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Abstract

We identify and characterize a class of term structure models where bond yields are

quadratic functions of the state vector. We label this class the quadratic class and aim

to lay a solid theoretical foundation for its future empirical application. We consider

asset pricing in general and derivative pricing in particular under the quadratic class.

We provide two general transform methods in pricing a wide variety of fixed income

derivatives in closed or semi-closed form. We further illustrate how the quadratic

model and the transform methods can be applied to more general settings.
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I. Introduction

We identify and characterize a class of term structure models where bond yields are

quadratic functions of the Markov process. We label this class as the quadratic class

and aim to lay a solid theoretical foundation for its future empirical application. We

identify the necessary and sufficient conditions for the quadratic class and consider

the general asset pricing problem under the quadratic framework. In particular, we

propose two transform methods to price a wide variety of interest rate derivatives

in closed or semi-closed form. We further illustrate how the pricing methods can be

applied to more general settings. Examples include option pricing for currencies or

stocks with quadratic stochastic volatilities.

Our interests in the quadratic class come mainly from concerns on empirical applica-

tion. Recent empirical research within the affine framework of Duffie and Kan (1996)

indicates an inherent tension between (i) delivering good empirical performance in

matching salient features of the interest rate data and (ii) excluding positive proba-

bilities of having negative interest rates. For example, Backus, Telmer, and Wu (1999)

and Dai and Singleton (2000) find that incorporating Gaussian state variables in the

affine framework significantly increases the flexibility for model design and greatly

improves its empirical performance in capturing the conditional dynamics of interest

rates. Dai and Singleton (2001) and Duffee (2001) also find the need for applying

affine market price of risk on Gaussian state variables in explaining the dynamic be-

havior of expected excess returns to bonds and the anomalies surrounding the various

expectations hypotheses. Furthermore, Backus, Foresi, Mozumdar, and Wu (2001)

and Backus, Foresi, and Telmer (2001) find that incorporating a negative square-

root state variable also helps in explaining the expectation anomalies in both interest
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rates and currencies. Yet, incorporating either Gaussian variables or negative square-

root variables in the affine framework generates negative interest rates with positive

probabilities. Therefore, such practices raise concerns, among both practitioners and

academics, about potential arbitrage possibilities and their real-time applicability.

In contrast, the quadratic class combines Gaussian state variables with affine mar-

ket price of risk into a natural framework and guarantees positive interest rate by a

simple parametric restriction. Furthermore, the quadratic relation between interest

rates and the normal state variables adds great flexibility for model design. The em-

pirical works of Ahn, Dittmar, and Gallant (2001) and Leippold and Wu (2000) also

suggest that quadratic models can outperform affine models in explaining historical

bond price behavior in the United States.

Meanwhile, the analytical tractability of the quadratic class in terms of bond and

option pricing is comparable to that of the affine class. We show that, under the

quadratic class, the prices of assets, whose future payoffs are exponential-quadratic

in the state vector, are exponential-quadratic in the current state. Thus, the price

of a zero-coupon bond is merely a degenerating special case. The coefficients for the

quadratic functions can be solved analytically for the one-factor case and independent

multi-factor cases and are the solutions to a set of ordinary differential equations for

general multi-factor cases.

For derivative pricing, we consider the price of a general state-contingent claim and

label it as the state price in its broadest meaning. A wide variety of fixed income

derivatives can be written as an affine function of such a state price. Examples in-

clude European options on zero-coupon bonds, interest rate caps and floors, exchange

options on zero-coupon bonds, and even Asian options, the payoff of which depends
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on the path average of bond yields. We define two transforms on the general state

price and prove that both can be regarded as an asset with exponential-quadratic

payoffs and therefore both can be priced analytically, up to the solution of a series

of ordinary differential equations. The state price can then be obtained by a one-

dimensional numerical inversion of either transform, regardless of the dimension of

the state space.

The first transform is similar in nature to the transform defined in Bakshi and

Madan (2000) and Duffie, Pan, and Singleton (2000). It regards the state price as

an analogue of a cumulative density. The inversion is hence obtained by an extended

version of the Lévy inversion formula for cumulative density functions. The second

transform is inspired by Carr and Madan (1999) and regards the state price as an

analogue of the probability density function. For the second transform to be defined,

we need to extend the transform parameter to the complex plane. The transform is

hence often referred to as the generalized, or complex, transform. The choice of the

imaginary domain depends on the exact structure of the state-contingent payoff. We

identify the admissible domain for a wide variety of state-contingent claims. Given

the generalized transform, the inversion can be cast in a way where we can apply the

fast Fourier transform (FFT). We can hence rip significant gains in computational

efficiency.

The earliest example of quadratic models, to our knowledge, is the double square-

root model of Longstaff (1989) and the correction and generalization by Beaglehole

and Tenney (1991) and Beaglehole and Tenney (1992). El Karoui, Myneni, and

Viswanathan (1992) further develops this quadratic class along the lines of Beagle-

hole and Tenney (1991). Jamshidian (1996) obtains the ordinary differential equations
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for bond pricing for the general quadratic class and provides option pricing formu-

lae for a subset of the class (independent Markov process). The SAINTS (squared-

autoregressive-independent-variable nominal term structure) model of Constantinides

(1992) is also a subset of the quadratic class, where the pricing kernel is exogenously

specified as a time-separable quadratic function of the Markov process. Rogers (1997)

and Leippold and Wu (1999), starting with modeling the pricing kernel as a potential,

also use examples where the pricing kernel is a time-separable quadratic function of

the Markov process. Ahn, Dittmar, and Gallant (2001) present a list of assumptions

that essentially identify the complete quadratic class. Our paper clarifies the identifi-

cation problem by proving the necessity and sufficiency of the conditions. Our paper

further contributes to the literature by deriving asset pricing implications under the

quadratic framework.

Most recently, Filipović (2001) proves, under certain regularity conditions, that if

one represents the forward rate as a time-separable polynomial function of the diffu-

sion state vector, the maximal consistent order of the polynomial is two. Consistency

in this context, as discussed in Björk and Christensen (1999) and Filipović (2000),

means that the interest rate model will produce forward rate curves belonging to the

parameterized family. Thus, our identification of the quadratic class, together with

the identification of the affine class by Duffie and Kan (1996), essentially completes

the search for consistent time-separable polynomial term structure models.

The structure of the paper is as follows. The next section identifies the quadratic

class, discusses the specification of the pricing kernel, and analyzes the properties

of bond yields and forward rates under the quadratic class. Section III considers

the general asset pricing problem under the quadratic class and presents our two
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transform methods of option pricing. Section IV provide numerous examples and

other applications. Section V concludes. Additional technical details are provided in

the appendix.

II. Quadratic Term Structure Models

We identify the complete non-degenerating quadratic class of term structure models

in the terms of the Markov process and the instantaneous interest rate function. We

further discuss the specification of the pricing kernel and its impacts on bond pricing,

as well as on the pricing of other assets such as currencies and stocks. We then

conclude the section by an analysis of the properties of bond yields and forward rates

under the quadratic class.

A. Necessary and Sufficient Conditions

We fix a filtered complete probability space {Ω,F ,P, (Ft)0≤t≤T } satisfying the

usual technical conditions2 with T being some finite, fixed time. Suppose that X

is a Markov process in some state space D ⊂ Rn, solving the stochastic differential

equation:

(1) dXt = µ(Xt)dt + Σ(Xt)dWt,

where µ(Xt) is an n×1 vector defining the drift and Σ(Xt) is an n×n matrix defining

the diffusion of the process.

2For technical details, see, for example, Jacod and Shiryaev (1987).
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Further assume that for any time t ∈ [0, T ] and time-of-maturity T ∈ [t, T ], the

market value at time t of a zero-coupon bond with maturity τ = T − t is fully

characterized by P (Xt, τ) and that the instantaneous interest rate, or the short rate,

r, is defined by continuity:

r (Xt) ≡ lim
τ↓0

− ln P (Xt, τ)

τ
.

Definition 1. In the quadratic class of term structure models, the prices

of zero-coupon bonds, P (Xt, τ), are exponential-quadratic functions of the Markov

process Xt:

(2) P (Xt, τ) = exp
[
−X>

t A (τ) Xt − b (τ)> Xt − c (τ)
]
,

where A(τ) is a nonsingular n × n matrix, b(τ) is an n × 1 vector, and c(τ) is a

scalar.

P (Xt, 0) = 1 for all Xt ∈ D implies the boundary conditions: A (0) = 0, b (0) = 0,

and c (0) = 0. By relaxing the non-singularity restriction on A(τ), we would have

the affine class of Duffie and Kan (1996) as a subclass. The affine class is obtained

by setting A(τ) ≡ 0 for all τ . A singular A(τ) matrix would imply a mixture. While

we focus on the non-degenerating case to ease deposition and to avoid repetition,

relaxing the restriction is straightforward.3

3We thank Richard Green, Burton Hollifield, and Stanley Zin for pointing this out.
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We assume that there exists a so-called risk neutral measure, or a martingale

measure, P∗, under which the bond price can be written as

(3) P (Xt, τ) = E∗
[
exp

(
−

∫ T

t

r(Xs)ds

) ∣∣∣Ft

]
,

where E∗[·] denotes expectation under measure P∗. Under certain regularity condi-

tions, the existence of such a measure is guaranteed by no-arbitrage. The measure is

unique when the market is complete. Refer to Duffie (1992) for details. Let µ∗(Xt) de-

note the drift function of Xt under measure P∗. The diffusion function Σ(Xt) remains

the same under the two measures by virtue of Girsanov’s theorem.

The necessary and sufficient conditions for the quadratic class are identified under

measure P∗:

Proposition 1. The necessary and sufficient conditions for the quadratic class are

given by

1. The instantaneous interest rate r(Xt) is a quadratic function of Xt:

(4) r(Xt) = X>
t ArXt + b>r Xt + cr,

with Ar ∈ Rn×n, br ∈ Rn and cr ∈ R.

2. The drift of the Markov process µ∗(Xt) = a∗ + b∗Xt, a
∗ ∈ R, b∗ ∈ Rn is affine in

Xt

3. The diffusion Σ(Xt) ≡ Σ ∈ Rn×n is a constant matrix.

Refer to Appendix A for the proof. Similar conditions are listed in Ahn, Dittmar,

and Gallant (2001), Beaglehole and Tenney (1991), and El Karoui, Myneni, and
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Viswanathan (1992). We are the first to prove its necessity and sufficiency. Filipović

(2001) further proves that the quadratic class represents the highest order of polyno-

mial functions one can apply to consistent time-separable term structure models.

B. The Pricing Kernel

While the conditions are specified under the risk-neutral measure P∗, for most

empirical applications, it is imperative to identify the Markov process under the

objective measure P. To do so, we need to further specify the stochastic process for

the pricing kernel ξt, which relates future cash flows, Ks, s ∈ (t, T ], to today’s price,

pt, by,

pt = E
[∫ T

t

ξsKsds

ξt

∣∣∣∣Ft

]
,

where E is the expectation under the measure P. Given certain regularity conditions,

the conditions for the existence and uniqueness of the martingale measure are equiv-

alent to that for the existence and uniqueness of the pricing kernel. One can perform

a multiplicative decomposition on the kernel:

ξt = exp

(
−

∫ t

0

r(Xs)ds

)
Mt,

where the variable Mt can be interpreted as the Radon-Nikodým derivative, which

takes us from the objective measure P to the risk neutral measure P∗. We can further

decompose it into two orthogonal parts:

Mt ≡ dP∗

dP
= E

(
−

∫ t

0

γ(Xs)
>dWs

)
E

(
−

∫ t

0

γ>y dYs

)
,
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where E denotes the Doléans exponential4 and γ(Xt) is an Ft-adapted process satis-

fying the usual regularity conditions and is often referred to as the market price of

risk on the Markov process X. We use Yt to denote some state vector orthogonal to

Xt and γy its market price of risk. We leave the vector process Y and its market price

of risk unspecified as they do not affect our bond pricing result. Fisher and Gilles

(1999) label an independent vector similar to Y as neutrino factors and illustrate how

these factors can affect the pricing of other assets such as currencies and stocks, even

though they have no effect on bond pricing.

Furthermore, direct application of the Girsanov’s theorem implies that the drift of

the Markov process under measures P and P∗ are linked by:

(5) µ∗(Xt) = µ(Xt)− Σγ(Xt).

Hence, for µ∗(Xt) to be affine in Xt, we require that the affine combination of the

drift µ(Xt) and the market price of risk γ(Xt) be affine in Xt. Obviously, there is an

infinite number of combinations that result in an affine function in Xt. In principle,

one can always augment any arbitrary functions of Xt, say f(Xt), in µ(Xt) and at

the same time add a counterpart in γ(Xt), Σ−1f(Xt), such that they cancel each

other. The pricing of bonds will not be affected. In most empirical applications, one

restricts that µ(Xt) and γ(Xt) are nontrivially affine. By nontrivial, we mean that the

functions of Xt in µ(Xt) and γ(Xt) do not cancel each other. The canceling function

f(Xt) does not affect the term structure as the bond pricing relation only depends on

the risk-neutral drift. It does, however, has an impact on the time series properties

of interest rates. For example, if we incorporate a quadratic function into the drift

4See Jacod and Shiryaev (1987) for a classic reference.



10

µ(Xt) and cancel it out through a counterpart in the pricing kernel, interest rates are

still quadratic functions of the state vector, yet the time series properties of the state

vector are changed, as they are no longer normally distributed, as implied by an affine

drift. While not required, for tractability concerns, one often chooses γ(Xt) in such a

way that the two functions µ(X) and µ∗(X) are of the same type so that the Markov

processes are of the same type under the two measures. In addition, the specification

of the market price of risk needs to satisfy certain no-arbitrage constraints.

One can also exploit the indeterminacy implied by equation (5) in practical appli-

cations. For example, one can specify the objective drift to match the time series

properties of interest rates while the risk-neutral drift to match the cross-sectional

property (the term structure) at each day. The difference between the two drifts can

then be attributed to the market price of risk. The empirical work by Brandt and

Yaron (2001) is analogous in spirit to this philosophy. The outstanding issue, then, is

whether the implied market price of risk premium is consistent or supported by any

economy.

C. Identification of the Quadratic Class

For tractability, we adopt the ‘non-canceling’ restriction and specify that both the

drift µ(Xt) and the market price of risk γ(Xt) are affine in Xt. In particular, under

non-degenerating conditions and a possible rescaling and rotation of indices, we can

take the Markov process in (1) to have the following simplest possible form:

dXt = −κXtdt + dWt,(6)
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where κ ∈ Rn×n controls the speed of mean reversion. Such a process is often referred

to as a multivariate Ornstein-Uhlenbeck (OU) process. We scale the process to have

zero long-run mean and identity instantaneous volatility: Σ(Xt) = I.5

The affine market price of risk is specified as

γ(Xt) ≡ AγXt + bγ,(7)

with Aγ ∈ Rn×n and bγ ∈ Rn. The drift of X under the risk neutral measure P∗ is

hence given by

µ∗(X) = −bγ − (κ + Aγ) X.

κ∗ ≡ κ+Aγ controls the mean-reversion of the Markov process under the risk-neutral

measure P∗. The long run mean of the process under measure P∗ is − (κ + Aγ)
−1 bγ.

For identification purposes, we further restrict Ar to be symmetric with no loss

of generality as the asymmetric part has zero contribution to the quadratic form.

Furthermore, we restrict κ and Aγ to be lower triangular. For the OU process X to

be stationary under measure P, we need all the eigenvalues of κ to be positive, which

amounts to a positivity constraint on the diagonal values of the lower triangular

matrix. Analogously, for Xt to be stationary under measure P∗, we need all the

eigenvalues of κ∗ to be positive.

5Let X̃ denote a process with a general affine drift µ(X̃) = a + bX̃ and a general diffusion matrix
Σ(X̃) = Σ, the process in (6) is obtained by the following linear transformation:

X = Σ−1X̃ − b−1a,

with κ = −Σ−1bΣ. Obviously, if the short rate r is quadratic in X̃, it is also quadratic in its linear
transformation X. The transformation is only for identification reasons.
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Under these specifications, the coefficients of bond pricing {A(τ), b(τ), c(τ)} are

determined by the following ordinary differential equations (ODEs):6

∂A(τ)

∂τ
= Ar − A (τ) κ∗ − (κ∗)> A (τ)− 2A (τ)2 ;

∂b(τ)

τ
= br − 2A(τ)bγ − (κ∗)> b(τ)− 2A (τ)b (τ) ;(8)

∂c(τ)

τ
= cr − b(τ)>bγ + trA (τ)− b(τ)>b(τ)/2,

subject to the boundary conditions: A(0) = 0, b(0) = 0, and c(0) = 0. Finite

solutions to the ordinary differential equations always exist for τ ∈ [0, T ] with some

fixed and finite T . We need further constraint on the parameters to guarantee the

existence of a stationary state, i.e., the existence of finite solutions as T → ∞.

Closed-form solutions exist for one-factor and independent multi-factor cases. See,

for example, El Karoui, Myneni, and Viswanathan (1992) and Jamshidian (1996).

Solutions for more general cases can readily be computed numerically.

D. Properties of Bond Yields and Forward Rates

Under the “non-canceling” restriction between the drift µ(X) and the market price

of risk γ(X), the Markov process has a constant diffusion matrix and an affine drift

under both the objective measure P and the risk neutral measure P∗. Given that the

eigenvalues of κ and κ∗ are positive, Xt is stationary and distributed multivariate

normal both conditionally and unconditionally under both measures:

µ ≡ E [Xt] = θ;

6Derivations are available upon request. It follows from equation (19) in Appendix A.
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V ≡ E
[
(Xt − µ)2

]
=

∫ ∞

0

e−sκe−sκ>ds;

µt,τ ≡ E [XT |Ft] =
(
I − e−κτ

)
θ + e−κτXt;

Vτ ≡ E
[
(XT − µt)

2|Ft

]
=

∫ τ

0

e−sκe−sκ>ds,

where κ is replaced by κ∗ ≡ κ + Aγ under measure P∗ and θ = 0 under measure P

and − (κ + Aγ)
−1 bγ under measure P∗. We drop the subscript t for the conditional

variance since it is independent of the current state Xt and is only a function of the

time horizon τ = T − t.

Under the quadratic class, the yield y(Xt, τ) to a zero-coupon bond P (Xt, τ) is

given by

y(Xt, τ) = − ln P (Xt, τ)

τ
=

1

τ

(
X>

t A(τ)Xt + b(τ)>Xt + c(τ)
)
.

The instantaneous forward rate f(Xt, τ) with maturity τ is given by

f(Xt, τ) = −∂ ln P (Xt, T − t)

∂T
= X>

t

[
∂A(τ)

∂τ

]
Xt +

[
∂b(τ)

∂τ

]>
Xt +

∂c(τ)

∂τ
.

Therefore, under the quadratic class, both bond yields and forward rates are qua-

dratic forms of normal variates, the properties of which are well-documented in the

literature. Reviews of quadratic forms in normal variables may be found, for exam-

ple, in Holmquist (1996), Johnson and Kotz (1970), Kathri (1980), and Mathai and

Provost (1992). In particular, the rth moments and cumulants, as well as its moment

generating functions, are known in closed form:

Property 1. Let x be a n-dimensional vector having the multivariate normal dis-

tribution Nn(µ, V ), let Q(x) = x>Ax, qi = x>Aix, and Qk =
∏k

i=1 x>Aix =
∏k

i=1 qi,

where Ai are n× n matrices. Then
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1. The rth cumulant of Q(x) is

κr = 2r−1(r − 1)!
[
tr((AV )r) + rtr((AV )r−1Aµµ>

]
, r ≥ 1.

2. The moment generating function of q = (q1, q2, · · · , qk)
> is

E
(
es′q

)
= |In − C|−1/2 exp

[
−1

2
µ>V −1µ +

1

2
µ>(In − C)−1V −1µ

]
,

where C =
∑k

j=1 2sjAjV .

3. The expectation of Qr = q1q2 · · · qr is

E [Qr] = (2r)!

(
r⊗

j=1

aj

)>

Sn12r

r∑
i=0

µ<2r−2i>
⊗

σ<i>
2

i!(2r − 2i)!2i
,

where ai = vecAi and σ2 = vecV .

The vec operator stacks the columns of the matrix into a vector.
⊗

denotes

the Kronecker product. A<r> denotes a Kronecker product of the form: A<r> =
⊗r

i=1 A = A1

⊗
A2

⊗ · · ·Ar with the convention that A<0> = 1. The symmetrizer

Sn1r =
∑

π

Pn1r(π)/r!

where the summation extends over all r! permutations π in Sr, is a projection operator

of the rth tensor power of Rn onto the rth completely symmetric space over Rn.

Actually, for any matrix A, x>Ax = x>
(

A+A>
2

)
x since the asymmetric part A−A>

2

of A gives zero contribution: x>
(

A−A>
2

)
x = 0. In the quadratic class specification,

we hence assume Ar with no loss of generality. The symmetrizer becomes an identity

matrix when the weighting matrix Ai is symmetric.
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The fact that moments and cross moments of all orders for bond yields, forward

rates, and bond prices exist in analytical forms illustrates how tractable quadratic

models are. Such results on moment conditions not only facilitate our property anal-

ysis for the purpose of model design but also simplify estimation, especially when the

generalized methods of moments are implemented.

While the analytical tractability of the quadratic model is comparable to that of

the affine class, the two classes often imply different behaviors, as discussed below.

D.1. Nonlinearity in interest rate dynamics: The role of the quadratic term. Nu-

merous studies have documented nonlinearities in the dynamics of interest rates.

Examples include Ait-Sahalia (1996), Pfann, Schotman, and Tschernig (1996), Con-

ley, Hansen, Luttmer, and Scheinkman (1997), and Stanton (1997). The quadratic

term in bond yields and forward rates provides a direct mechanism to add nonlin-

earity to the dynamics. As an example, the following proposition illustrates how a

one-factor quadratic model can generate rich and nonlinear dynamics in terms of the

autocorrelation functions of bond yields.

Proposition 2. A one-factor quadratic model can generate (1) a more slowly de-

caying autocorrelation function than implied by an AR(1) process, (2) a rich (upward

or downward sloping) term structure of persistence for bond yields and forward rates.

Refer to Appendix B for the proof. Intuitively, a one-factor quadratic model can

be thought of as a two-factor affine model with one factor being the original Gaussian

factor and the other factor being the square of the Gaussian factor. The autocorre-

lation function of bond yields is hence a weighted average of these two factors. Rich
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dynamics are generated through the interaction between these two factors. For ex-

ample, to match an autocorrelation, ρ, of an AR(1)-type process, the autocorrelation

of the Gaussian factor needs to be set higher due to its weighted average with the

square. Yet, the decay of the weighted average is dominated by the Gaussian factor

and is hence slower than that of the AR(1) process. Furthermore, the relative weight

between the Gaussian factor and its square is determined by their respective coeffi-

cients A(τ) and b(τ) and is therefore maturity dependent. Thus, the autocorrelation

can be different for yields of different maturities due to the relative weight change

although the whole yield curve is driven by merely one Gaussian factor.

The proposition illustrates that even a one-factor quadratic model can generate a

rich dynamics for the autocorrelation function and a non-trivial term structure across

maturities. Such features cannot be obtained from one-factor AR(1) type models.

Within the affine class, one often uses multiple factors to generate the observed non-

linearities in the interest rate dynamics. In contrast, nonlinearity is intrinsically built

into the quadratic model.

Most recently, Chapman and Pearson (2000) and Duffee and Stanton (2001) find

that econometric problems make even linear models look nonlinear in small samples

and thus cast doubt on the robustness of the previous evidence on nonlinearities. Nev-

ertheless, the rich dynamics generated by the quadratic model illustrates its flexibility

for model design.

D.2. Affine market price of risk. Flexible forms for market price of risk have been

proven to be vital in capturing the dynamic behavior of the expected excess returns to

bonds. For example, Duffee (2001) finds that the “complete affine models” of Dai and
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Singleton (2000) perform poorly in forecasting future changes in Treasury yields in

particular because the market price of risk is restricted to be a multiple of the diffusion

of the state vector. The performance can be greatly improved by using state variables

that have constant diffusions (e.g. the Ornstein-Uhlenbeck process) and applying a

general affine market price of risk to such variables. Dai and Singleton (2001) confirm

that such a specification adds great ease in capturing both the mean yield curve and

the anomalies in the expectation hypothesis. Quadratic models combines Gaussian

state variables and market price of risk into a natural framework and hence is poised

to perform well in capturing the dynamics behavior of expected excess returns to

both bonds and currencies.

Furthermore, if one intends to incorporate an affine market price of risk in the affine

class, the diffusion of bond yields is forced to be constant as one is forced to apply

the Ornstein-Uhlenbeck process as the state variable,7 unless a separate square-root

factor is incorporated. In contrast, under the quadratic class, although one is also

using the Ornstein-Uhlenbeck process, the quadratic transformation generates state-

dependent diffusion for bond yields and forward rates. For example, the diffusion

term of the bond yield y(Xt, τ) is given by (2A(τ)Xt + b(τ)) /τ , which is affine in Xt

and hence state dependent. Similarly, the diffusion of the forward rate is also affine

in Xt.

D.3. The virtue of Ornstein-Uhlenbeck processes. Under the quadratic class, the Markov

process follows a multivariate Ornstein-Uhlenbeck (OU) process. It has been found

7As discussed before, this is a must only when one intends to exclude the canceling functions and
to retain the affine structure for the drift under both measures.
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under different circumstances that the OU process renders one with more flexibili-

ties in matching salient features of the interest rate data than the square-root pro-

cesses also used in affine models. For example, Dai and Singleton (2000) and Backus,

Foresi, and Telmer (2001) both observe that the unconditional correlation between

two square-root state variables can only be positive, a restriction that runs against ev-

idence. The correlations between OU processes, in contrast, have no such restrictions

and can be either negative or positive.

It has been found that flexible correlation structures between state variables signif-

icantly improve the model’s empirical performance. For example, one often observes

a hump shape in the mean term structure of the conditional variance of interest

rates. Backus, Telmer, and Wu (1999) find that strong interactions between state

variables are necessary to generate such hump dynamics. While a multi-factor corre-

lated square root process can generate a hump shape, experience indicates that the

resulting humps are often not large enough to fit the data. The flexible correlation

structure for the multivariate OU process make it a natural choice in capturing such

conditional dynamics.

D.4. Positive interest rates. In regard to limits about the square-root process, the

OU process has regained its popularity in empirical applications within the affine

framework. See most recent applications in Backus, Telmer, and Wu (1999), Duffee

(2001), and Dai and Singleton (2001). In addition, Backus, Foresi, Mozumdar, and

Wu (2001) find that some of the limitations of the square-root process can be mit-

igated by using a negative square-root process as a state variable. However, affine

models with either OU processes or negative square-root processes imply positive
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probabilities of having negative interest rates. While it may be a worthwhile sacri-

fice if the empirical performance of the model can be significantly improved and if

the real probability of having negative interest rates, albeit positive, is small given

appropriate choices of parameter estimates, some practitioners and academics alike

hold strong opinions against term structure models that imply negative interest rates.

Similar concerns also arise when one uses the term structure analogue to model sto-

chastic volatility in currencies and stocks (see Section IV). These concerns can be

partially relieved under the quadratic class by restricting Ar to be positive definite

and by setting cr = 1
4
b>r A−1

r br. Under such a restriction, the lower bound for the

instantaneous interest rate is zero. Pan (1998) guarantees that the lower bound of

all interest rates is zero by further restricting b(τ) = 0 and c(τ) = 0 for all τ . Such

restrictions, however, lead to a degeneration of the quadratic structure such that it

is equivalent to a parameterized one-factor affine model.

III. Asset Pricing

In this section, we first extend the bond pricing result to assets with general

exponential-quadratic type payoffs and then apply the result to the pricing of state-

contingent payoffs.

A. Assets with Exponential-Quadratic Payoffs

Consider an asset which has the following exponential-quadratic payoff structure

at time T :

(9) exp

(
−q1(XT )−

∫ T

t

q2(Xs)ds

)
,
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where qj(X) denotes a quadratic function of X, namely qj(X) = X>AjX +b>j X +cj.

The quadratic form qj(Xt) can either be regarded as interest rates (bond yield or

forward rate) or rates of return on other assets. The integral can be regarded either

as an average rate in Asian style payoffs or as an cumulation of continuous payoffs.

For example, if we let q1(XT ) = τy(XT , τ) and q2 = 0, the payoff would be a τ -year

zero-coupon bond; If we set q1(Xt) = −τy(XT , τ) and q2 = 0, the payoff would be

equivalent to a gross return on a τ -year simple rate:

1 + τRτ = eτy(XT ,τ).

Due to the additivity of quadratic forms, we can also regard q1 and/or q2 as linear

combinations of many different interest rates (quadratic forms).

We show that assets with such general payoff structures can be priced analytically

under the quadratic framework:

Proposition 3. Under the quadratic class, the time-t price of an asset with a payoff

function as in (9) is exponential-quadratic in Xt:

ψ(q1 +

∫ T

t

q2, τ) ≡ E∗
[
exp

(
−

∫ T

t

r(Xs)ds

)
exp

(
−q1(XT )−

∫ T

t

q2(Xs)ds

)∣∣∣∣Ft

]

= exp
(−X>

t A(τ)Xt − b(τ)>Xt − c(τ)
)
.(10)

The coefficients A(τ), b(τ) and c(τ) satisfy the ordinary differential equations in (8)

with boundary conditions A(0) = A1, b(0) = b1, and c(0) = c1 and with {Ar,br, cr}
being replaced by {Ar + A2,br + b2, cr + c2}.

The proof is given in Appendix C. Note that the price of a zero-coupon bond is just

a degenerating special case of the general payoff structure in (9) with q1 = q2 = 0.
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B. State-Contingent Claims

Now consider the time-t price of a contingent claim that pays exp(−qi(XT ) at time

T in case qj(XT ) ≤ y is true for some fixed number y:

(11) Gqi,qj
(y, τ) ≡ E∗

[
exp

(
−

∫ T

t

r(Xs)ds

)
e−qi(XT )Iqj(XT )≤y|Ft

]
,

where y can be regarded as some transform of a strike and Ix is an indicator function:

it equals one when x is true and zero otherwise. As an example, when y = ∞, the

claim reduces to the asset priced in (10): Gqi,qj
(∞, τ) = ψ(qi, τ). When we further

assume qi = 0, the claim is equivalent to a zero-coupon bond: G0,qj
(∞, τ) = P (Xt, τ).

On the other hand, for any fixed number y, if we set qi = 0, G0,qj
(y, τ) represents a

state price: the price of an asset that pays one dollar if and only if the state event

qj(XT ) ≤ y occurs. In what follows, we would refer to Gqi,qj
(y, τ) as a state price in

its broadest meaning. We also relax the notation on quadratic forms and let qi and qj

denote any quadratic forms, or integral of quadratic forms, or any affine combinations

of them. In the next section, we illustrate that many interest rate derivatives such

as European options on zero-coupon bonds, interest rate caps and floors, exchange

options, and even Asian style options can all be expressed in terms of such a general

state price.

In what follows, we define two types of transforms on the state price and prove

that both transforms can be regarded as assets with exponential-quadratic payoffs

and therefore both can be solved analytically. The state price can then be computed

by numerical inversion.
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B.1. Fourier Transform Method. Let χqi,qj
(z) denote the Fourier transform of Gqi,qj

(y)

defined as

(12) χqi,qj
(z) ≡

∫ +∞

−∞
eizydGqi,qj

(y) , z ∈ R,

where we omit the second argument in τ in the state prices and their transforms in

case no confusion occurs. The following proposition derives a closed-form solution for

this transform.

Proposition 4. Under the quadratic class, the Fourier transform of the state price

Gqi,qj
(y), defined in (12), is equivalent to the price of an asset with exponential-

quadratic terminal payoffs:

χqi,qj
(z) = ψ(qi − izqj).

Proof. The result is obtained by applying Fubini’s theorem and applying the result

on the Fourier transform of a Dirac density.

The Fourier transform of the state price Gqi,qj
(y) can be regarded as an asset

price characterized in (10). Here of course, the term “asset price” has to be used with

caution since the “asset” has a complex-valued payoff function. But more importantly,

Proposition 4 implies that the Fourier transform of the state-contingent claim retains

the exponential quadratic form and hence the tractability of the quadratic class.

Given the Fourier transform χqi,qj
(z) = ψ (qi − izqj), the state price Gqi,qj

(y) can

be obtained by an extended version of the Lévy inversion formula, which we prove in

Appendix D:
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Proposition 5. The state price Gqi,qj
(y) is given by the following inversion formula:

Gqi,qj
(y) =

χqi,qj
(0)

2
+

1

2π

∫ ∞

0

eizyχqi,qj
(−z)− e−izyχqi,qj

(z)

iz
dz.

The above inversion formula involves a numerical integration, similar to the nu-

merical valuation of the normal cumulative densities in the Black-Scholes formula.

The prices of many existing fixed income derivatives can be expressed as functions of

the general state price Gqi,qj
(y). We can therefore price them through the inversion

formula given in Proposition 5. Duffie, Pan, and Singleton (2000) applies a similar

approach to asset pricing under an affine jump-diffusion environment.

The key advantage of such a transform method for derivative pricing is its great

computational efficiency. In particular, regardless of the dimension of the state space,

we only need one numerical integration for the inversion. In contrast, methods based

on Arrow-Debreu prices8 in, for example, Beaglehole and Tenney (1991) and Foresi

and Steenkiste (1999), require at least as many numerical integrations (and in general

more than) as there are state space dimensions. In these methods, one first prices

Arrow-Debreu securities, which are claims with a Dirac function type payoff. Prices of

general state-contingent claims are then calculated by integrating the Arrow-Debreu-

price-weighted cash flows over contingent states. In a general affine or quadratic

framework, the Arrow-Debreu price is obtained in a way analogous to our transform

method. Further numerical integrations over the state space, and sometimes the time

space, need to be performed, finally yielding the state contingent claim prices.

8They are also referred to as the Green’s functions of the state process.
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Obviously, for state-contingent claims of the type in (11), such a procedure is

deliberately inefficient. A more direct approach like ours is called for. On the other

hand, for claims with more complex payoffs that cannot be represented as a simple

function of Gqi,qj
(y), one may need to resort to the Arrow-Debreu price approach or

other numerical procedures.

B.2. Generalized Fourier Transform and FFT. Traditional numerical integration meth-

ods for the inversion in Proposition 5, such as the quadrature method used in Singleton

(1999) and Duffie, Pan, and Singleton (2000), can be inefficient due to the oscillating

nature of the Fourier transform. Instead of working with the inversion formula in

Proposition 5, we can also cast the problem in a way such that we can apply the fast

Fourier transform (FFT) and thus take full advantage of its considerable increase in

computational efficiency.

For this purpose, let ϕqi,qj
(z) denote yet another Fourier transform of Gqi,qj

(y)

defined as,

(13) ϕqi,qj
(z) ≡

∫ ∞

−∞
eizyGqi,qj

(y) dy, z ∈ C ⊆ C.

Comparing the two Fourier transforms defined in (12) and (13), we see that Gqi,qj
(y) is

treated as an analogue of a cumulative density function in χqi,qj
(z) while it is treated

as a probability density in ϕqi,qj
(z). But more importantly, the transform parameter

z in (13) is extended to the complex plane with C being the complex domain of

z where ϕqi,qj
(z) is well-defined. A Fourier transform that extends to the complex

plane is often referred to as the generalized, or complex, Fourier transform. Refer

to Titchmarsh (1975) for a comprehensive treatment. As it turns out later, such a
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extension and the choice of the complex domain are critical for the application of the

FFT algorithm.

Proposition 6. Under the quadratic class, the generalized Fourier transform of the

state price Gqi,qj
(y) defined in (12), when well-defined, is given by:

ϕqi,qj
(z) =

i

z
ψ(qi − izqj).

The result is obtained via integration by parts and Proposition 4:

ϕqi,qj
(z) = Gqi,qj

(y)
eizy

iz

∣∣∣∣
+∞

−∞
− 1

iz

∫ ∞

−∞
eizydGqi,qj

(y) =
i

z
ψ(qi − izqj).

Since Gqi,qj
(∞) = ψ(qi) > 0, the limit term is well-defined and vanishes only when

Im z > 0. In general, the admissible domain C of z depends on the exact payoff

structure of the contingent claim. Table 1 present the generalized Fourier transforms

of various contingent claims and their respective admissible domain for the value of

z. Similarly, they are derived via integration by parts and by checking the boundary

conditions as y → ±∞. Carr and Madan (1999) consider the special case of pricing

a call option on stocks and refer to the imaginary part of z as the dampening factor

as the call option price needs to be “dampened” for its transform to be finite.

Let z = zr + izi, where zr and zi denote, respectively, the real and imaginary part

of z. Let ϕ(z) denote the generalized Fourier transform of some state price function

G(y), which can be in any of the forms presented in Table 1. Then, given that ϕ(z) is

well-defined, the corresponding state price function G(y) is obtained via the inversion
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Table 1. Generalized Fourier Transforms of Various Contin-
gent Claims

(α, β, a, b are real constants with α < β.)

Contingent Generalized transform Restrictions
Claim −izϕ(z) on Im z

Gqi,qj
(y) ψ(qi − izqj) (0,∞)

Gqi,qj
(−y) ψ(qi + izqj) (−∞, 0)

eαyGqi,qj
(y) ψ(qi − (α + iz)qj) (α,∞)

eβyGqi,qj
(−y) ψ(qi + (β + iz)qj) (−∞, β)

aeαyGqi,qj
(y) aψ(qi − (α + iz)qj)

+beβyGql,qm(−y) +bψ(ql + (β + iz)qm) (α, β)

formula:

G(y) =
1

2

∫ izi+∞

izi−∞
e−izyϕ(z)dz.

This is an integral along a straight line in the complex z-plane parallel to the real

axis. zi can be chosen to be any real number satisfying the restriction in Table 1 for

the corresponding state price function. The integral can also be written as

G(y) =
eziy

π

∫ ∞

0

e−izryϕ(zr + izi) dzr,

which can be approximated on a finite interval by

(14) G(y) ≈ eziy

π

N−1∑

k=0

e−izr(k)yϕ(zr(k) + izi) ∆zr,

where zr(k) are the nodes of zr and ∆zr the grid of the nodes.

Recall that the FFT is an efficient algorithm for computing the discrete Fourier

coefficients. The discrete Fourier transform is a mapping of f = (f0, ..., fN−1)
> on the
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vector of Fourier coefficients d = (d0, ..., dN−1)
>, such that

(15) dj =
1

N

N−1∑

k=0

fke
−jk 2π

N
i, j = 0, 1, ..., N − 1.

FFT allows the efficient calculation of d if N is an even number, say N = 2m, m ∈ N.

The algorithm reduces the number of multiplication in the required N summations

from an order of 22m to that of m2m−1, a very considerable reduction. By a suitable

choice of ∆zr and a discretization scheme for y, we can cast the approximation in the

form of (15) to take advantage of the computing efficiency of FFT. For instance, if

we set zr(k) = ηk and yj = −b + λj, and require ηλ = 2π/N , we can cast the state

price approximation in (14) into the form of FFT summation in (15),

G(yj) ≈ 1

N

N−1∑

k=0

fke
−jk 2π

N
i, j = 0, 1, · · · , N − 1,

with

fk =
N

π
eziyj+ibzr(k)ηϕ(zr(k) + izi).

Under such a discretization scheme, the effective upper limit for the integration is

a = Nη, the range of strike level y is from −b to Nλ − b, with a regular spacing of

size λ. The restriction that ηλ = 2π/N indicates the trade-off between a fine grid in

strike and a fine grid in summation. Thus, if we choose η small to obtain a fine grid

for the integration, then we can only compute state prices G at strike spacings that

are relatively large. To increase the accuracy of integration with relative fine grids

on strike y, one can also incorporate Simpson’s rule into the summation:

G(yj) ≈ 1

N

N−1∑

k=0

fke
−jk 2π

N
i

[
1− 1

3
(−1)j − 1

3
δj

]
,
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where δn is the Kronecker delta function that is unity for n = 0 and zero otherwise. See

Carr and Madan (1999) for an application to pricing call options on stocks. Obviously,

such an algorithm can also be applied to the affine economy. Application of the FFT

algorithm drastically increases the computational efficiency as one can obtain option

prices on the whole spectrum of strikes with merely one FFT transformation. In

particular, in some computing languages (such as matlab) that allow for vectorizing

the FFT algorithm, option prices on the whole surface of strike and maturity are

obtained at one stroke.

IV. Examples and Applications

A. Examples of Fixed Income Derivatives

A.1. European options on bonds. Let Ct denote a European call option at time t on

a zero-coupon bond P (Xt, τp) of maturity τp. Let τc denote the maturity of the call

option, and K the strike price. Since the bond price P (XT , τp) has a quadratic form,

we write P (XT , τp) ≡ e−q(τp)(XT ). Then, from equation (11) we obtain

Ct = Gq(τp),q(τp)(− ln K, τc)−KG0,q(τp)(− ln K, τc).

Similarly, the price of a put option on the same bond with the same maturity τc and

strike price K can be written as:

Pt = KG0,−q(τp)(ln K, τc)−Gq(τp),−q(τp)(ln K, τc).

The pricing formulae for caps and floors take a similar structure as they can be written

as options on bonds.
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A.2. Exchange options. The payoff of an exchange option on zero-coupon bonds can

be written as

(m1P (XT , τ1)−m2P (XT , τ2))
+ ,

which denotes the right to exchange m2 bonds with maturity τ2 for m1 bonds with

maturity τ1 at time T = t + τ . Again, straightforward application of the state price

definition yields the price of such an exchange option,

M(t, τ, τ1, τ2) = m1Gq(τ1),q(τ1)−q(τ2)

(
ln

m1

m2

)
−m2Gq(τ2),q(τ1)−q(τ2)

(
ln

m1

m2

)
.

Note that given the exponential-quadratic form for the bond prices, the exercise

condition m1P (XT , τ1) ≥ m2P (XT , τ2) implies

[q(τ1)− q(τ2)] (XT ) ≤ ln m1/m2.

A.3. Asian options. Consider an Asian-style call option whose payoff depends on the

path average of the fixed maturity (τp) bond yields over the maturity (τc = T − t) of

the option: (
exp

(
−τp

τc

∫ T

t

y(Xs, τp)ds

)
−K

)+

.

The price of such an option has the representation

CA
t = GR q(τp),

R
q(τp)(ln K, τc)−KG0,

R
q(τp)(ln K, τc).

An Asian put option is priced in very much the same way:

PA
t = KG0,− R q(τp)(− ln K, τc)−GR q(τp),− R q(τq)(− ln K, τc).
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Given the path-dependence of the Asian payoff, the tractability of the pricing relation

is remarkable.

B. Option Pricing Under Quadratic Stochastic Volatility Models

As the affine jump-diffusion framework has been widely applied to stochastic volatil-

ity modeling,9 we illustrate how the quadratic framework can also be applied to model

stochastic volatility.

Let S denote the price of an asset (stock or exchange rate), which is assumed to

satisfy the following stochastic differential equation under measure P∗:

dSt/St = (r − δ) dt +
√

v(t)dZt,

where Zt denotes a standard scalar Brownian motion, r the instantaneous interest

rate, and δ the continuously compounded dividend yield for stocks and the foreign

interest rate for currencies. To be consistent with the quadratic framework, we assume

that both r and δ are quadratic functions of Markov process X.

The instantaneous variance rate of the process is denoted by v(t). We allow it

to be stochastic and model it by a quadratic function of the Markov process Xt:

v(t) ≡ v(Xt):

v(Xt) = X>
t AvXt + b>v Xt + cv.

Similar to instantaneous interest rate, positivity of variance rate can be guaranteed

easily by a simple parametric constraint.

9Prominent examples include, Bakshi, Cao, and Chen (1997), Bates (1996), Bates (2000), and Heston
(1993).
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Further assume that Zt is independent of the Brownian motion vector Wt in Xt.

The generalized Fourier transform of the log return sτ = ln ST /St over maturity

τ = T − t is given by

ψs(u) ≡ E∗
[
eiusτ

∣∣Ft

]
, u ∈ C

= E∗
[
exp

(∫ T

t

(iur(Xs)− iuδ(Xs)− λv(Xs))ds

)∣∣∣∣Ft

]
,(16)

where λ = (iu + u2) /2. The last line is obtained by the principle of conditional

expectation.

Note that by re-defining an interest rate r̃(Xt) = −iur(Xt) + iuδ(Xt) + λv(Xt),

the transform ψs(u) has the same form as the bond pricing formula in (3) and with

the same boundary condition: ψs(u) = 1 at τ = 0. We can thus solve the transform

analytically as an exponential-quadratic function of Xt, with coefficients determined

by the series of ordinary differential equations in (8).

Under such a set-up, interest rates, dividend yields (or foreign interest rates), and

stochastic volatility are tightly linked together by the Markov process Xt. Such a

tight link, however, can be broken easily, if necessary, by expanding the state vector

and assuming that r, δ, and v are each a quadratic form of a subsect of the state

vector. The subsect can be orthogonal or overlapping, depending on the required

correlation structure. Alternatively, as is common practice for option pricing on

stocks and currencies, we can simply assume constant interest rates and dividend

yields and factor out the term exp(−(r − δ)τ). The residual expectation still has

the bond pricing form with interest rate redefined as r̃(Xt) = λv(Xt). An analytical

solution is readily obtained. Empirically, Bakshi, Cao, and Chen (1997) has found
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that incorporating stochastic interest rate does not significantly improve the model’s

performance in pricing S&P 500 index options.

Given the transform ψs(u) on asset returns and analogous to the previous section,

we can derive transforms on many state-contingent claims with the asset as the un-

derlying. In particular, consider the time-t price of a contingent claim that pays

exp(−bsτ ) at time T in case csτ ≤ y is true for some fixed number y:

(17) Gb,c (y) ≡ e−rτE∗
[
e−bsτ Icsτ≤y|Ft

]
,

where we assume constant interest rate r for clarity.

The two Fourier transforms of the state price G are given by

χb,c(z) ≡
∫ ∞

−∞
eizydGb,c(y) = e−rτψs(zc + bi), z ∈ R

ϕb,c(z) ≡
∫ ∞

−∞
Gb,c(y)dy =

i

z
e−rτψs(zc + bi), z ∈ C ⊆ C

where ψs(·) is the Fourier transform of the asset return sτ defined in (16). The proofs

are analogous to those for Propositions 4 and 6. If we keep the quadratic interest

rate assumption, the interest rate term will be absorbed into a modified transform

ψs(·). In solving the coefficients for the modified transform ψs(·), we need to modify

the interest rate term yet again: ˜̃r(Xt) = r(Xt) + r̃(Xt).

Given the two transforms, state price Gb,c(y) can be solved numerically by either

of the two inversion methods proposed in the previous section. Many European style

options can be written in terms of Gb,c(y). For example, the price of a call option on
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the asset with strike K can be written as

Ct = StG−1,−1 (ln(St/K))−KG0,−1 (ln(St/K)) .

The price of a put option with the same strike K is given by

Pt = KG0,1 (− ln(St/K))− StG−1,1 (− ln(St/K)) .

C. Estimation of Quadratic Models

Regarding ψs(u) in (16) as the characteristic function of the return sτ , we can invert

it to obtain the conditional density of the asset return. An analytical form for ψs(u)

is hence also useful for maximum likelihood calibration of the model. Characteristic

functions for bond yields and forward rates can also be obtained from Proposition 10

by setting r(Xs) = q2(Xs) = 0 and letting q1(XT ) = −iuy(XT , τp).
10 For example,

Singleton (1999) exploits the knowledge of ψ to derive maximum likelihood estimators

for affine models. He obtains the conditional density via inverting the characteristic

function. Chacko (1999) and Chacko and Viceira (2000) also propose a spectral

generalized methods of moments estimation technique based on the characteristic

function.

However, due to the nonlinear relation between yields and the state vector under

the quadratic framework, identifying the state variables from the yields becomes a

more challenging task. That also limits the application of the maximum likelihood

10The unconditional density can also be obtained similarly by letting T →∞, given that a stationary
state exists. Characteristic functions under the objective measures can also be obtained analogously
by replacing µ∗(Xt) with µ(Xt) in the partial differential equation in (19) or by setting Aγ and bγ

to zero in the ordinary differential equations in (8).
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calibration as the conditional densities derived above are conditional on the state

vector.

V. Conclusion

We identify and characterize a class of term structure models and price assets

with general payoff structures under such a class. In particular, we propose two

transform methods for efficiently pricing a wide variety of state contingent claims.

The transform methods can also be applied to econometric estimation and to option

pricing on other securities, such as currencies and stocks, with quadratic stochastic

volatilities. These results lay a solid foundation for future empirical applications of

the quadratic class to term structure modeling, fixed income derivatives pricing, and

asset pricing in general.
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Appendix

A. Proof of Proposition 1

Assume that the bond pricing formula under the risk-neutral measure yields finite

bond prices,

P (Xt, τ) = E∗
[
exp

(
−

∫ T

t

r(Xs)ds

) ∣∣∣Ft

]
.

Applying the Feynman-Kac formula gives

(18) r(Xt)P (Xt, τ) =
∂P (Xt, τ)

∂t
+A∗P (Xt, τ),

where A∗ denotes the infinitesimal generator on Xt under measure P∗:

A∗P (Xt, τ) ≡
[
∂P (Xt, τ)

∂Xt

]>
µ∗ (Xt) +

1

2

n∑
i=1

n∑
j=1

[
∂2P (Xt, τ)

∂Xt∂X>
t

]

ij

[
σ (Xt) σ (Xt)

>
]

ij
,

where the subscript ij denotes the (i, j)th element of the matrix in the bracket.

Assume that indeed P (Xt, τ) has an exponential-quadratic form as in (2), since the

instantaneous interest rate r(Xt) is assumed to be well-defined by continuity, the

exponential-quadratic form for the bond price implies that r(Xt) is also a quadratic

function of Xt. Evaluate the partial derivatives of the bond price P (Xt, τ) in (2),

plug them into the partial differential equation in (18), and rearrange, we have

r (Xt) = X>
t

[
∂A (τ)

∂τ

]
Xt +

[
∂b (τ)

∂τ

]>
Xt +

∂c (τ)

∂τ

− [2A (τ) Xt + b (τ)]> µ∗(Xt)(19)

−1

2

n∑
i=1

n∑
j=1

[
2A (τ)− [2A (τ) Xt + b (τ)] [2A (τ) Xt + b (τ)]>

]
ij

[
σ (Xt) σ (Xt)

>
]

ij
,
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for all τ ≤ T and for all X ∈ D. Under mild non-degeneracy conditions (e.g. A(τ)

being nonsingular), equation (19) and the principle of matching imply that

1. σ(Xt)σ(Xt)
> is a constant matrix, independent of Xt.

2. µ∗(Xt) is affine in Xt.

This provides the necessity part.

Conversely, suppose that µ∗(Xt) is affine in Xt and σ(Xt) is a constant matrix.

Consider the candidate exponential-quadratic function for the bond price given in (2)

for some A(τ), b(τ) and c(τ). If we can choose A(τ), b(τ) and c(τ) so that (19) is

satisfied, then the bond price will indeed be exponential-quadratic in Xt. Given that

we have a finite solution to the ordinary differential equations in (8), there is indeed

a solution for A(τ), b(τ) and c(τ) satisfying (19), implying that the bond price is

exponential-quadratic in Xt, as in (2). This proves the sufficiency part.

B. Proof of Proposition 2

Under the specification of a one-factor quadratic term structure model, the variance

and auto-covariance of bond yields yτ
t with maturity τ are given by

V ar(yτ
t ) = 2

(
A(τ)

τ
V

)2

+

(
b(τ)

τ

)2

V ;

Cov(yτ
t+n, yτ

t ) = φ2n2

(
A(τ)

τ
V

)2

+ φn

(
b(τ)

τ

)2

V,
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where φ = e−κh denotes the autocorrelation of the Markov process X with discrete

interval h. The nth order autocorrelation function is defined as

ρ(n) =
Cov(yτ

t+nh, y
τ
t )

V ar(yτ
t )

.

Straightforward manipulation yields equation

a(τ)φ2n + b(τ)φn = ρ(n),

with the weights given by

a(τ) =
2(A(τ)V )2

2(A(τ)V )2 + b(τ)2V
; b(τ) =

b(τ)2V

2(A(τ)V )2 + b(τ)2V
.

Note that the weights a(τ) and b(τ) are positive and sum to one. In case of the short

rate, we replace A(τ)/τ and b(τ)/τ with Ar and br.

(1) For any AR(1) type process, the nth-order autocorrelation, ρAR(n), is equal to

the nth-power of its first-order autocorrelation, ρAR(1)n:

ρAR(n) = ρAR(1)n.

Let ρ(n) denote the nth order autocorrelation of the one-factor quadratic model, we

claim that, for any order n ≥ 1, given that ρAR(n) = ρ(n), we have ρAR(2n) < ρ(2n).

To see this, we compute the difference between the two:

ρ(2n)− ρAR(2n) = ρ(2n)− ρAR(n)2

= a(τ)φ4n + b(τ)φ2n − (
a(τ)φ2n + b(τ)φn

)2

= a(τ)b(τ)
(
φ2n − φn

)2
> 0,
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which is always greater than zero since the weights a(τ) and b(τ) are positive. Since

this result holds for any n ≥ 1, it implies that the autocorrelation function of an

AR(1) specification decays faster than implied by a quadratic one-factor model.

(2) The nth order autocorrelation is determined by the autocorrelation of the state

variable X and the relative weight a(τ) and b(τ) = 1 − a(τ), which depends on the

maturity of the bond yield. The term structure for the nth order autocorrelation is

upward (resp. downward) sloping if a(τ) decreases (resp. increases) with τ .

C. Proof of Proposition 3

First, due to the additivity of quadratic forms, we can rewrite the expectation in

(10) as

ψ(q1 +

∫ T

t

q2, τ) = E∗
[
exp

(
−

∫ T

t

r̃(Xs)ds

)
exp (−q1 (XT ))

∣∣∣∣Ft

]
,

where r̃(Xs) = r(Xs)+q2(Xs) retains the quadratic form of the instantaneous interest

rate. Applying the Feynman-Kac formula gives

r̃(Xt)ψ(·, τ) =
∂ψ(·, τ)

∂t
+A∗ψ(·, τ),

an equation analogous to (18). Assume that indeed ψ(·, τ) has an exponential-

quadratic form as in (10), the partial differential equation is reduced to

r̃ (Xt) = X>
t

[
∂A (τ)

∂τ

]
Xt +

[
∂b (τ)

∂τ

]>
Xt +

∂c (τ)

∂τ

+ [2A(τ)Xt + b (τ)]> [κ∗Xt + bγ](20)

−1

2

n∑
i=1

n∑
j=1

[
2A (τ)− [2A (τ) Xt + b (τ)] [2A (τ) Xt + b (τ)]>

]
ij

,
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which has the same form as (19), with r(Xt) replaced by r̃(Xt) and with µ∗(Xt) ≡
−bγ +κ∗Xt and σ(X) ≡ I replaced by their respective parametric specifications. Col-

lecting terms, we obtain the same ordinary differential equations as in (8), with only

a substitution of {Ar,br, cr} by {Ar +A2,br +b2, cr +c2} to reflect the instantaneous

interest rate adjustment. The boundary conditions also differ to reflect the terminal

payoff difference: A(0) = A1, b(0) = b1, and c(0) = c1.

D. Proof of Proposition 5

To prove the inversion formula for state prices, we follow the proof of the inversion

formula for cumulative density functions. See, for example, Chapter 4 of Alan and

Ord (1987). The only difference is that the limit of the state prices is given by:

limu→+∞ Gqi
,qj

(u) = ψ (qi) while the limit of a cumulative density goes to unity:

limu→+∞ F (u) = 1.

We also need the following results:

1

π

∫ ∞

0

eizy − e−izy

iz
dz =

2

π

∫ ∞

0

sin zy

z
dz = sgn y;

lim
u→−∞

Gqi,qj
(u) = 0;

∫ ∞

−∞
sgn (u− y) dGqi,qj

(u) = −
∫ y

−∞
dGqi,qj

(u) +

∫ ∞

y

dGqi,qj
(u)

= ψ (qi)− 2Gqi,qj
(y) .

For a positive number c, the uniformly convergent integral

Ic ≡ 1

2π

∫ c

0

eizyχqi,qj
(−z)− e−izyχqi,qj

(z)

iz
dz

=
1

2π

∫ c

0

eizy
∫∞
−∞ e−izudGqi,qj

(u)− e−izy
∫∞
−∞ eizudGqi,qj

(u)

iz
dz
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=
1

2π

∫ c

0

∫ ∞

−∞

e−iz(u−y) − eiz(u−y)

iz
dGqi,qj

(u) dz

=
1

2π

∫ c

0

∫ ∞

−∞

−2 sin z (u− y)

z
dGqi,qj

(u) dz.

Because the integral is uniformly convergent, we may change the order of integration

to obtain

Ic =
1

2π

∫ ∞

−∞

∫ c

0

−2 sin z (u− y)

z
dz dGqi,qj

(u) .

The integral with respect to z is continuous and bounded. We may therefore let c

tend to infinity to obtain

lim
c→∞

Ic =
1

4

∫ ∞

−∞
−2 sgn (u− y) dGqi,qj

(y)

= −1

2

[
ψ (qi)− 2Gqi,qj

(y)
]
.

We therefore have the result in Proposition (5).

Furthermore, note that χqi,qj
(z) and χqi,qj

(−z) are conjugate quantities and hence,

if R(z) and I(z) are the real and imaginary parts of χqi,qj
(z) we have,

Gqi,qj
(y) =

χqi,qj
(0)

2
+

1

π

∫ ∞

0

R(z) sin yz − I(z) cos yz

z
dz.
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Filipović, D. “Separable Term Structures and the Maximal Degree Problems.” man-
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