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Completing Markets in a One-Good, Pure Exchange Economy 

Without State-Contingent Securities 

 

 

 

ABSTRACT 

 

Pareto-efficient consumption in a pure-exchange, one good economy varies over states of 

nature with respect to only two factors: real aggregate supply and individual utility shocks.  

One’s optimal contract receipts vary with respect to only these two factors and the ratio of 

one’s endowment to real aggregate supply.  How one’s Pareto-efficient consumption varies 

with real aggregate supply depends solely on how one’s relative risk aversion compares to 

the average.  Complete markets can be approximately achieved by four contracts dealing 

with these factors.  This has implications concerning central banking, efficient insurance 

contract design, and a possible new financial innovation. 
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Completing Markets in a One-Good, Pure Exchange Economy 

Without State-Contingent Securities 

 

Under fairly general assumptions, an Arrow-Debreu economy with state-contingent 

securities results in a Pareto-efficient consumption allocation.  However, for a variety of reasons, 

state-contingent securities are impractical in the real world.  Many financial economists make the 

presumption that insurance contracts and the financial innovations of options, futures, swaps, and 

other derivatives are helping to complete markets even though these contracts are not state-

contingent securities.  This paper reports on a theoretical investigation into whether contracts or 

securities other than non-state-contingent securities can complete the markets in a pure-exchange 

economy without storage.  We find that markets in such an economy can be approximately 

completed with four different types of contracts.  These contracts are (i) normal contracts, (ii) 

endowment-sharing contracts, (iii) spending-sharing contracts, and (iv) Real-Aggregate-Supply-

Risk-Transfer (RASRT) contracts.  

When Arrow (1953) and Debreu (1959) first discussed economies with state-contingent 

securities, they noted that complete markets would require Tcn ⋅⋅  state-contingent securities 

where n is the number of states, c is the number of commodities that exist, and T is the time 

horizon of the economy.  Arrow (1953) did surmise that, if the state-contingent securities were 

stated in terms of a numeraire, complete markets could be achieved with Tn ⋅  such securities.  

Later, Radner (1972) showed Arrow’s surmise to be correct when markets were open in 

sequential economies.  Even so, for large T and large n, Tn ⋅  securities will be impractically 

large.  In particular if we just considered the characteristic of temperature in 50,000 locations 

throughout the world and we considered only 10 temperature ranges for each location, the 
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number of temperature-location states would be 1050,000.  If we would consider just three other 

characteristics of each location with each characteristic having 10 possible ranges, the number of 

possible states would grow to 10200,000.  Yet, we have only begun to enumerate all the possible 

states of nature.  Other characteristics would include diseases, terrorist acts, volcanic activity, 

earthquakes, war, and much more.  Enumerating all states of nature is clearly impractical.  A 

further problem is that economic agents may not be able to conceive of all possible states of 

nature.  Even if they could conceive of all possible states of nature, the cost of writing the legal 

documents to clearly define when a state is considered to have occurred very well may be 

prohibitively expensive and otherwise impractical. 

Financial economists presume that insurance, futures, options, swaps, and other 

derivatives are moving our economies towards having complete markets.  However, this is a 

presumption, not something that has been logically proven theoretically.  Answering this 

question for a completely general economy is likely to be a very complex undertaking.  Instead, 

this paper focuses on pure-exchange economies without storage.  In such an economy, Eagle and 

Domian (2003 and 2004) show that quasi-real bonds by themselves complete markets as long as 

individuals have the same relative risk aversion, no utility shocks occur, and individuals have 

ratios of endowment to real aggregate supply that do not vary across states of nature.  This paper 

goes beyond the work of Eagle and Domian to discuss pure-exchange economies without storage 

in general.  In particular the conclusions of this paper do apply to situations where individuals 

differ in their relative risk aversion, where their ratios of endowment to real aggregate supply are 

stochastic, and where individual utility shocks occur. 

We define optimal contract receipts to be the real (inflation-adjusted) amounts for each 

state of nature that an individual would receive (or pay) if an economy with complete state-
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contingent security markets existed.  We find that the combination of four types of non-state-

contingent securities can approximate these optimal contract receipts.  Important to this finding 

are the following realizations reported in this paper: 

1. Pareto-efficient consumption only varies with respect to two factors: (i) real 
aggregate supply and (ii) individual utility shocks. 

 
2. Optimal contract receipts vary with respect to only three factors: (i) real aggregate 

supply, (ii) individual utility shocks, and (ii) changes in the ratio of endowment to 
real aggregate supply. 

 
3. When there are no individual utility shocks, the proportionality of an individual’s 

Pareto-efficient consumption to real aggregate supply depends only on how the 
individual’s relative risk aversion compares to average relative risk aversion. 

 
Also, this paper derives the precise relationship between relative risk aversion and how an 

individual’s Pareto-efficient consumption changes when real aggregate supply changes.  All of 

these results are important to help us understand why the four types of contracts discussed in this 

paper will approximately lead to complete markets. 

 Section II below reviews the standard Arrow-Debreu pure exchange economy and 

presents and proves the consumption-aggregate-supply-invariance property, which is the 

property upon which much of this paper’s results rest.  This section also proves and derives other 

important results including the very important relationship between relative risk aversion and 

how individuals’ Pareto-efficient consumption varies with real aggregate supply.  Section III 

then discusses how normal contracts, endowment-sharing contracts, and spending-sharing 

contracts complete the markets when all consumers have the same relative risk aversion.  Section 

IV discusses how RASRT contracts could be designed to help consumers transfer real-aggregate-

supply risk among each other if their relative risk aversions differ.  Section V discusses the 

pricing of RASRT contracts.  Section VI then presents an example of how consumers could use 

all four contracts simultaneously to approximately replicate their optimal contract receipts.  
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Section VII summarizes this papers results and discusses how these results have implications to 

real world economies. 

II. Arrow-Debreu Pure Exchange Economy with State-Contingent Securities 
 

This section reviews a standard Arrow-Debreu pure exchange economy without storage 

consisting of one nonstorable consumption good.  Assume each consumer j’s time-separable 

utility function is: 
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where 0jc  is j’s consumption at time 0, jstc  is j’s consumption in state s at time t, β is the time 

discount factor, and stπ  is the probability of state s occurring at time t.  The functions )( 00 jj cU  

and )( jstjst cU  are continuous, twice differentiable, strictly concave, and strictly increasing.  To 

rule out corner solutions, assume +∞=′=′
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cUcU jstcjc
.  The time frame for the s 

subscript is determined by the t subscript next to the s subscript.  For example, the s in 1jsc  refers 

to one of the possible states that can occur at time 1. 

At time 0, consumers can buy or sell state-contingent securities.  These state-contingent 

securities are prepaid securities where the buyer pays the seller the price of the security at time 0.  

Let jstx  represent individual j’s demand at time 0 for the state-contingent security that delivers 

one consumption good at time t iff state s occurs at time t.  Define stΩ  so that the price of this 

security equals ststP Ωπ0 .   With it so defined, stΩ  represents the real pricing kernel. 

Each consumer j chooses jstx  for all s and t to maximize (1) subject to: 
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jstjstjst xyc +=  (3) 

where (3) applies for all s=1,2,…,St for all t=1,2,…,T where St is the finite number of states of 

nature at time t. 
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states s at time t and for t=1,2,…T, where the aggregate supply of the consumption good is 

represented by 0Y  at time 0 and stY  in state s at time t respectively.  Consumer j’s optimization 
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The left side of (4) is the real pricing kernel and the right side is the intertemporal marginal rate 

of substitution.  Some literature mistakenly defines the pricing kernel as the intertemporal 

marginal rate of substitution (See, for example, Campbell, Lo, and MacKinlay, 1997, p. 294).  

The equality between the real pricing kernel and the intertemporal marginal rate of substitution 

shown in (4) is an equilibrium condition not a definition. 

 Since this is a standard one-good Arrow-Debreu pure-exchange economy with well 

behaved utility functions, a unique competitive equilibrium exists and that competitive 

equilibrium is Pareto efficient.  Also, the following property holds: 

Consumption-Aggregate-Supply Invariance Property: Let 1 and 2 represent any two 

different states of nature.  If real aggregate supply and each consumer’s utility function Ujst(.) is 

the same in both states of nature (i.e., there are no utility shocks), then every individual’s 

consumption will be the same in both states of nature. 
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Proof by contradiction.  Assume there is some consumption allocation in a competitive 
equilibrium where for some states 1 and 2, each consumer’s utility function is the same 
for both states 1 and 2, Y1t=Y2t, and there are two individuals j and k such that tjtj cc 21 <  

and tktk cc 21 > .  Since this is an Arrow-Debreu competitive equilibrium, the consumption 
allocation must be Pareto efficient.  Define ( )tjtjtj ccc 212

1
1

~ +≡  and ( )tktktk ccc 212
1

1
~ +≡ .  

Define a new consumption allocation where for all consumers, for all states of nature, and 
for all time periods, the new consumption equals the old consumption except that j’s 
consumption in states 1 and 2 are both tjc 1

~ and k’s consumption in states and 2 are both 

tkc 1
~ .  The new consumption allocation is obviously feasible since the original allocation 
was feasible.  Because both j and k are strictly risk averse, they are both better off with 
this new consumption allocation.  However, that contradicts the statement that the 
original consumption allocation is Pareto efficient.  We, therefore, conclude that the 
consumption allocation must be the same as long as neither aggregate output nor the form 
of the utility functions changes.  Q.E.D. 

 
The consumption-aggregate-supply-invariance property is the foundation for this paper. 

Before we discuss implications of this very important property, let us first distinguish 

between aggregate utility shocks and individual utility shocks.  Define aggregate utility shocks 

to be shocks to everyone’s utility so that individuals’ Pareto-efficient consumption do not change 

as a result.  Individual utility shocks, on the other hand, do affect not only the individual’s 

Pareto-efficient consumption but also other individuals’ Pareto-efficient consumption.  With this 

distinction made, we are now ready to discuss two very important corollaries of the 

consumption-aggregate-supply-invariance property: 

Corollary 1: Let j represent any particular individual in a pure-exchange economy 

without storage.  Individual j’s Pareto-efficient consumption at time t varies across states of 

nature at time t only if changes occur in one of two and only two factors:  These factors are (i) 

real aggregate supply at time t, and (ii) individual utility shocks at time t, either to individual j or 

someone else. 

 The consumption-aggregate-supply-invariance property assumes no utility shocks and 

states that as long as real aggregate supply remains the same, an individual’s Pareto-efficient 
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consumption will remain the same.  Therefore, it immediately follows that Pareto-efficient 

consumption only varies with changes in real aggregate supply or utility shocks.  However, by 

definition, aggregate utility shocks do not affect Pareto-efficient consumption.  Hence, Pareto-

efficient consumption varies only with changes in real aggregate supply and individual utility 

shocks. 

 Corollary 2: Individual j’s optimal contract receipts at time t vary across states of nature 

at time t only if changes occur in one of three and only three factors: (i) real aggregate supply at 

time t, (ii) individual utility shocks at time t, either to individual j or someone else, and (iii) the 

ratio of j’s endowment to real aggregate supply at time t. 

 Remember how j’s consumption relates to j’s endowment and j’s holding of the relevant 

state-contingent security.  Equation (3) states that jstjstjst xyc += .  Where individual j chooses 

jstc  and jstx  optimally, jstx  will represent j’s optimal contract receipts in state s at time t.  

Therefore, the optimal contract receipts equal the difference between j’s Pareto-efficient 

consumption and j’s endowment.  By corollary 1 above, if real aggregate supply does not change 

and no individual utility shocks occur, then the Pareto-efficient consumption does not change.  

Therefore, the only other reason by which the optimal contract receipts will change will be if j’s 

endowment changes.  Clearly, if real aggregate supply does not change, then the ratio of j’s 

endowment to real aggregate supply will change iff j’s endowment changes.  Therefore, j’s 

optimal contract receipts can only vary if real aggregate supply changes, individual utility shocks 

occur, or j’s ratio of endowment to real aggregate supply changes.  (We state corollary 2 in terms 

of j’s ratio of endowment to real aggregate supply rather than just j’s endowment because it fits 

better with subsequent results concerning the relationship between relative risk aversion and the 

proportionality of Pareto-efficient consumption to real aggregate supply.) 
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 Another important property of the pure exchange economy without storage is the 

relationship between relative-risk aversion, Pareto-efficient consumption, and real aggregate 

supply when there are no individual utility shocks.  When no individual utility shocks occur, 

individual j’s Pareto-efficient consumption is a function solely of real aggregate supply.  Define 

the implicit function )(~
tjt Yc  to be how the Pareto-Efficient consumption by individual j at time t 

depends on aggregate supply.1  Note that )(~
tjt Yc is a reduced form; it is not the structural 

consumption function.  To help us avoid this confusion, we refer to Yt as real aggregate supply at 

time t, not income. 

Define 
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−≡  , which is the function of how the coefficient of absolute 

risk aversion varies with real aggregate supply.  Define ( ) ( ) ( )tjttjttjt YaYcY ~~~ ⋅≡ρ , which is the 

function of how the relative risk coefficient varies with real aggregate supply.  Also, define 
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the derivatives of )(~
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Since equation (4) is true for all j,  
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1 There is not just one Pareto-efficient consumption allocation, but rather a continuum of such allocations, each 
corresponding to a particular allocation of endowments across states.  We can think about this Pareto-efficient 
consumption allocation as the one that corresponds to the existing allocation of endowments. 
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for j=2..m.  Totally differentiating (5) with respect to Yt gives
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−≡  into (6) and multiplying both sides by a minus sign 
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By summing both sides of (7) over all consumers, we get: 
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By equilibrium in the market for the consumption good at time t, �
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imply that the following is true for all j.  
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This result was first derived by Wilson (1968, see his theorem 5). 

Next, we need to determine the value of ( )tt Yρ .  The following starts out with the 

definition of ( )tt Yρ , then substitutes in the definition of ( )tjt Yρ~  and the result in (9): 
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However, the sum of consumption across all consumers in this pure exchange economy 

equals aggregate supply for that period.  Therefore, 

( )
�

=

=
m

j jt

t
tt

a

Y
Y

1
~
1

ρ  (10) 

 From the definition of 
( )
( )tt

tjt
j Y

Y

ρ
ρ

α
~

~ ≡ , we can write tjjt ραρ ~~ =  and then replace 

jtρ~ with jtjt ac ~~ and tρ  with (10) to get 

�
=

=
m

j jt

t
jtjtjt

a

Y
ac

1
~
1

~~~ α .  Dividing both sides by tjtYa~ gives 

�
=

=
m

j jt

jt
jt

t

jt

a

a

Y

c

1
~
1

~
1

~
~

α .  Using (9), we can rewrite this as: 
t

jt
jt

t

jt

dY

cd

Y

c ~
~

~
α= .  Dividing both sides by jtα~  

gives us: 

( ) ( )
it

itjt

itjt
itjt Y

Yc

Y
Yc

~

)(~
1~

α
=′  (11) 

Equation (11) is the very important relationship between how consumption changes as 

real aggregate supply changes and how j’s relative risk aversion compares to average relative 

risk aversion.  The derivative of j’s Pareto-efficient consumption with respect to real aggregate 

supply equals a multiplier times the proportion of one’s consumption to real aggregate supply.  

The multiplier is inversely related to how one’s relative risk aversion compares to the average 

relative risk aversion.  For example, if aggregate supply decreases by 1%, then (11) says that the 

Pareto-efficient consumption will decrease by half a percent for someone who has twice the 
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average relative risk aversion, whereas it will decrease by 2% for someone having half the 

average relative risk aversion.  By decreasing their consumption more than proportionately, the 

lower (relatively) risk-averse consumers are enabling the higher risk-averse consumers to reduce 

their consumption less than proportionately.  In essence, the lower risk-averse consumers are 

agreeing to absorb more of the risk concerning real aggregate supply so that higher risk-averse 

consumers can absorb less risk.2  The RASRT contracts discussed later in this paper are designed 

to try to meet the need to transfer the risk related to possible changes in real aggregate supply. 

III. Completing Markets When All Have The Same Relative Risk Aversion 

 In the previous section, we showed that in a pure exchange economy without storage, a 

consumer j’s optimal contract receipts vary across states of nature only when (i) real aggregate 

supply changes, (2) individual j’s ratio of endowment to real aggregate supply changes, and (3) 

individual utility shocks occur, either to individual j or someone else.  We also derived equation 

(11) which states the precise relationship of how relative risk aversion solely determines how 

Pareto-efficient consumption and hence the optimal contract receipts vary with real aggregate 

supply.  These results from the previous section are important because if a certain set of contracts 

were to be able to replicate the optimal contract receipts, the real payments on these contracts 

would need to respond to individual utility shocks, stochastic changes in endowment ratios, and 

stochastic changes in real aggregate supply.  Also, these contracts would need to enable 

consumers to transfer the real-aggregate-supply risk from the more relatively-risk-averse 

consumers to the less relatively-risk-averse consumers. 

                                                 
2 The relationship in (11) is related to one derived by Viard (1993), although he assumed that all income was derived 
from past investments in risky assets whereas we assume all income comes from endowments. 
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In this section, we show how consumers can use (i) normal contracts, (ii) endowment-

sharing contracts, and (iii) spending-sharing contracts to replicate their optimal contract receipts 

when everyone has the same relative risk aversion.  The section following this one then discusses 

the RASRT contract which would be needed when consumers have the same relative risk 

aversion. 

 We define normal contracts to be contracts whose real payments are proportional to real 

aggregate supply.  When the central bank of an economy keeps nominal aggregate demand from 

varying across states of nature, nominal contracts behave as normal contracts.  To see this, think 

about the equation of exchange as MV=N=PY where M is the money supply, V is the “income” 

velocity3 of money, N is nominal aggregate demand, P is the price level, and Y is real aggregate 

supply.  If Xt is a cash flow at some future time t, then the real value of this cash flow will be 

tt PX / .  By the equation of exchange, ttt YNP /= .  Therefore, the real value of Xt will be 

ttt NYX / , which shows that as long as Nt does not vary across states of nature, the real value of 

Xt will be proportional to real aggregate supply.  A central bank that is trying to keep nominal 

aggregate demand from varying across states of nature is following what is currently called 

“nominal-income targeting.”4  

 If a central bank does not target nominal income or nominal aggregate demand or if the 

central bank is unable to make nominal aggregate demand invariant to changes in states of 

nature, nominal contracts will not behave as normal contracts.  Quasi-real indexing as proposed 

by Eagle and Domian (1995) is a way to make contracts behave as normal contracts even when 

                                                 
3 The term “income velocity of money” is unfortunately the standard terminology here.  The term “income” usually 
refers to aggregate supply not aggregate demand.  However, the money supply times velocity equals nominal 
aggregate demand, which equals nominal aggregate supply only in equilibrium. 
4 A more effective strategy to get nominal aggregate demand to be unaffected by different states of nature would be 
to following “nominal aggregate demand targeting” instead of “nominal income targeting”.  Once again, nominal 
income is associated with nominal aggregate supply not nominal aggregate demand.  Therefore, if disequilibrium 
does occur, nominal aggregate demand targeting could be more effective than nominal income targeting. 
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the central bank does not pursue nominal income targeting or nominal aggregate demand 

targeting.  A quasi-real-indexed contract would take a payment Xt at time t and multiply it by 

0/ NN t .  Therefore, the nominal payment would be 0/ NNX tt  and the real payment would be 

0NP
NX

t

tt .  Since ttt PNY /=  by the equation of exchange, the real payment would be 
0N
YX tt , which 

is proportional to real aggregate supply. 

 Eagle and Domian (2003 and 2004) assume a pure exchange economy without storage 

but with consumers having the same relative risk aversion and the ratios of endowment to real 

aggregate supply that do not vary across states of nature.  They show that quasi-real bonds by 

themselves complete the markets under these assumptions.  In other words, under these 

assumptions, normal contracts by themselves enable consumers to replicate their optimal 

contract receipts. 

Eagle and Domian (2003 and 2004) also assume no utility shocks.  When individual utility 

shocks do occur or when consumers’ ratios of endowment to real aggregate supply are 

stochastic, or when consumers have differing relative risk aversion, normal contracts will no 

longer enable consumers to replicate their optimal contract receipts.  This section extends 

Eagle’s and Domian’s analysis to show that endowment-sharing contracts can handle stochastic 

ratios of consumers’ endowment to real aggregate supply, and spending-sharing contracts can 

handle individual spending shocks.  The section following this one then shows that RASRT 

contracts can approximately handle the transfer of real-aggregate-supply risk need when 

consumers have different relative risk aversion. 

To exemplify how normal contracts can replicate the optimal contract receipts when all 

consumers have the same relative risk aversion and ratios of endowment to real aggregate supply 

that do not vary across states of nature and no individual utility shocks occur, assume a two-
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period, pure exchange economy without storage.  Assume two individuals exist, named A and B, 

where each consumer j maximizes his/her logarithmic utility function 

�
=

+
tn

s
jsssj cc

1
11100 )ln()ln( επβε  subject to (2) and (3) where 0ε  and 1sε  represent aggregate utility 

shocks at time 0 and in state s at time 1 respectively.  Assume only two consumers exist, labeled 

consumer A and consumer B.  At time 0 assume real aggregate supply is 100, with consumer 1 

being endowed with 20 consumption units and the rest going to consumer 2.  At time 1 assume 

there are five states of nature where real aggregate supply equals 30, 60, 90, 120, and 150 with 

each state equally likely.  Assume the ratio of consumer 1’s endowment to real aggregate supply 

is 40% in at time 1, with the rest of real aggregate supply going to consumer 2. 

  Table 1 shows equations for the consumption demands and the real pricing kernels as well 

as the values for the relevant variables, including the demands for the state-contingent securities 

Equations for Logarithmic Example: 
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Example Value Results: 

consumer A consumer B real agg.
endowmt consumption x1s1 endowmt consumption x2s1 supply

real time 0 20 29.74358974  ---------- 80 70.2564103 ---------- 100
time 1: pricing
state kernel prob.

1 3.1667 0.2 12 8.923076923 -3.08 18 21.0769231 3.08 30
2 1.5833 0.2 24 17.84615385 -6.15 36 42.1538462 6.15 60
3 1.0556 0.2 36 26.76923077 -9.23 54 63.2307692 9.23 90
4 0.7917 0.2 48 35.69230769 -12.3 72 84.3076923 12.3 120
5 0.6333 0.2 60 44.61538462 -15.4 90 105.384615 15.4 150  

 
Table 1: Equations and Values for Logarithmic Example 
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( 1jsx ).  Remember that the optimal 

contract receipts equal the demands for 

the state-contingent securities. 

Figure 1 shows the Pareto-efficient 

consumption and endowment curves for 

both A and B as well as the optimal 

contract receipts for curve for B and a 

45-degree line, which represents the 

magnitude of real aggregate supply must be split between A and B.  The Pareto-efficient result is 

that B exchanges some of his endowment in period 0 for some of A’s endowment in period 1.  

As can be seen the optimal contract receipts are proportional to real aggregate supply.  This 

results because the consumers’ ratio of endowment to real aggregate supply are constant and 

because the logarithmic utility function causes both consumers to have a coefficient of relative 

risk aversion of one (See equation (11)). 

If the ratios of each consumer’s endowment to real aggregate supply are stochastic, then 

endowment-sharing contracts as well as normal contracts would be needed to complete markets.  

The purpose of endowment-sharing contracts is to handle stochastic variations in the ratio of 

one’s endowment to real aggregate supply.  Let jtR  be the insurance company’s contractual 

endowment ratio for individual j at time t.  The insurance company should set jtR  to be 

individual j’s implicit average endowment ratio at time t, where we define the implicit average 

endowment ratio to be the constant endowment ratio that results in the same expected present 

value of j’s endowment at time t as j’s actual endowments.  Using the real pricing kernel as the 

real stochastic discount factor, the expected present value of individual j’s endowments at time t 

45� line 

cB 
yB 

yA 
cA 
optimal  
contract 

consumption units 

real aggregate supply 
Figure 1: Complete Picture of Optimal Contract in 
Logarithmic Example  
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is ][ ** tjt yE Ω , which equals �
=

Ω
1

1

S

s
jststst yπ .  Individual j’s implicit average endowment ratio at 

time t therefore equals:5 
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By entering into an endowment sharing contract, the insurance company would make a 

payment to individual j when jt
t

jt R
Y

y
< , and individual j would pay the insurance company when 

jt
t

jt R
Y

y
> .  The size of the payment would be  

jttjtjt yYRe −≡  (13) 

This payment is in real terms.  When ejt is positive then the insurance company pays that to 

individual j.  A negative value means individual j pays the insurance company. 

 Note that if we sum (13) over all individuals, we get zero: 

 0
111
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m
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jt
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j
tjt

m

j
jt YYyYRe  

(Note that the jtR  values must add up to one.)  This means that if all individuals entered into 

these endowment-sharing contracts, the insurance company would face no aggregate risk.  All 

risk-averse consumers would choose to enter these endowment-sharing contracts.  If more than 

one insurance company exists, then the insurance companies could reinsure themselves in order 

                                                 
5 If jtR  what the ratio for states s then stjtjst YRy = , and ][][][ ****** ttjttjtttjt YERYREyE Ω=Ω=Ω .  

Solving for jtR .  If this proportionality existed, then stjtjst YRy = , and 

][][][ ****** ttjttjtttjt YERYREyE Ω=Ω=Ω .  In reality, this proportionality may not exist.  Nevertheless, we 

could determine the value of jtR  that would result in the same expected present value as the actual endowments.  

To determine this “equivalent” jtR , we need to solve the equation ][][ **** ttjttjt YERyE Ω=Ω  for jtR .  This 

gives the formula for this equivalent jtR  gives (12). 
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than none of them face any risk.  This absence of risk is consistent with zero economic profit to 

the insurance company. 

 Theoretically speaking all risk-averse individuals will choose to enter into an 

endowment-sharing contract.  However, if some individuals choose not to enter into such 

contracts, the insurance company could structure its payments in the following manner so it still 

faces no risk: 

jst
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kt

Zk st
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stjtjst y
R

Y
y
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t

t −=
�

�

∈

∈  (14) 

where Zt is the set of all insured investors.  Summing (14) over all individuals in Zt gives 
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YRe , which shows that the insurance 

company will face no risk with the adjusted payments. 

 A third type of contract to help individuals replicate their optimal contract receipts are 

spending-sharing contracts.  These contracts are needed to handle individual utility shocks that 

cause either increases or decreases in an individual’s spending needs.  From the previous section, 

we learned that in a pure-exchange economy without storage, one’s Pareto-efficient consumption 

varies with respect to only two factors: real aggregate supply and individual utility shocks.  

Normal contracts in conjunction with RASRT contracts handle variations in real aggregate 

supply as we will discuss later.  Spending-sharing contracts will enable consumers to handle 

individual utility shocks.  

 Since individual j’s Pareto-efficient consumption at time t varies across states of nature 

solely with real aggregate supply and individual utility shocks, we can write j’s Pareto-efficient 
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consumption as the following function of real aggregate supply and individual utility shocks: 

),...,,,(~
21 mststststjt Yc ξξξ , where ),0( ∞∈jstξ  is the utility shock to individual j’s utility 

constructed so that 1=jstξ  represents no utility shock.6 

Note that j’s Pareto-efficient consumption is not only affected by his/her individual utility 

shocks but by other individual utility shocks as well.  For example if individual 1’s experienced a 

positive utility shock at time t causing individual 1 to need to spend more that period; the Pareto-

efficient solution is for other individuals such as individual j (assuming 1≠j ) to spend less so 

that individual 1 can spend more.  A real life example of such a utility shock would be if 

individual 1 had a health-care emergency causing her spending to sharply increase.  The Pareto-

efficient solution is for individuals who did not have health-care issues to help individual 1.  To 

do so, other individuals will need to spend less so that individual 1 can spend more on the health-

care emergency. 

Theoretically, an individual j’s spending-sharing contract receipts will equal: 

)1,...,1,1,(~),...,,,(~
21 stjtmststststjtjst YcYc −= ξξξω  (15) 

where jstω  is j's spending-sharing contract receipts in state s at time t, and )1,...,1,1,(~
stjt Yc  is j’s 

Pareto-efficient consumption with no utility shocks.  (This assumes that the utility shocks are 

defined so that a utility shock of one means no utility shocks.) 

Figures 2 and 3 help show some differences between endowment-sharing contracts and 

spending-sharing contracts.  Figure 2 shows the effect of the endowment-sharing contract 

receipts or payments which move the individual from the kinked curve with the endowment 

shocks to the straight line without the endowment shocks.  The endowment-sharing contract 

                                                 
6 In order for these utility shocks to be well defined, some condition needs to exist.  I surmise that this condition 
would be something like that ]~[ ** tjtcE Ω  must be the same whether with or without utility shocks. 
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receipts or payments result with the 

resources of the individual being moved to 

where those resources are proportional to 

real aggregate supply.  The reason for this is 

that unexpected increases in individual 

endowments is not a justification for an 

individual to consume more or less in 

Pareto-efficient sense.  If markets are 

complete, individuals will agree in advance 

to make some payments when their endowments in some states are greater than expected so that 

they will receive payments when their endowments in other states are less than expected.  The 

effect of the endowment-sharing contract receipts or payments is to make the sum of one’s 

endowment with these receipts or payments to be proportional to real aggregate supply. 

On the other hand, spending-sharing contract receipts move one from smooth 

consumption to kinked consumption as shown in Figure 3.  Sometimes an individual’s Pareto-

efficient consumption will be greater than 

other times because of utility shocks.  If 

markets are complete, an individual would 

be willing to make some payments when 

his/her Pareto-efficient consumption is less 

than normal so that he/she can receive 

payments when his/her Pareto-efficient 

consumption is greater than normal. 

slope = �
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j’s endowment 
real values 

real aggregate supply 
Figure 2: Endowment-Sharing Contract Receipts 
(Payments) 
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Figure 3: Spending-Sharing Contract Receipts 
(Payments) 

j’s P.E. consumption 
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With true spending-sharing contracts, adverse selection is not theoretically an issue.  

Because a spending-sharing contract is based on one’s Pareto-efficient consumption with and 

without utility shocks, if those Pareto-efficient consumption levels are accurately assessed, all 

risk averse individuals will choose to participate in the insurance.  Such universal spending-

sharing contracts would pose no risk to the insurance company.  To see this, note: 

0)1,...,1,1,(~),...,,,(~
11

21
1

=−=−= ���
===

stst

m

j
stjt

m

j
mststststjt

m

j
jst YYYcYc ξξξω . 

Thus, if one insurance company provided everyone with these spending-sharing contracts, 

the aggregate spending-sharing-contract receipts would equal 0.  This result is based on the 

equilibrium condition that the sum of Pareto-efficient consumption over all consumers equals 

real aggregate supply regardless whether that Pareto-efficient consumption is with or without 

utility shocks. 

IV. RASRT contracts 

 When consumers have different relative risk 

aversion, no longer will their Pareto-efficient 

consumption be proportional to real aggregate 

supply.  Figure 5 shows how the Pareto-efficient 

consumption will vary for individual A and B when 

A has greater than average relative risk aversion and 

B has less than average relative risk aversion.  

(More precisely, this example assumes A and B 

have coefficients of relative risk aversion of 2 and 

½ respectively.) As equation (11) predicts, A’s 

yB 

yA 

cA 

cB 45� line 

real aggregate 
supply 

consumption 
units 

Figure 5: A’s and B’s consumption when A 
has greater than average relative risk aversion 
and B has less than average relative risk 
aversion 
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Pareto-efficient consumption will change less than proportionally to changes in real aggregate 

supply whereas B’s Pareto-efficient consumption will change more than proportionally to 

changes in real aggregate supply.  This is clearest at the intersection of A’s and B’s consumption 

curves.  If real aggregate supply decreases, B decreases his consumption more than 

proportionately so that A can decrease her consumption less than proportionately.  Because of 

her high relative risk aversion, individual A appreciates that B is willing to do this.  In return for 

having to decrease his consumption more than proportionately when real aggregate supply 

decreases, B will increase his consumption more than proportionately when real aggregate 

supply increases.  Basically, A has agreed through complete markets to benefit less than 

proportionately when real aggregate supply increases in return for her being able to decrease her 

consumption less than proportionately when real aggregate supply increases.  Since A has higher 

relative risk aversion than does B, both A and B are better off with this arrangement than if they 

proportionately shared in changes in real aggregate supply. 

 To try to enable consumers to transfer real-aggregate-supply risk among themselves, this 

paper invents RASRT contracts.  (RASRT stands for Real-Aggregate-Supply-Risk-Transfer.)  

We worked with two different types of RASRT contracts, straight and curved.  Because these 

RASRT contracts do not perfectly meet each individual’s needs, we will discuss two methods 

consumers could use to approximate their risk-transfer needs.  If an individual uses the tangency 

method, they will enter into RASRT contracts so their resulting consumption is tangent to their 

Pareto-efficient consumption.  A second method an individual could use is the minimum-

variance method, which minimizes the expected squared deviations of their resulting 

consumption from their Pareto-efficient consumption. 
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The simplest RASRT contract is a straight RASRT contract.  The seller of the straight 

RASRT contract agrees to pay the buyer an amount equal to ( )tt YFb −  where b is some positive 

constant specified in the contract, Ft is the price of the RASRT contract, and Yt is real aggregate 

supply.  If ( )tt YFb − <0, then the buyer will pay the seller the amount.  The amount, ( )tt YFb − , 

is in real terms since optimal contract receipts are in real terms.  The straight RASRT contract 

has similarities with many futures contracts currently in use, except that no futures contracts 

currently deal with real aggregate supply. 

 There are some problems with straight RASRT contracts.  The first problem is 

bankruptcy.  In Figure 5, we would plotted the Pareto-efficient consumption as a function of real 

aggregate supply for individuals A and B who had coefficients of relative risk aversion of two 

and ½ respectively.  Figures 6, 7, and 8 continue with this example, but incorporate different 

RASRT contracts.  Figure 6 shows A’s consumption for both the tangency method and the 

minimum-variance method of determining the number of RASRT contracts.  Regardless whether 

she uses the tangency or minimum-variance methods, individual A will consume a positive 

amount when real aggregate supply is zero if she relies on straight RASRT contracts.  However, 

that cannot be possible in an economy without storage.  When we look at Figure 7 we see that 

consumer B’s use of a straight RASRT contract will cause him to consume a negative amount 

when real aggregate supply equals zero also regardless if he uses the tangency method or the 

minimum-variance method.  Since it is impossible to consume a negative amount, this means 

that B will be unable to fulfill his straight RASRT contractual obligations when real aggregate 

supply is quite small.  In other words, straight RASRT contracts will lead to B becoming 

bankrupt at low levels of real aggregate supply, which will then impact A as well. 
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 Another problem with straight 

RASRT contracts is that straight RASRT 

contracts usually result with an individual’s 

consumption differing significantly from 

one’s Pareto-efficient consumption.  Figures 

6 and 7 shows that that the consumption 

resulting from the straight RASRT contracts 

for A and B depart significantly from their 

Pareto-efficient consumption for both methods.. 

 The curved RASRT contracts deal with both of these problems.  In general, a curved 

RASRT contract takes the form of ( ))()( tt YfFfb −  where b is a positive constant and f is an 

increasing function.  A special case is tt YYf =)(  which is the straight RASRT contract.  Two 

other special cases are tt YYf =)( , which we will call the SQRT RASRT contract, and is 
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�
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�

�
+=

t

t
t Y

Y
LNYf 1)( , which we will call the LOG RASRT contract, where tY  is initially set equal 

to ][ tYE . 

 Figure 8 shows A’s 

consumption using the SQRT RASRT 

contract using the tangency method of 

determining the amount of these 

RASRT contracts to demand.  Also 

shown is A’s consumption using the 

real aggregate supply 

consumption 
units 

Figure 6: A’s consumption with straight RASRT 
contract compared to Pareto-efficient consumption 
under tangency method 

A’s Pareto-efficient 
consumption 

A’s consumption with straight RASRT contract with 
tangency method or minimum variance method 

real aggregate 
supply 

consumption 
units 

Figure 7: B’s consumption with straight 
RASRT contract compared to Pareto-efficient 
consumption under tangency method 

B’s consumption 
with straight RASTR 
contracts 
under minimum-
variance method and 
tangency method 

B’s Pareto-efficient 
consumption 
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LOG RASRT contract.  While the SQRT 

RASRT contract still results with A 

consuming more than Pareto-efficient when 

real aggregate supply differs from its expected 

value, the overstatement is substantially 

reduced.  The LOG RASRT contract does 

even better than the SQRT RASRT contract 

when real aggregate supply is less than its 

expected value, but does very poorly when 

real aggregate supply is greater than expected. 

 To see how different RASRT 

contracts can perform for a variety of 

different distributions of endowment and relative-risk aversions, I studied several examples 

involving 18 individuals each of whom had CRRA utility functions,7 but with different 

coefficients of relative risk aversion and with different endowment ratios.8  I looked at six 

different scenarios, which are described in Table 2.  For all scenarios, the possible values of real 

aggregate supply were 3, 6, 9, …, 147, 150 each with a 0.02 probability.  I used numerical 

techniques to determine the expected variance of the combination of the RASRT contract 

receipts (or payments) from the optimal contract receipts (or payments).  These results are 

presented in Table 3. 

                                                 
7 Some may criticize my use of CRRA utility functions.  However, what is important according to equation (11) is 
how one’s relative risk aversion compares to average relative risk aversion.  That comparison based on individuals 
having CRRA utility functions is likely to be similar to what would occur if consumers have other reasonably 
behaved utility functions. 
8 That I assumed individuals had endowments that were a constant proportional of real aggregate supply was 
necessary so that individuals not need endowment-sharing contracts to obtain their optimal contract receipts.  The 
issue of endowment-sharing contracts will be discussed in the next chapter. 

A’s consumption with 
LN(1+Yt/E[Yt]) RASRT 

contract 

A’s Pareto-
efficient 
consumption 

A’s consumption with 
straight RASRT 
contract 

A’s consumption with 

tY  RASRT contract 

real aggregate 
supply 

consumption 
units 

Figure 8: Pareto-efficient consumption compared 
with consumption using Straight and curved 
RASRT contracts 
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For each RASRT 

contract, the percentages 

represent the expected 

resulting variance as a 

percentage of the variance 

that would have resulted if 

no RASRT contracts 

existed; only nominal 

contracts existed.  The first 

percentage without the 

parentheses is the result when I used the minimum variance method to determine the contracts 

purchased or sold.  The percentage in parentheses is the expected variance when I used the 

tangency method.  For example, if following the minimum variance method and consumers use 

only straight RASRT contracts, they will be able to reduce the expected variance to about 27% 

of what it would have been with no RASRT contracts.  On the other hand, the individuals 

following the tangency method using straight RASRT contracts would have only reduced this 

expected variance to 59% of what that expected variance would have been without any RASRT 

contracts. 

The SQRT RASRT contract was able to do much better with the expected variance 

falling to 6.84% under the minimum variance method and 13.08% under the tangency method.  

Better still were the RASRT contracts where ��
�

�
��
�

�
+=

t

t
t Y

Y
LNYf 1)(  and 99.0)( tt YYf = .  For both of 

these contracts, individuals in Scenario I were able to reduce the expected variance between their 

consumption with RASRT contracts and their Pareto-efficient consumption to less than 1% the 

Scenario I Scenario III
end. coefficient of relative risk aversion coeff. of endowment ratio
ratio 0.6 0.8 1 1 1.2 1.4 r.r.a 0.6 0.8 1 1 1.2 1.4
0.8 A B C J K L 0.8 A D G J M P

1 D E F M N O 1 B E H K N Q
1.2 G H I P Q R 1.2 C F I L O R

Scenario II Scenario IV
end. coefficient of relative risk aversion coeff. of endowment ratio
ratio 0.25 0.5 1 1.5 2 2.5 r.r.a 0.2 0.3 0.5 1 1.5 2.5
0.8 A B C J K L 0.8 A D G J M P

1 D E F M N O 1 B E H K N Q
1.2 G H I P Q R 1.2 C F I L O R

Scenario VI Scenario V
end. coefficient of relative risk aversion coeff. of endowment ratio
ratio 0.1 0.7 1 1.3 3 5 r.r.a 0.2 0.3 0.5 1 1.5 2.5
0.6 A B C J K L 0.5 A D G J M P

1 D E F M N O 1 B E H K N Q
1.4 G H I P Q R 2 C F I L O R

 
 Table 2: Scenario Details 
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expected variance had 

no RASRT contracts 

existed, assuming they 

followed the minimum 

variance approach.  

Even if they followed 

the tangency approach, 

they would be able to 

reduce that expected variance to less than 2.5% of what would have existed without RASRT 

contracts. 

For the other Scenarios, the results were similar, although for Scenario II the reduction of 

the expected variance was less and for Scenarios III and IV, the reduction was more especially 

for the RASRT contract where 99.0)( tt YYf = . 

Table 3 shows that when we look at the aggregate of these expected variances, curved 

RASRT contracts can be very successful at enabling individuals to approximately replicate their 

optimal contract receipts and therefore their Pareto-efficient consumption.  However, it is 

important to consider how each individual was able to use these RASRT contracts to meet their 

needs.  Table 4 shows how each individual fared with straight RASRT contracts or with the 

Y^0.99 RASRT contracts compared to no RASRT contracts at all when the individuals used the 

minimum variance method.  The curved RASRT contracts enabled most individuals to reduce 

their expected variance between their with-RASRT consumption and their Pareto-efficient 

consumption.  One exception is individual B in Scenario II, who was able to use straight RASRT 

contracts to reduce his expected variance to 22.08% of what it would have been without any 

Scenario Scenario Scenario Scenario Scenario 
I II III IV V

Straight Futures 27.01% 34.76% 22.95% 22.95% 24.34%
(59.0%) (83.4%) (49.5%) (49.5%) (53.5%)

SQRT(Y) 6.84% 12.56% 4.30% 4.30% 5.45%
(13.08%) (23.41%) (7.88%) (7.88%) (8.94%)

0.92% 2.74% 1.13% 1.13% 2.37%
(2.06%) (7.84%) (2.16%) (2.16%) (6.03%)

Y^0.99 0.98% 4.35% 0.14% 0.14% 1.36%
(2.13%) (8.93%) (0.30%) (0.30%) (2.86%)

��
�
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�
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+

t

t

Y
Y

LN 1

 
Table 3: Minimum Variance Compared to Variance With Only Normal 
Contracts (Percentage in Parentheses represents ratio under Tangency Method) 
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RASRT contracts.  Individual B did even worse in Scenario II when he used the Y^0.99 RASRT 

contract as he was only able to reduce this expected variance to 39.83% of the no-RASRT level. 

Figure 9 plots several individual’s optimal contract receipts including individual B’s.  

The curvature of B’s optimal contract receipts changes.  For low levels of real aggregate supply, 

B’s optimal contract receipts are 

convex, but for higher levels they 

are concave.  I traced the reason to 

how the average relative risk 

aversion for the economy changed 

as real aggregate supply changed.  

Remember that the average relative 

Straight RASRT contracts Y^0.99 RASRT Contracts

Scenario Scenario Scenario Scenario Scenario Scenario Scenario Scenario Scenario Scenario
ind. I II III IV V I II III IV V

A 29.97% 37.54% 24.00% 24.00% 25.88% 0.95% 3.33% 0.06% 0.06% 0.29%
B 13.65% 22.08% 44.42% 44.42% 57.59% 2.23% 39.83% 6.41% 6.40% 14.18%
C 45.23% 60.04% 20.72% 20.72% 15.96% 6.81% 16.60% 0.04% 0.04% 1.25%
D 29.97% 37.54% 24.00% 24.00% 25.88% 0.95% 3.33% 0.06% 0.06% 0.29%
E 13.65% 22.08% 44.42% 44.42% 57.59% 2.23% 39.83% 6.41% 6.40% 14.18%
F 45.23% 60.04% 20.72% 20.72% 15.96% 6.81% 16.60% 0.04% 0.04% 1.25%
G 29.97% 37.54% 24.00% 24.00% 25.88% 0.95% 3.33% 0.06% 0.06% 0.29%
H 13.65% 22.08% 44.42% 44.42% 57.59% 2.23% 39.83% 6.41% 6.39% 14.18%
I 45.23% 60.04% 20.72% 20.72% 15.96% 6.81% 16.60% 0.04% 0.04% 1.25%
J 45.23% 32.90% 24.00% 24.00% 25.88% 6.81% 1.87% 0.06% 0.06% 0.29%
K 24.35% 21.89% 44.42% 44.42% 57.59% 0.08% 0.64% 6.41% 6.39% 14.18%
L 18.29% 15.78% 20.72% 20.72% 15.96% 0.30% 1.53% 0.04% 0.04% 1.25%
M 45.23% 32.90% 24.00% 24.00% 25.88% 6.81% 1.87% 0.06% 0.06% 0.29%
N 24.35% 21.89% 44.42% 44.42% 57.59% 0.08% 0.64% 6.41% 6.39% 14.18%
O 18.29% 15.78% 20.72% 20.72% 15.96% 0.30% 1.53% 0.04% 0.04% 1.25%
P 45.23% 32.90% 24.00% 24.00% 25.88% 6.81% 1.87% 0.06% 0.06% 0.29%
Q 24.35% 21.89% 44.42% 44.42% 57.59% 0.08% 0.64% 6.41% 6.39% 14.18%
R 18.29% 15.78% 20.72% 20.72% 15.96% 0.30% 1.53% 0.04% 0.04% 1.25%

 
Table 4: Individual Minimum Variance Results Compared to Normal Contracts Only 
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B 

C 

K 

Yt 

consumption 
units 

0 

Figure 9: Selected Individual’s Optimal Contract 
Receipts in Scenario II 
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risk aversion is a weighted average of the individuals’ coefficients of relative risk aversion. 

 My investigation found that the weighted average relative risk aversion fell from 1.88 to 

0.43 as real aggregate supply increased from 6 to 147.  This resulted in those individuals with 

coefficients of relative risk aversion of 0.5, 1.0, and 1.5 changing from being below average 

relative risk aversion to being above average relative risk aversion.  This was particularly 

difficult for individual B as he switched from having his 0.5 coefficient of relative risk aversion 

initially being well below average to becoming above average where real aggregate supply 

exceeded 109.  This changed his optimal contract receipts from being convex to being concave 

with respect to real aggregate supply.  Since the curved RASRT contracts are either concave or 

convex depending whether one sells or buys them, the curved RASRT contracts worked worse 

for individual B than would have straight RASRT contracts.  This problem of changing from 

being below average to above average relative risk aversion was also true for individuals C and J 

who had coefficients of relative risk aversion  

 Individual C also experiences the switch but at a lower level of real aggregate supply 

(40), which means that the range of real aggregate supply for which C’s optimal contract receipts 

are convex is relatively insignificant.  This insignificance is even more for individual j whose 

switch occurs when real aggregate supply is 19. 

 The issue of switching is less an issue for Scenarios I, III, IV and V.  For scenario I, the 

average relative risk aversion drops from 1.09 to 0.87 resulting with individuals C, F, I, J, M, and 

P experiencing only modest shifting.  For Scenarios III and IV, the relative risk aversion only 

drops from 1.04 to 0.95, again causing only modest shifting among individuals B, E, H, K, N, 

and Q.  For Scenario V, the relative risk aversion does drop from 1.61 to 0.70, which causes 
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shifting to affect individuals B, E, H, K, N, and Q causing 

these individuals to retain 14.18% of the expected variance 

between RASRT consumption and Pareto-efficient 

consumption. 

 To further investigate the performance of curved 

RASRT contracts, I constructed another scenario, Scenario VI, which is defined in Table 2 at the 

end of this chapter.   Here the range of coefficients of relative risk aversion was even greater than 

in Scenario II, ranging from 0.1 to 5.  Table 5: shows how the expected variance between with-

RASRT consumption and Pareto-efficient consumption compare between straight RASRT 

contracts and the Y^0.99 RASRT contract.  In Scenario VI, the curved RASRT contract 

outperforms the straight RASRT contract for all individuals, although individuals B and C, E and 

F, and H, and individual I do experience problems of the shifting average relative risk aversion.  

Figure 10 shows how the optimal contract receipts for B and C change with real aggregate 

supply. 

A 

B 
C 

L 

real aggregate 
supply 

consumption 
units 

Figure 10: Individual Optimal Contract Receipts in 
Scenario VI 

Straight Y^0.99
RASRT  RASRT 

individual contracts Contracts
A 41.15% 5.47%
B 82.88% 43.37%
C 59.38% 16.83%
D 41.15% 5.47%
E 82.88% 43.37%
F 59.38% 16.83%
G 41.15% 5.47%
H 82.88% 43.37%
I 59.38% 16.83%
J 44.84% 6.90%
K 15.84% 1.88%
L 7.38% 6.02%
M 44.84% 6.90%
N 15.84% 1.88%
O 7.38% 6.02%
P 44.84% 6.90%
Q 15.84% 1.88%
R 7.38% 6.02%

Overall 41.95% 7.25%  
 
Table 5: Variance between 
consumption with RASTR contract 
and Pareto-efficient consumption 
compared to no RASTR contract 
under Scenario VI 
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 Even though some individuals switch from being below average to being above average, 

the aggregate expected variance is still substantially reduced by curved RASRT contracts.  In 

scenario 6, the aggregate expected variance is 7.25% of the level with no RASRT contracts, 

compared to a ratio of 41.95% with straight RASRT contracts.  As seen in Table 3, even in 

Scenario II, the Y^0.99 curved RASRT contracts were able to reduce the aggregate expected 

variance to 4.35% compared to 34.76% with straight RASRT contracts.  For the other scenarios 

in Table 3, the Y^0.99 curved RASRT contract was able to reduce the aggregate expected 

variance to around 1% compared to over 20% with straight RASRT contracts.  While curved 

RASRT contracts do pose problems to individuals who may experience switching between being 

below and above average relative risk aversion, the individuals who really need the RASRT 

contracts are either substantially above or substantially below the average and do not experience 

switching.  As seen in Table 3, for individuals not experience this switching, the curved RASRT 

contracts enable those individuals to reduce their expected variance to a level of less than 2%. 

Pricing of RASRT Contracts 

 This section discusses the pricing of RASRT contracts in general under the assumption 

that markets are completed by the RASRT contracts in conjunction with normal, endowment-

sharing, and spending-sharing contracts.  Under the complete markets assumption, we can use 

the real pricing kernel to determine the price of the RASRT contracts. 

 Remember that a general RASRT contract pays the buyer an amount equal to 

( ))()( tt YfFfb −  where Ft is the price of the RASRT contract.  Assume that 
st

jst
jt Y

y
k ≡  is the 

ratio of individual j’s endowment to real aggregate supply which does not vary across states of 
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nature.9  Let Qjt be the amount of the normal contracts that mature at time t that individual j 

demands at time 0.  Without loss of generality, assume the real payment on one of these normal 

contracts will equal jtstQaY .  Then at time 0, j’s budget constraint will be: 

00000 jjtj yPQVcP =+  (16) 

At time 0, individual j chooses between consumption at time 0 and the normal contracts.  While 

individual j may enter into RASRT contracts, he/she does not exchange any money at time 0; 

hence, the RASRT contracts do not enter into the budget constraint at time 0.  Individual j will be 

to sell normal contracts as well as buy them which then could enable j to consume more than 

his/her endowment at time 0 if that is what j chooses. 

 Individual j’s budget constraint at time t is: 

( ) jtttjtsttjtjst xYfFfbQaYYkc )()( −++=  (17) 

At time t, j’s consumption will equal his real endowment (kjtYt) plus his real payments on his 

normal contracts maturing at time t plus the real payments on the RASRT contracts maturing at 

time t.  The variable xjt represents the amount of the RASRT contracts maturing at time t that j 

owns (if negative, then j would have sold these RASRT contracts).  Once again, individual j 

would have entered into the RASTR contracts at time 0, but not paid anything for them. 

 At time 0, individual j will maximize his/her expected utility function, 

� �
= =

+
T

t

S

s
jstjtst

t
jj

t

cUcU
1 1

00 )()( πβ  (18) 

I wrote this utility function to allow the utility function to vary by individual and by time t.  

However, I am not allowing it to vary by state of nature to preclude individual utility shocks.  

                                                 
9 If this endowment ratio did vary, then the endowment-sharing contracts discussed in Chapter VI would be needed. 
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Individual j will maximize (18) subject to (16) and (17) where (17) applies for s=1,2,…,St and 

for t=1,2,…,T.10  The First Order Necessary Conditions (FONCs) are: 

0)(' 0000 =− λPcU jj  which implies that: 

0000 )(' λPcU jj =  (19) 

( ) 0' =− stjstst
t cU λπβ  which implies that: 

( ) stjstst
t cU λπβ ='  (20) 

0
1

00 =+− �
=

tS

t
ststbYV λλ  (21) 

( ) 0)()(
1

=−�
=

st

S

s
stt

t

YfFfa λ  (22) 

Substituting (19) and (20) into (21) gives 0)('
)('

10

0
0 =+− �

=

tS

t
jstst

t
st

j cUbY
P

cU
V πβ , which can be 

simplified as follows: 

�
=

=
tS

t
jststst

tj cUYb
P

cU
V
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0
0 )('

)('
πβ  

)]('[
)('

0

0
0 jstst

tj cUYEb
P

cU
V β=  

)('

)]('[

00

0

j

jstst
t

cU

cUYE

bP
V β

=  (23) 

Substituting (20) into (33) gives 0)(')(
1

=−�
=

jstst
t

S

s
stt cUYFa

t

πβ , which can be simplified as 

follows: 
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=
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)(')(' πβπβ  

[ ]
[ ])('

)()('
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jst

stjst
t cUE

YfcUE
Ff =  

 
Under the assumption that markets are complete, the real pricing kernel is: 
 

( )
)('

'

0j

jst
t

st cU

cUβ
=Ω  

                                                 
10 Additional assumptions are needed in order that nominal aggregate demand be determined in this model.  One 
approach to do so is to assume Eagle and Domian’s (2003 and 2004) temporary money.  A second approach is to 
assume a cash-in-advance constraint that applies before the goods market opens but after consumers learn all the 
information for that period. 



- 33 - 

Therefore, ( )
t

jst
jst

cU
cU

β
)('

' 0Ω
= .  Substituting this into (22) gives 

[ ]
[ ])('

)()('
)(

0

0

jst
t

stjst
t
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YfcUE
Ff

Ω
Ω

=
β

β
 or 

[ ]
[ ]st

stst
t E

YfE
Ff

Ω
Ω
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)( .  Therefore: 
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Ω
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st

stst
t E

YfE
fF

)(1  (24) 

Since the pricing kernel is uniquely determined, then Ft must also be uniquely determined. 

V. Consolidating the Four Types of Contracts 

We previously discussed the four different types of contracts in isolation.  In this section, 

we present an example where individuals used all four types of contracts to approximately 

duplicate their optimal contract receipts.  This example involved five individuals with CRRA 

utility functions, each with a different coefficient of relative risk aversion.  They lived three 

periods and interacted in a closed pure-exchange economy of one good without storage. 

Each individual j maximized � �
= =

−−

−
+

−

T

t

S

s j

jstjstt

j

jj
t jj cc

1 1

1
0

1
0

11 γ
ξ

β
γ
ξ γγ

subject to (2) and (3) where 

(3) applies for all states s at time t and for t=1,2,…,T.  The 0jξ  and jstξ  were utility shocks to j’s 

utility function.  Individual j’s consumer optimization problem was satisfied when the following 

conditions held: 
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For our example we assumed a pure 

exchange economy without storage but with 

three time periods: time 0, time 1, and 

time 2.  The economy consisted of five 

individuals named A, B, C, D, and E.  For time periods 1 and 2, five equally likely states of 

nature existed.  All consumers had a common time discount factor of 95.0=β  and the real 

aggregate supply at time 0 was 100.  Table 5 presents the individual’s coefficients of relative risk 

aversion (c.r.r.a.) and their time-0 endowments we assumed.  For each state of nature possible in 

time 1 and time 2, Table 6 gives the levels of real aggregate supply, the real pricing kernel,11 and 

the individuals’ endowments.  Table 7 gives the assumed Pareto-efficient consumption with the 

utility shocks in each state.  (Rather than stating the utility shocks explicitly, we just give the 

Pareto-efficient consumption resulting from the utility shocks.) 

 
time 1: real pricing endowments

prob. Yt kernel A B C D E
0.2 80 1.182894 4.79626 13.60489 14.40016 23.20367 23.99501
0.2 90 1.052959 10.79579 11.70550 21.60018 22.50413 23.39439
0.2 100 0.950000 7.99532 19.00611 20.00020 21.00459 31.99377
0.2 110 0.866400 15.39486 16.50673 17.60022 29.70505 30.79314
0.2 120 0.797159 11.99439 13.20734 26.40024 27.60551 40.79252

time 2: real pricing endowments
prob. Yt kernel A B C D E

0.2 80 1.123749 24.80238 6.39962 7.19041 24.00355 17.60404
0.2 90 1.000311 17.10268 8.99957 15.28921 32.40400 16.20454
0.2 100 0.902500 27.00298 15.99952 12.98801 24.00444 20.00505
0.2 110 0.823080 25.30328 4.39947 16.48681 35.20488 28.60555
0.2 120 0.757301 30.00358 14.39942 25.18561 33.60533 16.80606  

Table 6: Assumed Endowments, Real Aggregate Supply and Resulting Real Pricing Kernel 
 

                                                 
11 We determined the real pricing kernel through numerical techniques based on no individual utility shocks 
occurring. 

A B C D E
relative risk aversion coeff. 0.6 0.8 1 1.2 1.4

time 0 endowment 15 20 10 30 25
 
Table 5: Assumed Coefficients of relative risk 
aversion and time-0 endowments 
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We assumed the 

only existing 

RASRT contract 

was a Y^0.99 

RASRT which 

paid the buyer of 

the contract 

( )99.099.02.0 tt YF −  

at time t. 

 Technically speaking, we should rely on consumers maximizing utility to determine the 

amounts of each contracts each individual would demand.  However, I have not worked out the 

mathematics for this.  Instead, I have taken an easier approach, perhaps less rigorous approach, 

albeit not significantly less rigorous.  In a previous section, we discussed two methods to 

determine the number of nominal and RASRT contracts, the tangency method and the minimum 

variance method.  These methods were not based on individuals’ maximizing utility, but rather 

were attempts to approximate the consumers’ optimal contract receipts.  If a method results in 

perfect replication of an individual’s optimal contract receipts, then the method should give the 

same answer as a utility maximizing approach.  If a method results in a good approximation of 

an individual’s optimal contract receipts, the presumption I make is that the method is fairly 

close to the result of a utility-maximizing approach.  

For this example, we used a different method for computing the number of normal 

contracts and RASRT contracts.  Neither the tangency method or the minimum-variance method 

discussed previously insures that consumption in time 0 will be the same as it would be under an 

time 1: real pricing Pareto-efficient consumption with utility shocks
prob. Yt kernel A B C D E

0.2 80 1.182894 14.67657 13.15474 10.38330 23.58227 18.20312
0.2 90 1.052959 10.33272 16.96374 15.26204 24.18349 23.25803
0.2 100 0.950000 16.53924 11.19805 18.92103 30.30984 23.03185
0.2 110 0.866400 17.08371 17.05274 11.96077 34.96855 28.93424
0.2 120 0.797159 24.55543 16.52393 17.78187 27.96571 33.17306

time 2: real pricing Pareto-efficient consumption with utility shocks
prob. Yt kernel A B C D E

0.2 80 1.123749 5.87657 9.15474 11.98330 29.18227 23.80312
0.2 90 1.000311 20.23271 16.06374 7.16204 23.28349 23.25803
0.2 100 0.902500 13.53924 15.19805 21.92103 31.30984 18.03185
0.2 110 0.823080 22.58371 9.35274 13.06077 30.56855 34.43424
0.2 120 0.757301 22.15543 27.32393 21.38187 24.36571 24.77306  

 
Table 7: Assumed Paretio Efficient Consumption With Utility Shocks 
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Arrow-Debreu economy.  For this chapter’s example, we use a method that is similar to the 

tangency method but that does insure that consumption at time 0 will remain its Pareto-efficient 

level. 

 Remember that state-contingent securities are prepaid securities.  One pays for the state-

contingent securities at time 0.  Of our four types of contracts only normal contracts can be 

prepaid contracts.    RASRT contracts, endowment-sharing contracts, and spending-sharing 

contracts involve no payments until the time for which the contracts apply.  Therefore, in order 

for the consumption at time 0 with normal, RASRT, endowment-sharing, and spending-sharing 

contracts to equal the Pareto-efficient consumption at time 0, an individual’s holding of prepaid 

normal contracts entered into at time 0 must equal the prepaid value of all state-contingent 

securities that would have existed in an Arrow-Debreu economy.  This is the approach we took 

in this example to determine the amount of normal contracts.  We then chose the number of 

RASRT contracts to match the slope of the Pareto-efficient consumption at the expected real 

aggregate supply of 100. 

In order to apply this new method, we needed to be able to determine the price of a 

prepaid normal contract.  Such a prepaid normal contract is a type of discount bond.  By 

definition of a normal contract, the real payments on the normal contract will equal stbY  for 

some constant b.  Assume that the constant b is the same for all standard normal contracts.  That 

the real pricing kernel is a real stochastic discount factor implies that the price at time 0 of this 

standard normal contract is ][][ **** tttt YbEbYE Ω=Ω .  For this example, we assumed that b=0.2. 

 In order that the time-0 consumption be the same as the time-0 Pareto-efficient 

consumption, the value an individual invests in prepaid normal contracts at time 0 must equal the 

expected present value of the state-contingent securities that would exist in an Arrow-Debreu 
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economy.  In other words, ( )� ���
= = ==

−Ω=Ω
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t

T

t

S

s
jstjststst
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s
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0
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0 ππ .  We can actually be 

more specific than this.  First, we can discuss this in real terms rather than nominal terms.  

Second, the real value each individual invests in each normal contract expiring at time t must 

equal the real value each individual would have invested in state-contingent securities that would 

have matured at time t.  In other words, the real value individual j invests in normal contracts 

maturing at time t should equal ( ) ( )[ ]tjtjt

S

s
jstjststst ycEyc

t

***
1

−Ω=−Ω�
=

π . 

 We used this approach to determine the number of prepaid normal contracts each 

individual bought or sold.  To determine the number of RASRT contracts each consumer bought 

or sold, we set the slope of his/her individual consumption as real aggregate supply changes 

equal to the slope of his/her Pareto-efficient consumption with respect to real aggregate supply 

when no individual utility shocks occur.  Let ( )stjt Yc ′~  be the slope of j’s Pareto-efficient 

consumption with no individual utility shocks.  Let b be the slope of a standard normal contract, 

which in this example equals 0.2.  Assuming the proportion of endowments to real aggregate 

supply is always the implicit average endowment ratio jtR , then the resources available for j’s 

consumption at time t will equal j’s endowment plus his/her normal contract receipts plus his/her 

RASRT contract receipts or: 

( ) jtstttjtststjt YfFfazbYYR ρ)()( −++  (27) 

where f(.) is the RASRT contract function, zjt is j’s quantity demanded of time-t normal 

contracts, and jtρ  is j’s quantity demand of time-t RASRT contracts.  Taking the derivative of 

(27) and setting it equal to ( )stjt Yc ′~  gives ( )stjtjtstjtjt YcYfabzR ′=′−+ ~)( ρ .  Solving the above 
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for jtρ  gives 
( )

)(

~

st

jtjtstjt
jt Yfa

bzRYc

′−
−−′

=ρ .  With the method for determining the number of 

RASRT contracts that I am currently following, the objective is to get the slope of j’s 

consumption to match j’s Pareto-efficient consumption when Yst=E[Y*t].  Substituting Yst=E[Y*t] 

into the above gives the formula we used to determine: 

( )
( )][

~

*t

jtjtstjt
jt YEfa

bzRYc

′−
−−′

=ρ  (28) 

where the denominator of equation (28) is the slope of the RASRT contract. 

 To determine the individual demands for the endowment-sharing contracts and the 

spending-sharing contracts, we used the same approach discussed previous in this paper. 

 
 

 Table 8 shows how the receipts of the different contracts led to consumption levels for 

state 1 at time 1 that closely approximated the Pareto-efficient consumption with utility shocks.  

Also, shown in Table 8 is the residual 

market imperfections as a percent of 

Pareto-efficient consumption.  Table 9 

shows these imperfection percentages 

state 1 at time 1: A B C D E
endowment 4.796259 13.60489 14.40016 23.20367 23.99501

normal-contract receipts 5.18194 0.123425 -4.07224 2.67806 -3.91118
RASRT-contract receipts -1.85325 -0.59338 0.075021 0.977741 1.39387

endowment-sharing receipts 3.203741 -1.60489 1.599839 -3.20368 0.004986
spending-sharing receipts 3.2 1.6 -1.6 0 -3.2

endowments plus contract receipts 14.52869 13.13004 10.40278 23.6558 18.28269
P.E. consumption w/ utility shocks 14.67657 13.15474 10.3833 23.58227 18.20312

residual market imperfections 0.14788 0.024698 -0.01948 -0.07353 -0.07957
imperfections as % of P.E. Cons. w/ utility shocks 1.01% 0.19% -0.19% -0.31% -0.44%

Table 8: Contract receipts in state 1 at time 1 

state A B C D E
1 1.01% 0.19% -0.19% -0.31% -0.44%
2 -0.71% -0.07% 0.07% 0.15% 0.16%
3 -0.86% -0.19% 0.10% 0.23% 0.32%
4 -0.42% -0.07% 0.08% 0.10% 0.13%
5 0.51% 0.10% -0.10% -0.22% -0.19%  

Table 9: Imperfections as % of Pareto-efficient consumption 
for all states at time 1:  
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not only for state 1at time 1 but for all states for time 1.  Results for time 2 were similar. 

 That these contracts cannot perfectly replicate the optimal contract receipts are solely due 

to the RASRT contracts being unable to perfect handle the needs of differences in relative risk 

aversion.  The endowment-sharing and spending-sharing contracts in this example perfectly 

handle the issues created by stochastic endowment ratios and individual utility shocks.  However 

in the real Alien and Earth worlds, I suspect the theoretical imperfections of RASRT contracts to 

be of much less magnitude that the practical problems of implementing endowment-sharing and 

spending-sharing contracts. 

VI. Summary and Conclusion 

 In a pure-exchange economy without storage Pareto-efficient consumption only varies 

with respect to two factors: (i) real aggregate supply and (ii) individual utility shocks.  Optimal 

contract receipts vary with respect to only three factors: (i) real aggregate supply, (ii) individual 

utility shocks, and (ii) changes in the ratio of endowment to real aggregate supply.  The 

derivative of an individual j’s Pareto-efficient consumption with respect to real aggregate supply 

equal the proportion of j’s consumption to real aggregate supply divided by the ratio of j’s 

relative risk aversion over average relative risk aversion.  Given these results, this paper was able 

to use (i) normal contracts, (ii) endowment-sharing contracts, (iii) spending-sharing contracts to 

approximately replicate individuals’ optimal contract receipts.  We therefore conclude that these 

four types of contracts can enable consumers to very closely reach their Pareto-efficient 

consumption that would be reachable under complete markets. 

 It is important to note that only the residual imperfections from these four contracts are 

due solely from the inability of RASRT contracts to perfectly transfer risk among consumers; the 

endowment-sharing contracts and the spending-sharing contracts perfectly dealt with the issues 
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of stochastic endowment ratios and individual utility shocks.  However, in the real world, 

RASRT contracts would be fairly straight forward to implement as real aggregate supply is 

relatively objectively measured.  However, the post hoc determination of the endowment-sharing 

contracts and spending sharing contracts will face individuals who want to exaggerate their 

endowment shortfalls and exaggerate their spending needs. 

 The results of this paper have implications for the real world.  First, in order for nominal 

contracts to behave as normal contracts, the central bank needs to pursue nominal-income 

targeting or nominal-aggregate-demand targeting.  However, the current fad in central banking is 

inflation targeting, and monetary economists almost universally agree on the primary objective 

of central banking be price stability, which would be in conflict with nominal-income or 

nominal-aggregate-demand targeting when real aggregate supply changes. 

 A second implication of this work has to do with insurance contract design.  In this paper 

the endowment-sharing contracts and spending-sharing contracts pose no aggregate risk to 

insurance companies.  However, current insurance contracts in the real world do expose 

insurance companies to aggregate risk.  An important assumption difference between this paper 

and reality is that no real capital exists in this paper’s model.  If real capital exists, then insurance 

companies could rely on capital reserves as a way to protect the insurance companies for 

aggregate risk.  However, in some extreme situations, these reserves would prove insufficient for 

insurance companies.  In particular, if a flu epidemic killed half the population, who all had life 

insurance, life insurance companies would become bankrupt.  The way endowment-sharing 

contracts and spending-sharing contracts are designed may prove useful in real-world 

redesigning of insurance contracts. 
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 In the current real world, RASRT contracts do not exist.  Perhaps this is because 

everyone has the same relative risk aversion.  If that were the case, then normal contracts, 

endowment-sharing contracts, and spending-sharing contracts could complete the markets.  

However, if individuals do have differing relative risk aversions then RASRT contracts may 

have a place in the real world. 
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