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Abstract

This note derives new expressions for the moments of the average
of values taken by Wiener paths at an arbitrary number, N , of discrete
times. The expressions are closed summations, which entail only the
N − th powers of, and the successive differences between, the moments
of the lognormal finite dimensional distribution of the process’ values at
the time of the first averaging. By passing to the limit of the average
when the averaging frequency becomes continuous, known forms for
the continuous average are generalized by a single expression.

The summands’ kernel is itself an expression of some interest which
apparently has not previously appeared in the literature. It generalizes
the elementary expression for the sum of the geometric sequence of a
variable, to an expression for the sum of all products of several variables
under the condition that the sum of exponents in each summand is not
greater than a specified integer maximum. Proof of the form is given.

1 Introduction and Results

The average of the levels attained by a continuous geometric Brownian mo-
tion with specified drift and diffusion is of concern in applications of stochas-
tic processes, particularly in finance. No specification is known for the dis-
tribution of the average of a finite number N of values, taken at discrete
intervals. An iterative method to obtain the moments of that distribution
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has been given in [3]. For continuous averaging, expressions for the first
two moments are commonly known; perhaps the earliest expressions were
provided in [1] and more recently in [2].

Knowledge of the finite dimensional distribution of outcomes induced by
a geometric Brownian motion is often sufficient for valuation of financial
claims. Absent an analytic form, the moments can provide a means of
approximating the probability measure; these methods are solutions to the
classical ”Problem of Moments”, first posed by Stieljes. Accordingly, at least
in application, establishing the form of the higher moments of a probability
law can be deemed tantamount to establishing that law itself.

The results of this note establish a single general expression for the mo-
ments of the discrete average of values of a geometric Brownian motion, as
defined by the following process.

1.1 The Underlying Process and its Average.

Denote the drift and diffusion terms by r and σ, respectively. Then, specify
a geometric Brownian motion, and the finite dimensional distribution of the
process values, by:

dvt = rvt dt + σvt dWt ⇔ vt = v0 exp
{

(r − σ2/2)t + σ
√

dtU
}

, (1)

where Wt denotes a standard Wiener process, and U denotes a unit standard
normal variate.

Let ∆T denote a time interval and assume, for some interval of time, T ,
that T/∆T ∈ Z+.

The expression on the right of (1) is a lognormal density. Let em(τ)
denote the m− th moment about zero of the corresponding distribution for
time τ . For m ≥ 0, and for times τ = n∆T , the moments of the distribution
are well known to be:

em(n∆T ) = exp {cm n∆T ) (2)

where cm, independent of time, is given by:

cm = m
(
r − σ2/2

)
+ m2 σ2/2 (3)

The special case of n = 1 will be referred to as the ”single-step”. The single-
step random variable will be denoted by v∗ = v∆T

, and its m-th moment by:
E[v∆T

m] ≡ em. Because U in (1) is additively stable, vn∆T
can be written as
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the product of n realizations of v∗, independent and identically distributed.
That is:

vn =
i=n∏
i=1

v∗i (4)

The variable of interest is the arithmetic average of N = T/∆T successive
values of the process (1), observed at the end of successive time intervals of
length τ . Then, denoting this average as AN ,

AN =
1
N

N∑
n=1

vn

=
1
N

N∑
n=1

Πnv∗ (5)

where Πnv∗ describes the product in (4).

1.2 Main Results

The following three propositions are the main results of this note. The
first two define equivalent specifications for the moments under discrete
averaging, ı.e., when the number of intervals for fixed T is finite. The third
proposition presents a new specification for the moments under continuous
averaging. Each is given here, and established, respectively, in the ensuing
three sections.

The expressions for the M -th moment entail certain subsets of the first
M single-step moments. Also, the first proposition entails summations of
powers up to order that depends on N . The following definitions will be
used, both to state the propositions, and in their proofs.

Definition 1.1 Augmented index subset, Uk(.).
Let Ũ0 = ∅, and Ũk(u1, . . . , uk) denote a distinct k-subset of the integers
uj , j ∈ (1, 2, . . . ,M − 1), such that:

M < u1 ≤ k,

u1 < u2 ≤ k − 1,

. . . ,

uj−1 < uj ≤ k + 1− j,

. . . ,

uk−1 < uk ≤ 1.
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Whenever specificity of the values uj do not effect an argument, the short-
ened symbol Uk(.) may be written. Define an Augmented index subset by:

Uk(.)
∆= Ũk(.) ∪ {M}.

Let U[k] denote the union of all such sets, and Ũ[k] denote the union of all
corresponding k-subsets. It is evident that the elements of Ũ[k] enumerate
the combinations of k non-negative integers chosen from the first M − 1.
Moreover, with:

Ũ [M−1] ∆=
M−1⋃
k=0

Ũ[k], and U [M ] ∆=
M−1⋃
k=0

U[k],

Ũ [M−1] is a power set, so that both Ũ [M−1] and U [M ] have cardinality 2M−1.
�

Definition 1.2 Power index set, Ik(.).
Let Ik(i0, i1, . . . , ik) denote a set of indices, each i(.) ∈ Z+. Further, denote

the sum of the values of the first j indices by the symbol Σ(j) ≡
∑j

m=0 im.
The elements i(.) ∈ Ik(.) are constrained by 1 ≤ i(.) ≤ i∗(.)(k), with the upper
bounds defined by:

i∗0(k) = N − k;
. . .

i∗j (k) = N − (k + j)− Σ(j − 1);
. . .

i∗k(k) = N − Σ(k − 1);

�

Definition 1.3 Combinatorial Product, CM
k (.)

With regard to the elements of an Augmented index subset Uk(u1, . . . , uk),
let CM

k (.) denote the product:

CM
k (Uk(u1, . . . , uk)) = (MCu1)(u1Cu2) . . . (uk−1

Cuk
).

where nCr denotes the binomial coefficient, ”n choose r”.
�
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Proposition 1.1 The ”Nested Powers” expression for the M -th moment
about zero of the arithmetic average of N values of a geometric Brownian
motion is given by:

E[AN
M ] =

1
NM

∑
∀Uk(.)∈U [M ]

CM
k (Uk(u1, . . . , uk))f(Uk(u1, . . . , uk)),

where:

f(Uk(.)) =
i∗0(k)∑
i0=1

eM
i0

i∗0(k)∑
i1=1

eu1
i1 · · ·

i∗k(k)∑
ik=1

euk

ik .

Proposition (1.1) is established in Section 2. It formalizes the algorithmic
procedure, albeit with different indexing, presented by TW in [TW]. This
form is neither particularly elegant nor easy to implement, since it depends
upon N for resolution.

The next proposition, however, depends only on the power N , and not
on sums over powers up to N . It, along with the limiting form which follows
from it, are the two main results of this note.

Proposition 1.2 The ”Sum in Highest Powers” form.
With u0 ≡ 0, uk+1 ≡ eM , and e0 ≡ 1, then every term f(Uk(.)) in Proposi-

tion (1.1) can be written as:

f(Uk(.)) = p(λk;M)
k+1∑
m=0

eN
um

P (λk;m,M)

with

p(Uk(.);M) ≡
k+1∏
j=1

eij ,

and

P (Uk(.);m,M) ≡
k+1∏
j=0

j 6=m

(eim − eij )

The form of Proposition (1.2) is, in a sense, a generalization of the ele-
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mentary sum of a of geometric series. Indeed, for U0(.)
∆= {M}:

f(U0(.)) =
N∑

i0=1

eM
i0 , by Proposition 1.1,

= eM
eM

N − 1
eM − 1

, by Proposition 1.2.

To illustrate the form more generally, consider, for instance, (U1(.) ⊂
U [3] : {1, 3} Then:

f(U1(.)) =
N−1∑
i0=1

e3
i0

N−i0∑
i1=1

e1
i1

= e1e3

{
e3

N

(e3 − 1)(e3 − e1)
+

e1
N

(e1 − e3)(e1 − 1)

+
1

(1− e3)(1− e1)

}
.

Perhaps somewhat remarkably, the second of these equivalent expres-
sions, generated by Proposition (1.2), does not seem to pre-exist in the
literature as an identity of the first, generated from Proposition (1.1). If
that is in fact the case, that result is perhaps of some interest in its own
right. The equivalence of expressions in Nested Powers form and Sum in
Highest Powers form is established in Section 3.

Section 4 advances a general expression for the moments of continuous
averaging of the values of the process specified in (1), which have been
published to the second order only. Rather than treating the continuous
process directly, which is the approach taken in [1] or [2], leading to suc-
cessively more complicated multiple stochastic integrals, the form for the
moments provided by Proposition (1.2) is simply passed to its limit with
T fixed. Defining T as a period of unit length does not reduce generality;
then, the following Proposition is established.

Proposition 1.3 Let ÃM denote the M -th moment of the continuously av-
eraged levels of a geometric Brownian motion over unit time. Denote each
of the M lowest moments of the process’ finite dimensional distribution, at
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the end of the period, as µm = exp(cm), with cm given in (3). Then:

ÃM = M !


M∑

m=1

µm

cm

( ∏M
j=1

j 6=m
(cm − cj)

) +
(−1)M∏M

j=1 cj

 (6)

2 Proof of Proposition (1.1)

For finite N , establishing Proposition (1.1) is greatly simplified by consider-
ing the sum, rather than the average, of values. Denote the sum of values by
the random variable SN ≡ NAN . Then the moments of the latter of course
obey the relationship:

E[Am
N ] =

1
Nm

E[Sm
N ]

Proposition (1.1) may be established by a resolution of the moments of
the sum of values of the process into expressions in the terms of the known
single-step moments. This process is well-defined, and terminates with the
expression asserted in the Proposition, consisting entirely of values of the
single-step moments of all orders m ≤ M .

The following two lemmas establish the kernel of the resolution process.

Lemma 2.1 Expansion in Lower Orders.
Writing Em(η) ≡ E[Sη

m]:

Em(η) = em

m∑
u=0

mCu Eu(η − 1) (7)

Proof. Expanding the products defined in (5) gives, for the sum:

Sη =
{
v∗1 + (v∗1v

∗
2) + · · ·+ (v∗1v

∗
2 . . . v∗η)

}
=

{
v∗1 ( 1 + v∗2( 1 + v∗3(1 + . . . v∗η−1(1 + v∗η) · · · )))

}
= v∗1(1 + Sη−1)

The single-step random instances are mutual independent; every m-th mo-
ment (about zero) of Sη therefore satsifies:

E[Sm
η ] = emE[(1 + Sη−1)m]
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Expanding the binomial and taking expectations over the sum establishes
(7). �

Lemma 2.2 Term-wise Resolution.

Em(η) =
η∑

i=1

ei
m +

m−1∑
u=1

mCu

η−1∑
i=1

ei
mEu(η − i) (8)

Proof. Write (7) as:

Em(η) = emEm(η − 1) + em + em

m−1∑
u=1

mCuEu(η − 1).

Applying (7) to the leading term, emEm(η − 1), produces:

Em(η) = e2
mEm(η − 2) +

2∑
i=1

ei
m +

m−1∑
u=1

mCu

2∑
i=1

ei
mEu(η − i).

After a total of (η − 1) such subsititutions in the first term, then:

Em(η) = eη−1
m Em(1) +

η−1∑
i=1

ei
m +

m−1∑
u=1

mCu

η−1∑
i=1

ei
mEu(η − i).

Since Em(1) ≡ em, combining the first two terms establishes (8).
�

Constructive proof of the Nested Powers form is a straightforward appli-
cation of Term-wise Resolution. In addition to the definitions of index sets
given in (1.2), the following two definitions are employed.

Definition 2.1 Resolved Term of Order k.
With respect to Uk(u1, . . . , uk) ∈ Ũ[k], an Resolved Term of Order k is

defined as:

fk(Uk(.)) =
i∗0(k)∑
i0=1

ei0
M

i∗0(k)∑
i1=1

ei1
u1
· · ·

i∗k(k)∑
ik=1

eik
uk

and
Fk =

∑
∀ Uk(.) ∈ U[k]

fk(.)

�
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Definition 2.2 Unresolved Resultant.
With

G0(M) =
M∑
u0

MCu0Eu0(N − 1) ≡ EM (N − 1),

the Unresolved Resultant of Stage k is defined by:

Gk(M ;N) =
∑

∀ Uk(.) ∈ U[k]

Ck(Uk(.),M)
i∗0∑

i0=1

ei0
M · · ·

i∗j∑
ij=1

e
ij
uj . . .

i∗k−1∑
ik−1=1

e
ik−1
uk−1Euk

[N − Σ(k − 1)]

 (9)

This expression is ”unresolved” because the least significant (”rightmost”)
summation entails an indeterminant path moment, i.e., Euk

(.). �

These two definitions categorize the two terms that arise in application
of (8). With regard to the latter, the following Lemma is self evident and
will be stated without formal proof.

Lemma 2.3 Gk(M ;N) 6= 0 iff ∃ Uk(.) ∈ U[k] : (uk−1 > 1).

Theorem 2.1 The Nested Powers form of Proposition (1.1) attains for the
M -th moment of AN if:

i. Every Unresolved Resultant Gk(M ;N) = Gk−1(M ;N)− Fk−1, and

ii. GM (M ;N) = 0.

Proof.
Clause (i.) follows by the sequential application of Lemma 2.2, applied

to the least significant summand of each component of Gk−1(M ;N) in turn.
The index on the first term in each application of (8) is uk−1, which cor-
responds to the element of Uk−1(u1, . . . , uk−1) of smallest value. It resolves
by the lemma to one term, fk−1(.), The sum of these exhausts the index-
set elements of U[k−1], and generates Fk−1, with the second term of each
application of (8) accumulating to generate Gk−1(M ;N).

Clause (ii.) follows from lemma (2.3). From Definition (1.1),

UM−1(u1, . . . , uM−1)
∆= {M,M − 1, . . . , ..2, 1},

and U[M−1] consists of only this set Augmented index set alone.
�
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3 Proof of Proposition (1.2)

.
The form fk(.) in Definition (2.1) is a special case of a product of geomet-

ric series of M distinct real numbers. By first establishing the closed form
for that general product of summands, Proposition (1.2) will follow directly
as a particular case. The following definitions are used in this section.

Let v[M ] denote a set of M distinct non-zero numbers, {vi} ∈ R, such
that (vi 6= 0 and vi 6= 1,∀ vi.

Definition 3.1 Nested Geometric Series
Let V (M,N) denote the sum of all products of the form

(
vk1
1 vk2

2 . . . vkM
M

)
,

such that:

M ≤
M∑

m=1

km ≤ N.

Then a Nested Geometric Series is defined as:

V (M,N) =
k∗1(M)∑
k1 =1

vk1
1 · · ·

k∗M−1(M)∑
kM−1 =1

v
kM−1

M−1

k∗M (M)∑
kM =1

vkM
M , (10)

where the upper bounds 1 are defined as:

k∗m(M) = N − (M −m)− Σ(m− 1), with Σ(0) ≡ 0

The next definition redefines the functions in Proposition (1.1) more
generally.

Definition 3.2 Sum in Highest Powers.
1It is readily verified that, while the sequence of bounds is dependent upon the or-

dering, from the left, of the summations, every permutation of the elements of a fixed
set of numbers v(.) results in the same product space being defined by the nested form.
Regardless of the indexing of the associated summands, the indices will always be written
ascending from left to right.
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With vi ∈ v[M], v0 ≡ 1, and N ∈ Z, define:

P (m;M) ≡
M∏
j=0

j 6=m

(vm − vj)

p(M) ≡
M∏

j=1

vj

t(m, M ;N) ≡ p(M)
vN
m

P (m;M)
.

Then a Sum in Highest Powers is defined as:

Q(M,N) =
M∑

m=0

t(m,M ;N) (11)

For the purposes below, it will be convenient to also define:

Q∗(M,N) =
M∑

m=0

vN
m

P (m;M)

The main result of this section establishes the equivalence of expressions
for a Nested Geometric Series and a Sum in Highest Powers. The proof
of V (M,N) ≡ Q(M,N) relies upon a boundary result on Q∗(M,N) for
N → M , proved in the following lemma.

Lemma 3.1 Q∗(M,M) ≡ 1, and Q∗(M,M − 1) ≡ 0, ∀M ≥ 1.

Proof. It is trivially true that, for Q∗(1, 1):

1
1− v1

+
v1

v1 − 1
≡ 1,

1
1− v1

+
v0
1

v1 − 1
≡ 0.

Now induce the value Z = Q∗(M + 1; M + 1), i.e.:

Z =
1

P (0;M + 1)
+ · · ·+

vM+1
M

P (M ;M + 1)
+

vM+1
M+1

P (M + 1;M + 1)
, (12)
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under the presumption that:

1 =
1

P (0;M)
+

vM
1

P (1;M)
+ · · ·+

vM
M

P (M ;M)
. (13)

Subtracting (13) from (12), and dividing the result by the common fac-
tor, vM+1, gives:

Z − 1
vM+1

=
1

P (0;M + 1)
+ · · ·+

vM
M

P (M ;M + 1)
+

vM
M+1

P (M + 1;M + 1)
. (14)

Subtracting (14) from (12), dividing the resultant factor (vm − 1) from
every m − th term, and dividing each numerator and denominator by vM

1

gives, presumptively:

Z
vM+1 − 1

vM+1
+

1
vM+1

=
1

P̃ (0;M)
+ · · ·+ (vM+1/v1)M

P̃ (M ;M)
, (15)

where P̃ (.) denotes the function P (.) in Definition (3.2), defined on the
numbers {νm ≡ vm/v1}. The right side of (15) satisfies (13), and thus, if
the latter holds, then

Z
vM+1 − 1

vM+1
+

1
vM+1

= 1 ⇔ Z = 1.

Moreover, (14) implies that, necessarily, Q(M ;M + 1) = 0. 2

�

The main result can now be established, that is:

Theorem 3.1 A Nested Geometric Series can be written as a Sum in High-
est Powers.

Proof. The induction principle will be applied to establish the Nested Ge-
ometric Series of v[M+1] = {{vM+1} ∪ v[M ]. Because the order in which the
numbers are taken in the Nested form does not matter, (see note (1)), write,
for the convenience of the induction:

V (M + 1, N) =
N−M∑
j =1

vj
M+1


k∗1(M)−j∑

i1 =1

vi1
1 · · ·

k∗M (M)−j∑
iM =1

viM
1

 (16)

2It is straightforward to establish that, for every k ∈ {2, . . . , M−1}, Q(M−k; M) ≡ 0,
by invoking a sequence of algebraic manipulations as applied in the lemma. The result is
not required below, and is therefore not explicitly undertaken.
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First observing that, for M = 1, the theorem states the elementary
expression for the sum of a geometric series in a single variable, then the
Nested Geometric Series in the braces is presumed to equal to Q(M,N),
whence:

V (M + 1, N) =
N−M∑
j =1

vj
M

M∑
m=0

t(m,M ;N)v−j

=
M∑

m=0

t(m,M ;N)
N−M∑
j=1

(vM+1/vm)j

=
M∑

m=0

t(m,M ;N)

{
vN−M+1
M+1 v−N+M

m

(vM+1 − vm)

}

+ vM+1

M∑
m=0

t(m, M ;N)
(vm − vM+1)

(17)

= q(M,N) +
M∑

m=0

t(m,M + 1;N), (18)

with q(M,N) denoting the first sum in (17), for brevity.
The second term in (18) defines the first M terms of Q(M +1, N); then,

to establish the theorem, it is sufficient that q(M,N) equal the ”missing”
term, i.e., of index M + 1, thus completing the expression. Expanding
the summands, subsuming terms in the component functions, and clearing
powers then gives:

q(M,N) = −p(M + 1)vN−M
M+1

M∑
m=0

vM
m

P (m,M + 1)

= −vN−M
M+1

M∑
m=0

t(m,M + 1;M)

= vN−M
M+1 t(M + 1,M + 1;M). (19)

Equation (19) attains by Lemma (3.1), whereupon:

vN−M
M+1 t(M + 1,M + 1,M) = t(M + 1,M + 1, N),

and (18) can then be written:

V (M + 1, N) = Q(M + 1, N)
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Every one of the 2M−1 terms, f(Uk(.)), in Proposition (1.1) is written as
a Nested Geometric Series, and thus Theorem (3.1) establishes Proposition
(1.2).

4 Proof of Proposition (1.3).

The finite dimensional distribution induced by the continuously averaging
the values realized by the process (1) is known to follow a Reciprocal Gamma
probability law, i.e., the law of a variate whose inverse has a Gamma distri-
bution. Specifically, in [2], it is proved (with their notation modified to the
unit-term epoch invoked below) that, with G(.|α, β) denoting the cumula-
tive (”left tail”) distribution of the usual gamma law, then:

Pr[A∗M > a] = G(a|α, β),

α = 1 +
2r

σ2
,

β =
σ2

2
(20)

In contrast to the simplicity of structure for the log-normal distribution
itself, the moments of the Reciprocal Gamma law have not been expressed
in a simple, general, analytic system. The Sum in Highest Powers form,
established in Proposition (1.2), however, provides for such an expression,
for moments of any order, at least for the special case of the distribution
with parameters as in (20). That expression, given as Proposition (1.3), will
now be established.

For simplicity, and without loss of generality, fix T = 1. Then, averaging
over N steps gives dt = 1/N , and the single-step moments are written, with
cm given in (2), as:

em = exp(cm dt),

and the moments of the process’ finite dimensional distribution at one period
(e.g., the most intuitive and familiar period: one year) are then:

µm = e(1/dt)
m = exp(cm).

Proposition (1.3) will follow immediately from following result.
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Lemma 4.1 Continuous Limits. Let u : µ1, µ2, . . . , µM , with every µi ≡
exp(χi dt). For Q(.) as in (11), define :

Ψ(M − k, N) =
Q(M − k, N)

NM
.

Then, for N = 1/dt:

lim
dt→0

Ψ(M − k, N) = 0, for 1 ≤ k < M,

=
M∑

m=1

µm

χm

( ∏M
j=1

j 6=m
(χm − χj)

)
+

(−1)M∏M
j=1 χj

, for k = 0. (21)

Proof. With 1/N = dt, then, by expanding the functions contained in
Q(.) defined in (11):

Ψ(M − k, N) = dtMp(M − k)
M−k∑
m=0

µm

P (m;M − k)

Expanding the components, e.g., (µm−µj), of every factor in each P (m;M−
k) in Maclaurin series, gives:

(µm − µj) u (χm − χj)dt + O(dt2)

Formally, the definition µ0 ≡ 1 ⇒ χ0 ≡ 0 provides, in particular, for:

P (0;M − k) u dtM−k
M−k∏
j=1

(−χj),

P (m;M − k) u dtM−kχm

M−k∏
j=1

j 6=m

(χm − χj)

with all omitted terms in the expansion being at least of order dt2. Moreover,
the function p(M − k) has the form exp(Π(χ(.)) dt). Now Ψ(M − k, N) can
be expressed as an infinite series in powers of dt with leading power dtk. Its
limit, therefore, vanishes for k > 1, and is as given in (21) for k = 0.
�
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With regard to the expression for the M − th moment in Proposition
(1.2) every term which entails a subset of the first M single-step moments
will vanish by the lemma. Therefore, the M − th continuously averaged
moment, denoted here as ÃM , is a single sum, as given in Proposition (1.3).

It bears mention again that, for notational simplifity, the drift and dif-
fusion terms are here expressed with the length of the averaging period as
the unit. Giving effect to the arbitrary period length presented in, e.g.,
[2], for the first two moments, direct substitution into (6) replicates those
expressions.
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