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Abstract

We use transaction level data for twelve stocks with large market capitalization
on the Australian Stock Exchange to develop an empirical model for trade sign
(trade initiator) inference. The new model is a piecewise linear parameterization
of the model proposed recently in Ref. [1]. The space of the predictor variables is
partitioned into six regions. Signs of individual trades within the regions are inferred
according to simple and interpretable rules. Across the 12 stocks the new model
achieves an average out-of-sample classification accuracy of 74.38% (SD=4.25%),
which is 2.98% above the corresponding accuracy reported in Ref. [1]. Two of the
model’s regions, together accounting for 16.79% of the total number of daily trades,
have each an average classification accuracy exceeding 91.50%. The results indicate
a strong dependence between the predictor variables and the trade sign, and provide
evidence for an endogenous component in the order flow. An interpretation of the
trade sign classification accuracy within the model’s regions offers new insights into
a relationship between two regularities observed in the markets with a limit order
book, competition for order execution and transaction cost minimization.
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1 INTRODUCTION

The Australian Stock Exchange (ASX) is a limit order market without special-
ists. It implements a continuous double auction via an electronic limit order
book. Every type of transaction on the stock exchange is recorded in an elec-
tronic file. Similar electronic systems are employed by other stock exchanges
with a limit order book, for example the Paris Bourse, the London Stock Ex-
change, and the Tokyo Stock Exchange. The recorded single event data allow
researchers to analyze the trading process at an ultra-high frequency. In par-
ticular, it becomes possible to reconstruct the complete order flow, which in
turn enables formulation and testing of event level models of order submission
strategies and price formation.

Recent empirical studies have shown that the order flow depends on the state
of the limit order book [2–11]. Most of the observed dependence seems to be
caused by two behavioral regularities in order submission strategies. The first
regularity concerns competition for order execution. If one side of the book is
dominant, where the dominant side is the one with more depth 1 , then there is
an imbalance between supply and demand, and limit orders on the dominant
side face a longer time to execution [3] and a higher risk of an adverse price
movement leading to non-execution. Consequently, traders on the same side
of the market as the dominant side of the book are more likely to submit
market orders to achieve an immediate execution [4, 8–11]. The behavior of
buyers and sellers, however, may not be perfectly symmetrical [4, 12]. The
second regularity is called by us transaction cost minimization. It is observed
that a majority of individual market orders consume only a part or the whole
volume available at the best price in the order book [2–8, 10]. Traders try
to minimize their transaction costs and by following this regularity ensure
that the price per share of their trades will differ from the pre-trade mid-
point price by the value of half spread only. Apart from the two regularities
other empirical studies found an autocorrelation in the unconditional and
conditional order flow, where similar events tend to follow one another [1–
3, 7, 8, 13–15]. In particular, Refs. [13–16] reported an autocorrelation in the
trade sign 2 , Ref. [13] presented evidence for the long memory in the trade
sign, while Ref. [16] found the long memory in the order flow. The works
of Porter [17] and Aitken et al. [18], on the other hand, detected temporal
patterns in the probability of trading at the best ask, and represent the closest

1 The depth is measured as the volume (total number of shares) on a given side of
the limit order book, usually at a single price (best price) or at a number of prices
closest to the mid-point price. The mid-point price is an average of the best bid
price (best bid) and the best ask price (best ask).
2 The trade sign has also been referred to by various authors as a trade initiator,
trade indicator, trade direction, or buy/sell indicator. Similar synonyms exist for
the market order sign.
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prior work to the study in Ref. [1], which is the starting point of our present
research.

In this paper we develop a piecewise linear parameterization of the trade
sign inference model proposed recently by Blazejewski and Coggins [1]. Those
authors reported that a k-nearest-neighbor classifier can infer the trade sign
with an average accuracy of over 71%, for a set of 12 stocks on the ASX.
The classifier used three predictor variables, the volume at the best bid and
at the best ask just before a trade, and the trade size. Across the 12 stocks
the highest classification accuracy was achieved for a training interval of 30
days. Our new model is piecewise linear and employs the same set of the three
predictor variables. We do not use trade and quote (bid and ask) prices, and
our purpose is different from that of the trade classification algorithms [19–22].
Those algorithms were designed for markets where full, correctly time-stamped
limit order book data, and the trade sign in particular, are not available. Our
empirical model is constructed to demonstrate a strong dependence between
the three predictor variables and the trade sign as evidence for an endogenous
component in the order flow.

The space of the three predictor variables is partitioned into six regions. The
trades within each region are signed according to rules derived from the two
regularities in the order flow discussed earlier. The boundaries between the
regions form a set of three partitioning planes. The coefficients of these planes
are estimated over the first 30 days in the data set. The estimation procedure
employs three different methods to produce three corresponding coefficient
vectors. The mean in-sample daily classification accuracy is then calculated
over the first 30 days. The out-of-sample estimate of this accuracy is deter-
mined over the remaining 169 days. The calculations are performed separately
for each stock and each coefficient vector. We show that the new model with
an intuitively interpretable set of coefficients outperforms the k-NN classifier
and achieves an average out-of-sample accuracy of 74.38% (SD=4.25%). We
also find that two of the six regions which represent, on average, 16.79% of
the total number of daily trades, have each an average classification accuracy
exceeding 91.50%.

2 DATA SET

We use a data set for 12 stocks on the Australian Stock Exchange (ASX).
The same data set has been used previously in Ref. [1] to develop a local
non-parametric model for trade sign inference. The data were collected over
199 trading days, between 11 November 2002 and 27 August 2003. The twelve
stocks were selected from the 30 stocks with the largest market capitalization
during the period considered, while 8 of our stocks belonged to the top 10.
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All of the selected stocks were traded on each day in the data set and they
did not experience any major price revisions. The three letter institutional
codes of the stocks, ordered by decreasing market capitalization, are: NAB,
BHP, CBA, ANZ, WBC, NCP, RIO, WOW, FGL, SUN, SGB, MIG. Our data
set contains information on all orders entered, amended, and deleted in the
limit order book, as well as all trades transacted through the order book 3 , as
recorded by the ASX for the selected stocks during the investigated period.
Each order has three main attributes: side (buy or sell), size (volume), and
price. The true size of orders with an undisclosed volume [23] is included in the
data set. The three main attributes of trades are: size, price, and trade sign. All
transactions have a correct time-stamp and are ordered chronologically. The
data set contains 2,355,334 trades. Our analysis is restricted to buyer-initiated
and seller-initiated trades only. There are 2,184,046 such trades in the data
set (92.73%), out of which 50.44% are buyer-initiated. Trades resulting from
the same market order are aggregated together as in Ref. [1], whereby an
aggregated trade becomes a proxy for that market order 4 . After aggregation
we have 1,542,205 buyer-initiated and seller-initiated trades, with 51.78% of
them being buyer-initiated. The first five aggregated trades on each day are
omitted in order to use the same set of trades as in Ref. [1] 5 .

3 METHODS

The trade sign inference model proposed in Ref. [1] is based on the k-nearest-
neighbor, which is a local, non-parametric, memory-based classifier. That
model is a starting point for the development of our parametric model. In
particular, we use the same set of predictor variables as was employed in that
study for the k-NN classifier with the highest predictive accuracy. This set
contains the following three variables:

• an - total volume at the best ask in the limit order book, recorded just
before an order which caused the n-th trade; n is an index of aggregated
trades over a single day.

• bn - total volume at the best bid in the limit order book, recorded just before
an order which caused the n-th trade.

• sn - size of the n-th trade.

3 Trades transacted outside the order book, called off-market, are excluded from
our analysis.
4 We do not make a distinction between market orders and marketable limit orders.
The latter are limit orders priced for immediate execution.
5 That study used the omitted trades to obtain lagged values of model variables.
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NCP − Ratio of Bi trade count to Si trade count.

Fig. 1. Ratio of trade counts for buyer-initiated (Bi) and seller-initiated (Si) trades,
for the first 30 trading days of the NCP stock. Six classification regions ri, i = 1 . . . 6,
are numbered from 1 to 6. Bin size is 0.2x0.2.

There is one target variable (inference target), the trade sign εn. To simplify the
notation the trade index n will be omitted in the remainder of the paper. The
predictor variables will be denoted as a, b, and s, respectively, while ε will stand
for the target variable. All three predictor variables are measured in the same
units, number of shares. The trade sign is a binary variable which represents
buyer-initiated and seller-initiated trades as +1 and −1, respectively.

To obtain some insight into the relationship between the three predictor vari-
ables and the target variable we constructed two types of histograms using
the first 30 days in the data set, for each stock separately. The two histograms
for the NCP stock in Figs. 1 and 2 qualitatively agree with the correspond-
ing histograms for most of our stocks. The first type of histogram, shown in
Fig. 1, depicts a trade count ratio. The trade count ratio is defined as a ratio
of a buyer-initiated bin trade count to a seller-initiated bin trade count. A bin
trade count is as a total number of trades in a given histogram bin. A trade
count for buyer(seller)-initiated trades counts the trades with the specified
sign only. The trade count ratio is shown as a function of the imbalance in
the order book imb and the ratio sbr of the trade size s to the total volume
at the best bid b. The presence of a square in a given histogram bin indicates
a dominance of buyer-initiated trades, while a diamond stands for a majority
of seller-initiated trades. A small dot represents approximately equal (±10%)
trade counts. Bins without any trades are marked by a blank space without any
symbol. It can be seen that there are several well defined regions, each dom-
inated by a particular trade sign. The boundaries between the regions seem
to form three straight lines, horizontal, diagonal, and vertical. To highlight
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Fig. 2. Trade count density of combined buyer-initiated (Bi) and seller-initiated (Si)
trades, for the first 30 trading days of the NCP stock. Six classification regions ri,
i = 1 . . . 6, are numbered from 1 to 6. Bin size is 0.2x0.2.

these features three thin lines have been added to the figure. The horizontal
line represents the condition sbr = 0, which means that s = b. The diagonal
line can be shown to correspond to the condition s = a. The vertical line, on
the other hand, represents the situation where imb = 0, which is equivalent
to a = b. The regions delineated by the three lines have been numbered from
one to six and will be denoted as ri, i = 1 . . . 6. Regions r2 and r4 seem to
be dominated by buyer-initiated trades, while regions r3 and r5 both have a
majority of seller-initiated trades. The other two regions, r1 and r6, do not
have an obvious dominant trade sign. They are sparsely occupied and have
approximately similar numbers of squares and diamonds. We note that the
lower right corner of region r3 does not show a clear majority either.

The second type of histogram, shown in Fig. 2, depicts a trade count density
for combined buyer-initiated and seller-initiated trades. The density was cal-
culated by dividing a given bin trade count by a total number of trades in all
bins. The axes in the figure, as well as the lines separating the regions, and
the region numbers are the same as in Fig. 1. The trade count density values
were transformed to a relative scale from 0 to 1, and mapped to shades of
grey, from white to black. The white color indicates very few or no trades,
while the black stands for the highest trade count density. It is evident that
parts of the horizontal and diagonal separating lines are located over areas of
high trade concentration. Those areas seem to closely follow the course of the
lines and do not reach further than half of the bin size away from the lines, in
either axial direction. A large cluster of trades can be seen in regions r3 and
r4. The bin density in that cluster is not as high as the density over the sep-
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arating lines described above but the cluster covers a larger area. Regions r1,
r2, r5, and r6 appear to have few trades beyond the areas under the horizontal
and diagonal separating lines. The lower right corner of region r3, mentioned
earlier in the context of Fig. 1, has a very low trade count density too. As far
as trades within bins which the separating lines cut in half are concerned it is
unclear if they have a preference for which side of a given line they are on.

The analysis of the histograms revealed the existence of regions dominated
by particular trade signs. The boundaries of the regions are clearly delineated
and form a set of three separating lines. The only exceptions are regions r1

and r6. It is not obvious where the boundary line between them is located and
what their dominant trade signs are in areas outside the horizontal and diag-
onal separating lines. However, the trade count density in these areas is very
low and, consequently, their contribution to the total trade sign classification
accuracy should be minimal. The discovered features and the two regulari-
ties discussed in the introduction lead us to propose the following trade sign
inference model:

ε = p(c) (1)

p(c) =
6∑

i=1

εri , c = (αa, βa, αb, βb)

εr1 =




−1 if s > fD(a) and a > fV (b)

0 otherwise

εr2 =





+1 if s ≤ fD(a) and s > fH(b)

0 otherwise

εr3 =




−1 if s ≤ fH(b) and a > fV (b)

0 otherwise

εr4 =





+1 if s ≤ fD(a) and a ≤ fV (b)

0 otherwise

εr5 =




−1 if s > fD(a) and s ≤ fH(b)

0 otherwise

εr6 =





+1 if s > fH(b) and a ≤ fV (b)

0 otherwise

fD(a) = αaa + βa, αa 6= 0

fH(b) = αbb + βb, αb 6= 0

fV (b) =
αb

αa

b +
βb − βa

αa
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The six functions εri , i = 1 . . . 6, define six disjoint regions in the space of the
three predictor variables. Those six regions are generalizations of the regions
shown in Figs. 1 and 2, and are denoted in the same way, i.e. ri, i = 1 . . . 6.
Each function can assume only two values: 0 and either +1 or −1. For a given
combination of the three predictor variables a, b, and s only one function εri

assumes a non-zero value due to mutually exclusive sets of conditions imposed
on the predictor variables. The boundaries of the regions form a set of three
boundary planes which are generalizations of the diagonal, horizontal, and
vertical separating lines in the histograms. The boundary planes are defined
by the following conditions: s = fD(a), s = fH(b), and a = fV (b). The con-
ditions employ three boundary functions, fD(a), fH(b), and fV (b). The four
coefficients αa, βa, αb, and βb form a coefficient vector c and allow us to search
for the optimal locations of the separating planes. The third boundary func-
tion fV (b) has its own coefficients defined entirely in terms of the coefficients
of the other two boundary functions. That constraint ensures that the three
separating planes will always intersect along a single line. Consequently, the
number of regions will stay fixed at six, irrespective of the values of the four
coefficients, as long as αa 6= 0 and αb 6= 0.

To estimate the proposed model we will look for a coefficient vector c which
maximizes Ap, where Ap denotes the classification accuracy of the function
p(c). We employ three methods for this purpose. The simple method is derived
from the exact arrangement of the three separating lines shown in Figs. 1 and
2. Its coefficient vector csmp is set arbitrarily to (1, 0, 1, 0), resulting in the
simplified boundary functions: fD(a) = a, fH(b) = b, fV (b) = b. The second
method uses the Nelder-Mead local optimizer [24–26] to maximize Ap. This
algorithm performs a local search in the space of the four coefficients, starting
from csmp. The result of the search is referred to as the Nelder-Mead opti-
mized coefficient vector cnm. The third method is a global optimizer based on
a recently developed particle swarm optimization algorithm [27–29]. The op-
timizer searches the neighborhood of csmp with a swarm of virtual particles.
The particles fly through the coefficient space and home in on the maxima
of Ap. The number of particles is set to 200. The initial neighborhood size
is set to [0.5, 1.5] for αa and αb, and to [−1, 1] for βa and βb. As the search
progresses a series of new, smaller neighborhoods are constructed around the
latest locally optimal vector with the highest Ap among the visited points.
The process is continued until the classification accuracy can no longer be
improved by a specified increment value. The best solution found is selected
as the PSO optimized coefficient vector cpso.

The optimized coefficient vectors cnm and cpso are estimated separately by
following the same procedure described below. The estimation is performed
over the subset E, which comprises the first 30 days in the data set. To prevent
overfitting, where an estimated solution does not generalize to unseen data, we
adopt an approach based on the ten-fold cross-validation [30, 31]. The whole
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period of 30 days is divided into 10 consecutive subperiods, called folds, of the
same length of 3 days. The estimation is conducted 10 times, each time on a
different subset Ei with 27 days. During the i-th estimation, where i = 1...10,
the i-th fold is omitted. An optimization algorithm looks for a vector c which
maximizes Ap over a given subset Ei. The classification accuracy is calculated
as a single value over all days in Ei, which is equivalent to calculating daily
classification accuracy values and weighting them by the number of trades
on corresponding days. We chose to calculate the accuracy this way because
the k-NN classifier constructed in Ref. [1] achieved the best results with the
training interval of 30 days. The whole process produces 10 estimates of an
optimized coefficient vector, and the average optimized vector is determined
by computing mean coefficient values across those 10 estimates.

Subsequently we use the subset E and the three coefficient vectors csmp, cnm,
and cpso to calculate mean values of the in-sample daily classification accu-
racy, separately for each stock and each coefficient vector. The mean daily
accuracy is computed as a mean of daily classification accuracy values of Ap.
The same procedure is performed over the evaluation period, comprising the
remaining 169 days in the data set, in order to determine the out-of-sample
daily classification accuracy.

The data processing and statistical calculations in our experiment were im-
plemented in the proprietary market surveillance and trading system called
SMARTS r© and on the Matlab r© computing platform. Two freely available
Matlab toolboxes, NETLAB [32] and PSOt [33], were also used.

4 RESULTS

The in-sample classification accuracy statistics for the piecewise linear model
with the three coefficient vectors csmp, cnm, and cpso are presented in Table 1.
The table also shows statistics for the coefficients of the PSO optimized vector
cpso. The results were calculated using the first 30 days in the data set. The ta-
ble reports the PSO optimized vectors only because all but a few of their mean
coefficients are located further away from the corresponding mean coefficients
of the simple vector csmp than the respective mean coefficients of the optimized
vectors found by the Nelder-Mead algorithm. In other words, the coefficients
produced by the local optimizer are located closer to the coefficients of csmp.
The distance between the coefficients was measured with a one-dimensional
Euclidean distance metric, for each stock and coefficient separately. The same
relationship exists for the average optimized vectors across the 12 stocks, where
the average cpso is (0.997379, 0.032122, 0.997895, 0.044311), while the average
cnm is (1.000255, 0.000125, 1.001402, 0.000043). The coefficients are reported
with six digits after the decimal point to emphasize the differences between
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Table 1
In-sample daily classification accuracy (%) and coefficients of the PSO optimized
vector cpso for individual stocks - 30 estimation days.1

Stock csmp cnm cpso αa βa αb βb

NAB 79.65 79.70 79.69 0.999659 0.004462 0.999933 0.001693
2.28 2.27 2.27 0.000460 0.005209 0.000090 0.001818

BHP 75.56 75.60 75.55 0.999166 0.011990 0.999938 0.010441
3.53 3.55 3.57 0.002346 0.027007 0.001185 0.009774

CBA 72.71 72.68 72.66 1.000042 0.000883 1.000145 0.002786
3.59 3.60 3.58 0.000203 0.001387 0.000785 0.003218

ANZ 77.83 77.84 77.86 0.999973 0.000461 1.000350 0.001773
2.75 2.79 2.79 0.000099 0.001106 0.000451 0.005081

WBC 76.22 76.22 76.20 0.999855 0.002027 1.000309 0.001833
3.09 3.11 3.09 0.000304 0.003714 0.000403 0.002095

NCP 76.31 76.33 76.32 0.999943 0.001015 1.000003 0.000024
2.91 2.90 2.90 0.000201 0.002350 0.000011 0.000046

RIO 80.08 80.07 80.02 0.999712 0.006057 0.998399 0.016841
2.86 2.80 2.92 0.000663 0.007617 0.002133 0.021967

WOW 75.70 75.74 75.72 0.999627 0.007419 0.998742 0.014167
3.20 3.14 3.13 0.001004 0.011051 0.001879 0.021138

FGL 67.67 67.74 67.75 0.979487 0.246303 0.977927 0.416271
6.28 6.33 6.19 0.033823 0.401725 0.033676 0.392509

SGB 77.31 77.49 77.52 0.999834 0.003600 0.999668 0.004165
3.14 3.15 3.15 0.000675 0.006450 0.000542 0.005432

SUN 73.53 73.48 73.72 0.999999 0.000076 1.000843 0.012721
3.68 3.71 3.87 0.000001 0.000159 0.001012 0.007791

MIG 71.14 71.29 71.13 0.991248 0.101173 0.998482 0.049018
6.53 6.39 6.63 0.027406 0.315834 0.011447 0.119704

Av. 75.31 75.35 75.34 0.997379 0.032122 0.997895 0.044311
value 3.65 3.65 3.67 0.005599 0.065301 0.004468 0.049214
1For csmp, cnm, and cpso the first and the second line for each stock show means
and standard deviations of the classification accuracy, respectively. For coefficients
αa, βa, αb, and βb the first and the second line for each stock show means and
standard deviations of the PSO optimized coefficients, respectively. The optimized
coefficients were calculated across the 10 subsets with 27 days, over the 30 esti-
mation days. The first and the second line of averages show average values of the
corresponding stock specific statistics above them, calculated across the 12 stocks.
Abbreviated headings: csmp, cnm, cpso - piecewise linear model with the simple,
Nelder-Mead optimized, and the PSO optimized coefficients, respectively; αa, βa,
αb, βb - PSO optimized coefficients.

them.

The optimized vectors cnm and cpso do not result in a substantially improved
in-sample classification accuracy when compared to the simple vector csmp.
This is the case for the stock specific as well as the average (across the 12
stocks) mean accuracy. The average mean accuracy for the piecewise linear
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Table 2
Out-of-sample daily classification accuracy (%) and fraction of the daily trade
count (%) for individual stocks - 169 evaluation days.1

Stock k-NN csmp cnm cpso r1 r2 r3 r4 r5 r6

NAB 74.87 *78.54 78.54 78.52 60.79 93.22 74.29 73.73 94.27 56.38
3.08 3.09 3.09 3.09 0.53 12.16 36.94 37.81 12.02 0.53

BHP 70.08 *72.27 72.26 72.28 50.30 88.85 69.16 72.71 88.90 59.52
4.25 3.75 3.75 3.72 0.04 2.95 47.89 46.25 2.81 0.05

CBA 73.48 *75.59 75.60 75.56 58.05 92.10 71.04 71.93 90.91 52.02
2.25 2.74 2.75 2.74 0.55 11.49 38.35 38.14 10.96 0.52

ANZ 73.72 *76.44 76.43 76.42 57.00 94.30 69.47 76.19 92.83 56.95
3.27 3.42 3.42 3.42 0.28 10.04 41.41 39.09 8.86 0.32

WBC 73.41 *77.31 77.30 77.28 59.82 93.21 73.21 74.40 94.08 59.63
3.58 3.22 3.20 3.22 0.28 9.69 40.34 40.16 9.23 0.29

NCP 70.97 *75.17 75.18 75.18 54.87 92.57 71.87 74.10 91.66 51.87
3.66 4.03 4.02 4.02 0.15 6.27 43.60 43.79 6.03 0.16

RIO 76.34 *79.13 79.09 79.06 60.17 93.87 70.78 78.59 92.58 58.98
2.92 3.63 3.60 3.57 0.74 14.77 37.49 34.00 12.28 0.73

WOW 72.07 *75.11 75.09 75.04 58.86 92.81 75.26 68.51 93.32 57.41
4.15 4.04 4.02 4.03 0.25 8.44 39.74 42.19 9.12 0.26

FGL 62.69 63.84 64.20 64.12 83.33 92.81 56.75 71.68 85.18 42.86
6.08 6.71 6.67 6.67 0.01 1.57 50.76 46.26 1.38 0.01

SGB 72.58 *75.63 75.65 75.64 63.82 92.11 76.69 66.63 93.44 48.66
4.91 5.04 5.07 5.09 0.52 10.83 35.33 40.50 12.25 0.57

SUN 69.24 *73.70 73.71 73.55 60.93 90.73 69.77 69.66 92.01 51.49
3.87 4.68 4.63 4.63 0.51 10.98 39.49 38.05 10.44 0.54

MIG 67.39 *69.79 69.80 69.62 54.55 90.64 63.71 73.69 90.02 50.00
6.08 6.67 6.71 6.68 0.04 3.66 46.67 46.31 3.26 0.06

Av. 71.40 74.38 74.40 74.36 60.21 92.27 70.17 72.65 91.60 53.81
value 4.01 4.25 4.24 4.24 0.33 8.57 41.50 41.05 8.22 0.34

38.69 6.91 10.00 9.43 8.15 39.46
0.29 2.99 7.09 6.92 2.93 0.30

1For k-NN, csmp, cnm, and cpso the first and the second line for each stock show
means and standard deviations of the classification accuracy, respectively. For re-
gions ri, i = 1 . . . 6, the first and the second line for each stock show means of
the classification accuracy and means of the fraction of the daily trade count,
respectively. The first and the second line of averages show average values of the
corresponding stock specific statistics above them. The third and the fourth line of
averages show average standard deviations of the regional classification accuracy
and average standard deviations of the regional fraction of the daily trade count,
respectively. All average values were calculated across the 12 stocks.
Abbreviated headings: k-NN - k-nearest-neighbor (k = 9), csmp, cnm, cpso - piece-
wise linear model with the simple, Nelder-Mead optimized, and the PSO optimized
coefficients, respectively; ri, i = 1 . . . 6 - six classification regions of the piecewise
linear model with csmp.
* - statistically significant at the level of 0.01.
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model with the vectors csmp, cnm, and cpso is equal to 75.31%, 75.35%, and
75.34%, respectively. The corresponding standard deviations are 3.65%, 3.65%,
and 3.67%. The differences between the mean values, and between the stan-
dard deviations, are minimal. Consequently, when measured by the in-sample
classification accuracy, the three coefficient vectors seem to be equivalent and
the simple vector csmp is the preferable one due to its intuitive interpretation.

Table 2 shows the out-of-sample classification accuracy statistics for the best
k-NN (k = 9) classifier found by Blazejewski and Coggins [1], and for the
piecewise linear model with the three coefficient vectors csmp, cnm, and cpso.
The statistics were calculated over the 169 evaluation days. The differences
between the mean classification accuracies for the coefficient vectors csmp,
cnm, and cpso are very small and statistically not significant. Furthermore,
for all stocks in our data set the mean accuracy for csmp is substantially
greater than the mean accuracy for the best k-NN (k = 9) classifier reported
in Ref. [1]. The differences in their stock specific means, tested with the one
tailed paired t-test, are statistically significant for 11 stocks at the level of 0.01,
after the Bonferroni adjustment [34] to account for multiple comparisons 6 .
The only exception is the FGL stock. The statistical significance indicated
in Table 2 refers only to tests between the piecewise linear model with the
simple coefficient vector csmp and the k-NN (k = 9) classifier. The average
mean out-of-sample classification accuracy for csmp is 74.38% (SD=4.25%).
The corresponding average for the k-nearest-neighbor is 71.40% (SD=4.01%).

Table 2 also reports statistics for the classification accuracy and the fraction of
the daily trade count for each of the six regions ri, i = 1 . . . 6, of the piecewise
linear model. The statistics were calculated for the simple vector csmp over the
169 evaluation days in the data set. The presented results quantitatively con-
firm the observations made during the analysis of Figs. 1 and 2. In particular,
regions r1 and r6 have the lowest average mean classification accuracy out of
the six regions. The average mean accuracy for the two regions is 60.21% and
53.81%, respectively. These low values, however, do not have much influence
on the total classification accuracy Ap because the two regions together rep-
resent, across the 12 stocks, only 0.66% 7 of the total number of daily trades.
The majority of trades occupy regions r3 and r4. The average mean accuracy

6 For each stock the total number of new and prior comparisons was 242. The
piecewise linear model with the simple coefficient vector was compared against the
96 k-NN models constructed in Ref. [1]. The two other piecewise linear models as
well as the 144 prior comparisons in Ref. [1] were also accounted for.
7 The apparent discrepancy of 0.01% between this value and 0.67%, the latter
being the sum of the respective averages for the two regions in Table 2, is caused
by rounding to two digits after the decimal point. The reported sum of 0.66% was
calculated using the full precision mean fractions for r1 and r6, and rounding the
result. Similar discrepancies can occur for other aggregated values.
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for each of these regions is above 70%, while their combined 8 average mean
fraction of the daily trade count is 82.55%. As far as individual stocks are con-
cerned, the mean classification accuracy can be as low as 56.75% in r3 (FGL)
and as high as 78.59% in r4 (RIO). The stock-specific combined mean fraction
of the daily trade count varies between 71.49% (RIO) and 97.02% (FGL).

Two regions, r3 and r4, contain all trades for which s ≤ a and s ≤ b. This
means that the second regularity, transaction cost minimization, is satisfied
in these regions by design. The sign of the trades reflects the imbalance in
the order book and is determined by finding the dominant side. In our model
the dominant side in the book is the one with more volume at the best price,
either bid or ask. The trade sign is set to buyer-initiated if a ≤ b, and to seller-
initiated otherwise. This signing rule and the achieved classification accuracy
for r3 and r4 indicate that the first regularity, competition for order execution,
is satisfied too (statistically). Interestingly, the other two regions, r2 and r5,
sign trades in the opposite direction than the last signing rule. Contrary to
the first regularity, their trade sign reflects the non-dominant side in the order
book. The cause of this reversal lies in the constraint imposed on the trade
size. Trades must satisfy the condition b < s ≤ a to belong to r2 and be
classified as buyer-initiated, or the condition a < s ≤ b to belong to r5 and
be classified as seller-initiated. The average mean accuracy for each of these
two regions is above 91.50%, and together they represent, on average, 16.79%
of the daily trade count. On an individual stock basis the mean accuracy has
the lowest value of 85.18% in r5 (FGL), and the highest value of 94.30% in
r2 (ANZ). The stock-specific combined mean fraction of the daily trade count
varies between 2.96% (FGL) and 27.04% (RIO). The trade size constraints
and the achieved classification accuracy for r2 and r5 indicate that if there
is a conflict between the two regularities then traders will follow the second
one, transaction cost minimization. Furthermore, due to the high classification
accuracy in r2 and r5, the overall classification accuracy Ap tends to be higher
for stocks with a relatively high fraction of the daily trade count in these two
regions.

The above results suggest that the piecewise linear model with the simple co-
efficient vector csmp is superior to the local non-parametric model proposed
in Ref. [1], due to the higher classification accuracy and the intuitive inter-
pretation. We note that the average mean classification accuracy across the
12 stocks, for each of the three coefficients vectors in Table 2, is approxi-
mately 1% smaller than the corresponding average in Table 1. The average
standard deviations, on the other hand, are larger in Table 2. The differences
between mean accuracies for the same individual stocks in the two tables are
even more pronounced, varying in value and sign. The observed differences are
most probably due to the short estimation period of 30 trading days, relative

8 The two regions are combined together.
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to the 169 trading days of the evaluation period.

5 CONCLUSIONS

We developed an empirical model for trade sign inference. Our model is a
piecewise linear parameterization of the model proposed recently in Ref. [1].
The model employs three predictor variables, the volume at the best bid and
at the best ask just before a trade, and the trade size. There are four parame-
ters which serve as coefficients of the boundary planes that partition the space
of the three predictor variables into six regions. Each region has a dominant
trade sign associated with it. All trades belonging to a given region are clas-
sified as having the dominant sign of that region. The best values of the four
coefficients, in terms of the classification accuracy and parsimony, were found
by constructing and evaluating the piecewise linear model with three differ-
ent coefficient vectors. The simple coefficient vector csmp, equal to (1, 0, 1, 0),
was shown to perform equally well as the locally optimized (Nelder-Mead)
vector cnm and the globally optimized (PSO) vector cpso. The simple vector
csmp was selected as the best vector because of its intuitive interpretation.
Our piecewise linear model outperforms the k-NN (k = 9) classifier developed
in Ref. [1], on a stock specific basis (11 out of 12 stocks) as well as across
the 12 stocks. The out-of-sample statistics for individual stocks were calcu-
lated over the 169 trading days and are significant at the level of 0.01. The
average mean classification accuracy for the new model with the simple vec-
tor csmp is 74.38% (SD=4.25%). This value is 2.98% above the average mean
of 71.40% (SD=4.01%) reported in Ref. [1]. The overall classification perfor-
mance of our new model indicates a strong dependence between the trade
sign and the three predictor variables, and provides evidence for an endoge-
nous component in the order flow.

The proposed piecewise linear model with the simple coefficient vector csmp

partitions the space of the three predictor variables into six regions. The clas-
sification accuracy and the fraction of the daily trade count vary between the
regions. Two regions for which s ≤ a and s ≤ b have a combined average
mean fraction of the daily trade count of 82.55%, while each of them has an
average mean classification accuracy above 70%. The trade sign within these
regions reflects the dominant side in the order book. These results suggest
that most of the trades within the two regions satisfy the first regularity,
competition for order execution. The second regularity, on the other hand, is
satisfied by all trades in these regions by design. Two other regions, where
either b < s ≤ a or a < s ≤ b, together represent, on average, 16.79% of the
total number of daily trades. They both have an average mean classification
accuracy exceeding 91.50%, while their trade sign reflects the non-dominant
side in the order book. The results for these two regions indicate that when
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there is a conflict between the two regularities then the second one, transac-
tion cost minimization, prevails. The remaining two regions contain a small
number of trades whose size is larger than the volume on both sides of the
order book. Their combined average of the daily trade count is only 0.66%,
which further reinforces the evidence for the second regularity. Consequently,
the regions’ influence on the overall trade sign classification accuracy of our
model is negligible.

The daily classification accuracy of the piecewise linear model developed in
this paper could be used as a new order flow metric. The temporal evolution
of the metric and a question of its privileged timescale are good topics for
future research. The new model captures the two regularities discussed in the
introduction, competition for order execution and transaction cost minimiza-
tion. These regularities are reflected in the relationship between the predictor
variables and the trade sign, and can probably explain the monotonically in-
creasing accuracy of the model proposed in Ref. [1]. That study reported that
the classification accuracy of the k-NN classifier increased with the length of
the training interval, which indicated a memory of a corresponding length. It
appears that the increase in the training interval length provided more data
points (trades) for the estimation, which in turn allowed for a better approx-
imation of the relationship between the variables concerned. The observed
memory could therefore be a consequence of the two regularities operating on
a single trade level, as discussed in this paper. We also believe that the same
two regularities are involved in the interplay [16] between the long memory in
the market order sign [13, 16], the long memory in the trade size and the long
memory in the volume in the limit order book [16]. A rigorous investigation
of this idea is another possible direction for further work.
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