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Abstract

This paper compares generalized method of moments (GMM) and simulated maximum likeli-
hood (SML) approaches to the estimation of the panel probit model. Both techniques circum-
vent multiple integration of joint density functions without the need to restrict the error term
variance-covariance matrix of the latent normal regression model. Particular attention is paid
to a three-stage GMM estimator based on nonparametric estimation of the optimal instru-
ments for given conditional moment functions. Monte Carlo experiments are carried out
which focus on the small sample consequences of misspecification of the error term variance-
covariance matrix. The correctly specified experiment reveals the asymptotic efficiency ad-
vantages of SML. The GMM estimators outperform SML in the presence of misspecification
in terms of multiplicative heteroskedasticity. This holds in particular for the three-stage GMM
estimator. Allowing for heteroskedasticity over time increases the robustness with respect to
misspecification in terms of multiplicative heteroskedasticity. An application to the product
innovation activities of German manufacturing firms is presented.
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1. Introduction

In recent years substantial progress has been achieved in estimating panel probit models with-

out the need to assume restrictive variance-covariance specifications of the error term distri-

bution. In particular, there are two promising approaches dating back to the early eighties that

are now widely accepted as useful tools: the generalized method of moments (GMM) based

on the seminal work of Hansen (1982) and applied to the panel probit model by Avery, Han-

sen and Hotz (1983) and the simulated maximum likelihood (SML) technique suggested by

Lerman and Manski (1981). Both approaches solve the problem of multiple integration of the

multivariate normal density function inherent in panel probit models. GMM estimates can be

obtained from treating the panel probit model like a nonlinear regression model and restricting

only the first conditional moment functions of the error terms which do not depend on off-

diagonal elements of the error term variance-covariance matrix. SML estimates exploit the

full information of the error term distribution but rely on Monte Carlo integration techniques

to simulate the likelihood function.

Since their introduction both methods have been refined in detail. Chamberlain (1987)

shows that the GMM estimates based on optimal instruments reach the lower asymptotic effi-

ciency bound of any consistent and asymptotically normal estimator within the class of mod-

els based on conditional moment restrictions. Newey (1990) proposes a feasible estimation

approach to this optimal GMM estimator in the case of conditional homoskedasticity involv-

ing nonparametric estimation techniques for those elements of the optimal instruments that

depend on conditional expectations. Newey (1993) presents the corresponding estimator in

the case of conditional heteroskedasticity. He suggests k-nearest neighbor estimation and se-

ries approximation to estimate the conditional variance-covariance matrix of the moment

functions. The former nonparametric estimator is also used by Robinson (1987) and Delgado

(1992) to derive feasible multiple equation generalized least squares estimators for linear and

nonlinear regression models with heteroskedasticity of unknown form. First applications of

the GMM estimator with nonparametrically estimated optimal instruments to the panel probit

model include Inkmann and Pohlmeier (1995) and Bertschek and Lechner (1998).

The SML method has been improved by several authors with the introduction of more

accurate and efficient simulation techniques for the likelihood function. Other criterion func-

tions have been considered: McFadden (1989) introduces a method of simulated moments and

Hajivassiliou and McFadden (1990) suggest simulation of the score function. Pakes and Pol-
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lard (1989) provide a general central limit theorem that applies to a large class of simulation

estimators with nonsmooth criterion functions. Hajivassiliou and Ruud (1994) present an ex-

cellent survey of the different simulation methods in models for limited dependent variables

(LDV). These models usually rely on a latent normal regression model and require simulation

of multivariate normal rectangle probabilities. An extensive comparison of 13 different simu-

lation algorithms for this particular case is carried out by Hajivassiliou, McFadden, and Ruud

(1996). The Geweke-Hajivassiliou-Keane (GHK) simulator turns out to be the most success-

ful method with respect to root mean squared error performance in over 70 of their 84 ex-

periments under consideration. For the simulation of the likelihood function of LDV models,

the GHK simulator is applied by Börsch-Supan and Hajivassiliou (1993). The authors show

that this SML estimator possesses desirable properties such as a smooth and unbiased simu-

lated likelihood function. Applications of the GHK-SML estimator to the panel probit model

include Keane (1994) and Mühleisen (1994).

This paper brings together the two existing lines of literature and focuses on the estima-

tion of the panel probit model. The choice of this particular model is justified by its enormous

practical importance and the fact that first applications of both GMM and SML methods in-

clude the panel probit model which highlights the value of the two approaches for this model.

Significant attention is paid to the specification of the variance-covariance matrix of the error

term in the latent normal regression model underlying the observed binary dependent variable.

All aforementioned studies applying either GMM or SML to the panel probit model rest on

the assumption of homoskedasticity over time and individuals. This paper presents GMM and

SML estimators for the panel probit model that allow for heteroskedasticity over time. This

extension makes it possible to test for the homoskedasticity assumption instead of just im-

posing the restriction. In fact, little attention seems to be paid to the homoskedasticity as-

sumption in applied work. An exception is the work by Laisney, Lechner, and Pohlmeier

(1992a) who apply minimum distance estimation to a random effects probit model of process

innovations using a five year panel of manufacturing firms. The authors reject the hypothesis

of constant error term variances over time if the unobserved individual effects are specified to

be uncorrelated with the regressors.

The consequences of erroneously imposing homoskedasticity over time in the presence of

heteroskedasticity become clear if one recalls the identification conditions for the unknown

parameters in the panel probit model (cf. Heckman, 1981). The coefficients of the explanatory
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variables are identified subject to a scale normalization in any arbitrarily chosen period. Given

this normalization, the slope parameters and the scale coefficients are separately identified for

the remaining periods. Imposing homoskedasticity implies not using the separate information

and therefore creating bias if the estimated coefficients are still interpreted as slope coeffi-

cients. Depending on the variation of the error term variances over time, this bias may seri-

ously affect any conclusions obtained from the model. In this sense, in particular probit mod-

els based on panel data covering a long period are likely to produce misleading results.

 In a second attempt, this paper tries to evaluate the small sample consequences of mis-

specification in terms of multiplicative heteroskedasticity over individuals for the GMM and

SML estimators under consideration. If not explicitly taken into account, multiplicative het-

eroskedasticity renders both classes of estimators inconsistent. However, the GMM estimators

may show superior small sample properties compared to SML because their limited distribu-

tional assumptions should make them more robust with respect to misspecification. Both,

GMM and SML estimators under the assumption of homoskedastic and heteroskedastic error

terms over time are confronted with multiplicative heteroskedasticity over individuals. This is

done to get an  idea how less demanding identification conditions affect the robustness of the

estimators with respect to misspecification.

The paper is organized as follows: the panel probit model is introduced in Section 2. The

conditional moment approach to GMM estimation of this model is described in Section 3.

Particular attention is paid to the optimal GMM estimator in the class of estimators using con-

ditional moment functions as the only distributional assumption. An efficient estimator in the

class of estimators exploiting full distributional information is presented in Section 4. This

estimator simulates the likelihood function by means of the GHK algorithm. Section 5 pres-

ents the Monte Carlo experiments for the proposed estimators which focus on misspecifica-

tion of the error term variance-covariance matrix of the latent normal regression model as

described above. The data generating process implements a combined random effects and

autocorrelated error term specification which is frequently used in applications of the GHK

simulator to discrete choice panel data models (cf. Börsch-Supan et al., 1993, Mühleisen,

1994). It is shown, that the correctly specified experiment reveals the asymptotic efficiency

advantages of the different estimators. Compared to the SML estimates, the GMM estimates

turn out to be much more robust with respect to misspecification in form of multiplicative

heteroskedasticity. This holds in particular for the GMM estimator that rests on the optimal
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choice of instruments. Allowing for heteroskedasticity over time increases the robustness of

all estimators.

To demonstrate the practicability of the proposed estimators in nonexperimental work,

they are applied in Section 6 to the data set underlying the aforementioned empirical analysis

of process innovations by Laisney et al. (1992a). The sample consists of 1,325 West German

manufacturing firms observed over the period 1984 – 1988. In this paper, the data are used to

estimate the probability of successful product innovations.1 The results obtained by the differ-

ent estimators turn out to be very similar. Section 7 concludes and suggests a possible direc-

tion for future research.

2. The panel probit model

Observed binary outcomes of utility maximizing behavior of individuals i at time t can be

conveniently thought of as generated by a random utility model of the form

y x uit it it
* = ′ +β , ,T,...,1t     ,N,...,1i ==  (2.1)

where the latent variable yit
*  represents the net utility of the individual emanating from the

choice of a particular state of interest, explained by a K× 1  vector of observed regressors xit

with a corresponding parameter vector β  and the unobserved error term uit . The individual

occupies the state of interest in case of positive net utility indicated by the binary variable ity

according to the observability rule

[ ]0uxy ititit ≥+β′= 1  (2.2)

under the assumption that yit
*  is adequately scaled. This threshold crossing binary choice

model is conveniently rewritten in matrix notation as [ ]0uxy iii ≥+β= 1 , where y i  is the

T ×1 vector of dependent variables for observation i , ( )x x xi i iT= ′
1,...,  is the KT ×  matrix

of explanatory variables, and ( )u u ui i iT= ′
1, ...,  the T×1 vector of error terms. The panel

probit model results from the assumption of jointly normal error terms, ui ~ iid N( , )0 Σ ,

where an arbitrary main-diagonal element of Σ  is set to unity to ensure identification of the

                                                
1 Previous studies applying alternative panel probit estimation techniques to these data to estimate process and

product innovation equations include Laisney et al. (1992a, b), König et al. (1994), Bertschek (1995), Ink-
mann and Pohlmeier (1995), and Bertschek and Lechner (1998).
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slope parameters (cf. Heckman, 1981). It will be required throughout this paper that the ui  be

distributed mutually independent of the explanatory variables which rules out the fixed effects

specification but includes the random effects model. The data ( )z y xi i i= ,  are independently

and identically distributed according to a joint probability distribution characterized by the

true parameters β0  and Σ 0 .

Usual maximum likelihood estimation of the unknown parameters requires the computa-

tion of a T -dimensional integral over a multivariate normal density function without further

restriction of Σ . This task becomes computationally prohibitive even for moderate sizes of T.

One possibility to circumvent this problem is to impose restrictions on the parameters of Σ  as

in the case of the popular random effects specification with equicorrelated residuals (cf.

Hsiao, 1996) resulting from the error components specification

itiit vu +τ= .  (2.3)

Assuming that the random effect ( )2
i ,0N τσ∼τ  and the white noise error ( )vit v∼  N 0 2,σ  are

mutually independent distributed and uncorrelated with the regressors xit , the variance-

covariance matrix Σ  reduces to '11I 22
vRE τσ+σ=Σ  and the computation of the joint probabil-

ity of y i  conditional on iτ  simplifies to an univariate integration problem.2 Two alternative

estimation approaches allowing for less demanding specifications of Σ  are presented in the

following two sections.

3. Generalized method of moments estimation

The first application of the GMM principle, introduced by Hansen (1982), to the estimation of

panel probit models under consideration here is the work by Avery, Hansen, and Hotz (1983).

Lechner and Breitung (1996) provide a comprehensive survey of GMM estimators for nonlin-

ear panel data models. This section reviews the conditional moment approach to GMM esti-

mation formulated by Newey (1990, 1993) for a general class of nonlinear regression models.

The estimation principle can be described by introducing the following set of heteroskedastic

conditional moment functions

                                                
2 See Butler and Moffitt (1982) who introduce an efficient computation procedure for this case and Guilkey

and Murphy (1993) for the small sample properties of this approach.



7

ρ it it it ity E y x= − [ ] , ,T,...,1t     ,N,...,1i ==  (3.1)

where E y x
x

it it
it

t

[ ] =
′






Φ

β
σ

in the panel probit case and ( )Φ ⋅  denotes the c.d.f. of the standard normal distribution. As the

only substantial distributional assumption it is required throughout the section that the true

distribution satisfies the conditional moment restriction

( )[ ]E z xi iρ θ, 0 0= ,  (3.2)

where ( ) ( )ρ θ ρ ρzi i iT, ,...,= ′
1

and θ  includes the 1TKQ −+=  unknown parameters β  and σ t
2 , the main-diagonal ele-

ments of Σ  for t T= 2,..., .3 The estimation procedure makes use of the fact that the condi-

tional moment functions are uncorrelated with any function of x i  which leads to uncondi-

tional moment functions suggesting a GMM estimator to obtain a consistent estimate of the

true θ0 . To be more specific, define a ( ),LT ×  QL ≥ , matrix of suitable instruments ( )A x i

that are functions of the explanatory variables and possibly of the parameters to be estimated.

Then unconditional moment functions are obtained by

( ) ( ) ( )g z A x zi i i, ,θ ρ θ= ′
,   (3.3)

where the orthogonality condition

( ) ( ) ( ) 0]]x,z[ExA[E],zg[E i0ii0i =θρ′=θ  (3.4)

is satisfied by (3.2) and the law of iterated expectations. For the case of strict exogeneity of

the explanatory variables a straightforward matrix of instruments used in the estimation part

of this paper can be constructed as ( )A x I ai T iT= ⊗  where ( )a x x xiT i
c

i
v

iT
v= ⋅ ; ,..,1 . Here xi

c
⋅

denotes the 1× K c  subvector of the explanatory variables with time-constant regressors while

xis
v  denotes the 1× K v  subvector of time-varying variables at time s, such that K K Kc v+ = .

This particular choice of instruments implies v2c K)1T()1K)(1T(QL −+−−=−  overidenti-

                                                
3 Without loss of generality the variance for t=1 is normalized to unity to ensure identification. Any other

main-diagonal element of the variance-covariance could be normalized to one instead. To obtain simple
analytical gradients it is more convenient to optimize with respect to the inverse standard deviations than
with respect to the variances. The standard errors of the estimated variances can be retrieved afterwards by
means of the delta method.
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fying restrictions. The GMM estimator of θ0  using moment functions (3.3) minimizes a quad-

ratic criterion function

( ) ( )� , ,θ θ θ
θ

= 







′








∈ = =
∑ ∑

Θ
argmin 1

1

1

1
N i

i

N

N N i
i

N

g z P g z ,              (3.5)

where PN  is a symmetric and positive definite weight matrix that converges almost surely to a

nonrandom matrix P and the parameter space Θ  is a compact subspace of QIR . The asymp-

totic distribution of �θ  under the assumption of certain regularity conditions (cf. Gouriéroux

and Monfort, 1995, ch. 9.5) is given by

( ) ( ) ( )( )N N G PG G PVPG G PGd� ,θ θ−  → ′ ′ ′− −
0

1 1
0 ,    (3.6)

where ( ) ( ) 



 ′θθ= 0i0i ,zg,zgEV ,

( )






θ′∂
θ∂= 0i ,zg

EG .

Hansen (1982) shows that the optimal choice of the weight matrix PN  converges to P V= −1

which leads to the asymptotically efficient GMM estimator for a given set of unconditional

moment restrictions. A feasible estimator can be obtained from using a consistent estimate �P

of the weight matrix calculated from a first estimation step in which (3.5) is solved for a

weight matrix that is independent of θ , e.g. the identity matrix. In this case the asymptotic

distribution of the GMM estimator collapses to

( ) ( )( )N N G V Gd� ,θ θ−  → ′ − −
0

1 1
0 .   (3.7)

Throughout this paper, the estimates (3.5) are called one-step GMM (GMM1) estimates when

using the identity matrix as a weight matrix and two-step GMM (GMM2) estimates if they are

based on the optimal weight matrix computed from GMM1 in the first step.

It is obvious that the choice of the matrix of instruments ( )A x i  is quite arbitrary since

different choices lead to different GMM estimators that are not comparable with respect to

their relative efficiency. However, optimal instruments are available that lead to the asymp-

totically efficient GMM estimator for a given set of conditional moment restrictions. In addi-

tion, Chamberlain (1987) shows that this estimator reaches the lower bound of the asymptotic
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variance of any consistent and asymptotically normal estimator in the class of estimators us-

ing (3.2) as the only substantive distributional assumption. Under the assumptions of strictly

exogenous explanatory variables and conditional heteroskedasticity, the matrix of optimal

instruments is given by (cf. Newey, 1993)4

( ) ( ) ( )A z z G z Fi i i
* *, , , , ,β β θ0 0 0 0

1

0Σ Ω Σ= −
,    (3.8)

where ( ) ( ) ( ) 



 ′θρθρ=ΣβΩ i0i0i00i x,z,zE,,z ,

( ) ( )






θ′∂
θρ∂=θ i

0i
0i

* x|
,z

E,zG

and F  is any nonsingular matrix representing proportional transformations of *A . GMM es-

timation is based on as many moment functions as parameters to be estimated

( ) ( ) ( )g z A z zi i i
* *, , , ,θ β ρ θ= ′Σ               (3.9)

leading to the estimator

( ) ( )� , ,* * *θ θ θ
θ

∗

∈ = =

= 







′






∑ ∑

Θ
argmin 1

1

1

1
N i

i

N

N N i
i

N

g z P g z .             (3.10)

Under regularity conditions the asymptotic distribution of � *θ  is given by

( ) ( ) ( ) ( )N N E G x z G xd
i i i

� , , , , ,* * *θ θ θ β θ−  → ′





















−
−

0 0 0 0

1

0

1

0 Ω Σ            (3.11)

and does not depend on the choice of the weight matrix PN
* . In the presented form the optimal

GMM estimator is not feasible because the optimal instruments are functions of the

0 5 1.  T ( - )T  unknown off-diagonal elements of .0Σ  A feasible estimator, called three-step

GMM (GMM3) estimator in the following, can be obtained by a three-step procedure in

which ( )00i
* ,,zA Σβ  is replaced by a consistent estimate � *A  without affecting the asymptotic

distribution of the estimator. Newey (1993) suggests using � *A  to form the weight matrix

                                                
4 See Newey (1990) for the optimal instruments in case of conditional homoskedasticity. Chamberlain (1992)

and Hahn (1997) discuss the implementation of optimal instruments with weakly exogenous instruments im-
plying a set of sequential moment restrictions.
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P A AN N
i

N
* * *� �= ′








=

−

∑1

1

1

                    (3.12)

in order to make the objective function invariant to nonsingular transformations of the optimal

instruments and to improve the numerical properties in this way. The estimate � *A  results

from substituting the two unknown conditional expectations in (3.8) by their estimates. Using

the conditional mean function (3.1) for the panel probit model, it is obvious that ( )0i
* ,zG θ

does not depend on the endogenous variables and can be estimated consistently by replacing

0θ  with any consistent first step estimate �θ1, e.g. the GMM1 or GMM2 estimates introduced

above.5

The estimation of the second expression in (3.8) involving conditional expectations,

( )Ω Σzi , ,β0 0 , is more difficult because it depends on the endogenous variables. One simple

way of obtaining a consistent estimate of ( )Ω Σzi , ,β0 0  goes back to Heckman (1981) who

suggests using 0 5 1.  T ( - )T  bivariate probit estimations to estimate the unknown covariance

elements of Σ 0 . However, this method becomes inconvenient for larger Ts. Two alternative

approaches are suggested by Newey (1990, 1993) which make use of nonparametric estima-

tion. The first one is based upon a series approximation while the second one uses the k-

nearest neighbor (k-nn) estimation technique. For the latter approach which may be easier to

implement, the k-nn estimate of ( )Ω Σzi , ,β0 0  computed in the second estimation stage of the

GMM3 estimator is defined by6

( ) ( ) ( )� , � , , � , �Ω z k w z zi ij j
j

N

jθ ρ θ ρ θ1 1
1

1=
′

=
∑ ,             (3.13)

where the weights ijw  are positive for the nearest neighbors kj ≤  and equal to zero for kj > .

The most simple case is characterized by uniform weights k/1wij =  for kj ≤ . Smoother

weight functions, e.g. with quadratic or triangular weights, are discussed by Stone (1977).

Following Newey (1990, 1993), the k-nearest neighbors for observation i are those of the

sample that minimize a distance between the explanatory variables scaled by their respective

standard deviations, sd(⋅), given by

                                                
5 In the empirical section GMM2 estimates are used for this purpose.
6 Applications of this semiparametric optimal GMM estimator to the panel probit model include Inkmann and

Pohlmeier (1995) and Bertschek and Lechner (1998). Pohlmeier (1994) presents the corresponding estimator
for count data panel models and Pohlmeier and Inkmann (1997) apply the principle to nonlinear SUR models
and give an example to count data.
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D d dij ij ij= ′ ,      ,N,..,1j =            (3.14)

with ( ) ( ) 











 ′








 −′








 −
=

⋅⋅ T

jTiT

1

1j1i
ij xsd

xx
,,

xsd

xx
d � .

A well known problem of the k-nearest neighbor approach is the choice of the smoothing pa-

rameter k. 7 Newey (1993) proposes a choice criterion based on the cross-validation function

( ) ( ) ( ) ( )CV k tr Q R z z k R zi i i
i

N
� , � � , � , , �=

′









=
∑ θ θ θ1 1 1

1

Ω ,            (3.15)

where ( ) ( ) ( ) ( ) ( )R z A z z z k z ki i i i i, � � , � , � � , � , � , � ,*θ ρ θ ρ θ θ θ1 1 1 1 1

1
=

′
−



















−
Ω Ω

and Q represents any positive definite matrix. A simple way to obtain an optimal smoothing

parameter is to compute (3.15) for a given sequence of k, e.g. N,N9.0,...,N1.0k ⋅⋅= , and to

select the particular k that minimizes the cross-validation function. This strategy is employed

in the empirical part of the paper using the identity matrix for Q.

4. Simulated maximum likelihood estimation

Simulation methods are required for maximum likelihood estimation of panel probit models

to allow for an unrestricted correlation structure of the error terms over time. Extensive sur-

veys of simulation methods for models of limited dependent variables are given by Hajivas-

siliou (1993) and Hajivassiliou and Ruud (1994). The articles by Gouriéroux and Monfort

(1993) and Keane (1993) focus explicitly on applications of simulation methods to panel data

models. This section reviews a simulated maximum likelihood estimator of the panel probit

model that builds on the Geweke-Hajivassiliou-Keane (GHK) simulator.8 Previous applica-

tions of this particular estimator include Keane (1994) and Mühleisen (1994). The choice of

the GHK simulator is justified by the comprehensive comparison of 13 simulators for multi-

variate normal rectangle probabilities by Hajivassiliou, McFadden, and Ruud (1996). The

                                                
7 The asymptotic mean squared error of uniform k-nearest neighbor estimates in the T-variate case is propor-

tional to N4/(4+T) (cf. Silverman, 1986, p.86). However, this knowledge does not help very much to determine
k in practical work.

8 See Börsch-Supan and Hajivassiliou (1993) who use the term ‘Smooth, Recursive Conditioning Simulator’.
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authors recommend the GHK simulator as the most reliable method. In 70 of their 84 experi-

ments, GHK achieved the best root mean squared error performance of all methods.

To circumvent the indicator function in (2.2), define d yit it= −2 1 and write µ βit itx= ′ .

Then it always holds from (2.2) that − <d u dit it it itµ  or equivalently

− <D u Di i i iµ ,                (4.1)

where Di  is a matrix with diagonal elements ( ,.., )d di iT1  and zeros elsewhere. Dropping the

indices for convenience, the left hand side of (4.1) is distributed as multivariate N D D( , )0 Σ ′ .

Define B D= µ  and let L  be the lower triangular Cholesky factor of D DΣ '  such that

LL D D′ = ′Σ . Given a T×1 vector η  of standard normal random numbers it follows imme-

diately that Lη  is distributed as well as multivariate N D D( , )0 Σ ′ . Instead of computing each

individual likelihood contribution on the probability of (4.1), the GHK algorithm is based

upon the probability

( )Pr Pr
...

...

L B

l
l l
l l l

l l l l

b
b
b

bT T T TT T T

η

η
η
η

η

< =





































<
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21 22

31 32 33

1 2 3

1

2

3

1

2

3

0

� �

.  (4.2)

The triangular structure of this expression is exploited by drawing a sequence of univariate

standard normal distributed random numbers subject to a truncation rule which is recursively

determined according to

η1 1 11< b l/  (4.3)

�

η η η ηt t t t t t t ttb l l l l< − − − − − −( ... ) /,1 1 2 2 1 1

�

η η η ηT T T T T T T TTb l l l l< − − − − − −( ... ) /,1 1 2 2 1 1 .

These draws from the truncated normal density are obtained by an application of the prob-

ability integral transform theorem (cf. Hajivassiliou, 1993)

( )[ ]η υt t tub= ⋅−Φ Φ1 ,  (4.4)

where υ t  is a uniform random variable from the interval [ ]0 1, , ubt  denotes the upper trunca-

tion bound on the right-hand side of (4.3), and ( )Φ− ⋅1 , the inverse of the standard normal
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c.d.f. This sequential way of proceeding generally leads to biased draws of the corresponding

multivariate truncated normal distribution in cases where L  is not a diagonal matrix because

the interdependence is ignored (cf. Börsch-Supan and Hajivassiliou, 1993, for a simple two-

dimensional example). Nevertheless, the joint probability (4.2) is correctly simulated by the

product of the single probabilities that each η t  falls in the respective truncated interval. This

yields the individual simulated likelihood contribution

( ) ( ) ( )
( ) ( )

( ) ( ) ( ), ,...,Q...,QQQ

l/)l...llb(...l/b

l/)l...llb(Pr...l/bPr,,z

1T1T213121

TT1T1,1T221111T111

TT1T1,1T221111TT1111

−

−−

−−

ηη⋅⋅ηη⋅η⋅=

η−−η−η−Φ⋅⋅Φ=

η−−η−η−<η⋅⋅<η=Σβ"

            (4.5)

where the factors Q  are introduced to reflect the dependence on the random draws η t .
9 The

sampling variance of the probability simulator is reduced by increasing the number of repli-

cations R  and using the average
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.  (4.6)

The simulated likelihood is a continuous and differentiable function of the parameters to be

estimated. In addition, Börsch-Supan and Hajivassiliou (1993) prove that ( )" z R, , ,β Σ  is an

unbiased simulator of the likelihood. However, as Hajivassiliou and Ruud (1994) point out, an

unbiased simulation is neither necessary nor sufficient for consistent SML estimation. This is

due to the nonlinearity introduced by the logarithmic transformation necessary in order to

derive the simulated log-likelihood function. To solve this problem, the number of draws R

has to increase sufficiently with the sample size. Under certain regularity conditions, a suffi-

cient rate is R N/ → ∞  as N→ ∞  to obtain consistent, asymptotically normal and efficient

estimates (cf. Hajivassiliou and Ruud, 1994, Propositions 4 and 5).

It is common practice to impose a certain structure on the error term variance-covariance

matrix in order to restrict the number of covariance parameters to be estimated. In comparison

to GMM, this is obviously a drawback to the SML approach. However, compared to ordinary

ML estimation of the panel probit model, much less restrictive specifications are possible.

                                                
9 Note, that the last draw ηT is not necessary for the computation of the likelihood contribution.
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5. Monte Carlo evidence

In order to evaluate the small sample properties of the proposed estimators some Monte Carlo

simulation experiments were carried out. Recent Monte Carlo evidence by Bertschek and

Lechner (1998) reveals a rather small efficiency loss by three-step GMM estimation (GMM3)

compared to full information maximum likelihood estimation in the case of a correctly speci-

fied random effects panel probit model with equicorrelated error terms and homoskedasticity

over time. The implementation of the SML estimator allows for a comparison of the GMM

type estimators with suitable ML estimators for models with a more demanding specification

of the error term process.

The underlying data generating process (DGP) is a slight variation of the one suggested

by Keane (1994). The true model is

y x uit it it
* = + +α β0 0 , ,5,...,1t     ,500,...,1i ==              (5.1)

where the parameters are set to α 0 1= −  and β0 0 25= . . The xit  are sampled from the normal

distribution with mean 5, an across individual variance of 3 and a within individual variation

of 2.10 It is assumed that the error term follows a combined random effects and autoregressive

specification

itiit vu +τ=        with it1t,iit vv ε+ρ= − ,               (5.2)

where ( )2
i ,0N τσ∼τ  and ( )2

tit ,0N εσ∼ε  independently of iτ . It is imposed that 22
1 1 τε σ−=σ  to

ensure that the identification conditions introduced below for the different specifications of

the proposed estimators hold for the data generating process. Two processes are distinguished

by their respective specification of 2tεσ  for .5,...,2t =  DGP1 creates heteroskedasticity over

time while DGP2 leads in addition to multiplicative heteroskedasticity over individuals:
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10 That is: xit = xi + eit where xi ~ iid N(5,3) and eit ~ iid N(0,2), independently of xi.
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where ���xit  denotes the individual realization of the N(0,1) distributed standardized counterpart

of the regressor itx . This guarantees that the expected error term variances of DGP2 are equal

to the corresponding variances of DGP1. In combination with 5.02 =στ  and ρ = 0 25. , both

experiments imply an expected variance-covariance matrix of the error term ui  with main-

diagonal elements ( )′15.125.11 .

For both data generating processes two specifications of the estimators under considera-

tion are computed which differ in their identification conditions and the resulting set of pa-

rameters to be estimated:

Specification 1 (SPEC1)
 heteroskedasticity over t

Specification 2 (SPEC2)
homoskedasticity over t

GMM GMM

[ ]E ui1
2 1=   for identification [ ]E uit

2 1=   ∀t

[ ]E uis us
2 2= σ   for s T= 2,..,

parameter set:  ( )2
5u

2
2u

GMM
1SPEC ,...,;, σσβα=θ parameter set:  ( )βα=θ ,GMM

2SPEC

SML SML
22

1 1 τε σ−=σ   for identification ( )( )222
t 11 ρ−σ−=σ τε   ∀t

[ ] r2ts
1)t,smin(

0r

2
r)t,smin(,

2
itisuuE +−

−

=
−ετ ρσ+σ= ∑   ∀s t, [ ] ts

2

2
t2

itis 1
uuE −ε

τ ρ
ρ−

σ+σ=   ∀s t,

parameter set:  ( )2
5

2
2

2SML
1SPEC ,...,;,,, εετ σσσρβα=θ parameter set:  ( )2SML

2SPEC ,,, τσρβα=θ

Based on the SML estimates of ( )2
5

2
2

2 ,...,;, εετ σσσρ  in SPEC1 the corresponding estimates and

estimated standard errors of ( )σ σu u2
2

5
2,..., are derived by means of the delta method to ensure

comparability with the GMM results. Note, that GMM only requires an assumption about the

main-diagonal elements of the error term variance-covariance matrix Σ while the GHK esti-

mator demands for a complete parametric representation of Σ. The particular specification of

Σ for the SML estimator in case of SPEC2 has become the first choice in panel data applica-

tions of the GHK simulator (e.g., Keane, 1994, Mühleisen, 1994). The extension in SPEC1 to

allow for heteroskedasticity over time has not yet been treated in the SML literature, at least

not to the author's knowledge.

Four experiments emerge from all possible combinations of the two data generating proc-

esses and the two specifications. SPEC1 is correctly specified under DGP1 while SPEC2 suf-

fers from the identification problem mentioned in the introduction in the sense that the slope
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parameters are not identified subject to the homoskedasticity restriction because they cannot

be separated from the impact of the scale coefficients. Both specifications imply inconsistency

of the GMM and SML estimates under DGP2 because the assumption of mutual independ-

ence of the error terms and explanatory variables stated in Section 2 is violated. However, it

should be interesting to observe the relative performance of GMM and SML in the presence

of this type of misspecification. One should expect that GMM behaves more robust with re-

spect to misspecification of the error term variance-covariance matrix of the latent normal

model because GMM exploits only limited distributional information compared to full infor-

mation ML.

The particular choice of the autocorrelation parameter ρ = 0 25.  allows to choose a small

number of replications of the GHK algorithm for SML estimation. This is justified by previ-

ous Monte Carlo evidence by Keane (1994) who finds that the GHK simulator already works

precisely with a small number of replications R if the coefficient of autocorrelation is small.

Therefore the first SML estimator computed in all experiments rests on 5 replications of the

GHK algorithm and is denoted SML5. This choice is in the magnitude of the number of repli-

cations chosen in a previous study by Börsch-Supan et al. (1993) who do not find any signifi-

cant improvement from increasing R from 3 to 9 for the simulation of a multinomial panel

probit model. However, the number of replications required for accurate simulation of the log-

likelihood function depends on the shape of the particular likelihood function and the data

under consideration which renders a comparison between different studies difficult. Therefore

a second SML estimator is computed in all experiments that uses 25 replications of the GHK

algorithm and is denoted SML25. The first 5 replications rest on the same random numbers

used for SML5. The pseudo-random numbers for the GHK algorithm are created by the mul-

tiplicative congruential method implemented in the GAUSS procedure RNDU.11 The inverse

of the standard normal c.d.f. in (4.4) is computed by the polynomial approximation suggested

by Odeh and Evans (1974) with a maximum approximation error of less than 1.5⋅10-8. 12

The GMM estimators under consideration include GMM1, GMM2, and GMM3. While

all estimates are consistent in the correctly specified experiment (SPEC1 on DGP1), the as-

                                                
11 Alternatively, Tausworthe's (1965) pseudo-random number generator was implemented without changing the

results in any systematic matter. Therefore these results are omitted here.
12 A Gauss procedure for this approximation written by the author is available online from the Gauss archives at

the American University in Washington. In this application the GHK method turns out to be unaffected by
larger approximation error sizes as shown by some experiments with the less precise approximations of the
inverse standard normal distribution function suggested by Hastings (1955) and Bailey (1981).
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ymptotic efficiency for this experiment increases in the order GMM1, GMM2, GMM3, SML

as described in the previous two sections. The summary statistics of the estimation results for

1000 Monte Carlo replications of the four experiments are presented in Tables A1 to A4 in

the appendix.13 Apart from commonly used statistics such as BIAS, SE (standard error) and

RMSE (root mean squared error), the statistic RELSE (relative standard error) is computed to

analyze the precision of the estimated asymptotic standard errors of the intercept and slope

estimates. RELSE is defined as the ratio of the average estimated standard error using the

appropriate asymptotic variance-covariance matrix of the respective estimator and the empiri-

cal standard deviation of the estimator over the number of completed Monte Carlo replica-

tions. The latter should converge towards the true standard errors of the respective estimates

as the number of replications increases. The estimated asymptotic standard errors are biased

upwards when RELSE is greater than one and they are underestimated on average for RELSE

less than one.

A more convenient way to look at the Monte Carlo estimation results is offered by the

box plot technique. Figures 1 and 2 display box plots for the empirical distribution of the bias

of the estimated slope-intercept ratios obtained over 1000 Monte Carlo replications. Figure 1

contains the estimation results for the first specification of the respective estimators that ac-

counts for heteroskedasticity over time (SPEC1) while the results depicted in Figure 2 rest on

the homoskedastic specification (SPEC2). To take care of the different variance normalization

of the two specifications, the bias of the ratio of the two estimated coefficients is given instead

of the bias of the two separate estimates. The ratios are comparable for all experiments while

the separate estimates are only comparable for estimators based on SPEC1. The horizontal

line within each box indicates the median of the empirical distribution. The boxes are

bounded at the 25th and 75th percentiles of the empirical distributions. The vertical lines

(fences) originating from the boxes are bounded at the last estimate that falls into the 1.5-fold

interquartile range. Dots outside the fences denote outliers in the tails of the distribution.

Note, that the one-step GMM estimation results are omitted in both figures because of their

weak performance. However, they are included in the tables given in the appendix.

                                                
13 All calculations were performed on two IBM RS 6000 workstations using GAUSS version 3.2.37.
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Figure 1.
Empirical Distribution of the Bias of the Estimated Slope-Intercept Ratio

SPEC1: Heteroskedasticity over Time is Taken into Account

Figure 2.
Empirical Distribution of the Bias of the Estimated Slope-Intercept Ratio

SPEC2: Heteroskedasticity over Time is not Taken into Account

Note: The numbers in parentheses refer to the data generating process: DGP1 leads to heteroskedasticity over
time and DGP2 in addition to heteroskedasticity over individuals. GMM2 denotes the two-step GMM estimator
with suboptimal instruments but optimal weighting of the moment functions. GMM3 is the three-step GMM
estimator with optimal instruments. SML5 and SML25 are simulated maximum likelihood estimators with 5 and
25 replications of the GHK algorithm.
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As expected, all estimators under consideration come close to the true parameters of the cor-

rectly specified experiment, SPEC1 on DGP1. Table A1 indicates that the three-step GMM

estimator exhibits the smallest bias of the three GMM estimators with respect to the estimates

of the intercept and slope coefficient. The GMM3 estimator also outperforms SML5 with re-

spect to this criterion and meets the performance of the SML estimator with 25 replications of

the GHK algorithm. It is not surprising that increasing the number of GHK replications re-

duces the average bias of the SML estimator, at least for the intercept and slope parameter.

The described performance of the respective estimators hold as well for the bias of the ratio of

the slope parameter and the intercept for which the complete empirical distribution is depicted

in Figure 1. The skewness indicated by the presence of outliers in the left tail of each estima-

tor's distribution should not be overemphasized because the reflection property described by

Chesher and Peters (1994) holds for the covariate design of the experiments. In short, this

property states that a skewed distribution obtained from a Monte Carlo experiment for the

estimated slope coefficient of a regressor that is generated from a symmetric distribution can

be reversed by reversing the sign of the true coefficient. The skewness can be eliminated by

setting the true coefficient to zero. This property holds for a large class of M-estimators.

However, the relative shape of the empirical distribution of the different estimates is impor-

tant for the experiments presented in this section. In the correctly specified experiment the

box plots for the estimated slope-intercept ratios are nearly indistinguishable, having slight

advantages of GMM3 over GMM2 and of SML25 over SML5 with respect to the width of the

interquartile range.

In general, the magnitude of the empirical standard errors reveals the asymptotic effi-

ciency advantages of the respective estimators. In particular, GMM1 turns out to be less effi-

cient than GMM2 and GMM3 while both SML estimators are more efficient than the two-

and three-step GMM estimators. The efficiency gains from using GMM2 or GMM3 instead of

GMM1 are remarkably high while using full information ML yields only modest efficiency

gains over GMM2 and GMM3. The only surprising result concerns the relative precision of

GMM2 and GMM3. Recall that GMM2 is asymptotically efficient for given unconditional

moment functions and GMM3 for given conditional moment functions. Therefore GMM3

should be more efficient than GMM2. The small sample results represented by the standard

errors for the intercept and slope coefficient indicate the opposite: GMM2 slightly outper-
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forms GMM3 with respect to both efficiency and root mean squared error performance. How-

ever, this advantage is not visible before the fourth digit after the decimal place.14

More importantly, the results concerning the relative precision of the estimated asymp-

totic standard errors compared to the empirical standard errors over the Monte Carlo replica-

tions (RELSE) indicate that GMM2 suffers from a serious downward bias of 9 % while

GMM3 slightly overestimates the asymptotic standard errors. Therefore, inference based on

GMM2 may lead to serious misinterpretations in applied work. This result is not new, of

course, it confirms previous findings by e.g. Arellano and Bond (1991) for the dynamic linear

panel data model with overidentifying restrictions. The poor performance of GMM2 with re-

spect to the precision of the estimated standard errors is usually explained by the first estima-

tion step which is necessary to obtain an estimate of the variance-covariance matrix of the

unconditional moment functions serving as a weight matrix for GMM2.15 Having this expla-

nation in mind, it is surprising that GMM3, which rests on an estimate of the variance-

covariance matrix of the conditional moment functions, does not display a similar behavior

and produces accurate estimates of the asymptotic standard errors in small samples.

Turning to the variances of the error term distribution over time, 2
5u

2
2u ,...,σσ , the perform-

ance of the different estimators described for the intercept and slope coefficient is, in general,

replicated. However, some differences are present. Firstly, the small sample properties of

GMM1 are extremely poor. The one-step GMM estimator with identity weighting matrix

leads to substantial bias and large standard errors compared to the other GMM estimators.

Both errors are much more severe for the scale parameters than for the slope coefficients.

Secondly, corresponding to the large sample theory, GMM3 now produces smaller empirical

standard errors than GMM2 in three of the four cases. Thirdly, contrary to the aforementioned

results for α  and β , increasing the number of replications of the GHK algorithm does not

help to reduce the bias of the scale parameters in the small sample. Surprisingly, SML5 turns

out to be less biased than SML25 for all estimated variances.

If the specification of the estimators erroneously imposes homoskedastic error terms in

the presence of heteroskedasticity over time (SPEC2 on DGP1), the estimators still success-

fully reveal the true ratio of the slope and intercept coefficients as Figure 2 shows. Compared

                                                
14 Recent evidence by Bertschek and Lechner (1998) suggests that the small sample properties of GMM3 can

be improved by scaling the conditional moment functions by their standard deviation.
15 These findings have led to a number of alternative information theoretic estimation approaches that reach the

same asymptotic distribution as the GMM2 estimator but do not require the first estimation step, cf. Imbens
(1997), Kitamura and Stutzer (1997), and Imbens et al. (1998).
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to the correctly specified estimators in Figure 1, the distributions of the bias remain almost

unaffected for all estimators depicted in Figure 2. However, the estimators underestimate the

absolute values of the separate coefficients by about 15 %, as indicated in Table A3. This bias

reflects the deviation of the imposed unity scale from the average true standard deviation of

the error terms over time which is equal to 1.17. Surprisingly, GMM1 seems to reveal the true

coefficients which, due to the impossibility of identification of the true parameters, does not

point in favor of this estimator. The small bias of GMM1 is artificially created by the empiri-

cal distribution of the GMM1 estimates that is characterized by extremely large standard er-

rors. The standard errors are about 20 times larger than the ones obtained for the competing

estimators. Apart from this striking exception, all methods yield lower empirical standard

errors for the estimates of α  and β  which can be explained by the reduced number of pa-

rameters to be estimated,

The asymptotic standard errors of the GMM1 estimates are underestimated by more than

50 % as indicated by the RELSE statistics in Table A1. GMM2 standard errors are biased

downwards by almost 20 %. Keeping in mind that in comparison with GMM2, the one-step

GMM estimator is usually praised for the accurateness of its estimated asymptotic standard

errors, this result casts serious doubts on the robustness of this advantage of GMM1. At least

for this particular Monte Carlo design of the panel probit model, the precision of the estimated

GMM1 standard errors crucially depends on the correct specification of the error term varia-

tion over time. The GMM3 and SML estimators produce very reliable estimates of the as-

ymptotic standard errors regardless of the underlying misspecified identification condition.

Table A2 presents summary statistics for the experiment involving the heteroskedastic

specification of the estimators (SPEC1) in combination with the data generating process

which creates multiplicative heteroskedasticity over time and individuals (DGP2). The latter

property renders all parameter estimates inconsistent which raises the question of the relative

robustness of the different estimators regarding this kind of misspecification. With respect to

the bias of the intercept and slope coefficient, GMM1 performs the worst and underestimates

the true parameters by about 25 %. The two SML estimators are slightly superior to GMM1

showing an average bias of about 20 %. Increasing the number of replications of the GHK

algorithm leads, as expected, to an improvement of the estimation bias. However, the SML

estimators are clearly outperformed by the two- and three-step GMM estimators. GMM2 and

GMM3 underestimate α  by about 10 % and β  by only 5 % with advantages to GMM3 in
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both cases. Regarding the ratio of the two parameters, a large part of the biases of the two

separate estimates cancel each other out, but the general performance order remains un-

changed. It becomes obvious from Figure 1 that the median of the GMM3 bias distribution, in

the case of DGP2, is the closest to the ideal zero bias line. A loss of estimation precision is

reflected by an increase in the standard errors of the estimates depicted in Figure 1. This holds

in particular for the SML estimators. The root mean squared error performance of the differ-

ent estimators is dominated by GMM3. GMM2 comes close to GMM3 while the other esti-

mators are clearly inferior.

With respect to the accuracy of the estimated asymptotic standard errors (RELSE),

GMM2 falls again short of GMM1 and GMM3 as previously shown in Table A1. Compared

to the first experiment, the downward bias of the estimated standard errors is almost doubled

for GMM2. GMM1 and GMM3 still produce very reliable results. The contrary can be said of

SML. On average the two SML estimators underestimate the asymptotic standard errors by

about 20 % with clear advantages of SML25 over SML5.

Concerning the estimation of the variances of the error terms over time, the SML esti-

mates show a superior performance over GMM as indicated in Table A2. This replicates the

aforementioned results for the correctly specified experiment in Table A1. With the exception

of GMM1, all estimators produce larger biases and standard errors in the presence of multipli-

cative heteroskedasticity. Somewhat puzzling is that SML5 once again exhibits smaller biases

for three of the four estimated error term variances than SML25.

The two figures reveal that the differences between the two distributions of the respective

estimates under the first (Figure 1) and second (Figure 2) specification are emphasized in case

of DGP2. The medians of the empirical bias distributions of the different estimators are closer

to the ideal zero bias if the specification allows for heteroskedasticity over time. This specifi-

cation increases the robustness with respect to multiplicative heteroskedasticity over individu-

als. The root mean squared errors given in Table A4 for the ratio of the slope coefficient and

the intercept under DGP2 always exceed their counterparts under DGP1 given in Table A2.

Regarding the two separate parameters, imposing the homoskedasticity assumption under

DGP2 implies similar consequences as were previously seen under DGP1. In particular, the

estimated standard errors of the GMM1 estimator are again underestimated, in this case by 70

%. The downward bias of the GMM2 standard errors is again in the magnitude of 20 %, while

GMM3 produces more reliable standard errors. The latter also holds for the SML standard
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errors in Table A4 which are almost estimated without bias. Recalling the large downward

bias of the SML standard errors under the heteroskedastic specification (Table A2), this result

is surprising.

Tables A5 – A7 in the appendix contain additional results from the Monte Carlo experi-

ments. The empirical distributions of the cross-validated number of nearest neighbors k used

for the nonparametric estimation of the variance-covariance matrix of the conditional moment

functions in the second estimation step of GMM3 are given in Table A5. It turns out that there

is a tendency in all experiments considered here to chose a large neighborhood for the non-

parametric estimation. This corresponds to the experiments of Bertschek and Lechner (1998)

but is in opposition to the work of Delgado (1992) and Pohlmeier and Inkmann (1997) on

efficient estimation of nonlinear SUR models for count data, who obtain relative small num-

bers. However, the cross-validation results are driven by the data and do not allow a simple

comparison with other studies.

Table A6 displays percentages of prediction success of the different estimators for all ex-

periments. GMM3 outperforms all competing estimators in each experiment, but the differ-

ences are small. Finally, relative computation costs are given in Table A7 in percentages of

the SML5 computation time. A relative measure of computational costs is given instead of

absolute computation times in order to account for different levels of CPU exhaustion during

the Monte Carlo replications. The computation times for GMM1 and GMM2 turn out to be

negligible in comparison to SML5 and vary between 1.37 % and 3.37 %. GMM3, having ten

fully iterated evaluations of the cross-validation criterion, uses about 67 % of the SML5 time

in the case of SPEC1 and about 163 % in the case of SPEC2, when heteroskedasticity over

time is not specified. Compared to SPEC1 all GMM estimators show a much slower conver-

gence under SPEC2 in relation to SML. Because the implementation of the GHK algorithm

rests on matrix operation, the increase of computation time associated with an increase of R

from 5 to 25 is less than proportional. SML25 requires about 220 % of the SML5 time.

The main results from the Monte Carlo experiments can be summarized as follows. In

general, the correctly specified experiment reveals the asymptotic efficiency order of the es-

timators under consideration. The efficiency gains from using GMM2 or GMM3 instead of

GMM1 are remarkably high, while using full information ML yields only modest improve-

ments over the two- and three-step GMM estimators. Contrary to GMM2, GMM3 produces

reliable estimates of the asymptotic standard errors. Erroneously imposing homoskedasticity
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in the presence of heteroskedasticity over time has serious consequences for the GMM1 esti-

mator. In this case, the standard errors of the empirical distribution of the GMM1 estimates

are 20 times as large as the ones obtained for the other GMM estimates. With the exception of

GMM1, all other estimators exhibit the expected magnitude of bias if the identification con-

dition of unity error term variances does not hold for the true model. Allowing for heteroske-

dasticity over time increases the robustness of all estimators against misspecification in terms

of multiplicative heteroskedasticity over individuals. The two-step and in particular the three-

step GMM estimates are much less affected by this kind of misspecification as the SML esti-

mates and show a superior root mean squared error performance. Increasing the number of

replications of the GHK algorithm for SML estimation yields only small improvements, in

some cases even worsens the SML performance.

6. Application to product innovations

This section provides an application of the proposed estimators to real data. The primary pur-

pose of this section is proofing the practicability of the extended heteroskedastic specification

of the different estimators for the panel probit in nonexperimental work. The example refers

to the huge number of empirical literature on the relationship between market structure and

innovation (cf. Kamien and Schwartz, 1982). The data source is based on the German survey

'ifo Konjunkturtest' conducted by the ifo institute in Munich. The sample contains annual ob-

servations of 1,325 West German manufacturing firms for the period 1984 – 1988. The binary

indicator of interest takes the value 'one' if the firm has successfully established a product

innovation within the year before the interview. The explanatory variables and descriptive

statistics are given in Table A8 in the appendix.

This particular example can be regarded as an attractive application of the heteroskedastic

panel probit estimators because previous work by Laisney et al. (1992a, b) and König et al.

(1994) using the same data casts some doubt on the usual homoskedasticity over time as-

sumption. This hypothesis is clearly rejected for the panel probit model with uncorrelated

random effects (Laisney et al., 1992a). The normality assumption of the panel probit model

cannot be rejected, putting trust in the model specification (1992b). However, these studies

cover process innovations instead of product innovations and use a slightly different set of

regressors emerging from a structural model of firm behavior. Therefore the results do not
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have to hold for the current application. Product innovation equations are estimated by

Bertschek (1995), Inkmann and Pohlmeier (1995), and Bertschek and Lechner (1998) using

the same data. The latter two studies also apply GMM2 and GMM3 estimators but impose the

homoskedasticity assumption. SML estimators have not been previously applied to the data.

Table 1 contains the estimation results for the GMM2, GMM3, SML5 and SML25 esti-

mators using the same heteroskedastic specification (SPEC1) introduced in the Monte Carlo

experiments. Because of its weak performance in the previous section, GMM1 is omitted

here. The  smoothing parameter for the k-nn estimation of the variance-covariance matrix of

the conditional moment functions in the second estimation step of GMM3 is chosen again by

cross-validation of the set of fully iterated estimates obtained for .N,N9.0,...,N1.0k ⋅⋅=  The

optimal number of nearest neighbors for the current application turns out to be .N9.0k ⋅=

All estimated coefficients in Table 1 have the expected signs and are in accordance with

previous work. In general, the differences between the four estimators are very small. Re-

garding the magnitude of the estimated slope coefficients, GMM3 and the two SML estima-

tors are nearly indistinguishable while GMM2 produces small deviations in some cases. The

results of the estimated standard errors of the slope coefficients reveal the asymptotic effi-

ciency order of the different estimators. GMM2 leads to slightly less precise estimates than

GMM3 which itself is slightly outperformed by the two SML estimators. Looking again at the

results of the Monte Carlo section, the striking similarity of GMM3 and SML suggests that

the model may be correctly specified in the sense that heteroskedasticity over individuals is

not likely to be present in the current application. However, specification tests are necessary,

of course, in order to confirm this, but they are beyond the scope of this section.

The SML estimates of the AR(1) parameter ρ  and the variance of the random effects 2
τσ

nicely correspond to the true parameters of the data generating process used in the previous

section. Contrary to the Monte Carlo results, the SML estimates of the error term variances

exhibit larger standard errors than the GMM estimates. The magnitude of the estimated vari-

ances suggests a test of homoskedasticity over time. Table 1 contains both Wald tests and

likelihood ratio (LR) respective D tests16 for the hypothesis of unity error term variances in all

periods. The hypothesis cannot be rejected by the Wald and D tests, but is clearly rejected by

the LR tests for the two SML estimators.

                                                
16 The D test is the GMM counterpart of the LR test (cf. Newey and West, 1987). This test is not available for

the exactly identified GMM3 estimator which always obtains a zero value for the minimum of the objective
function.
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Table 1.
Panel Probit Estimation of Successful Product Innovations (N=1325, T=5)

GMM2 GMM3 SML5 SML25
regressor est. s.e. est. s.e. est. s.e. est. s.e.

intercept -0.44 0.11 -0.67 0.12 -0.73 0.11 -0.71 0.11

industry specific variables

investment industry -0.37 0.08 -0.22 0.08 -0.23 0.08 -0.23 0.08

raw material industry -0.67 0.10 -0.52 0.10 -0.51 0.09 -0.52 0.10

R&D intensity 0.24 0.03 0.16 0.03 0.19 0.03 0.18 0.03

concentration ratio -0.10 0.20 -0.01 0.19  -0.03  0.19 -0.04 0.19

value added 0.29 0.11 0.25 0.10 0.32 0.10 0.29 0.11

import to sales ratio 0.24 0.09 0.28 0.09 0.29 0.08 0.25 0.08

firm specific variables

internationally operating 0.32 0.09 0.42 0.09 0.43 0.08 0.45 0.08

rel. plant size in company 0.22 0.07  0.27 0.07 0.31 0.07 0.29 0.07

rel. company size in industry 0.49 0.12 0.28 0.07 0.26 0.05 0.26 0.05

increasing demand expected 0.37 0.04 0.28 0.04 0.31 0.04 0.30 0.04
ρ 0.17 0.04 0.23 0.05

2
τσ 0.51 0.04 0.51 0.04

σ u2
2

1.28 0.19 1.33 0.28 1.20 0.18 1.20 0.20

σ u3
2

0.93 0.14 0.88 0.18 1.04 0.29 0.99 0.33

σ u4
2

1.01 0.16 0.92 0.19 1.06 0.45 1.04 0.52

σ u5
2

1.22 0.19 0.95 0.20 1.21 0.67 1.21 0.77

prediction success in % 65.13 65.10 65.18 64.78

tests of homoskedasticity )4(2χ p-val. )4(2χ p-val. )4(2χ p-val. )4(2χ p-val.

Wald test of t,1:H 2
ut0 ∀=σ 6.31 0.18 4.00 0.41 3.91 0.42 6.50 0.17

D/LR test of t,1:H 2
ut0 ∀=σ 4.92 0.30 n.a. 23.77 0.00 19.56 0.00

Note:  GMM2 denotes the two-step GMM estimator with suboptimal instruments but optimal weighting of the
moment functions. GMM3 is the three-step GMM estimator with optimal instruments, SML5 and SML25 are
simulated maximum likelihood estimators with 5 and 25 replications of the GHK algorithm.
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7. Conclusions

This paper presents small sample results for GMM and SML estimators of the panel probit

model. Compared to more traditional ML approaches to the estimation of panel probit models,

the SML and GMM estimators share the important advantage of solving the problem of mul-

tiple integration without the need to impose strong restrictions on the variance-covariance

matrix of the error terms of the latent normal regression model. Three GMM estimators are

presented in this paper which rely on the same set of conditional moment restrictions. The

one-step GMM estimator (GMM1) minimizes the GMM objective function using a subopti-

mal weight matrix for given instruments. The two-step GMM estimator (GMM2) exploits the

optimal weight matrix and is asymptotically efficient in the class of GMM estimators using

the same instruments for the particular set of conditional moment restrictions. Finally, the

three-step GMM estimator (GMM3) relies on the optimal choice of instruments and reaches

the asymptotic efficiency bound of any consistent and asymptotically normal estimator within

the class of estimators using the same set of conditional moment restrictions (cf. Chamberlain,

1987). Parts of these optimal instruments that involve unknown conditional expectations are

estimated by nonparametric k-nearest neighbor techniques as proposed by Newey (1990,

1993). The three GMM estimators are compared with an efficient full information ML esti-

mator obtained by simulating the likelihood function by means of the Geweke-Hajivassiliou-

Keane (GHK) algorithm.

While the asymptotic properties of the different estimators are well understood, little is

known about their relative performance in small samples, in particular in the case of misspeci-

fication. To shed some light on this area, Monte Carlo experiments, which allow for misspeci-

fied heteroskedasticity over time and individuals, are carried out. The main results from these

experiments can be summarized as follows. In general, the correctly specified experiment

reveals the asymptotic efficiency order of the estimators under consideration. The efficiency

gains from using GMM2 or GMM3 instead of GMM1 are remarkably high, while using full

information ML yields only modest improvements over the two- and three-step GMM esti-

mators. The GMM2 estimator suffers from the well known problem of underestimating the

asymptotic standard errors in small samples. GMM3 solves this problem and shows a compa-

rable small sample efficiency. Therefore this estimator unifies the best properties of GMM1

and GMM2 and should be regarded as a strong competitor to the recently developed informa-

tional theoretic one-step estimation approaches which share the asymptotic properties of
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GMM2 (cf. Imbens, 1997, Kitamura and Stutzer, 1997, and Imbens et al., 1998). A small

sample comparison of these methods with the GMM3 estimator should be an interesting route

for future research.

Erroneously imposing homoskedasticity in the presence of heteroskedasticity over time

has serious consequences for the GMM1 estimator. In this case, the standard errors of the em-

pirical distribution of the GMM1 estimates are 20 times as large as the ones obtained for the

other GMM estimates. With the exception of GMM1, all other estimators exhibit the expected

magnitude of bias if the identification condition of unity error term variances does not hold

for the true model. Allowing for heteroskedasticity over time increases the robustness of all

estimators against misspecification in terms of multiplicative heteroskedasticity over indi-

viduals. The two-step and in particular the three-step GMM estimates are, by this kind of mis-

specification, much less affected than the SML estimates and show a superior root mean

squared error performance. GMM1 and SML exhibit a considerable amount of bias in the

presence of multiplicative heteroskedasticity. Increasing the number of replications of the

GHK algorithm for SML estimation yields only small improvements, in some cases even

worsens the SML performance.

An application to product innovation equations using a panel of West German manufac-

turing firms proves the practicability of the extended heteroskedastic specification of the dif-

ferent estimators for the panel probit model in nonexperimental work. The results generally

confirm the findings of the correctly specified Monte Carlo experiment. The similarity of the

estimation results obtained by SML and GMM3 is striking.
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Appendix: Tables

Table A1.
DGP1 - Heteroskedasticity over Time

SPEC1 - Heteroskedasticity over Time Taken into Account
Summary Statistics of 1000 Monte Carlo Replications (N=500, T=5)

GMM1 GMM2 GMM3 SML5 SML25

α MEAN -0.9832 -1.0085 -0.9995 -0.9843 -0.9990

)00.1( −= BIAS 0.0168 -0.0085 0.0005 0.0157 0.0010

SE 0.2004 0.1330 0.1333 0.1184 0.1189

RMSE 0.2010 0.1332 0.1333 0.1194 0.1189

RELSE 0.9809 0.9130 1.0140 0.9700 0.9837

β MEAN 0.2481 0.2539 0.2510 0.2466 0.2504

)25.0(= BIAS -0.0019 0.0039 0.0010 -0.0034 0.0004

SE 0.0432 0.0286 0.0288 0.0249 0.0248

RMSE 0.0432 0.0289 0.0288 0.0251 0.0247

RELSE 0.9912 0.9151 1.0474 0.9820 0.9927

αβ / MEAN -0.2541 -0.2526 -0.2520 -0.2514 -0.2515

)25.0( −= BIAS -0.0041 -0.0026 -0.0020 -0.0014 -0.0015

SE 0.0153 0.0126 0.0124 0.0123 0.0123

RMSE 0.0159 0.0129 0.0125 0.0124 0.0124

V[u2] MEAN 1.7085 1.5708 1.5728 1.5398 1.5763

)50.1(= BIAS 0.2085 0.0708 0.0728 0.0398 0.0763

SE 0.9092 0.4890 0.4851 0.3627 0.3586

RMSE 0.9324 0.4938 0.4903 0.3647 0.3664

V[u3] MEAN 2.5189 2.1419 2.1474 2.0096 2.0774

)00.2(= BIAS 0.5189 0.1419 0.1474 0.0096 0.0774

SE 3.3025 0.7869 0.7966 0.5659 0.5590

RMSE 3.3414 0.7992 0.8098 0.5657 0.5641

V[u4] MEAN 1.7554 1.5659 1.5642 1.4792 1.5344

)50.1(= BIAS 0.2554 0.0659 0.0642 -0.0208 0.0344

SE 1.1130 0.4985 0.4974 0.3821 0.3750

RMSE 1.1414 0.5026 0.5013 0.3825 0.3764

V[u5] MEAN 1.1302 1.0503 1.0479 0.9796 1.0209

)00.1(= BIAS 0.1302 0.0503 0.0479 -0.0204 0.0209

SE 0.5747 0.3074 0.3100 0.2272 0.2298

RMSE 0.5890 0.3113 0.3135 0.2280 0.2307

Note:  GMM2 denotes the two-step GMM estimator with suboptimal instruments but optimal weighting of the
moment functions. GMM3 is the three-step GMM estimator with optimal instruments. SML5 and SML25 are
simulated maximum likelihood estimators with 5 and 25 replications of the GHK algorithm.
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Table A2.
DGP2 - Heteroskedasticity over Time and Individuals

SPEC1 - Heteroskedasticity over Time Taken into Account
Summary Statistics of 1000 Monte Carlo Replications (N=500, T=5)

GMM1 GMM2 GMM3 SML5 SML25

α MEAN -0.7358 -0.8784 -0.9021 -0.7622 -0.7921

)00.1( −= BIAS 0.2642 0.1216 0.0979 0.2378 0.2079

SE 0.1587 0.1363 0.1370 0.1373 0.1334

RMSE 0.3082 0.1826 0.1683 0.2746 0.2470

RELSE 0.9638 0.8292 0.9141 0.7831 0.8464

β MEAN 0.2015 0.2354 0.2393 0.2074 0.2146

)25.0(= BIAS -0.0485 -0.0146 -0.0107 -0.0426 -0.0354

SE 0.0336 0.0277 0.0279 0.0294 0.0280

RMSE 0.0590 0.0313 0.0298 0.0518 0.0451

RELSE 0.9810 0.8691 1.0046 0.7703 0.8369

αβ / MEAN -0.2775 -0.2700 -0.2671 -0.2744 -0.2732

)25.0( −= BIAS -0.0275 -0.0200 -0.0171 -0.0244 -0.0232

SE 0.0244 0.0183 0.0171 0.0194 0.0189

RMSE 0.0367 0.0271 0.0242 0.0312 0.0299

V[u2] MEAN 1.3528 1.8401 1.7421 1.5598 1.6411

)50.1(= BIAS -0.1472 0.3401 0.2421 0.0598 0.1411

SE 0.5843 0.6345 0.6182 0.5040 0.4666

RMSE 0.6023 0.7196 0.6636 0.5073 0.4872

V[u3] MEAN 1.7686 2.4732 2.3467 1.8580 1.9740

)00.2(= BIAS -0.2314 0.4732 0.3467 -0.1420 -0.0260

SE 1.0386 1.0288 0.9942 0.6279 0.5930

RMSE 1.0636 1.1320 1.0524 0.6434 0.5932

V[u4] MEAN 1.3895 1.8350 1.7137 1.4966 1.6186

)50.1(= BIAS -0.1105 0.3350 0.2137 -0.0034 0.1186

SE 0.6965 0.6429 0.6079 0.4871 0.4769

RMSE 0.7048 0.7247 0.6441 0.4869 0.4912

V[u5] MEAN 1.0108 1.2483 1.1511 1.0994 1.1996

)00.1(= BIAS 0.0108 0.2483 0.1511 0.0994 0.1996

SE 0.4384 0.3848 0.3524 0.3462 0.3566

RMSE 0.4383 0.4578 0.3832 0.3600 0.4085

Note:  Cf. Table A1.
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Table A3.
DGP1 - Heteroskedasticity over Time

SPEC2 - Heteroskedasticity over Time not Taken into Account
Summary Statistics of 1000 Monte Carlo Replications (N=500, T=5)

GMM1 GMM2 GMM3 SML5 SML25

α MEAN -1.0681 -0.8894 -0.8693 -0.8586 -0.8596

)00.1( −= BIAS -0.0681 0.1106 0.1307 0.1414 0.1404

SE 1.8488 0.0959 0.0860 0.0817 0.0814

RMSE 1.8491 0.1464 0.1564 0.1633 0.1623

RELSE 0.4662 0.8248 0.9744 0.9519 0.9804

β MEAN 0.2568 0.2239 0.2183 0.2153 0.2157

)25.0(= BIAS 0.0068 -0.0261 -0.0317 -0.0347 -0.0343

SE 0.3672 0.0177 0.0158 0.0147 0.0145

RMSE 0.3671 0.0315 0.0354 0.0377 0.0373

RELSE 0.4586 0.8130 1.0167 0.9723 0.9974

αβ / MEAN -0.2624 -0.2528 -0.2520 -0.2516 -0.2518

)25.0( −= BIAS -0.0124 -0.0028 -0.0020 -0.0016 -0.0018

SE 0.1376 0.0134 0.0127 0.0125 0.0125

RMSE 0.1380 0.0137 0.0128 0.0126 0.0126

Note:  Cf. Table A1.

Table A4.
DGP2 - Heteroskedasticity over Time and Individuals

SPEC2 - Heteroskedasticity over Time not Taken into Account
Summary Statistics of 1000 Monte Carlo Replications (N=500, T=5)

GMM1 GMM2 GMM3 SML5 SML25

α MEAN -0.8338 -0.7241 -0.7488 -0.6397 -0.6424

)00.1( −= BIAS 0.1662 0.2759 0.2512 0.3603 0.3576

SE 2.2764 0.0949 0.0913 0.0781 0.0781

RMSE 2.2813 0.2917 0.2673 0.3687 0.3660

RELSE 0.3096 0.8127 0.8738 0.9735 1.0034

β MEAN 0.2165 0.1983 0.2038 0.1773 0.1781

)25.0(= BIAS -0.0335 -0.0517 -0.0462 -0.0727 -0.0719

SE 0.4432 0.0175 0.0176 0.0137 0.0138

RMSE 0.4443 0.0546 0.0495 0.0740 0.0732

RELSE 0.3055 0.7975 0.8622 0.9696 0.9842

αβ / MEAN -0.3198 -0.2759 -0.2737 -0.2791 -0.2792

)25.0( −= BIAS -0.0698 -0.0259 -0.0237 -0.0291 -0.0292

SE 2.2915 0.0202 0.0179 0.0205 0.0202

RMSE 2.2914 0.0329 0.0297 0.0356 0.0355

Note:  Cf. Table A1.
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Table A5.
Distribution of the Cross-Validated Number of Nearest Neighbors

Experiment k=50 100 150 200 250 300 350 400 450 500=N

SPEC1 DGP1 0.00 0.01 0.03 0.06 0.15 0.33 0.63 0.91 1.00 1.00

SPEC1 DGP2 0.00 0.02 0.05 0.08 0.10 0.14 0.23 0.47 0.83 1.00

SPEC2 DGP1 0.00 0.01 0.03 0.07 0.14 0.31 0.58 0.87 0.99 1.00

SPEC2 DGP2 0.01 0.04 0.08 0.13 0.19 0.29 0.45 0.70 0.94 1.00

Note:  Number of nearest neighbors for k-nn estimation of the variance-covariance matrix of the conditional
moment functions in the second estimation step of GMM3. Results from 1000 replications of the Monte Carlo
experiments. DGP1 leads to heteroskedasticity over time and DGP2 in addition to heteroskedasticity over indi-
viduals. SPEC1 specifies heteroskedasticity over time, SPEC2 assumes homoskedasticity.

Table A6.
Percentages of Correct Prediction of the Different Estimators

Experiment GMM1 GMM2 GMM3 SML5 SML25

SPEC1 DGP1 65.58 65.61 65.62 65.61 65.61

SPEC1 DGP2 65.67 65.82 65.85 65.76 65.78

SPEC2 DGP1 65.27 65.61 65.62 65.61 65.61

SPEC2 DGP2 65.30 65.74 65.78 65.71 65.71

Note:  Cf. Tables A1 and A5.

Table A7.
Percentages of Relative Computation Costs of the Different Estimators

Experiment GMM1 GMM2 GMM3 SML5 SML25

SPEC1 DGP1 1.75 1.37 67.16 100.00 222.24

SPEC1 DGP2 1.78 1.36 66.39 100.00 226.03

SPEC2 DGP1 3.37 2.78 162.55 100.00 220.69

SPEC2 DGP2 3.35 2.98 163.31 100.00 224.17

Note:  Cf. Tables A1 and A5. Mean computation times relative to SML5. Values for GMM2 (GMM3) do not
include computation times of first step estimates obtained by GMM1 (GMM2). Values for GMM3 include cross-
validation of ten estimates obtained from varying the number of nearest neighbors.
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Table A8.
Descriptive Statistics (N=1325, T=5)

variables Mean St. dev. Min. Max.

dependent variable

product innovation realized 0.59 0.49 0.00 1.00

industry specific variables

investment industry (time-invariant) 0.48 0.50 0.00 1.00

raw material industry (time-invariant) 0.11 0.31 0.00 1.00

ln(R&D intensity) 0.14 1.29      -2.25 2.11

concentration ratio 0.21 0.16 0.06 0.83

value added (⋅10-5) 0.42 0.36 0.00 1.04

import to sales ratio 0.67 0.32 0.14 1.93

firm specific variables

internationally operating 0.42 0.36 0.00 1.00

relative plant size in company 0.64 0.33 0.00 1.00

relative company size in industry (⋅102) 0.26 1.00 0.00    31.92

positive demand expectation 0.47 0.50 0.00 1.00

Note:  The data source is the 'ifo Konjunkturtest', 1984-1988. A detailed description can be found in Section 3 in
Laisney, Lechner and Pohlmeier (1992a). The R&D intensity variable defined as the ratio of R&D expenditures
to sales at the 2-digit industry level was derived from the information for the years 1985, 87, and 89 given in
Legler et al. (1992, p. 140). From these values the missing observations for the years 1984, 86, and 88 were
computed by OLS. The logarithm of the resulting fitted variable was used in the regressions in order to circum-
vent linear dependencies of moment restrictions.
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