent Martingale measuf@ defined using the riskless security as the numerai(¥;,t) is the



interest rate between tinteandt + 1 in stateX; that is applicable for discounting cash flows from time

t 4+ 1 to timet.

2.2. Characterizing the Optimal Exercise Decision

Before maturity, the optimal exercise strategy implies comparing the value of immediercise with
the value from continuing, i.e. not exercising this period. The crucial istgies determining the
conditional expected value of continuatigfy Formally, the value at a future tinteof a convertible

bond that is not exercised immediately, but held for one more period, is bive

V, = EC [efzt‘ialr(x,tnh(xmﬁ) | F 3)

wheret* >t and 7 represents the information available at time

The continuation valug/ can be expressed as a function of the state variables and time. In partic-
ular, for convertible bonds, there is a monotonous relation betW¢and the state variablésHence,
for obtaining a full description of any economically meaningful option-eiserbehavior, it is sufficient
to define for each embedded option only @rercise boundary Zeony, Zcaii, andZp: for the conversion,
call, and put option, respectively. For each option, the exercise laoyiséparates the exercise-region
from the non-exercise region. The exercise boundaries descriloertii@ned values of state variables
for which investor and issuer are indifferent between exercising tipgiors or not. Foi state vari-
ables, the boundari&ow, Zecai, andZpy: can be viewed as functions that associate to any tdael
any values ofy— 1 state variables critical values for the remaining state variqtiat trigger the ex-
ercise of the respective optioBf®" denotes, for a specific date Qcony, the value of state variablg
for whichV/ = ncS. Similarly, Z2' denotes, for a specific datec Qcy, the value of state variablg
for whichV/ = K; andZtput denotes, for a specific dates Qp, the value of state variabpfor which

W =h.

In the case where the stock pri€ds the only state variable, it is optimal to exercise the options

whenever§ > ZV, § > 78! ands < Z™*, wherez®™, 78! andzZ™ are scalars. As described

2For example); is monotonically increasing in the stock pri€ with 0 < dV{//dS < n, given specific
values for the other state variables. Therefore, for evergezglded option, there is at most ddéor which the
continuation value is equal to the respective option paiyeffercised K;, n;S, andR).
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in Appendix A, for the numerical implementation, the exercise bound@gs, Zcai, andZp, are
approximated by parametric functio@on(t; 8conv), Geall (t; 8cail), and Gpy (t; Opu) With parameter

Setseconv, eca“, andeput

2.3. Simulation M ethodology

The pricing algorithm consists of two stages, an optimization stage and a valstdie. In the first
stage, the optimal exercise strategy of the investor and the issuer is estirgigige dirst set of sim-
ulated paths for the state variables. The parameteBggtand 6;,, govern the exercise behavior, or
exercise strategy, of the issuer and investor, respectively. Theisxdyehavior of the issuer con-
cerns solely the call option so that we can write without loss of gener@lify= 6.y,. Since the
investor's exercise behavior is related to both the conversion and thappan, we can conveniently
write B = [6ony ’put} ' These exercise strategies determine the time of termination, or stopping time,
T, of the convertible bond. Hence, the value of the convertible bond gigeilin exercise strategies

can be calculated by averaging the discounted payoffs of all simulatios:path

1 N T N i
V (eInV7 e|$) - N Zeﬁ Zt:Olr(xt,t)Tl(elr’v’el§)h (X:i(einv-,ei$)7.[i (eInV7 el$)> I (4)

whereX; are realizations of the simulated state variablesiglthe number of simulation paths.

To find the optimal conversion strategy, given a fixed call strategy, thelipitlhosen parameters
encoding the put and the conversion strategy are altered until the algdiittisna maximum for the

convertible bond price:

Biny = argmaxV (emv,@iss) : (5)
einv

where@im indicates an estimate of the optimal exercise strategy of the investor. Sebflgainese

parameters are applied to find a call strategy that minimizes the convertibdigpbon:

@iss = argminV (@in\,, ei$> . (6)
9i§
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To determine the final exercise strategy, this procedure is applied itdyaiivéél the optimal pa-
rameters are obtained and a predefined accuracy is reached. Maatrstepping times; (@im,§i$>
for each pathi and the corresponding payofiixti*,ri*) for valuing a convertible bond are obtained by
applying these optimized exercise rules to the simulated paths. Thus, ast @frésis procedure, we
obtain estimates of the optimal exercise strategies as well as an in-sample estithatprice of the

convertible bond.

In the second stage, the optimized exercise strategies from the first staggepdied on a second
set of simulated paths of the state variables to determine the out-of-sampleofdheeconvertible
bond. The final point estimate is the average of the in- and out-of-santpieagss. While numerical
experiments show that both the in-sample and the out-of-sample estimatesgyeciovie true price of
the convertible bond as the number of simulation paths increases, avettagimg results generates a

more accurate point estimate.

Figure 1 presents a comparison of exercise boundaries obtained ®pat&p binomial tree and
the simulation-based model. For the sake of comparison the convertible bgnbas only features
that can be easily addressed within a standard binomial tree model. We iatestigimple case with
the stock price as the only state variable and constant interest rates1 Bs seen in the plots, the main
features of the exercise boundaries are captured by the simulation mbéefac that the conversion
boundary is lower in the simulation model can be easily explained. As long asiirersion boundary
is higher than the call boundary, its exact position does not affect tbe pf the convertible bond.
Thus, if during any step of the maximization procedure (cfr. equationtii®)pptimizer sets the con-
version boundary in an arbitrary position above the call boundaryhaoge of the parameteisonv
will increase the price of the convertible and the current position of theersion boundary will be
the final one. The economic reason for the irrelevance of the exatiopast the conversion boundary
in the Monte Carlo algorithm is that, in this setting, the issuer will always call tineextible before
voluntary conversion can become the optimal choice for the investor. Fittadiyrices generated by
the simulation model (108304 for the point estimate) are very close to those of the tree4QB{

supporting the convergence of the simulation mddel.

SWhile Figure 1 is only one example, extensive numerical érpants obtained with several specifications
confirm the convergence of the model. It is worth noting thagjéneral the pricing results are sensitive to the
level of the boundaries but not to their exact shape, i.¢.efen simple shapes of the boundaries guarantee very
accurate pricing results.
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Figure 1. Exercise Boundaries

This graph shows exercise boundaries of a convertible botaireed by a binomial tree (Panel A) and by the
simulation-based model (Panel B). The tree generates @ @iit06405. The simulation model produces an in-
sample price of 10656 and an out of sample price of 186847 with standard deviations 0fi128 and QL162,
respectively, resulting in a point estimate of 14804. The parameter set for pricing the convertible bondis a
follows. The volatility is equal to 40%(= 0.4), the initial stock price is 100 dollar§(0) = 100), the dividend
yield is continuously compounded & 0.1), the contractual time to maturity is two yealls=£ 2), the risk-free
interest rate is 5% (= 0.05), the call price is constant at 11K £ 110), the put price is constant at 98- 98),

the nominal value is 100H = 100), the convertible bond pays no coupons-(0.0), the conversion ratio is one
(n=1), and 100 exercise opportunities are assumed. Pricingnylation is performed with 4000 simulation
paths N = 4000) and 100 discretization steps which correspond to@Besarly-exercise opportunities. Both the
call and the put boundary are obtained by interconnectitimates at three different points in time with hermite
polynomials. To make the results comparable, the binoméalis obtained with 6000 steps but only 100 exercise
opportunities.
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Table2
Ratings of U.S. convertible bonds

Ratings according to Standard & Poor’s Bond Guide of Felyra@f2 of all U.S. convertible bonds as listed in
the Mace Advisers’ database. "+" and "-” denote rating difeces within one class, for example AA+ or AA-
for the AA class, as defined by Standard & Poor’s.

Rating "+ "plain” total total (%)
AAA - 3 0 3 1.60
AA 0 0 2 2 1.06
A 6 3 7 16 8.51
BBB 7 13 20 40 21.28
BB 12 1 5 18 9.57
B 16 23 27 66 35.11
CCC 14 12 7 33 17.55
CcC 0 3 0 3 1.60
C 0 1 0 1 0.53
D 0 6 - 6 3.19
188 100.00

3. Convertible Bond Data

We choose to investigate the U.S. domestic market because it is the largest'nitinas a high ratio
of rated issues and we obtained accurate daily data from Mace Advisors. As can bersee Table

2, all rating categories are represented in the U.S. market and 32.45&urafe¢d issues are investment-
grade bonds. On February 12, 2002, the average maturity at isspfaarteutstanding U.S. convertible
bond was 11.5 years while the average time to maturity was 8.5 years. 25 thet 88 convertible
bonds in our data set have a maturity at issuance larger than 30 yearsoiithissued with the shortest
maturity is Coeur D’Alene with a time to maturity at issuance of 2.4 years and aawoedtinarily high
coupon of 13.375%. Only two convertibles out of 588 are not callabl@ atd putable, and in 92 cases

callability is restricted by a trigger condition.

We consider for our analysis all domestic convertible bonds on the U.Setmaukstanding as of

February 12, 2002. Daily convertible-bond prices as well as cooreipg synchronous stock prices

40n February 12, 2002, Mace Advisors had a data coverage of@8&rtible-bond issues with an average
size of 379.6 million dollars.

5188 issues out of the 588 convertible bonds in our data set hawating in the Standard & Poor’s Bond
Guide of February, 2002. This is indicative of a rating caggr of more than 32%. In fact, the actual ratio of
rated issues is likely to be higher than 32% because somexidies may be rated by other rating agencies (e.g.
Moody’s) and not by Standard & Poor’s.
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Figure 2. Ratings of U.S. convertible bonds

This histogram splits the total number of pricing pointstef sample into different classes according to the rating
of the corresponding convertible bond at that time. Thenggithnformation is obtained from Standard & Poor’s
Bond Guide.
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were made available by Mace Advisers. Convertible bonds with embeddsstcurrency features are
excluded. To estimate the parameters of the stock dynamics, only conveditils tvith a pre-sample
stock history dating back at least until January 1, 1990, are includee isaimple. Furthermore, we
require for all convertible bonds in the sample that a rating be provideddrnd&rd & Poor’s Bond
Guide, and - to be able to account for all relevant specifications fér @awvertible bond in detail - that
the official and legally bindingffering circularsbe available. The latter proved to be necessary because
some contractual provisions are so specific that they can hardly betedliecpredefined data types,
and electronic databases usually lack the needed flexibility to incorponatstandard features. Rating
changes for the single issues were followed up according to the monthliggtidns in Standard &
Poor’s Bond Guide. To account for a possible publication-lag and addltfmotential delays of rating
adjustments by the rating agencies, we apply a filter that eliminates forty data podceding rating
changes that lead to a credit-spread change of at least 2 perceatatge s an additional liquidity
requirement, we only consider data points with a bid-ask spread of les2 tharcentage points for

both the convertible bond and the underlying stock.
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Table 3
Provisions of the convertible bondsin the sample

This table gives an overview of the analyzed convertibledsanith convertible bond referring to the name of
the issuing firmdate of issue, coupon as percentage of the face value, anaturity. Sze indicates the amount
outstanding in million dollars as reported by Standard &oBond Guide.Call indicates whether the bond is
redeemable at the option of the issuing company at any tifoe for maturity during the period considered in
this study. Trigger indicates the existence of an additional trigger conditme satisfied in order to call the
convertible. Call notice period indicates the number of days in advance the issuing compasydnotify the
investor before a call becomes effective. More often thanthe contractual provision specified in the legally
binding offering circular states that upon call accrue@riests are paid to the investdRating represents the
Standard & Poor’s Bond Guide rating as of February 2002.

Convertible Date of Coupon Maturity Size Call Trigger Call cdkued Rating
bond issue Notice interest

Period paid at call
Adaptec 28-Jan-97 4.75% 01-Feb-04 230 Yes No 15 Yes B-
Alpharma 25-Mar-98 5.75% 01-Apr-05 125 Yes No 30 Yes B
Analog Dev. 26-Sep-00 4.75% 01-Oct-05 1200 Yes No 30 Yes BBB
Charming S. 17-Jul-96 7.50% 15-Jul-06 138 Yes No 30 Yes B
CKE Rest. 09-Mar-98 4.25% 15-Mar-04 159 Yes No 30 Yes CCC
ClearC.C. | 25-Mar-98 2.63% 01-Apr-03 575 Yes No 15 Yes BBB-
Clear C.C. I 17-Nov-99 1.50% 01-Dec-02 900 No No 30 No BBB-
Corning/Oak 20-Feb-98 4.88% 01-Mar-08 100 Yes No 30 Yes BBB-
Cypress S. 21-Jun-00 3.75% 01-Jul-05 250 Yes No 20 Yes B
Genesco 06-Apr-98 5.50% 15-Apr-05 104 Yes No 30 Yes B
Healthsouth 17-Mar-98 3.25% 01-Apr-03 443 Yes No 30 Yes BB+
Hexcel 18-Jul-96 7.00% 01-Ago-03 114 Yes No 20 Yes CCC+
Hilton H. 09-May-96 5.00% 15-May-06 494 Yes No 30 Yes BB+
Interpubl. G. 26-May-99 1.87% 01-Jun-06 361 Yes No 30 No BBB
Kerr McGee 21-Jan-00 5.25% 15-Feb-10 550 Yes No 30 Yes BBB-
Kulicke & S. 08-Dec-99 4.75% 15-Dec-06 175 Yes No 30 Yes B-
LAM R. 19-Aug-97 5.00% 01-Sep-02 310 Yes Yes 20 No B
LSI Logic 16-Mar-99 4.25% 15-Mar-04 345 Yes No 30 Yes B
NABI 02-Feb-96 6.50% 01-Feb-03 80.5 Yes No 20 Yes CCC-
Offshore L. 11-Dec-06 6.00% 15-Dec-03 80 Yes No 30 Yes B+
Omnicare 04-Dec-97 5.00% 01-Dec-07 345 Yes No 30 Yes BB+
Parker Drill. 21-Jul-97 5.50% 01-Aug-04 124 Yes No 30 Yes B-
PennT. A. 20-Nov-96 6.25% 01-Dec-03 74.8 Yes No 15 Yes CcC
Photronics 22-May-97 6.00% 01-Jun-04 103 Yes No 20 Yes B
Pogo Prod. 11-Jun-96 5.50% 15-Jun-06 115 Yes No 30 Yes BB
Providian F. 17-Aug-00 3.25% 15-Aug-05 402 Yes No 30 Yes B
Rite Aid 04-Sep-97 5.25% 15-Sep-02 650 Yes No 30 Yes CCC+
Safeguard S. 03-Jun-99 5.00% 15-Jun-06 200 Yes No 20 Yes CccC
Semtech 03-Feb-00 4.50% 01-Feb-07 400 Yes No 30 Yes CCC+
Service C. 18-Jun-01 6.75% 22-Jun-08 300 Yes No 30 Yes B
Silicon G. 07-Aug-97 5.25% 01-Sep-04 231 Yes Yes 30 Yes CCC-
St. Motor Pr. 20-Jul-99 6.75% 15-Jul-09 90 Yes No 30 Yes B+
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Figure 3. Histogram of pricing points by maturity

This histogram splits the total number of pricing points loé tsample into different classes according to the
maturity of the convertible bond. Maturity (x-axis) is egpsed in years and the frequency (y-axis) indicates
the absolute number of pricing points for each maturitysl#smaturity class oh covers pricing points with a
time-to-maturity ranging fronm — 0.5 years tan+ 0.5 years.
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After filtering the sample with these criteria, we obtain a final sample of 32 ctibleebonds, with
price data ranging from May 10, 1996, to February 12, 2002. As shiowWable 3, most analyzed con-
vertibles include a call option, allowing the issuer to repurchase the boraddertain price¥;, called
call price or early redemption price. When a convertible bond is called, the issuer has to notify the in-
vestor a certain period in advance about his intention to call the conveiTibie provision bears some
risk for the issuer in form of a failed forced conversion, in which caseisBuer will have to redeem
the bond in cash instead of shares. Thus, the issuer might want to avoaémitiality by delaying
the call. The call notice period in the US market is generally 30 days. Howies®metimes differs
across the individual convertible bonds. Usually, the call price varies time but is piecewise con-
stant. For almost all examined convertibles, early redemption is restrictedetda@ncpredetermined
period. The period during which callability is not allowed is calledd¢hk protection period. An addi-
tional restriction to callability in form of a supplementary condition to be satisfigilen by thecall
condition. Callability is only allowed if the parityyS exceeds aall trigger =;. The exact contractual
specification of the call condition often states that the inequalfy> =; must hold for a certain time
(usually 20 out of the last 30 trading days) before the bond becomebleallehis “qualifying period”
introduces a path dependent feature that can be accounted for lyedtsirbulation-based convertible
bond pricing method than by a lattice method. The call trigger is calculated asenpege of either
the early redemption price or the face value. If the trigger feature is mirethe callability is called
provisional or soft, if it is absent, the callability is calleabsolute, unconditional, or hard. Usually, the
conversion ratiay, is constant over time. It changes in case of an alteration of the nominal eklue
the shares (stock subdivisions or consolidations), extraordinaigesig payments and other financial
operations that directly affect the stock price. Since stock splits areceenynon in the US market, the
conversion ratio often changes over time and deviates quite substantiatiytfeoinitial values stated
in the offering circulars. To accommodate for this, we apply an equity ctorefactor and use the
adjusted conversion ratio at any time. Conversion is possible within a cegaodpcalledconversion
period. For all issues in our sample, the end of the conversion period coincitiethe maturity of the
convertible bond. Some convertibles in the US marketpaemium redemption convertibles, i.e. the
redemption at maturity is above par value. In this case, the final redemptidrers lgy kN with the
final redemption rati larger than one. However, in our sample, all convertible bonds havenaner

redemption of 1000 dollars andis equal to one. Furthermore, while some convertible bonds in the
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US market are traded "dirty”, all bonds in our sample are traded "cldan; the total purchase price

is the quoted price plus accrued interest.

As depicted in Figure 2, the data points of convertible-bond prices in thelsmoner all Standard
and Poor’s rating categories ranging from A- to CCC-. The absenb&bér investment grade con-
vertible bonds and the presence of lower rated convertibles in our sagfiglets the phenomenon that,
in the US market, primarily small companies issue convertible bonds while motdigiséal compa-
nies rely on other means of financing. None of the convertible bonds isamaple actually defaulted

during the examination period.

Figure 3 presents the frequency of single convertible bond pricesai@ous maturity classes.
While the convertible bonds in the US market have maturities of up to 30 yealissties in our sample
cover maturities ranging from half a year to slightly more than ten years, areldamean maturity of
approximately five years. Thus, convertible bonds belong to the clasarivhtive instruments with
the longest maturities of all, largely surpassing even long term options wélidbras reach up to three

years.

4. Model Implementation

In this section we describe the model specification used in the empirical @nahd the estimation
procedure of the parameters affecting the bond price. We describetiheton of the underlying
stock process, the interest rates, credit spreads, and dividetidsarAmeters are estimated out-of-

sample.

4.1. Stock Dynamics

An important input parameter to be estimated is the volatility of the underlying stamk T his aspect
becomes the more relevant the longer the maturity of the derivative to bedvaldiile research on
stock volatility is plentiful, there is no consensus on which model should bleeddpr forecasting. A
popular approach is the implied volatility concept. However, for two regsormied volatility is not

suitable as input for the forecasting task in this study. First, most liquid optiams maturities that
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are much shorter than maturities of convertible bonds. Second, isswmswedtible bonds are mostly
small companies with no traded options outstanding. Third, several studges Kiglewski, 1997)
suggest that implied volatility is not an unbiased estimator of realized volatility argistimould not be
used for forecasting. Therefore, other alternatives have to bédeved. We focus on possibilities to

generate out-of-sample forecasts using volatility models that base on habfice movements.

For three reasons, we model the variance of the stock price with a GAROH6llowing Boller-
slev (1986) and Duan (1995) instead of a continuous time process. thesGARCH(1,1) model
has proven capabilities of capturing the volatility patterns present in the idgtayticular volatility
clustering. Second, since simulation is intrinsically discrete, adopting a tidome process makes
discretization techniques redundant. Third, the estimation of the paramedtss rsturally performed
with discretely sampled data (daily frequency). The conditional variahtteedGARCH(1,1) evolves
as

of =w+agl ; +bof 5, 7)

where theg; are return shocks drawn from a normal distribution with a mean of zerthene:spective
conditional variance. Under the risk-neutral probability meaguséock returns are assumed to depend

on the conditional variance, and the dynamics of logarithmic stock returns:
|n(S/S,1) =W :r—0.50t2+0t£t, & ~ N(O, 1), (8)

wherer is the risk-free interest rate.

For the empirical analysis, we calibrate the chosen volatility models with histatatal The

parameterg are chosen to maximize the likelihood function

InL (Y;€1,€,....e7) = —0.5In(2m) — 0.52l <In (of) + <;i>> : 9)

t
The estimated parameters of the volatility models are presented in Table 4 ficza@aertible bond in

the sample.
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Table4
Parameter estimatesfor GBM and GARCH(1,1)

o represents the average of all annualized input volaglitfeat are used in the implementation of the GBM
model and are estimated from as much pre-sample data aaldedib us (starting at least before 1990). The
GARCH(1,1) equation iso? = w+ astz_l + botz_l. For comparison, the column denoted by GBM shows the

parameter estimation for geometric Brownian motion.
Parameters for the underlying process

Convertible bond GBM GARCH(1,1)

o w a b
Adaptec 0.619601 3.07E-05 0.014910 0.965199
Alpharma 0.434762 0.000311 0.257896 0.377281
Analog Dev. 0.524330 5.51E-06 0.03007 0.964677
Charming S. 0.535953 1.05E-05 0.029823 0.960113
CKE Rest. 0.426572 0.00016 0.161979 0.615782
Clear C.C. | 0.357913 4.34E-05 0.097719 0.818231
ClearC.C. I 0.357913 4.34E-05 0.097719 0.818231
Corning/Oak 0.299630 2.61E-05 0.100687 0.829004
Cypress S. 0.538525 9.85E-05 0.077597 0.831327
Genesco 0.600186 0.000143 0.095389 0.805274
Healthsouth 0.429999 7.25E-05 0.089714 0.807925
Hexcel 0.471715 5.48E-06 0.008321 0.975708
Hilton H. 0.352844 1.71E-05 0.069696 0.898264
Interpubl. G. 0.313456 2.14E-06 0.038887 0.955268
Kerr McGee 0.289180 3.42E-06 0.04624 0.943652
Kulicke & S. 0.641227 1.37E-05 0.031839 0.960379
LAM R. 0.596124 0.000095 0.090067 0.841620
LSI Logic 0.542819 0.000164 0.072973 0.782621
NABI 0.964364 4.66E-05 0.070418 0.920182
Offshore L. 0.785796 0.000338 0.098008 0.757633
Omnicare 0.411482 4.04E-06 0.023983 0.970296
Parker Drill. 0.493291 8.76E-05 0.111824 0.798210
PennT. A. 0.645585 2.31E-05 0.112127 0.880060
Photronics 0.713992 3.22E-05 0.054081 0.931388
Pogo Prod. 0.453902 8.27E-06 0.043163 0.947773
Providian F. 0.292776 6.09E-06 0.058140 0.924539
Rite Aid 0.385032 2.65E-06 0.026851 0.967054
Safeguard S. 0.675231 0.000115 0.007935 0.945687
Semtech 0.755131 9.13E-06 0.031023 0.965534
Service C. 0.394883 0.000933 0.025392 0.972872
Silicon G. 0.508525 0.000267 0.142702 0.599636
St. Motor Pr. 0.410191 1.85E-06 0.028817 0.968659

21



The stock price has to be adjusted for dividend payments. We accommoddisdrete dividends
by subtracting them from the stock price at the appropriate dates. Hopdaing, we assume that the

dividend yield at the last ex-dividend date remains constant and appliésaturity.

4.2. Interest Rates

All interest rate data employed in this study is obtained from the FederahResEhe time series of
the risk-free interest-rates were extracted from T-Bill and T-Note praga cover maturities from 3
months to 30 years on a daily basis. We obtain through interpolation the comptlatsttacture of

spot rates at any time.

Since the inclusion of stochastic interest rates is associated with additionpltational costs, a
term structure model is only appropriate if the gain in pricing precision is sigmifi To investigate
the real valuation effects of stochastic interest rates, prices of ddrledsonds generated by a pricing
model under the assumption of constant interest rates are compared iaéth gtained by a model
that incorporates a CIR term-structure model. This comparison is perfonmEable 5 for several
initial stock prices and for different correlation values between the agiithprocesses of the two state
variables: stock price and interest rate. To keep the example sparseadiatic, both a European-style
convertible bond and a convertible bond with embedded call and put opsigmr&ced under both a
constant and stochastic interest rate. A maturity of two years is chosthvefealuation. In order to use
a truly reliable specification of the interest-rate process, we adopt thestenature parameters in Ait-
Sahalia (1996). The parameters are estimated via GMM using seven-oajoltar deposit rates with
daily frequency from June 1, 1973 to February 25, 1995. The inaiusistochastic interest rates does
not generate important deviations, with percentage price changessawayier than half a percentage
point in absolute terms. In general, the difference between prices othtaitteand without an interest
rate model is higher for convertible bonds that are at-the-money andevitercorrelation between
stock-price innovations and interest-rate is different from zero. Ashsaseen from a comparison
of Panel A and B, the presence of early-exercisable options furdaeices the impact of stochastic
interest rates. For correlations close to zero the effect of stochastieshtates is remarkably low with
an impact in the range of a couple of cents. While the results presented@blate clearly dependent

on the specific convertible bonds and interest rate parameters assuayedotifirm results obtained
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by Brennan and Schwartz (1980) and Buchan (1997). Simulation iexpets based on a broader set

of convertible bonds confirm the qualitative results presented in this table.

Since the impact of the correlation between the innovations of stock-reanchinterest rates is
strong, it seems crucial to empirically investigate this parameter. Table 6 psobioth daily and
weekly empirical correlations (with confidence intervals) for all the issnesir sample. While no
daily correlation exceeds® in four cases, the correlation is estimated to be slightly larger tifan 0
Since these low correlation values may depend on the daily frequencyk atlooonthly data can be
useful. While for some issues monthly correlations have much higher vdardaagtance Pogo Prod.
with 0.268), no correlation value is statistically different from zero at thech¥idence level. Even at
the 10% confidence level, only 7 out of 32 issues have a correlation thttistically different from
zero. Given the high parameter uncertainty and the low pricing impact tistiseaged correlations
would generate, it is questionable whether using stochastic interest rbtseicial for our empirical
analysis. In fact, also Brennan and Schwartz (1980) argue thatyfairieal pricing purposes, stochas-
tic interest rates can be neglected without important losses in accuraoge Hathough our model
would easily incorporate stochastic interest rates, the overall pricingfiberould be very limited and
would not justify the additional computational costs. For these reason&iam the pricing study

without stochastic interest rates.

4.3. Credit Risk

We account for credit risk in the spirit of Tsiveriotis and Fernand@98) and discount the cash flows
subject to credit risk with the appropriate interest rate. This can easilypbe since the simulation
approach presented in this paper is cash-flow based. Thus, coagorept§, the final redemption
payment, and the call price in the event of a call are subject to credifliekstock price, on the other
hand, is not and should therefore be discounted with the risk-free sht@te. In this approach, credit

spread can be implemented as constant or as following a process cdrretiitether state variables.

5Most convertible bonds in the US market provide coupon paymeThe most popular payment frequency
is semiannual. We accommodate for discrete coupon payraetite appropriate dates and with the appropriate
frequencies.
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Table5
Pricing impact of stochastic interest rates

This table shows the percentage price impact of a termisteienodel on prices of European-style (Panel A)
as well as callable and putable convertible bonds (PanebB{lifferent initial stock prices and for different
values of the correlation between stock and interest raféerbnt initial stock prices imply different moneyness
values for the convertible bonds. Moneyness ranges frodh10.2.37 with corresponding stock prices ranging
from S=20 to S=200. The number of paths in each simulationg&®000, with the same random-number series
for each pricing. 'std’ refers to the standard deviationhef Monte Carlo estimate. All convertible bonds have
a face valueF = 100, maturityT = 2 years, conversion ratip= 1.0, and couporc = 0. The issuing firm
pays continuously compounded dividendss 0.1, and is not entitled to call back the convertible bond at any
time apart from maturity. The stock price follows a geonweBrownian motion,% = (r; — 0)dt + osdWs;,
with volatility 0s=0.4, and the instantaneous interest rate follows a orteffaCIR interest-rate process,
dry = Ky (8 —rt) dt 4 oy /tdW¢, with an initial short rate r=0.06, and parameters as esticdhgia GMM by
Ait-Sahalia (1996)8,=0.090495k,=0.89218,0,=0.180948. The correlations;, betweerdWs anddw; range
from ps,=-0.5 tops,=+0.5.

stock price 20 60 80 85 100 120 200
moneyness 0.24 0.71 0.95 1.01 1.19 1.42 2.37

Panel A: European-Style Convertible Bond
constant interest rates

price 84.26 87.37 93.00 94.87 101.39 112.10 167.60
std 0.00 0.19 0.35 0.39 0.52 0.70 1.35
stochastic interest rates (changes in %)
-0.5 0.01 -0.08 -0.19 -0.25 -0.28 -0.32 -0.47
-0.2 0.00 -0.01 -0.05 -0.09 -0.10 -0.13 -0.20
0 0.00 0.00 0.00 0.00 0.01 0.01 0.00
0.2 0.01 0.02 0.02 0.01 0.09 0.16 0.23
0.5 0.01 0.15 0.16 0.15 0.28 0.45 0.60

Panel B: Callable and Putable Convertible Bond
constant interest rates

price 98.00 98.00 98.95 100.03 105.51 120.00 200.00
std 0.00 0.00 0.07 0.08 0.09 0.00 0.00
stochastic interest rates (changes in %)
-0.5 0.00 0.00 -0.06 -0.12 -0.03 0.00 0.00
-0.2 0.00 0.00 -0.07 -0.07 -0.06 0.00 0.00
0 0.00 0.00 0.00 -0.03 -0.03 0.00 0.00
0.2 0.00 0.00 0.01 -0.03 -0.08 0.00 0.00
0.5 0.00 0.00 0.01 0.03 0.03 0.00 0.00
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Table 6
Empirical correlation between stock returnsand interest rates

This table reports for each issue in the sample the daily aondthly correlation between stock returns and
changes in the interest rate. The table reports point esgiar the correlations as well as the lower (LCI) and
higher (HCI) 10% confidence intervals. For obtaining thasamjiles we first transform the statistical correlation
p in the following way: p = %In (%g). p is an asymptotically normal correlation measure boundeaden
[—c0,+0]. Second, the quantiles @ are calculated apici = p—z(%) \/% andpre = p+2(3%) \/%
Third, we re-transform the interval boundariespi@; andpyci, respectively. For each issue, calculations are

performed with all data used in the empirical analysis.

Convertible daily daily daily monthly monthly monthly
point estimate LCI HCI point estimate LCI HCI
Adaptec 0.033 -0.009 0.076 0.044 -0.052 0.138
Alpharma 0.048 0.005 0.090 0.061 -0.035 0.155
Analog Dev. 0.052 0.009 0.094 0.020 -0.075 0.115
Charming S. 0.004 -0.038 0.047 0.041 -0.055 0.135
CKE Rest. 0.069 0.021 0.116 0.071 -0.036 0.177
ClearC.C. | 0.086 0.038 0.133 0.069 -0.038 0.175
ClearC.C. I 0.037 -0.006 0.079 -0.016 -0.111 0.079
Corning/Oak 0.061 0.019 0.103 0.024 -0.071 0.119
Cypress S. 0.051 0.009 0.093 0.025 -0.071 0.120
Genesco 0.025 -0.017 0.067 0.076 -0.019 0.170
Healthsouth 0.021 -0.022 0.063 -0.047 -0.142 0.048
Hexcel 0.035 -0.008 0.077 0.026 -0.069 0.121
Hilton H. 0.019 -0.024 0.061 0.029 -0.067 0.124
Interpubl. G. 0.011 -0.031 0.053 -0.020 -0.115 0.076
Kerr McGee 0.025 -0.018 0.067 0.009 -0.086 0.104
Kulicke & S. 0.012 -0.031 0.054 0.027 -0.068 0.122
LAM R. 0.130 0.088 0.172 0.143 0.048 0.235
LSl Logic 0.085 0.033 0.136 -0.009 -0.126 0.107
NABI 0.040 -0.003 0.082 0.094 -0.001 0.187
Offshore L. 0.106 0.064 0.148 0.139 0.044 0.231
Omnicare 0.042 -0.001 0.084 0.106 0.011 0.199
Parker Drill. 0.074 0.032 0.117 0.092 -0.003 0.185
PennT. A. 0.024 -0.040 0.087 0.017 -0.127 0.159
Photronics 0.024 -0.018 0.066 0.009 -0.086 0.104
Pogo Prod. 0.152 0.083 0.218 0.268 0.118 0.407
Providian F. 0.025 -0.017 0.068 0.119 0.024 0.212
Rite Aid 0.041 -0.001 0.083 0.093 -0.002 0.187
Safeguard S. 0.101 0.030 0.172 0.103 -0.060 0.261
Semtech 0.100 0.058 0.142 0.123 0.028 0.215
Service C. 0.021 -0.026 0.069 -0.019 -0.124 0.087
Silicon G. 0.091 0.049 0.133 0.109 0.014 0.202
St. Motor Pr. -0.009 -0.051 0.033 -0.008 -0.103 0.087
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Unfortunately, for most convertible bonds in the sample, there are notsti@egds outstanding -
let alone with a maturity corresponding to that of the convertible bond - thdd dme used to extract
the appropriate issue-specific credit spreads for our implementatiomlditicam, such a procedure to
obtain the credit spreads has the drawback that issue-specific tehistéxs of the convertible bonds,
such as seniority, are not accounted for. Thus, to obtain creditdgrea extract from the Yield Book
database monthly time series of credit spreads for several rating dategocording to Standard and
Poor’s Bond Guide. For all investment grade rating categories, weefusthtain monthly credit-spread
time series covering four maturity classes (1-3, 3-7, 7-10, and oveeafsy While this procedure
allows to account for issue-specific convertible bond characteristioadghrapplying the rating, it has
several obstacles that potentially could influence the pricing results. thiestyedit spreads represent
averages of bonds outstanding within the same rating category. Seeindgsrchange over time.
The publication we refer to only has a monthly updating frequency. Additigrihis procedure does
not account for potential lags and, more importantly, differences in rmagfeations and the rating
assessment by Standard and Poor’s. The resulting estimation erroraséthiespreads is potentially

very relevant in our sample since it primarily consists of lower rated borittishigher credit spreads.

5. Empirical Analysisof the US Convertible Bond M arket

In this section, convertible-bond prices observed in the US market expared with theoretical prices
obtained using the proposed simulation-based model. Figure 4 presentsttiteition of percentage
deviations between model prices and empirical prices. On average,trpades are (86% higher than
model prices, with a standard deviation af 8%. This result stands in contrast to some previous studies
that use different pricing approaches and smaller data samples. Inghmses, model prices are
higher than market prices on average. Moreover, those studies haweinon a mean price deviation
between model and market prices that is substantially larger t1¥94 King (1986) investigates a
sample of 103 American convertible bonds and finds that market pric&s7&i% below model prices

on average. Carayannopoulos (1996) obtains for 30 US convertinigsband one year of monthly

price data an even larger price deviation, with market prices lower than rpoidek by 129% on
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Figure 4. Distribution of Pricing Deviation

This histogram splits the total number of pricing points af gample into different classes. Overpricing (x-
axis) denotes the relative pricing error (market price / elqulice -1). Frequency (y-axis) indicates the absolute
number of pricing points in each class.

1000

frequency

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
overpricing

average. Ammann et al. (2003) investigate 21 French convertible bodd®port that market prices

are on average.34% lower than model prices.

Table 7 and Figure 5 show the percentage price deviation between élgatbdarved market price
and the theoretical fair values as generated by our model in relation to twetanpoharacteristics of
the convertible bond: moneyness and credit rating. Panel A of FiguoeStpese daily price deviations
with respect to the moneyness of the convertible bond, calculated as thieetatisen conversion value
and investment value. The investment value is defined as the value of thertidole bond under the
hypothetical assumption that the conversion option does not exist anthéhatedit spread is zero.
The latter proves to be useful because the credit spread is potentigkgisitban estimation error, as
we do not observe issue-specific credit spreads but infer themigsamas with the same rating. Thus,
taking into account credit risk when calculating the investment value woullddgacorrect moneyness
values. However, since disregarding credit risk leads to moneynkssswvhat are slightly downward-
biased, we should imagine at-the-money convertibles to have a moneyress thfan one in Panel A

of Figure 5. The results in Table 7 suggest that the error dispersioaass with the moneyness. This
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Figure 5. Pricing deviation by moneyness and rating classes

This graph shows the percentage price deviation betwedndzaly observed market price in the sample and its
corresponding theoretical fair value as generated by thalation-based method plotted against the moneyness
level of the convertible bond. Moneyness is calculated bididig the conversion value by the investment value.
The conversion value is the value of shares that can be @otdin converting the bond. The investment value
denotes the value of the convertible bond under the hypotietssumptions that the conversion option does not
exist and default never occurs. The rating is attributechttheconvertible bond according to Standard & Poor’s
Bond Guide. The data in the sample cover rating categoriexi§) ranging from A- to CCC-. Overpricing
(y-axis) denotes the relative pricing error (market pricgodel price -1).
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result can be explained theoretically because, for deep in-the-momggrtbles, the probability of
conversion is very high, the time value of the conversion option becomgswell, and the convertible
presents less pricing challenges. The large error dispersion for-atghey convertibles is likely to
reflect the difficulties in pricing the option part of a convertible bond, tHeevaf which is particularly

large for at-the-money-bonds. For deep out-of-the-money convextitle likelihood of exercising the
conversion option is near to zero and so is the value of the conversiomoptiging a deep out-of-the-
money convertible is very similar to pricing its straight bond equivalent. We attrithe large error

dispersion of out-of-the-money convertibles to difficulties in determining pipeaoriate credit spread.

Panel B of Figure 5 and Table 7 show the mean relative price deviation angjpsrsion for
different rating categories. Our sample consists of rating categorigsgafiom A- to CCC-, but the
large majority of data points falls into the range from BBB to CCC+. For bothsimeent-grade bonds
and non-investment grade bonds, the two classes with the largest nuinolbseovations, BBB and B,
have relatively small average pricing errors od2% and—0.32%, respectively. Only CCC+ bonds
have a substantially higher average erra®%), which is very likely attributable to the necessary
approximations in credit-risk measurement. With respect to the error dispgitsis surprising that
there is no clear relationship between the standard deviation of pricing emad the rating quality.
The rather high dispersion for bonds rated CCC and CCC- should bpratied with caution given the

limited number of data points in these rating classes.

To sum up, credit spread accounts for a portion of the observeddgigpersions, in particular for
out-of-the money convertibles. However, this error dispersion is ngetdor bonds with a low rating

than it is for investment grade issues.

In Table 8, the relative mispricings are presented for the individual sssuthe sample. Out of
the 32 issues in the sample, 21 present higher average market pricesdbahprices. While for
sixteen of them, the mispricing is statistically significant at the one percent fevehe other five
issues mispricing is not different from zero at the ten percent level trmiout of the eleven issues
with on average lower market prices than model prices, the deviation igatstisally significant at

the ten percent level.

To test whether the results are biased by certain input parameters gettaoodel specifications,

we regress the relative pricing deviation generated by the model on agafgdotential error sources.
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Table7
Pricing deviation by moneyness and rating

Data points indicates the number of days for which model prices are céetpMean pricing deviation states
the extent to which market prices are, on average, abovelmddes for a given moneyness or rating class,

**, and* denote significance levels of 1%, 5%, and 10%, respectif@iyhe rejection of the null hypothesis that
model and market prices are equal in the meaeviation std. is the standard deviation of observations in the
respective clasPraob. is the probability that refers to a two-sided test for thd hypothesis that model prices
and observed prices are equal in the meRMSE is the root mean squared error, i.e. the non-central stendar

deviation of the relative deviation of model prices from k&tiprices.
Data points Mean pricing dev. Dev. std. Prob. values RMSE
Panel A: Classes by Moneyness

Moneyness
< 0.50 1242 -0.0156 0.0822 0.0000 0.0836
0.50< 0.80 1454 0.0008 0.0588 0.6144 0.0588
0.80< 0.95 866 0.022%5 0.0564 0.0000 0.0607
0.95< 1.05 516 0.0229" 0.0442 0.0000 0.0497
1.05< 1.20 447 0.010% 0.0338 0.0000 0.0353
1.20< 2.00 429 0.0012 0.0292 0.4025 0.0292
> 2.00 59 -0.0032 0.0258 0.3440 0.0258
Panel B: Classes by Rating
Rating
A- 11 0.0183" 0.0244 0.0129 0.0296
BBB+ 18 0.0009 0.0742 0.9594 0.0721
BBB 617 0.0042 0.0525 0.0466 0.0526
BBB- 881 0.0219" 0.0438 0.0000 0.0490
BB+ 427 0.008Y 0.0774 0.0177 0.0778
BB 21 0.0228" 0.0256 0.0000 0.0339
BB- 563 -0.0670" 0.0456 0.0000 0.0810
B+ 216 0.0353" 0.0715 0.0000 0.0796
B 1751 -0.0037" 0.0432 0.0022 0.0434
B- 255 0.0155" 0.0591 0.0000 0.0610
CCC+ 227 0.0980" 0.0584 0.0000 0.1140
cccC 4 0.0084 0.1394 0.9039 0.1210
CCC- 22 0.0440 0.1112 0.0636 0.1172
Total sample 5013 0.0036 0.0617 0.0000 0.0618
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Table 8
Pricing deviation by issue

Data points indicates the number of days for which model prices are cdetpbMean pricing deviation states

the extent to which market prices are, on average, above Irpodes for a given issue***, **, and* denote
significance levels of 1%, 5%, and 10%, respectively, forrdjection of the null hypothesis that model and
market prices are equal in the meaDeviation std. is the standard deviation of observations for each issue.
Probability value is the probability that refers to a two-sided test for the hypothesis that model prices and
observed prices are equal in the med®MSE is the root mean squared error, i.e. the non-central stdndar
deviation of the relative deviation of model prices from ketmprices.

Convertible bond Data points Mean pricing dev. Dev. std. bPvalues RMSE
Adaptec 545 -0.0616 0.0528 0.0000 0.0811
Alpharma 296 0.0045 0.0249 0.0020 0.0253
Analog Dev. 39 -0.0139 0.0150 0.0000 0.0203
Charming S. 83 0.0187 0.0405 0.0000 0.0442
CKE Rest. 248 0.0002 0.0288 0.9304 0.0288
ClearC.C. |1 240 0.0215 0.0233 0.0000 0.0316
ClearC.C. I 144 0.0009 0.0363 0.7619 0.0362
Corning/Oak 22 0.0336 0.0424 0.0002 0.0534
Cypress S. 124 0.0788 0.0340 0.0000 0.0857
Genesco 46 0.0397 0.0301 0.0000 0.0496
Healthsouth 83 -0.0477 0.0292 0.0000 0.0558
Hexcel 32 0.022%" 0.0426 0.0029 0.0476
Hilton H. 616 0.0260" 0.0229 0.0000 0.0346
Interpubl. G. 46 -0.054%3 0.0152 0.0000 0.0563
Kerr McGee 227 0.07272 0.0243 0.0000 0.0761
Kulicke & S. 71 -0.0511" 0.0216 0.0000 0.0554
LAM R. 657 -0.0075" 0.0349 0.0000 0.0357
LSI Logic 169 0.0230" 0.0281 0.0000 0.0362
NABI 18 0.0442 0.1293 0.1470 0.1332
Offshore L. 79 -0.039% 0.0472 0.0000 0.0612
Omnicare 111 0.0401 0.0431 0.0000 0.0587
Parker Dirill. 66 0.0612" 0.0347 0.0000 0.0702
Penn T. A. 65 -0.1280 0.0746 0.0000 0.1479
Photronics 257 -0.0334 0.0605 0.0000 0.0690
Pogo Prod. 43 0.0222 0.0393 0.0002 0.0448
Providian F. 91 -0.0161 0.1171 0.1907 0.1175
Rite Aid 266 -0.0057 0.0789 0.2379 0.0789
Safeguard S. 2 0.1136 0.0982 0.1019 0.1332
Semtech 187 0.1011 0.0521 0.0000 0.1136
Service C. 9 0.0173 0.0440 0.2391 0.0449
Silicon G. 122 0.0166" 0.0257 0.0000 0.0306
St. Motor Pr. 9 0.1019 0.0445 0.0000 0.1102
Total sample 5013 0.0036 0.0617 0.0000 0.0618
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We perform the regressions separately for each factor as well as jwiratlynulti-factor model, as the

correlation coefficients between the regressors are low.

Table 9 shows the results of the cross-sectional regressions. Wevelisat all coefficients are
significant indicating that each of them can explain a portion of the priciray.efhe dividend yield
has a positive impact on the pricing error. For an increase in the divigiefdi of 100 basis points,
the pricing error increases on average by 124 basis points in the saugte-fegression. The positive
impact of the dividend yield is perhaps caused by mean-reverting exipastdor dividend yields,
which is not taken into account by our model. We assume constant dividelits. Therefore, if
dividend yields are mean-reverting, we overestimate future dividendsyikttividends are high and

underestimate future dividends if dividends are low.

The coefficient of the credit spread i50 and highly significant. Moreover, the R-squared of the
credit spread, at a value ofif?10, explains substantially more of the error variance than any of the other
variables. As the results in Table 7 suggest, the distortional impact of e@@iad in our sample is
mainly concentrated on CCC+ bonds. Nevertheless, a certain bias dusdibrigk measurement is
not surprising as issue-specific credit spreads are inferred frdnsiry-average credit spreads of the
corresponding rating category. Apparently, this approximation intradacgight pricing bias, espe-
cially for CCC+ rated bonds. A potential improvement of the pricing precisigght be achieved by
extracting credit information from market prices of bonds of the samerissuksimilar characteristics
(seniority, maturity, coupon, etc.). Such data requirements, howewedifficult to satisfy because

most firms do not have publicly traded straight debt issues outstanding.

The coefficient of maturity is @5. Discounting bonds with long maturities has a stronger effect
on the price of the bond, and therefore, discounting errors havergstrompact on the pricing errors.
This is consistent with the positive coefficient for the credit spreadst@sation biases from the credit
spreads is amplified by longer maturities. Additionally, we also observe divegaefficient for the
coupon, although it is not significant at the one percent level. Theaorgduces the duration of the
bond and therefore again the impact of discounting on the price. Finallgp@fécient for moneyness
is positive but small, indicating that moneyness has only a limited systematic effgeicing errors.
This confirms the findings in Table 7 but stands in contrast to the results in Ametaal. (2003)

and Carayannopoulos and Kalimipalli (2003). Surprisingly, these aatieport that in their samples,
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Table9
Cross-sectional analysis

In this table, the percentage pricing deviations (market price / model g)care regressed against
some input variables affecting the value of the convertible bonddittidend yield, the coupon, the
risk-free interest rate, the credit spread, the maturity in years, and thenoneyness as the ratio of the
conversion value and the investment value. t-values from testing thecieet$ for difference from
Zero are given in parentheses.

Constant Dividend Coupon Credit Maturity Moneyness Adjusted
Term Yield (%) (%) Spread (%) (years) (%) R-squared
0.00 1.25 - - - - 0.027
(0.03) (11.86)

1.47 - -0.19 - - - 0.001
(3.76) (-2.42)

-2.09 - - 0.50 - - 0.140
(-17.13) (28.56)

-1.10 - - - 0.35 - 0.017
(-5.61) (9.34)

-0.30 - - - - 1.06 0.007
(-1.79) (5.89)

-2.22 1.92 -1.16 0.73 0.57 0.01 0.286
(-6.22) (17.78) (-15.60) (41.42) (14.00) (8.31)

observed market prices of in-the-money (out-of-the-money) conletdnds tend to be higher (lower)

than prices generated by their theoretical model.

With the exception of the credit spread, the explanatory power as mdasuf-squared is small.
In the multi-factor regression, while the magnitude of the coefficients vdhes,signs are unchanged
compared to the single-factor regression.The adjusted R-squared is286, indicating that some
systematic errors exist, perhaps caused by estimation error or approxisnstich as the extraction of
the credit spread from ratings. However, the mean pricing accurdggwed in this study is higher

than in previous studies, as discussed in the beginning of this section.

"We also estimated the model using orthogonalized regres¥dith the exception of the coefficient for the
coupon, which is lower, the coefficients are of similar magphe and are therefore not reported
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6. Conclusion

We propose a simulation-based pricing method for convertible bonds. dimtgexisting approaches,
the method is able to account for complex real-world convertible-bondcteistics such as embed-
ded call features with various path-dependent trigger conditions. Thigoch@ses parametric repre-
sentations of the early exercise decisions and consists of two stages amaeédcng the Monte Carlo
pricing bias. Pricing convertible bonds with Monte Carlo Simulation is more flexilda firevious
lattice-based methods because it permits to implement more accurate dynartfiesskock price and

to capture the contractual specifications of actually traded convertiblisbon

We implement the model and undertake the so far most extensive empiridabmstady for the
US convertible bond market, covering daily prices for an entire periodamhnénths. We find that
theoretical values for the analyzed convertible bonds are on averz@fé Gower than observed market
prices, with a RMSE of 6.8%. A partition of the sample according to the monsyindgates that
pricing accuracy, measured by the standard deviation of the pricing @m@MSE, is rather high
for in-the-money convertibles while it is lower for at- and out-of-the-mobegds. Whereas we still
observe some systematic pricing biases, mostly caused by the credit-sgtigadtion, the average
pricing errors obtained with the proposed simulation-based approachmeiéer than those reported
in previous studies. In particular the average overvaluation (modelsphigger than market prices)
and the positive relationship between overvaluation and moneynessifopnevious articles are not

confirmed in this study.
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Appendix A. Numerical I mplementation

This appendix addresses specific issues related to the numerical implenmenitét®proposed pricing
model. We implement all the optimization-based pricing routines in C and useyazdgor normally
distributed random numbers, tiBox-Muller method. Correlated random numbers are obtained by
Cholesky decomposition. Equally distributed random deviates are gethégsatie linear congruential
generator proposed by Park and Miller (1988) as described in Prets(€992). For the purpose of
comparison, the random number generator of L'Ecuyer (1988) was ingpieed as well, but no effect
on the results could be noticed. Each pricing point within one model run is a@apvith a different
starting point of the random number sequence (seed). In order to cethpaesults of different pricing
runs with different model specifications, the seed attributed to one pricimg fone convertible bond

at one specific date) is held constant across these pricing runs.

For the optimization task needed in the first stage of the simulation method, i.e. maxgjraizin
minimizing the value of the convertible bond given a simulation set for the statbles, we employ
a variant of a minimization method originally proposed by Nelder and Meadb(1®&d described in
Press et al. (1992). This method is based on a simplex, which is a geometredansisting oN + 1
vertices (with all interconnected segments) irlNrdimensional space. This minimization technique is
particularly convenient because it is a self-contained method that requilgfunction evaluations but
no derivatives. Onc#l + 1 initial points are defined, the function to be minimized is evaluated at each
vertex of the simplex and subsequently transformed following severadat@dmeometric iterations.
The point with the highest functional value may be reflected through thesiteface of the simplex,
or may be reflected and projected farther. Alternatively, the simplex caoriieacted on one or more of
its vertices. If none of the transformations results in a decrease of thertiote-bond value larger than
a predefined tolerance, the procedure is terminated. Thus, the simplexisdtentil any additional
change of the conversion (call) boundary cannot increase (dejreree value of the convertible bond
by an amount larger than a tolerance of 0.1. To check the validity of the minimmzakie simplex
procedure is restarted with one point corresponding to the previoustgfminimum and representing
an N-dimensional vectoZy. The othem initial vertices are calculated by adding a fixed vatue
each dimension of the spaceZg:

Zi=Zp+0ag,
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whereg'’s areN orthogonal unit vectors.

As mentioned in Section 2.2, the exercise rule for any of the options embédtteziconvertible
bonds is numerically modeled in form of a parametric functsity 8) that defines the exercise bound-
ary and delimits the exercise region. The funci@ft; 0) is defined through a tuple of threshold points
(60,81, ...,6k) in such a way that eadl refers to the critical stock price for the option-exercise decision
at a different datefg refers to the first possible exercise date Bpdefers to the last possible exercise
date (I'). Since the most important variations in the shape of the exercise bousidader closest to
maturity, we choose to concentrate the majority of threshold points in this reljlore specifically,
each intermediat@ (k= 1, ...,K — 1) refers to date= 7 x (2x (2—1))/(2 x 2¥). Usually,7 is equal
to the maturity of the instrument,. However, in certain cases, it is possible to rule out early exercise
after a given date. This is for instance the case when the put price is ésthtin principal. Since at
maturity the investor will get at least the principal, no exercise will happdorasas the discounted
principal is higher than the put price. For the empirical analifsis chosen to be equal to ten. The
threshold applied to each exercise date between two threshold points imidetkby cubic Hermite
interpolation. This approach has the advantage of allowing the Americknestgversion option to
be applied to every time step, which in our setting is one day. Consequergty,aeimited number
of parameters for representing the exercise strategies still allows fgres@rcise at every time step.
Although the choice of the parametric representation of the exercise agumight appear somewhat
arbitrary, the numerical results are found to be surprisingly robustangds in the parametric form of

the chosen function.
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