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Simulation-Based Pricing of Convertible Bonds

Abstract

We propose and empirically study a pricing model for convertible bonds based on Monte Carlo simu-

lation. The method uses parametric representations of the early exercise decisions and consists of two

stages. Pricing convertible bonds with the proposed Monte Carlo approach allows us to better capture

both the dynamics of the underlying state variables and the rich set of real-world convertible bond spec-

ifications. Furthermore, using the simulation model proposed, we present an empirical pricing study of

the US market, using 32 convertible bonds and 69 months of daily market prices. Our results do not

confirm the evidence of previous studies that market prices of convertible bonds are on average lower

than prices generated by a theoretical model. Similarly, our study is not supportive of a strong positive

relationship between moneyness and mean pricing error, as argued in the literature.

1. Introduction

To raise capital on financial markets, companies may choose among three major asset classes: equity,

bonds, and hybrid instruments, such as convertible bonds. While issues arising from valuing equity

and bonds are extensively studied by researchers in academia and industry, fewer articles focus on

convertible bonds. This is surprising as convertible bonds cannot simply be considered as a combination

of equity and bonds but present their own specific pricing challenges.

As hybrid instruments, convertible bonds are difficult to value because they depend on variables

related to the underlying stock (price dynamics), the fixed income part (interest rates and credit risk),

and the interaction between these components. Embedded options, such as conversion, call, and put

provisions often are restricted to certain periods, may vary over time, and are subject to additional path-

dependent features of the state variables. Sometimes, individual convertible bonds contain innovative,

pricing-relevant specifications that require flexible valuation models. Thepurpose of this study is to

present a pricing model based on Monte Carlo Simulation that can deal with these valuation challenges.
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We implement this model and use it to perform the first simulation-based pricing study of the US

convertible-bond market that accounts for early-exercise features.

Theoretical research on convertible bond pricing can be divided into three branches. The first

pricing approach implies finding a closed-form solution to the valuation equation. It was initiated by

Ingersoll (1977a), who applies the contingent claims approach to the valuation of convertible bonds.

In this valuation model, the convertible-bond price depends on the firm valueas the underlying state

variable. More recently, Lewis (1991) develops a formula for convertible bonds that accounts for more

complex capital structures, i.e. multiple issues. Bühler and Koziol (2002) focus on the possibility of

non-block-constrained conversion and develop pricing formulas for simple convertible bonds. While

very fast in computation, closed-form solutions are not suitable for empirical studies because they

fail to account for a number of real-world specifications. Especially, dividends and coupon payments

are often modeled continuously rather than discretely, early-exercise features are omitted, and path-

dependent features are excluded.

The second pricing approach values convertible bonds numerically, using numerical partial dif-

ferential equation approaches. Commercially available models for pricing convertible bonds, such

as Bloomberg OVCV, Monis, and SunGard TrueCalcTM Convertible, belong to this category. The

first theoretical model was introduced by Brennan and Schwartz (1977) who apply a firm-value-based

approach and a finite-difference method for the pricing task. Brennan and Schwartz (1980) extend

their pricing method by including stochastic interest rates. However, they conclude that the effect of

a stochastic term structure on convertible-bond prices is so small that it canbe neglected for empir-

ical purposes. McConnell and Schwartz (1986) develop a pricing model based on a finite-difference

method with the stock price as stochastic variable. To account for credit risk, they use an interest rate

augmented by a constant credit spread. Since the credit risk of a convertible bond varies with respect

to its moneyness, Bardhan et al. (1993) and Tsiveriotis and Fernandes(1998) propose an approach that

splits the value of a convertible bond into a stock component and a straight bond component. Ammann

et. al. (2003) extend this approach by accounting for call features with various trigger conditions. Also

Hung and Wang (2002) propose a tree-based model that accounts forboth stochastic interest rates and

default probabilities but looses its recombining property. A further tree-based model is presented by

Carayannopoulos and Kalimipalli (2003), who use a trinomial tree and incorporates the reduced-form
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Duffie and Singleton (1999) credit-risk model. Similar credit-risk approaches are followed by Davis

and Lishka (1999), Takahashi et al. (2001), and Ayache et al. (2003), who explicitly allow for non-zero

recovery rates. To sum up, among numerical partial differential equation approaches, there are both

binomial/trinomial trees (e.g. Takahashi et al., 2001, Ammann et al., 2003, andCarayannopoulos and

Kalimipalli, 2003), finite difference (e.g. Brennan and Schwartz, 1980, Ayache et al., 2003, and An-

dersen and Buffum, 2004), and finite element methods (e.g. Barone-Adesi et al., 2003). Some of the

proposed models provide sophisticated pricing and calibration solutions. Unfortunately, in the face of

practical problems related to real convertible-bond specifications and limiteddata availability, the pro-

posed approaches turn out to be practicable only in very few cases. For instance, Andersen and Buffum

(2004) require for their calibration price series of several options andliquid straight bonds - a situation

that is almost never given for typical convertible bond issuers. Finally, numerical partial differential

equation approaches have to deal with some general challenges: computing time grows exponentially

with the number of state variables, path dependencies cannot be incorporated easily, and the flexibility

in modeling the underlying state variables is low.

The third class of convertible bond pricing methods uses Monte Carlo Simulationand may over-

come many of the drawbacks of numerical partial differential equation approaches. Monte Carlo Sim-

ulation is very well suitable for modeling discrete coupon and dividend payments, for including more

realistic dynamics of the underlying state variables, and for taking into account path-dependent call

features. Typically, path dependencies arise from the fact that early redemption may only be allowed

when the stock price exceeds a certain level for a pre-specified numberof days in a pre-specified pe-

riod, usually at least 20 out of the last 30 trading days. Finally, the relationship between the number of

state variables and computing time is almost linear in our Monte Carlo framework and this can become

advantageous when multiple state variables need to be modeled. Thus, the proposed model has a high

degree of flexibility and is friendly with respect to future extensions. Despite all the natural advan-

tages of the Monte Carlo approach, pricing American-style options such asthose present in convertible

bonds within a Monte Carlo pricing framework is a demanding task. In recentyears, a considerable

number of important articles have addressed the problem of pricing American-style options1 by using

a combination of Monte Carlo Simulation and dynamic programming. Bossaerts (1989), Li and Zhang

1In general, simulation techniques only allow for a finite number of early-exercise times and hence price
Bermudan options rather than continuously exercisable American options. However, for a fairly large number of
early-exercise dates, the Bermudan price may serve as an approximation for the price of the American option.
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(1996), Grant et al. (1996), Andersen (2000), and Garcı́a (2003) represent the early exercise rule via a

finite number of parameters. The optimal exercise strategy and hence the price of the American-style

option is obtained by maximizing the value of the option over the parameter space.Carrìere (1996),

Tsitsiklis and Van Roy (1999), Longstaff and Schwartz (2001), and Clément et al. (2002) apply stan-

dard backward induction and estimate the continuation value of the option by regressing future payoffs

on a set of basis functions of the state variables. Tilley (1993), Barraquand and Martineau (1995),

Raymar and Zwecher (1997) present methods based on backward induction that stratify the state space

and find the optimal exercise decision for each subset of state variables.Broadie and Glasserman

(1997a) and Broadie et al. (1997b) propose a method for calculating prices of American-style op-

tions with simulated trees that generate two estimates, one biased high and one biased low. Broadie

et al. (1997a), Broadie and Glasserman (2004), Avramidis and Hyden (1999), and Boyle et al. (2000)

develop stochastic-mesh methods with different choices for mesh weights. Finally, Broadie and Cao

(2003), Haugh and Kogan (2004), and Rogers (2002) suggest a simulation method that uses a duality

approach for pricing Bermudan options. A numerical comparison of different Monte Carlo approaches

is provided by Fu et al. (2001).

Previous research to value convertible bonds by Monte Carlo Simulation is very limited. Buchan

(1997, 1998) describes the application of the parametric optimization approach of Bossaerts (1989) to

convertible bonds by employing the firm value as the underlying state variableand allowing for senior

debt. However, in the empirical implementation, she assumes the conversion option to be European

rather than American.

This paper contains a theoretical and an empirical contribution. First, we propose a stock-based

pricing method for convertible bonds building on the enhanced Monte Carlo Simulation method by

Garćıa (2003). This is a two-stage method designed to cope with the Monte Carlo biasthat is inher-

ent in one-stage methods. The two-step simulation method may be defined as aparametric approach

because it uses a parametric representation for the early exercise decisions. The first step is an opti-

mization, in which a set of Monte Carlo simulations is used to estimate parameter values representing

strategies for early exercise and to generate an in-sample price. In a next valuation stage, the optimized

parameter space is applied to a second set of simulated stock-price paths to determine an out-of-sample

model price for the convertible bond. The actual point estimate is then obtained by averaging the in-
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sample and the out-of-sample estimates. The optimization method by Garcı́a (2003) is preferred to

other approaches (simulated trees, stratification algorithms, and stochastic meshes) because it is more

parsimonious in allowing for multiple exercise opportunities. While the regression method by Longstaff

and Schwartz (2001) is another suitable technique, the optimization-based approach by Garćıa (2003)

has an attractive feature for empirical studies: the optimization algorithm can be terminated once a cer-

tain level of accuracy is reached. As outlined above, the simulation approach adopted in this paper has

an inherent strength as it is flexible in incorporating the dynamics of the state variables. Furthermore,

besides discrete coupon and dividend payments, the introduced method accounts for path-dependent

call triggers as outlined in the offering circulars. Instead of using a firm-value model, the stock price

is modeled directly, as proposed by McConnell and Schwartz (1986). Whereas the process parameters

of a model based on the stock price can easily be estimated with standard methods, the fact that firm

values are not observable makes firm-value models notoriously hard to calibrate. Since the presented

method is cash-flow based, credit risk can easily be incorporated by discounting the payoffs subject to

credit risk with the appropriate interest rate in the spirit of Tsiveriotis and Fernandes (1998).

The second contribution in this paper is an empirical analysis of the US convertible bond market.

Despite the large size of international convertible bond markets, very little empirical research has been

undertaken. Previous research in this area was performed by King (1986), who examines a sample

of 103 American convertible bonds with a lattice-based method and the firm-value as stochastic vari-

able. Using monthly price data and a convertible bond valuation model with Cox,Ingersoll, and Ross

(1985) stochastic interest rates (CIR), Carayannopoulos (1996) empirically investigates 30 American

convertible bonds for a one-year period beginning in the fourth quarterof 1989. Buchan (1997) uses

a simulation-based approach to implement a firm-value model with a CIR term structure model for 35

Japanese convertible bonds. Buchan (1998) performs a pricing studyfor 37 US convertible bonds is-

sued in 1994. However, the American property of convertible bonds is not accounted for in that study.

Carayannopoulos and Kalimipalli (2003) investigate 25 US convertible bonds with a trinomial tree.

Ammann et al. (2003) investigate on a daily basis 21 French convertible bonds with a binomial tree

using the stock price as stochastic variable.

A drawback of many of those pricing studies is the small number of data points per convertible

bond: Buchan (1997) tests her pricing model only for one calendar day(bonds priced per March
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31, 1994), King (1986) for two days (bonds priced per March 31, 1977, and December 31, 1977),

Carayannopoulos (1996) for twelve days (one year of monthly data), and Carayannopoulos and Kalim-

ipalli (2003) for approximately two years of monthly data. In contrast, this study covers a larger sample

using 69 months of daily price data, ranging from May 10, 1996, to February 12, 2002 and includes 32

convertible bonds in the US market. The US convertible bond market is chosen for its large size and

the high number of rated issues.

A second drawback of the previous pricing studies is the simple modeling of thevolatility of the

underlying stock. This drawback is almost inherent to the lattice approaches adopted by King (1986),

Carayannopoulos (1996), Carayannopoulos and Kalimipalli (2003), and Ammann et al. (2003). Al-

though Buchan (1997) uses a simulation-based approach, her model does not fully exploit the potentials

provided by Monte Carlo Simulation as a constant volatility is assumed for the stock dynamics. To take

into account the clustering of stock volatility, we implement the model using a GARCH(1,1) specifica-

tion.

The paper is organized as follows: First, we introduce the convertible bond pricing model that

will be applied in the empirical investigation. Second, we describe the data setand present the specific

characteristics of the convertible bonds examined. Third, we discuss the empirical methodology applied

when implementing the model. Finally, the empirical study compares theoretical model prices with

observed market prices and analyzes the results.

2. Pricing Convertible Bonds with Monte Carlo Simulation

2.1. The American Option Pricing Problem for Convertible Bonds

A standard, plain-vanilla convertible bond is a bond that additionally offersthe investor the option to

exchange it for a predetermined number of stocks during a certain, predefined period of time. The

bond usually offers regular coupon payments and, in case it is kept alive, is redeemed at the time of

maturity T with a pre-specified amountκN, whereN is the face value of the convertible bond andκ

is the final redemption ratio in percentage points of the face value. Althoughκ is equal to one for

most convertibles, some issues are redeemed at premium withκ larger than one. Let us consider time
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discretely with daily frequency, i.e. that timet belongs to a finite set,t ∈ [0,1, ...T ], wheret = 0

indicates today, andt = T the day of contractual maturity. In the case of conversion, the investor

receivesntSt , where the conversion rationt is the number of stocks the bond can be exchanged for, and

St is the equity price (underlying) at timet. If the underlying stock differs from that of the issuing firm,

the instrument is commonly called anexchangeable. Usually, convertible bonds additionally contain

a call option, allowing the issuer to demand premature redemption in exchange for the call priceKt

applicable at timet. The issuer is obliged to announce his intention to call a certain period in advance,

referred to as thecall notice period. If the convertible bond is called, the investor may want to exercise

his conversion option at any time during the call notice period to receive the conversion value instead of

the call price. Additionally, a putability feature is sometimes present. This entitles the investor to force

the issuing firm to prematurely repurchase the convertible bonds for a certain predefined pricePt . All

these embedded options may be restricted to certain periods of time or specific dates. To facilitate the

formal exposition, we introduce three time sets,Ωconv, Ωcall andΩput , that describe the dates at which

the corresponding option is exercisable. Typically, the first possible conversion date precedes the first

call opportunity and the last conversion opportunity is at maturity.

Thus, the payoff of a convertible bond depends on whether and when the investor and the issuer

decide to exercise their options and trigger the termination of the convertible bond. Letτ∗ be the optimal

stopping time, i.e. the time at which it is optimal for either the issuer or the investor to terminate the

convertible bond. Hereby, the investor maximizes the value of the convertiblebond whereas the issuer

acts in the opposite way. The resulting action may either be conversion, a call,forced conversion,

or regular redemption when the bond matures. Formally, the optimal stopping time of the convertible

bond is defined asτ∗ = min{t : p(Xt , t) 6= 0}, wherep(Xt , t) is the payoff resulting from the convertible

bond in stateXt at timet, given the optimal option-exercise behavior of both investor and issuer.The

alternatives presented in Table 1 stand for all events that will cause the convertible bond to be terminated

and reflect boundary conditions that impede arbitrage opportunities. Besides when reaching maturity,

the convertible bond can be ended by a conversion into stock, by a call, orby a put. The optimal exercise

decision critically depends on the value of continuationV ′
t , i.e. the value of the convertible bond if it is

not exercised immediately. While the investor will convert (put) the bond as soon asntSt > V ′
t (Pt > V ′

t )

for t ∈ Ωconv (t ∈ Ωput), the issuer will call the convertible as soon asV ′
t > Kt for t ∈ Ωcall. Thus, at

each point in time, both investor and issuer decide whether they want to exercise their option or not

7



Table 1
Optimal exercise decision

This table presents the optimal option exercise behavior ofboth the issuer and the investor. The payoffs resulting

from the optimal exercise decisions are listed in the first column of the table. The second column displays the

conditions under which it is optimal to exercise.Time restriction indicates whether the embedded option can be

exercised by the investor (issuer) at timet . Six outcomes are possible: voluntary conversion, put, call, forced

conversion, redemption at maturity, or continuation of theconvertible bond.V ′
t is the conditional expected

value of continuation, i.e. the value of holding the convertible bond for one more period instead of exercising

immediately.
Payoff p(Xt , t) Condition Time restriction Action

ntSt if ntSt > V ′
t for t ∈ Ωconv Voluntary

andPt ≤ ntSt for t ∈ Ωput ∩Ωconv conversion

Pt if Pt > V ′
t for t ∈ Ωput Put

andntSt < Pt for t ∈ Ωconv ∩Ωput

Kt if V ′
t > Kt for t ∈ Ωcall Call

andKt ≥ ntSt for t ∈ Ωcall ∩Ωconv

ntSt if V ′
t > Kt for t ∈ Ωcall Forced

andntSt > Kt for t ∈ Ωconv ∩Ωcall conversion

κN if ntSt < κN for t = T ∈ Ωconv Redemption

0 otherwise Continuation

8



and this decision is dependent on the continuation value. In the case of a call, the investor will convert

the bond if the conversion value is above the call price (forced conversion), otherwise he will prefer to

have it redeemed. The entriesCondition andTime restrictions in Table 1 have to be read line by line,

i.e. the condition in the second column of the table is checked only if the corresponding time restriction

on the same line of the following (third) column is satisfied. Besides to certain predefined times, the

possibility to call the convertible bond may be restricted by certain conditions to be satisfied, e.g. that

the conversion value exceeds a pre-specified call trigger. The investor will make use of the option to

put the convertible bond when the value of continuation falls below the put price. It follows that the

convertible bond will be kept alive as long asmax(ntSt ;Pt) ≤V ′
t ≤ Kt , i.e. that neither the investor nor

the issuer will execute their options and cause the convertible bond to terminate.

In addition to the payoff at the time of termination, the investor receives from his convertible bond

investment all coupon payments that occurred prior to this date. Formally, thefunction h(Xτ∗ ,τ∗)

represents the payoff from a convertible bond with embedded call option instateXτ∗ and at timeτ∗:

h(Xτ∗ ,τ∗) = p(Xτ∗ ,τ∗)+ c(τ∗) (1)

wherep(Xτ∗ ,τ∗) is the payoff from the convertible bond at the optimal time of terminationτ∗ and

c(τ∗) is the present value at timeτ∗ of all coupon payments accumulated during the existence of the

bond, i.e. beforeτ∗. As will be seen later, whetherc(τ∗) contains also accrued interest payments is an

empirical matter that depends on the specification of the individual convertible bond.

The price of a convertible bond can be obtained by discounting all future cash flows under the

risk-neutral measure. Thus, valuing convertible bonds implies determining

V0 = EQ
[
e−∑τ∗−1

t=0 r(Xt ,t)th(Xτ∗ ,τ∗)
]
, (2)

whereV0 is the current value of the convertible bond,τ∗ is the optimal stopping time taking values

in the finite set{0,1, . . . ,T}, the functionh(Xτ∗ ,τ∗) represents the payoff from a convertible bond with

embedded call option in stateXτ∗ and at timeτ∗, and the expectationEQ [·] is taken with respect to the

equivalent Martingale measureQ defined using the riskless security as the numeraire.r(Xt , t) is the
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interest rate between timet andt +1 in stateXt that is applicable for discounting cash flows from time

t +1 to timet.

2.2. Characterizing the Optimal Exercise Decision

Before maturity, the optimal exercise strategy implies comparing the value of immediate exercise with

the value from continuing, i.e. not exercising this period. The crucial stepimplies determining the

conditional expected value of continuationV ′
t . Formally, the value at a future timet of a convertible

bond that is not exercised immediately, but held for one more period, is given by

V ′
t = EQ

[
e−∑τ∗−1

t=0 r(Xt ,t)th(Xτ∗ ,τ∗) | Ft

]
(3)

whereτ∗ > t andFt represents the information available at timet.

The continuation valueV ′
t can be expressed as a function of the state variables and time. In partic-

ular, for convertible bonds, there is a monotonous relation betweenV ′
t and the state variables.2 Hence,

for obtaining a full description of any economically meaningful option-exercise behavior, it is sufficient

to define for each embedded option only oneexercise boundary Zconv, Zcall, andZput for the conversion,

call, and put option, respectively. For each option, the exercise boundary separates the exercise-region

from the non-exercise region. The exercise boundaries describe thecombined values of state variables

for which investor and issuer are indifferent between exercising their options or not. Forq state vari-

ables, the boundariesZconv, Zcall, andZput can be viewed as functions that associate to any datet and

any values ofq−1 state variables critical values for the remaining state variableq that trigger the ex-

ercise of the respective option.Zconv
t denotes, for a specific datet ∈ Ωconv, the value of state variableq

for whichV ′
t = ntSt . Similarly, Zcall

t denotes, for a specific datet ∈ Ωcall, the value of state variableq

for whichV ′
t = Kt andZput

t denotes, for a specific datet ∈ Ωput , the value of state variableq for which

V ′
t = Pt .

In the case where the stock priceS is the only state variable, it is optimal to exercise the options

wheneverSt > Zconv
t , St > Zcall

t , andSt < Zput
t , whereZconv

t , Zcall
t , andZput

t are scalars. As described

2For example,V ′
t is monotonically increasing in the stock priceS, with 0 < dV ′

t /dS < n, given specific
values for the other state variables. Therefore, for every embedded option, there is at most oneS for which the
continuation value is equal to the respective option payoffif exercised (Kt , ntSt , andPt ).
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in Appendix A, for the numerical implementation, the exercise boundariesZconv, Zcall, andZput are

approximated by parametric functionsGconv(t;θconv), Gcall(t;θcall), andGput(t;θput) with parameter

setsθconv, θcall, andθput .

2.3. Simulation Methodology

The pricing algorithm consists of two stages, an optimization stage and a valuation stage. In the first

stage, the optimal exercise strategy of the investor and the issuer is estimated using a first set of sim-

ulated paths for the state variables. The parameter setsθiss andθinv govern the exercise behavior, or

exercise strategy, of the issuer and investor, respectively. The exercise behavior of the issuer con-

cerns solely the call option so that we can write without loss of generalityθiss = θcall. Since the

investor’s exercise behavior is related to both the conversion and the putoption, we can conveniently

write θinv =
[
θ′

conv θ′
put

]′
. These exercise strategies determine the time of termination, or stopping time,

τ, of the convertible bond. Hence, the value of the convertible bond givencertain exercise strategies

can be calculated by averaging the discounted payoffs of all simulation paths:

V (θinv,θiss) =
1
N

N

∑
i=1

e−∑τ∗−1
t=0 r(Xt ,t)τi(θinv,θiss)h

(
X i

τi(θinv,θiss)
,τi (θinv,θiss)

)
, (4)

whereXt are realizations of the simulated state variables andN is the number of simulation paths.

To find the optimal conversion strategy, given a fixed call strategy, the initially chosen parameters

encoding the put and the conversion strategy are altered until the algorithmfinds a maximum for the

convertible bond price:

θ̂inv = arg
θinv

maxV
(

θinv, θ̂iss

)
, (5)

wherêθinv indicates an estimate of the optimal exercise strategy of the investor. Subsequently, these

parameters are applied to find a call strategy that minimizes the convertible-bond price:

θ̂iss = arg
θiss

minV
(

θ̂inv,θiss

)
. (6)
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To determine the final exercise strategy, this procedure is applied iteratively until the optimal pa-

rameters are obtained and a predefined accuracy is reached. The relevant stopping timesτ∗i
(

θ̂inv, θ̂iss

)

for each pathi and the corresponding payoffsh
(
Xτ∗i ,τ

∗
i

)
for valuing a convertible bond are obtained by

applying these optimized exercise rules to the simulated paths. Thus, as a result of this procedure, we

obtain estimates of the optimal exercise strategies as well as an in-sample estimate of the price of the

convertible bond.

In the second stage, the optimized exercise strategies from the first stage are applied on a second

set of simulated paths of the state variables to determine the out-of-sample valueof the convertible

bond. The final point estimate is the average of the in- and out-of-sample estimates. While numerical

experiments show that both the in-sample and the out-of-sample estimates converge to the true price of

the convertible bond as the number of simulation paths increases, averagingthe two results generates a

more accurate point estimate.

Figure 1 presents a comparison of exercise boundaries obtained by a 6000-step binomial tree and

the simulation-based model. For the sake of comparison the convertible bond only has only features

that can be easily addressed within a standard binomial tree model. We investigate a simple case with

the stock price as the only state variable and constant interest rates. As can be seen in the plots, the main

features of the exercise boundaries are captured by the simulation model. The fact that the conversion

boundary is lower in the simulation model can be easily explained. As long as theconversion boundary

is higher than the call boundary, its exact position does not affect the price of the convertible bond.

Thus, if during any step of the maximization procedure (cfr. equation (5))the optimizer sets the con-

version boundary in an arbitrary position above the call boundary, no change of the parametersθconv

will increase the price of the convertible and the current position of the conversion boundary will be

the final one. The economic reason for the irrelevance of the exact position of the conversion boundary

in the Monte Carlo algorithm is that, in this setting, the issuer will always call the convertible before

voluntary conversion can become the optimal choice for the investor. Finally, the prices generated by

the simulation model (106.4304 for the point estimate) are very close to those of the tree (106.405),

supporting the convergence of the simulation model.3

3While Figure 1 is only one example, extensive numerical experiments obtained with several specifications
confirm the convergence of the model. It is worth noting that in general the pricing results are sensitive to the
level of the boundaries but not to their exact shape, i.e. that even simple shapes of the boundaries guarantee very
accurate pricing results.
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Figure 1. Exercise Boundaries

This graph shows exercise boundaries of a convertible bond obtained by a binomial tree (Panel A) and by the
simulation-based model (Panel B). The tree generates a price of 106.405. The simulation model produces an in-
sample price of 106.656 and an out of sample price of 106.2047 with standard deviations of 0.1128 and 0.1162,
respectively, resulting in a point estimate of 106.4304. The parameter set for pricing the convertible bond is as
follows. The volatility is equal to 40% (σ = 0.4), the initial stock price is 100 dollars (S(0) = 100), the dividend
yield is continuously compounded (δ = 0.1), the contractual time to maturity is two years (T = 2), the risk-free
interest rate is 5% (r = 0.05), the call price is constant at 110 (K = 110), the put price is constant at 98 (P = 98),
the nominal value is 100 (F = 100), the convertible bond pays no coupons (c = 0.0), the conversion ratio is one
(n = 1), and 100 exercise opportunities are assumed. Pricing by simulation is performed with 4000 simulation
paths (N = 4000) and 100 discretization steps which correspond to the 100 early-exercise opportunities. Both the
call and the put boundary are obtained by interconnecting estimates at three different points in time with hermite
polynomials. To make the results comparable, the binomial tree is obtained with 6000 steps but only 100 exercise
opportunities.
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Table 2
Ratings of U.S. convertible bonds

Ratings according to Standard & Poor’s Bond Guide of February 2002 of all U.S. convertible bonds as listed in

the Mace Advisers’ database. ”+” and ”-” denote rating differences within one class, for example AA+ or AA-

for the AA class, as defined by Standard & Poor’s.
Rating ”+” ”plain” ”-” total total (%)
AAA - 3 0 3 1.60
AA 0 0 2 2 1.06
A 6 3 7 16 8.51
BBB 7 13 20 40 21.28
BB 12 1 5 18 9.57
B 16 23 27 66 35.11
CCC 14 12 7 33 17.55
CC 0 3 0 3 1.60
C 0 1 0 1 0.53
D 0 6 - 6 3.19

188 100.00

3. Convertible Bond Data

We choose to investigate the U.S. domestic market because it is the largest market4, it has a high ratio

of rated issues5, and we obtained accurate daily data from Mace Advisors. As can be seen from Table

2, all rating categories are represented in the U.S. market and 32.45% of the rated issues are investment-

grade bonds. On February 12, 2002, the average maturity at issuanceof an outstanding U.S. convertible

bond was 11.5 years while the average time to maturity was 8.5 years. 25 out ofthe 588 convertible

bonds in our data set have a maturity at issuance larger than 30 years. The bond issued with the shortest

maturity is Coeur D’Alene with a time to maturity at issuance of 2.4 years and an extraordinarily high

coupon of 13.375%. Only two convertibles out of 588 are not callable, 149 are putable, and in 92 cases

callability is restricted by a trigger condition.

We consider for our analysis all domestic convertible bonds on the U.S. market outstanding as of

February 12, 2002. Daily convertible-bond prices as well as corresponding synchronous stock prices

4On February 12, 2002, Mace Advisors had a data coverage of 588convertible-bond issues with an average
size of 379.6 million dollars.

5188 issues out of the 588 convertible bonds in our data set have a rating in the Standard & Poor’s Bond
Guide of February, 2002. This is indicative of a rating coverage of more than 32%. In fact, the actual ratio of
rated issues is likely to be higher than 32% because some convertibles may be rated by other rating agencies (e.g.
Moody’s) and not by Standard & Poor’s.
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Figure 2. Ratings of U.S. convertible bonds

This histogram splits the total number of pricing points of the sample into different classes according to the rating
of the corresponding convertible bond at that time. The rating information is obtained from Standard & Poor’s
Bond Guide.
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were made available by Mace Advisers. Convertible bonds with embedded cross-currency features are

excluded. To estimate the parameters of the stock dynamics, only convertible bonds with a pre-sample

stock history dating back at least until January 1, 1990, are included in the sample. Furthermore, we

require for all convertible bonds in the sample that a rating be provided by Standard & Poor’s Bond

Guide, and - to be able to account for all relevant specifications for each convertible bond in detail - that

the official and legally bindingoffering circulars be available. The latter proved to be necessary because

some contractual provisions are so specific that they can hardly be collected in predefined data types,

and electronic databases usually lack the needed flexibility to incorporate non-standard features. Rating

changes for the single issues were followed up according to the monthly publications in Standard &

Poor’s Bond Guide. To account for a possible publication-lag and additional potential delays of rating

adjustments by the rating agencies, we apply a filter that eliminates forty data points preceding rating

changes that lead to a credit-spread change of at least 2 percentage points. As an additional liquidity

requirement, we only consider data points with a bid-ask spread of less than2 percentage points for

both the convertible bond and the underlying stock.

15



Table 3
Provisions of the convertible bonds in the sample

This table gives an overview of the analyzed convertible bonds with convertible bond referring to the name of

the issuing firm,date of issue, coupon as percentage of the face value, andmaturity. Size indicates the amount

outstanding in million dollars as reported by Standard & Poor’s Bond Guide.Call indicates whether the bond is

redeemable at the option of the issuing company at any time prior to maturity during the period considered in

this study. Trigger indicates the existence of an additional trigger conditionto be satisfied in order to call the

convertible.Call notice period indicates the number of days in advance the issuing company has to notify the

investor before a call becomes effective. More often than not, the contractual provision specified in the legally

binding offering circular states that upon call accrued interests are paid to the investor.Rating represents the

Standard & Poor’s Bond Guide rating as of February 2002.
Convertible Date of Coupon Maturity Size Call Trigger Call Accrued Rating
bond issue Notice interest

Period paid at call
Adaptec 28-Jan-97 4.75% 01-Feb-04 230 Yes No 15 Yes B-
Alpharma 25-Mar-98 5.75% 01-Apr-05 125 Yes No 30 Yes B
Analog Dev. 26-Sep-00 4.75% 01-Oct-05 1200 Yes No 30 Yes BBB
Charming S. 17-Jul-96 7.50% 15-Jul-06 138 Yes No 30 Yes B
CKE Rest. 09-Mar-98 4.25% 15-Mar-04 159 Yes No 30 Yes CCC
Clear C. C. I 25-Mar-98 2.63% 01-Apr-03 575 Yes No 15 Yes BBB-
Clear C. C. II 17-Nov-99 1.50% 01-Dec-02 900 No No 30 No BBB-
Corning/Oak 20-Feb-98 4.88% 01-Mar-08 100 Yes No 30 Yes BBB-
Cypress S. 21-Jun-00 3.75% 01-Jul-05 250 Yes No 20 Yes B
Genesco 06-Apr-98 5.50% 15-Apr-05 104 Yes No 30 Yes B
Healthsouth 17-Mar-98 3.25% 01-Apr-03 443 Yes No 30 Yes BB+
Hexcel 18-Jul-96 7.00% 01-Ago-03 114 Yes No 20 Yes CCC+
Hilton H. 09-May-96 5.00% 15-May-06 494 Yes No 30 Yes BB+
Interpubl. G. 26-May-99 1.87% 01-Jun-06 361 Yes No 30 No BBB
Kerr McGee 21-Jan-00 5.25% 15-Feb-10 550 Yes No 30 Yes BBB-
Kulicke & S. 08-Dec-99 4.75% 15-Dec-06 175 Yes No 30 Yes B-
LAM R. 19-Aug-97 5.00% 01-Sep-02 310 Yes Yes 20 No B
LSI Logic 16-Mar-99 4.25% 15-Mar-04 345 Yes No 30 Yes B
NABI 02-Feb-96 6.50% 01-Feb-03 80.5 Yes No 20 Yes CCC-
Offshore L. 11-Dec-06 6.00% 15-Dec-03 80 Yes No 30 Yes B+
Omnicare 04-Dec-97 5.00% 01-Dec-07 345 Yes No 30 Yes BB+
Parker Drill. 21-Jul-97 5.50% 01-Aug-04 124 Yes No 30 Yes B-
Penn T. A. 20-Nov-96 6.25% 01-Dec-03 74.8 Yes No 15 Yes CC
Photronics 22-May-97 6.00% 01-Jun-04 103 Yes No 20 Yes B
Pogo Prod. 11-Jun-96 5.50% 15-Jun-06 115 Yes No 30 Yes BB
Providian F. 17-Aug-00 3.25% 15-Aug-05 402 Yes No 30 Yes B
Rite Aid 04-Sep-97 5.25% 15-Sep-02 650 Yes No 30 Yes CCC+
Safeguard S. 03-Jun-99 5.00% 15-Jun-06 200 Yes No 20 Yes CCC
Semtech 03-Feb-00 4.50% 01-Feb-07 400 Yes No 30 Yes CCC+
Service C. 18-Jun-01 6.75% 22-Jun-08 300 Yes No 30 Yes B
Silicon G. 07-Aug-97 5.25% 01-Sep-04 231 Yes Yes 30 Yes CCC-
St. Motor Pr. 20-Jul-99 6.75% 15-Jul-09 90 Yes No 30 Yes B+
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Figure 3. Histogram of pricing points by maturity

This histogram splits the total number of pricing points of the sample into different classes according to the
maturity of the convertible bond. Maturity (x-axis) is expressed in years and the frequency (y-axis) indicates
the absolute number of pricing points for each maturity class. A maturity class ofn covers pricing points with a
time-to-maturity ranging fromn−0.5 years ton+0.5 years.
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After filtering the sample with these criteria, we obtain a final sample of 32 convertible bonds, with

price data ranging from May 10, 1996, to February 12, 2002. As shown in Table 3, most analyzed con-

vertibles include a call option, allowing the issuer to repurchase the bond for a certain priceKt , called

call price or early redemption price. When a convertible bond is called, the issuer has to notify the in-

vestor a certain period in advance about his intention to call the convertible.This provision bears some

risk for the issuer in form of a failed forced conversion, in which case the issuer will have to redeem

the bond in cash instead of shares. Thus, the issuer might want to avoid thiseventuality by delaying

the call. The call notice period in the US market is generally 30 days. However, it sometimes differs

across the individual convertible bonds. Usually, the call price varies over time but is piecewise con-

stant. For almost all examined convertibles, early redemption is restricted to a certain predetermined

period. The period during which callability is not allowed is called thecall protection period. An addi-

tional restriction to callability in form of a supplementary condition to be satisfied isgiven by thecall

condition. Callability is only allowed if the parityntSt exceeds acall trigger Ξt . The exact contractual

specification of the call condition often states that the inequalityntSt > Ξt must hold for a certain time

(usually 20 out of the last 30 trading days) before the bond becomes callable. This “qualifying period”

introduces a path dependent feature that can be accounted for better by a simulation-based convertible

bond pricing method than by a lattice method. The call trigger is calculated as a percentage of either

the early redemption price or the face value. If the trigger feature is present, the callability is called

provisional or soft, if it is absent, the callability is calledabsolute, unconditional, or hard. Usually, the

conversion rationt is constant over time. It changes in case of an alteration of the nominal valueof

the shares (stock subdivisions or consolidations), extraordinary dividend payments and other financial

operations that directly affect the stock price. Since stock splits are verycommon in the US market, the

conversion ratio often changes over time and deviates quite substantially from the initial values stated

in the offering circulars. To accommodate for this, we apply an equity correction factor and use the

adjusted conversion ratio at any time. Conversion is possible within a certain period, calledconversion

period. For all issues in our sample, the end of the conversion period coincides with the maturity of the

convertible bond. Some convertibles in the US market arepremium redemption convertibles, i.e. the

redemption at maturity is above par value. In this case, the final redemption is given by κN with the

final redemption ratioκ larger than one. However, in our sample, all convertible bonds have a terminal

redemption of 1000 dollars andκ is equal to one. Furthermore, while some convertible bonds in the
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US market are traded ”dirty”, all bonds in our sample are traded ”clean”,i.e., the total purchase price

is the quoted price plus accrued interest.

As depicted in Figure 2, the data points of convertible-bond prices in the sample cover all Standard

and Poor’s rating categories ranging from A- to CCC-. The absence ofhigher investment grade con-

vertible bonds and the presence of lower rated convertibles in our sample reflects the phenomenon that,

in the US market, primarily small companies issue convertible bonds while more established compa-

nies rely on other means of financing. None of the convertible bonds in oursample actually defaulted

during the examination period.

Figure 3 presents the frequency of single convertible bond prices for various maturity classes.

While the convertible bonds in the US market have maturities of up to 30 years, the issues in our sample

cover maturities ranging from half a year to slightly more than ten years, and have a mean maturity of

approximately five years. Thus, convertible bonds belong to the class of derivative instruments with

the longest maturities of all, largely surpassing even long term options which seldom reach up to three

years.

4. Model Implementation

In this section we describe the model specification used in the empirical analysis and the estimation

procedure of the parameters affecting the bond price. We describe the estimation of the underlying

stock process, the interest rates, credit spreads, and dividends. All parameters are estimated out-of-

sample.

4.1. Stock Dynamics

An important input parameter to be estimated is the volatility of the underlying stock price. This aspect

becomes the more relevant the longer the maturity of the derivative to be valued. While research on

stock volatility is plentiful, there is no consensus on which model should be applied for forecasting. A

popular approach is the implied volatility concept. However, for two reasons, implied volatility is not

suitable as input for the forecasting task in this study. First, most liquid optionshave maturities that
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are much shorter than maturities of convertible bonds. Second, issuers ofconvertible bonds are mostly

small companies with no traded options outstanding. Third, several studies (e.g. Figlewski, 1997)

suggest that implied volatility is not an unbiased estimator of realized volatility and thus should not be

used for forecasting. Therefore, other alternatives have to be considered. We focus on possibilities to

generate out-of-sample forecasts using volatility models that base on historical price movements.

For three reasons, we model the variance of the stock price with a GARCH(1,1) following Boller-

slev (1986) and Duan (1995) instead of a continuous time process. First,the GARCH(1,1) model

has proven capabilities of capturing the volatility patterns present in the data,in particular volatility

clustering. Second, since simulation is intrinsically discrete, adopting a discrete time process makes

discretization techniques redundant. Third, the estimation of the parameters isalso naturally performed

with discretely sampled data (daily frequency). The conditional variance of the GARCH(1,1) evolves

as

σ2
t = w+aε2

t−1 +bσ2
t−1, (7)

where theεt are return shocks drawn from a normal distribution with a mean of zero andthe respective

conditional variance. Under the risk-neutral probability measureQ stock returns are assumed to depend

on the conditional variance, and the dynamics of logarithmic stock returns:

ln(St/St−1) ≡ yt = r−0.5σ2
t +σtεt , εt ∼ N(0,1), (8)

wherer is the risk-free interest rate.

For the empirical analysis, we calibrate the chosen volatility models with historicaldata. The

parametersψ are chosen to maximize the likelihood function

lnL(ψ;ε1,ε2, ...,εT ) = −0.5ln(2π)−0.5
T

∑
t=1

(
ln

(
σ2

t

)
+

(
ε2

t

σ2
t

))
. (9)

The estimated parameters of the volatility models are presented in Table 4 for each convertible bond in

the sample.
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Table 4
Parameter estimates for GBM and GARCH(1,1)

σ represents the average of all annualized input volatilities that are used in the implementation of the GBM

model and are estimated from as much pre-sample data as available to us (starting at least before 1990). The

GARCH(1,1) equation is:σ2
t = w + aε2

t−1 + bσ2
t−1. For comparison, the column denoted by GBM shows the

parameter estimation for geometric Brownian motion.
Parameters for the underlying process

Convertible bond GBM GARCH(1,1)
σ w a b

Adaptec 0.619601 3.07E-05 0.014910 0.965199
Alpharma 0.434762 0.000311 0.257896 0.377281
Analog Dev. 0.524330 5.51E-06 0.03007 0.964677
Charming S. 0.535953 1.05E-05 0.029823 0.960113
CKE Rest. 0.426572 0.00016 0.161979 0.615782
Clear C. C. I 0.357913 4.34E-05 0.097719 0.818231
Clear C. C. II 0.357913 4.34E-05 0.097719 0.818231
Corning/Oak 0.299630 2.61E-05 0.100687 0.829004
Cypress S. 0.538525 9.85E-05 0.077597 0.831327
Genesco 0.600186 0.000143 0.095389 0.805274
Healthsouth 0.429999 7.25E-05 0.089714 0.807925
Hexcel 0.471715 5.48E-06 0.008321 0.975708
Hilton H. 0.352844 1.71E-05 0.069696 0.898264
Interpubl. G. 0.313456 2.14E-06 0.038887 0.955268
Kerr McGee 0.289180 3.42E-06 0.04624 0.943652
Kulicke & S. 0.641227 1.37E-05 0.031839 0.960379
LAM R. 0.596124 0.000095 0.090067 0.841620
LSI Logic 0.542819 0.000164 0.072973 0.782621
NABI 0.964364 4.66E-05 0.070418 0.920182
Offshore L. 0.785796 0.000338 0.098008 0.757633
Omnicare 0.411482 4.04E-06 0.023983 0.970296
Parker Drill. 0.493291 8.76E-05 0.111824 0.798210
Penn T. A. 0.645585 2.31E-05 0.112127 0.880060
Photronics 0.713992 3.22E-05 0.054081 0.931388
Pogo Prod. 0.453902 8.27E-06 0.043163 0.947773
Providian F. 0.292776 6.09E-06 0.058140 0.924539
Rite Aid 0.385032 2.65E-06 0.026851 0.967054
Safeguard S. 0.675231 0.000115 0.007935 0.945687
Semtech 0.755131 9.13E-06 0.031023 0.965534
Service C. 0.394883 0.000933 0.025392 0.972872
Silicon G. 0.508525 0.000267 0.142702 0.599636
St. Motor Pr. 0.410191 1.85E-06 0.028817 0.968659

21



The stock price has to be adjusted for dividend payments. We accommodate for discrete dividends

by subtracting them from the stock price at the appropriate dates. For each pricing, we assume that the

dividend yield at the last ex-dividend date remains constant and applies until maturity.

4.2. Interest Rates

All interest rate data employed in this study is obtained from the Federal Reserve. The time series of

the risk-free interest-rates were extracted from T-Bill and T-Note prices and cover maturities from 3

months to 30 years on a daily basis. We obtain through interpolation the complete term structure of

spot rates at any time.

Since the inclusion of stochastic interest rates is associated with additional computational costs, a

term structure model is only appropriate if the gain in pricing precision is significant. To investigate

the real valuation effects of stochastic interest rates, prices of convertible bonds generated by a pricing

model under the assumption of constant interest rates are compared with prices obtained by a model

that incorporates a CIR term-structure model. This comparison is performedin Table 5 for several

initial stock prices and for different correlation values between the stochastic processes of the two state

variables: stock price and interest rate. To keep the example sparse andrealistic, both a European-style

convertible bond and a convertible bond with embedded call and put optionsis priced under both a

constant and stochastic interest rate. A maturity of two years is chosen forthe valuation. In order to use

a truly reliable specification of the interest-rate process, we adopt the term-structure parameters in Ait-

Sahalia (1996). The parameters are estimated via GMM using seven-day Eurodollar deposit rates with

daily frequency from June 1, 1973 to February 25, 1995. The inclusion of stochastic interest rates does

not generate important deviations, with percentage price changes always smaller than half a percentage

point in absolute terms. In general, the difference between prices obtained with and without an interest

rate model is higher for convertible bonds that are at-the-money and where the correlation between

stock-price innovations and interest-rate is different from zero. As can be seen from a comparison

of Panel A and B, the presence of early-exercisable options further reduces the impact of stochastic

interest rates. For correlations close to zero the effect of stochastic interest rates is remarkably low with

an impact in the range of a couple of cents. While the results presented in Table 5 are clearly dependent

on the specific convertible bonds and interest rate parameters assumed, they confirm results obtained
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by Brennan and Schwartz (1980) and Buchan (1997). Simulation experiments based on a broader set

of convertible bonds confirm the qualitative results presented in this table.

Since the impact of the correlation between the innovations of stock-returnsand interest rates is

strong, it seems crucial to empirically investigate this parameter. Table 6 provides both daily and

weekly empirical correlations (with confidence intervals) for all the issuesin our sample. While no

daily correlation exceeds 0.2, in four cases, the correlation is estimated to be slightly larger than 0.1.

Since these low correlation values may depend on the daily frequency, a look at monthly data can be

useful. While for some issues monthly correlations have much higher values (for instance Pogo Prod.

with 0.268), no correlation value is statistically different from zero at the 1%confidence level. Even at

the 10% confidence level, only 7 out of 32 issues have a correlation that isstatistically different from

zero. Given the high parameter uncertainty and the low pricing impact these estimated correlations

would generate, it is questionable whether using stochastic interest rates isbeneficial for our empirical

analysis. In fact, also Brennan and Schwartz (1980) argue that, for empirical pricing purposes, stochas-

tic interest rates can be neglected without important losses in accuracy. Hence, although our model

would easily incorporate stochastic interest rates, the overall pricing benefit would be very limited and

would not justify the additional computational costs. For these reasons we perform the pricing study

without stochastic interest rates.

4.3. Credit Risk

We account for credit risk in the spirit of Tsiveriotis and Fernandes (1998) and discount the cash flows

subject to credit risk with the appropriate interest rate. This can easily be done since the simulation

approach presented in this paper is cash-flow based. Thus, coupon payments6, the final redemption

payment, and the call price in the event of a call are subject to credit risk.The stock price, on the other

hand, is not and should therefore be discounted with the risk-free interest rate. In this approach, credit

spread can be implemented as constant or as following a process correlated with other state variables.

6Most convertible bonds in the US market provide coupon payments. The most popular payment frequency
is semiannual. We accommodate for discrete coupon paymentsat the appropriate dates and with the appropriate
frequencies.
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Table 5
Pricing impact of stochastic interest rates

This table shows the percentage price impact of a term-structure model on prices of European-style (Panel A)

as well as callable and putable convertible bonds (Panel B) for different initial stock prices and for different

values of the correlation between stock and interest rate. Different initial stock prices imply different moneyness

values for the convertible bonds. Moneyness ranges from 0.24 to 2.37 with corresponding stock prices ranging

from S=20 to S=200. The number of paths in each simulation runis 5000, with the same random-number series

for each pricing. ’std’ refers to the standard deviation of the Monte Carlo estimate. All convertible bonds have

a face valueF = 100, maturityT = 2 years, conversion ratioγ = 1.0, and couponc = 0. The issuing firm

pays continuously compounded dividends,δ = 0.1, and is not entitled to call back the convertible bond at any

time apart from maturity. The stock price follows a geometric Brownian motion,dSt
St

= (rt − δ)dt + σSdWS,t ,

with volatility σS=0.4, and the instantaneous interest rate follows a one-factor CIR interest-rate process,

drt = κr (θr − rt)dt + σr
√

rtdWr,t , with an initial short rate r=0.06, and parameters as estimated via GMM by

Ait-Sahalia (1996):θr=0.090495,κr=0.89218,σr=0.180948. The correlationsρS,r betweendWS anddWr range

from ρS,r=-0.5 toρS,r=+0.5.
stock price 20 60 80 85 100 120 200
moneyness 0.24 0.71 0.95 1.01 1.19 1.42 2.37

Panel A: European-Style Convertible Bond
constant interest rates

price 84.26 87.37 93.00 94.87 101.39 112.10 167.60
std 0.00 0.19 0.35 0.39 0.52 0.70 1.35

stochastic interest rates (changes in %)
-0.5 0.01 -0.08 -0.19 -0.25 -0.28 -0.32 -0.47
-0.2 0.00 -0.01 -0.05 -0.09 -0.10 -0.13 -0.20
0 0.00 0.00 0.00 0.00 0.01 0.01 0.00
0.2 0.01 0.02 0.02 0.01 0.09 0.16 0.23
0.5 0.01 0.15 0.16 0.15 0.28 0.45 0.60

Panel B: Callable and Putable Convertible Bond
constant interest rates

price 98.00 98.00 98.95 100.03 105.51 120.00 200.00
std 0.00 0.00 0.07 0.08 0.09 0.00 0.00

stochastic interest rates (changes in %)
-0.5 0.00 0.00 -0.06 -0.12 -0.03 0.00 0.00
-0.2 0.00 0.00 -0.07 -0.07 -0.06 0.00 0.00
0 0.00 0.00 0.00 -0.03 -0.03 0.00 0.00
0.2 0.00 0.00 0.01 -0.03 -0.08 0.00 0.00
0.5 0.00 0.00 0.01 0.03 0.03 0.00 0.00
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Table 6
Empirical correlation between stock returns and interest rates

This table reports for each issue in the sample the daily and monthly correlation between stock returns and

changes in the interest rate. The table reports point estimates for the correlations as well as the lower (LCI) and

higher (HCI) 10% confidence intervals. For obtaining these quantiles we first transform the statistical correlation

ρ in the following way: ρ̂ = 1
2ln

(
1+ρ
1−ρ

)
. ρ̂ is an asymptotically normal correlation measure bounded between

[−∞,+∞]. Second, the quantiles of̂ρ are calculated aŝρLCI = ρ̂ − z
(α

2

)
1√
n−3

and ρ̂HCI = ρ̂ + z
(α

2

)
1√
n−3

.

Third, we re-transform the interval boundaries toρLCI andρHCI , respectively. For each issue, calculations are

performed with all data used in the empirical analysis.
Convertible daily daily daily monthly monthly monthly

point estimate LCI HCI point estimate LCI HCI
Adaptec 0.033 -0.009 0.076 0.044 -0.052 0.138
Alpharma 0.048 0.005 0.090 0.061 -0.035 0.155
Analog Dev. 0.052 0.009 0.094 0.020 -0.075 0.115
Charming S. 0.004 -0.038 0.047 0.041 -0.055 0.135
CKE Rest. 0.069 0.021 0.116 0.071 -0.036 0.177
Clear C. C. I 0.086 0.038 0.133 0.069 -0.038 0.175
Clear C. C. II 0.037 -0.006 0.079 -0.016 -0.111 0.079
Corning/Oak 0.061 0.019 0.103 0.024 -0.071 0.119
Cypress S. 0.051 0.009 0.093 0.025 -0.071 0.120
Genesco 0.025 -0.017 0.067 0.076 -0.019 0.170
Healthsouth 0.021 -0.022 0.063 -0.047 -0.142 0.048
Hexcel 0.035 -0.008 0.077 0.026 -0.069 0.121
Hilton H. 0.019 -0.024 0.061 0.029 -0.067 0.124
Interpubl. G. 0.011 -0.031 0.053 -0.020 -0.115 0.076
Kerr McGee 0.025 -0.018 0.067 0.009 -0.086 0.104
Kulicke & S. 0.012 -0.031 0.054 0.027 -0.068 0.122
LAM R. 0.130 0.088 0.172 0.143 0.048 0.235
LSI Logic 0.085 0.033 0.136 -0.009 -0.126 0.107
NABI 0.040 -0.003 0.082 0.094 -0.001 0.187
Offshore L. 0.106 0.064 0.148 0.139 0.044 0.231
Omnicare 0.042 -0.001 0.084 0.106 0.011 0.199
Parker Drill. 0.074 0.032 0.117 0.092 -0.003 0.185
Penn T. A. 0.024 -0.040 0.087 0.017 -0.127 0.159
Photronics 0.024 -0.018 0.066 0.009 -0.086 0.104
Pogo Prod. 0.152 0.083 0.218 0.268 0.118 0.407
Providian F. 0.025 -0.017 0.068 0.119 0.024 0.212
Rite Aid 0.041 -0.001 0.083 0.093 -0.002 0.187
Safeguard S. 0.101 0.030 0.172 0.103 -0.060 0.261
Semtech 0.100 0.058 0.142 0.123 0.028 0.215
Service C. 0.021 -0.026 0.069 -0.019 -0.124 0.087
Silicon G. 0.091 0.049 0.133 0.109 0.014 0.202
St. Motor Pr. -0.009 -0.051 0.033 -0.008 -0.103 0.087
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Unfortunately, for most convertible bonds in the sample, there are no straight bonds outstanding -

let alone with a maturity corresponding to that of the convertible bond - that could be used to extract

the appropriate issue-specific credit spreads for our implementation. In addition, such a procedure to

obtain the credit spreads has the drawback that issue-specific characteristics of the convertible bonds,

such as seniority, are not accounted for. Thus, to obtain credit spreads, we extract from the Yield Book

database monthly time series of credit spreads for several rating categories according to Standard and

Poor’s Bond Guide. For all investment grade rating categories, we further obtain monthly credit-spread

time series covering four maturity classes (1-3, 3-7, 7-10, and over 10 years). While this procedure

allows to account for issue-specific convertible bond characteristics through applying the rating, it has

several obstacles that potentially could influence the pricing results. First,the credit spreads represent

averages of bonds outstanding within the same rating category. Second, ratings change over time.

The publication we refer to only has a monthly updating frequency. Additionally, this procedure does

not account for potential lags and, more importantly, differences in market valuations and the rating

assessment by Standard and Poor’s. The resulting estimation error of thecredit spreads is potentially

very relevant in our sample since it primarily consists of lower rated bonds with higher credit spreads.

5. Empirical Analysis of the US Convertible Bond Market

In this section, convertible-bond prices observed in the US market are compared with theoretical prices

obtained using the proposed simulation-based model. Figure 4 presents the distribution of percentage

deviations between model prices and empirical prices. On average, market prices are 0.36% higher than

model prices, with a standard deviation of 6.17%. This result stands in contrast to some previous studies

that use different pricing approaches and smaller data samples. In thosestudies, model prices are

higher than market prices on average. Moreover, those studies have incommon a mean price deviation

between model and market prices that is substantially larger than 0.36%. King (1986) investigates a

sample of 103 American convertible bonds and finds that market prices are3.75% below model prices

on average. Carayannopoulos (1996) obtains for 30 US convertible bonds and one year of monthly

price data an even larger price deviation, with market prices lower than modelprices by 12.9% on
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Figure 4. Distribution of Pricing Deviation

This histogram splits the total number of pricing points of our sample into different classes. Overpricing (x-
axis) denotes the relative pricing error (market price / model price -1). Frequency (y-axis) indicates the absolute
number of pricing points in each class.
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average. Ammann et al. (2003) investigate 21 French convertible bonds and report that market prices

are on average 3.24% lower than model prices.

Table 7 and Figure 5 show the percentage price deviation between each daily observed market price

and the theoretical fair values as generated by our model in relation to two important characteristics of

the convertible bond: moneyness and credit rating. Panel A of Figure 5 plots these daily price deviations

with respect to the moneyness of the convertible bond, calculated as the ratiobetween conversion value

and investment value. The investment value is defined as the value of the convertible bond under the

hypothetical assumption that the conversion option does not exist and thatthe credit spread is zero.

The latter proves to be useful because the credit spread is potentially subject to an estimation error, as

we do not observe issue-specific credit spreads but infer them fromissues with the same rating. Thus,

taking into account credit risk when calculating the investment value would lead to incorrect moneyness

values. However, since disregarding credit risk leads to moneyness values that are slightly downward-

biased, we should imagine at-the-money convertibles to have a moneyness ofless than one in Panel A

of Figure 5. The results in Table 7 suggest that the error dispersion decreases with the moneyness. This
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Figure 5. Pricing deviation by moneyness and rating classes

This graph shows the percentage price deviation between each daily observed market price in the sample and its
corresponding theoretical fair value as generated by the simulation-based method plotted against the moneyness
level of the convertible bond. Moneyness is calculated by dividing the conversion value by the investment value.
The conversion value is the value of shares that can be obtained by converting the bond. The investment value
denotes the value of the convertible bond under the hypothetical assumptions that the conversion option does not
exist and default never occurs. The rating is attributed to each convertible bond according to Standard & Poor’s
Bond Guide. The data in the sample cover rating categories (x-axis) ranging from A- to CCC-. Overpricing
(y-axis) denotes the relative pricing error (market price /model price -1).
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result can be explained theoretically because, for deep in-the-money convertibles, the probability of

conversion is very high, the time value of the conversion option becomes very small, and the convertible

presents less pricing challenges. The large error dispersion for at-the-money convertibles is likely to

reflect the difficulties in pricing the option part of a convertible bond, the value of which is particularly

large for at-the-money-bonds. For deep out-of-the-money convertibles, the likelihood of exercising the

conversion option is near to zero and so is the value of the conversion option. Pricing a deep out-of-the-

money convertible is very similar to pricing its straight bond equivalent. We attribute the large error

dispersion of out-of-the-money convertibles to difficulties in determining the appropriate credit spread.

Panel B of Figure 5 and Table 7 show the mean relative price deviation and its dispersion for

different rating categories. Our sample consists of rating categories ranging from A- to CCC-, but the

large majority of data points falls into the range from BBB to CCC+. For both investment-grade bonds

and non-investment grade bonds, the two classes with the largest number of observations, BBB and B,

have relatively small average pricing errors of 0.42% and−0.32%, respectively. Only CCC+ bonds

have a substantially higher average error (9.9%), which is very likely attributable to the necessary

approximations in credit-risk measurement. With respect to the error dispersion, it is surprising that

there is no clear relationship between the standard deviation of pricing errors and the rating quality.

The rather high dispersion for bonds rated CCC and CCC- should be interpreted with caution given the

limited number of data points in these rating classes.

To sum up, credit spread accounts for a portion of the observed pricedispersions, in particular for

out-of-the money convertibles. However, this error dispersion is not larger for bonds with a low rating

than it is for investment grade issues.

In Table 8, the relative mispricings are presented for the individual issues in the sample. Out of

the 32 issues in the sample, 21 present higher average market prices thanmodel prices. While for

sixteen of them, the mispricing is statistically significant at the one percent level,for the other five

issues mispricing is not different from zero at the ten percent level. Fortwo out of the eleven issues

with on average lower market prices than model prices, the deviation is not statistically significant at

the ten percent level.

To test whether the results are biased by certain input parameters or incorrect model specifications,

we regress the relative pricing deviation generated by the model on a catalog of potential error sources.
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Table 7
Pricing deviation by moneyness and rating

Data points indicates the number of days for which model prices are computed. Mean pricing deviation states

the extent to which market prices are, on average, above model prices for a given moneyness or rating class.∗∗∗,
∗∗, and∗ denote significance levels of 1%, 5%, and 10%, respectively,for the rejection of the null hypothesis that

model and market prices are equal in the mean.Deviation std. is the standard deviation of observations in the

respective class.Prob. is the probability that refers to a two-sided test for the null hypothesis that model prices

and observed prices are equal in the mean.RMSE is the root mean squared error, i.e. the non-central standard

deviation of the relative deviation of model prices from market prices.
Data points Mean pricing dev. Dev. std. Prob. values RMSE

Panel A: Classes by Moneyness
Moneyness
< 0.50 1242 -0.0156*** 0.0822 0.0000 0.0836
0.50< 0.80 1454 0.0008 0.0588 0.6144 0.0588
0.80< 0.95 866 0.0225*** 0.0564 0.0000 0.0607
0.95< 1.05 516 0.0229*** 0.0442 0.0000 0.0497
1.05< 1.20 447 0.0103*** 0.0338 0.0000 0.0353
1.20< 2.00 429 0.0012 0.0292 0.4025 0.0292
> 2.00 59 -0.0032 0.0258 0.3440 0.0258

Panel B: Classes by Rating
Rating
A- 11 0.0183** 0.0244 0.0129 0.0296
BBB+ 18 0.0009 0.0742 0.9594 0.0721
BBB 617 0.0042** 0.0525 0.0466 0.0526
BBB- 881 0.0219*** 0.0438 0.0000 0.0490
BB+ 427 0.0089** 0.0774 0.0177 0.0778
BB 21 0.0228*** 0.0256 0.0000 0.0339
BB- 563 -0.0670*** 0.0456 0.0000 0.0810
B+ 216 0.0353*** 0.0715 0.0000 0.0796
B 1751 -0.0032*** 0.0432 0.0022 0.0434
B- 255 0.0155*** 0.0591 0.0000 0.0610
CCC+ 227 0.0980*** 0.0584 0.0000 0.1140
CCC 4 0.0084 0.1394 0.9039 0.1210
CCC- 22 0.0440* 0.1112 0.0636 0.1172
Total sample 5013 0.0036*** 0.0617 0.0000 0.0618
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Table 8
Pricing deviation by issue

Data points indicates the number of days for which model prices are computed. Mean pricing deviation states

the extent to which market prices are, on average, above model prices for a given issue.∗∗∗, ∗∗, and∗ denote

significance levels of 1%, 5%, and 10%, respectively, for therejection of the null hypothesis that model and

market prices are equal in the mean.Deviation std. is the standard deviation of observations for each issue.

Probability value is the probability that refers to a two-sided test for the null hypothesis that model prices and

observed prices are equal in the mean.RMSE is the root mean squared error, i.e. the non-central standard

deviation of the relative deviation of model prices from market prices.
Convertible bond Data points Mean pricing dev. Dev. std. Prob. values RMSE
Adaptec 545 -0.0616*** 0.0528 0.0000 0.0811
Alpharma 296 0.0045*** 0.0249 0.0020 0.0253
Analog Dev. 39 -0.0139*** 0.0150 0.0000 0.0203
Charming S. 83 0.0182*** 0.0405 0.0000 0.0442
CKE Rest. 248 0.0002 0.0288 0.9304 0.0288
Clear C. C. I 240 0.0215*** 0.0233 0.0000 0.0316
Clear C. C. II 144 0.0009 0.0363 0.7619 0.0362
Corning/Oak 22 0.0336*** 0.0424 0.0002 0.0534
Cypress S. 124 0.0788*** 0.0340 0.0000 0.0857
Genesco 46 0.0397*** 0.0301 0.0000 0.0496
Healthsouth 83 -0.0477*** 0.0292 0.0000 0.0558
Hexcel 32 0.0225*** 0.0426 0.0029 0.0476
Hilton H. 616 0.0260*** 0.0229 0.0000 0.0346
Interpubl. G. 46 -0.0543*** 0.0152 0.0000 0.0563
Kerr McGee 227 0.0722*** 0.0243 0.0000 0.0761
Kulicke & S. 71 -0.0511*** 0.0216 0.0000 0.0554
LAM R. 657 -0.0075*** 0.0349 0.0000 0.0357
LSI Logic 169 0.0230*** 0.0281 0.0000 0.0362
NABI 18 0.0442 0.1293 0.1470 0.1332
Offshore L. 79 -0.0393*** 0.0472 0.0000 0.0612
Omnicare 111 0.0401*** 0.0431 0.0000 0.0587
Parker Drill. 66 0.0612*** 0.0347 0.0000 0.0702
Penn T. A. 65 -0.1280*** 0.0746 0.0000 0.1479
Photronics 257 -0.0334*** 0.0605 0.0000 0.0690
Pogo Prod. 43 0.0222*** 0.0393 0.0002 0.0448
Providian F. 91 -0.0161 0.1171 0.1907 0.1175
Rite Aid 266 -0.0057 0.0789 0.2379 0.0789
Safeguard S. 2 0.1136 0.0982 0.1019 0.1332
Semtech 187 0.1011*** 0.0521 0.0000 0.1136
Service C. 9 0.0173 0.0440 0.2391 0.0449
Silicon G. 122 0.0166*** 0.0257 0.0000 0.0306
St. Motor Pr. 9 0.1019*** 0.0445 0.0000 0.1102
Total sample 5013 0.0036*** 0.0617 0.0000 0.0618
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We perform the regressions separately for each factor as well as jointlyin a multi-factor model, as the

correlation coefficients between the regressors are low.

Table 9 shows the results of the cross-sectional regressions. We observe that all coefficients are

significant indicating that each of them can explain a portion of the pricing error. The dividend yield

has a positive impact on the pricing error. For an increase in the dividendyield of 100 basis points,

the pricing error increases on average by 124 basis points in the single-factor regression. The positive

impact of the dividend yield is perhaps caused by mean-reverting expectations for dividend yields,

which is not taken into account by our model. We assume constant dividendyields. Therefore, if

dividend yields are mean-reverting, we overestimate future dividend yields if dividends are high and

underestimate future dividends if dividends are low.

The coefficient of the credit spread is 0.50 and highly significant. Moreover, the R-squared of the

credit spread, at a value of 0.140, explains substantially more of the error variance than any of the other

variables. As the results in Table 7 suggest, the distortional impact of creditspread in our sample is

mainly concentrated on CCC+ bonds. Nevertheless, a certain bias due to credit-risk measurement is

not surprising as issue-specific credit spreads are inferred from industry-average credit spreads of the

corresponding rating category. Apparently, this approximation introduces a slight pricing bias, espe-

cially for CCC+ rated bonds. A potential improvement of the pricing precisionmight be achieved by

extracting credit information from market prices of bonds of the same issuer and similar characteristics

(seniority, maturity, coupon, etc.). Such data requirements, however, are difficult to satisfy because

most firms do not have publicly traded straight debt issues outstanding.

The coefficient of maturity is 0.35. Discounting bonds with long maturities has a stronger effect

on the price of the bond, and therefore, discounting errors have a stronger impact on the pricing errors.

This is consistent with the positive coefficient for the credit spread, as estimation biases from the credit

spreads is amplified by longer maturities. Additionally, we also observe a negative coefficient for the

coupon, although it is not significant at the one percent level. The coupon reduces the duration of the

bond and therefore again the impact of discounting on the price. Finally, thecoefficient for moneyness

is positive but small, indicating that moneyness has only a limited systematic effecton pricing errors.

This confirms the findings in Table 7 but stands in contrast to the results in Ammann et al. (2003)

and Carayannopoulos and Kalimipalli (2003). Surprisingly, these authors report that in their samples,
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Table 9
Cross-sectional analysis

In this table, the percentage pricing deviations (market price / model price -1) are regressed against
some input variables affecting the value of the convertible bond: thedividend yield, thecoupon, the
risk-free interest rate, the credit spread, the maturity in years, and themoneyness as the ratio of the
conversion value and the investment value. t-values from testing the coefficients for difference from
zero are given in parentheses.
Constant Dividend Coupon Credit Maturity Moneyness Adjusted
Term Yield (%) (%) Spread (%) (years) (%) R-squared
0.00 1.25 - - - - 0.027
(0.03) (11.86)
1.47 - -0.19 - - - 0.001
(3.76) (-2.42)
-2.09 - - 0.50 - - 0.140
(-17.13) (28.56)
-1.10 - - - 0.35 - 0.017
(-5.61) (9.34)
-0.30 - - - - 1.06 0.007
(-1.79) (5.89)
-2.22 1.92 -1.16 0.73 0.57 0.01 0.286
(-6.22) (17.78) (-15.60) (41.42) (14.00) (8.31)

observed market prices of in-the-money (out-of-the-money) convertible bonds tend to be higher (lower)

than prices generated by their theoretical model.

With the exception of the credit spread, the explanatory power as measured by R-squared is small.

In the multi-factor regression, while the magnitude of the coefficients varies,their signs are unchanged

compared to the single-factor regression.7 The adjusted R-squared is 0.286, indicating that some

systematic errors exist, perhaps caused by estimation error or approximations such as the extraction of

the credit spread from ratings. However, the mean pricing accuracy achieved in this study is higher

than in previous studies, as discussed in the beginning of this section.

7We also estimated the model using orthogonalized regressors. With the exception of the coefficient for the
coupon, which is lower, the coefficients are of similar magnitude and are therefore not reported
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6. Conclusion

We propose a simulation-based pricing method for convertible bonds. Extending existing approaches,

the method is able to account for complex real-world convertible-bond characteristics such as embed-

ded call features with various path-dependent trigger conditions. The method uses parametric repre-

sentations of the early exercise decisions and consists of two stages aimed at reducing the Monte Carlo

pricing bias. Pricing convertible bonds with Monte Carlo Simulation is more flexible than previous

lattice-based methods because it permits to implement more accurate dynamics forthe stock price and

to capture the contractual specifications of actually traded convertible bonds.

We implement the model and undertake the so far most extensive empirical pricing study for the

US convertible bond market, covering daily prices for an entire period of 69 months. We find that

theoretical values for the analyzed convertible bonds are on average 0.36% lower than observed market

prices, with a RMSE of 6.8%. A partition of the sample according to the moneyness indicates that

pricing accuracy, measured by the standard deviation of the pricing error or RMSE, is rather high

for in-the-money convertibles while it is lower for at- and out-of-the-moneybonds. Whereas we still

observe some systematic pricing biases, mostly caused by the credit-spreadestimation, the average

pricing errors obtained with the proposed simulation-based approach aresmaller than those reported

in previous studies. In particular the average overvaluation (model prices higher than market prices)

and the positive relationship between overvaluation and moneyness foundin previous articles are not

confirmed in this study.
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Appendix A. Numerical Implementation

This appendix addresses specific issues related to the numerical implementation of the proposed pricing

model. We implement all the optimization-based pricing routines in C and use, as source for normally

distributed random numbers, theBox-Muller method. Correlated random numbers are obtained by

Cholesky decomposition. Equally distributed random deviates are generated by the linear congruential

generator proposed by Park and Miller (1988) as described in Press et al. (1992). For the purpose of

comparison, the random number generator of L’Ecuyer (1988) was implemented as well, but no effect

on the results could be noticed. Each pricing point within one model run is computed with a different

starting point of the random number sequence (seed). In order to compare the results of different pricing

runs with different model specifications, the seed attributed to one pricing point (one convertible bond

at one specific date) is held constant across these pricing runs.

For the optimization task needed in the first stage of the simulation method, i.e. maximizing or

minimizing the value of the convertible bond given a simulation set for the state variables, we employ

a variant of a minimization method originally proposed by Nelder and Mead (1965) and described in

Press et al. (1992). This method is based on a simplex, which is a geometric figure consisting ofN +1

vertices (with all interconnected segments) in anN-dimensional space. This minimization technique is

particularly convenient because it is a self-contained method that requires only function evaluations but

no derivatives. OnceN +1 initial points are defined, the function to be minimized is evaluated at each

vertex of the simplex and subsequently transformed following several standard geometric iterations.

The point with the highest functional value may be reflected through the opposite face of the simplex,

or may be reflected and projected farther. Alternatively, the simplex can becontracted on one or more of

its vertices. If none of the transformations results in a decrease of the convertible-bond value larger than

a predefined tolerance, the procedure is terminated. Thus, the simplex is iterated until any additional

change of the conversion (call) boundary cannot increase (decrease) the value of the convertible bond

by an amount larger than a tolerance of 0.1. To check the validity of the minimization, the simplex

procedure is restarted with one point corresponding to the previously found minimum and representing

an N-dimensional vectorZ0. The otherN initial vertices are calculated by adding a fixed valueα in

each dimension of the space toZ0:

Zi = Z0 +αei,
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whereei’s areN orthogonal unit vectors.

As mentioned in Section 2.2, the exercise rule for any of the options embeddedin the convertible

bonds is numerically modeled in form of a parametric functionG(t;θ) that defines the exercise bound-

ary and delimits the exercise region. The functionG(t;θ) is defined through a tuple of threshold points

(θ0,θ1, ...,θK) in such a way that eachθk refers to the critical stock price for the option-exercise decision

at a different date.θ0 refers to the first possible exercise date andθK refers to the last possible exercise

date (T ). Since the most important variations in the shape of the exercise boundaries occur closest to

maturity, we choose to concentrate the majority of threshold points in this region.More specifically,

each intermediateθk (k = 1, ...,K−1) refers to datet = T ×(2×(2k−1))/(2×2k). Usually,T is equal

to the maturity of the instrument,T . However, in certain cases, it is possible to rule out early exercise

after a given date. This is for instance the case when the put price is less than the principal. Since at

maturity the investor will get at least the principal, no exercise will happen aslong as the discounted

principal is higher than the put price. For the empirical analysisK is chosen to be equal to ten. The

threshold applied to each exercise date between two threshold points is determined by cubic Hermite

interpolation. This approach has the advantage of allowing the American-style conversion option to

be applied to every time step, which in our setting is one day. Consequently, even a limited number

of parameters for representing the exercise strategies still allows for early exercise at every time step.

Although the choice of the parametric representation of the exercise boundary might appear somewhat

arbitrary, the numerical results are found to be surprisingly robust to changes in the parametric form of

the chosen function.
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