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Abstract

Given an Heath-Jarrow-Morton (HJM) interest rate model M and a
parametrized family of finite dimensional forward rate curves G, this paper
provides us a way to project this infinite dimensional HJIM forward rate
curve r; to the finite dimensional manifold G. This projection character-
izes banks’ behavior of calibrating forward curves by applying a certain
family of curves (e.g., Nelson-Seigel family). Moreover, we derive the
Stratonovich dynamics of the projected finite dimensional forward curve.
This leads an implicit algorithm for parametric estimation of the origi-
nal HIM model. We have demonstrated the feasibility of this method
by applying generalized method of moments and methods of simulated
moments.

1 Introduction

We consider our problem in a complete filtered probability space (2, F, (F¢),P)
satisfying the usual condition and P is the equivalent martingale measure. We
consider an HIM model M (1992, [7]). With Musiela parameterization, the
dynamics of the forward rate curve under P can be given by the following infinite
dimensional stochastic differential equation (SDE).

dri(z) = (re, z)dt + o(re, x)dWr, (1)

where W is a m-dimensional standard P-Brownian motion. From the arbitrage-
free condition, it follows that

- 0 g”
i(ry, ) == %rt(x) + U(rt,m)/o o(ry, u)du.

The main problems of interest are
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e Under what condition does the infinite dimensional forward rate curve
r¢(-) defined in (1) admits a finite-dimensional realization?

e Under what condition is this forward curve consistent with a given family
of finite-dimensional curves?

Actually these two problems are highly correlated. Bjork et.al [2], [1] give
the necessary and sufficient conditions for the consistency problem, as well as the
existence of a finite-dimensional realization, in terms of the volatility structure,
under the assumption of arbitrary smoothness of the volatility function. Their
results are extended by Filipovié¢ and Teichmann [5]. Moreover, in [4], Filipovi¢
shows that there does not exist a nontrivial forward rate model consistent with
Nelson-Siegel family which has widely been used in calibrating forward curves.
Technically speaking, it means that starting from Nelson-Siegel (NS) manifold,
any forward rate flow will leave this manifold immediately.

However it is of interest to find the projection of an infinite dimensional for-
ward rate curve onto a finite dimensional manifold and obtain the corresponding
dynamics of coordinates. This particularly characterizes banks’ behavior, since
most banks construct forward rate curves from cross sectional market forward
rate data by interpolation using Nelson-Siegel curves. Since Nelson-Siegel fam-
ily of curves is a 4-dimensional manifold, therefore deriving the dynamics of the
coordinates obtained by projecting the forward rate curve can be interpreted as
the construction behavior of banks.

2 Projection

We will use a weighted Sobolev space as the space of forward rate curves. For
any v > 0 we define

H, = {r Ry = R: ]| = /Om <r2(x) + (j—:{(x)>2> e~ dx < oo} )

With the inner product

(r,q) := /Ooo r(z)g(z)e™ " dx + /000 (Z—;(m)) (j—g(x)) e "dx, (3)

‘H. becomes a Hilbert space. The exponential weighting in the definition of H,
is to make constant curves a subset of this space.

Let G := {G(Z,z),Z = (2',...,2") C Z € R"} be a family of forward rate
curves. Z is called the parameter space. Consider a curve 8 in this manifold of
the form S : h = G(z(h),-), where h — z(h) is a curve in IR®. Then, according
to the chain rule, we compute the following Frechét derivative:

DB(0) = DG(=(h), Yhmo = 3 25310, ()

k=1



where the Frechret derivative is defined by

i IB(R) = B(©) = hDBO)|

|R|—0 |k

-0. (5)

The tangent space for a point in this manifold is then obtained by considering all
the curves passing through this given point and considering the tangent vectors.
However it is clear that the tangent vector space is given as

0
S = span{ S5l Ban }. (6)

Let’s denote these spanning vectors by wi, ..., wy,.

Let us now consider the orthogonal projection between any linear space V
containing S (finite dimensional) and the tangent vector space S itself. Since
the basis of S is not necessarily orthogonal, we have the following projection
formula I, : V — span{wy, ...,wp},

v Y i;\ij(v,wj) w, (7)

where (j\ij) = Ail with A := ((w,-,wj)).
Now let us consider the forward rate dynamics in Musiela parametrization
which we will project this flow on the G-manifold.

dri(z) = (%rt(x) +o(r, x) /Ow a(rt,x)Tdu> dt + o(ry, x)dW;. (8)

Using infinite dimensional It6 formula ([3]) (8 )can be written in Stratonovich
form as

dri(z) = (%rt(:c) + o(ry, ) /Ow o(re, z)Tdu — %[a;(rt)a(rt)](m)) dt+o(ry, x)odWy,
9)
where .
o, (re)o(ry) = ZUQT(Tt)Ui(Tt)a (10)

where m is the dimension of W. o], denotes the Frechrét derivative of the vector
field o with respect to the infinite dimensional variable r. Let us denote

) i= g+ o) [ 0(r)Tdu = Lol ro(r). (1)

The projected flow on the manifold G of the forward rate is then given by

dG (%, ") = Iz, [w(G(Z:,-))] dt + 1Lz, [0(G(%; )] 0 AW (12)



3 The Dynamics of Finite Dimensional Mani-
folds

In order to derive the diffusion process for 2, first we give the following lemma.

Lemma 3.1 For any continuous semimartingales X; and Yy such that [X]r <
00, and [Y]r < oo is finite for each T > 0. Then for VT > 0, we have

T T
/ (X1Y:) o dW, = / Xio(Yi0dWy), a.s.. (13)
0 0

Proof. From the definitions of Stratonovich’s integral and variation, it is suffi-
cient to prove that
n
||\Ill|r|ri>OZ(Xti = X)) (Yo, = Ya ) (Wi, = Wi,_,) =0, as, (14)
i=1
where ¥ = {tg,%1,...,tn} is a partition of [0,7] and ||¥|| is the mesh of this
partition, namely, ||A|| = maxi<ij<n{|t; — ti—1|}. Since for any A, we have

n

Z(Xti - Xti—l)(Y;fi - )/;5;—1)(Wti - Wti—l)

i=1

< e .
< lféliasxn|Wm Wi,y | x

\J i (Xt,- — Xti_l)zd i (Y;Si - Ki_l)Q,

i=1 i=1

by the uniform continuity of the Brownian motion W on the compact support
[0,T] and the finiteness of [X]r, and [Y]r, it follows that (14) is true. Therefore
we proved Lemma 3.1.

By applying Stratonovic chain rule, we can derive that

n

9G (%)

dG (%, ) = —7

(%) ozt

i=1

odzi. (15)

On the other hand, by (7) and (12), we also have

1G5 = %fj&xmewt,-)),w(gé;}) )| 2% 4

i=lj=1

*ﬁ&;iﬂa(g(&.)),a(?ﬁg;f ﬂ]aG((f;;') o . (16

=1



By comparing (15) and (16) and using Lemma 3.1, we conclude that the finite
dimensional vector Z follows a diffusion process:

= | AauaE ), 28500
+ iﬂy(d(G(%,-)),%) odWy, VYie{l,..,n}. (17)

3.1 Nelson Seigel Family

For Nelson Seigel family, the dimension of the vector Z'is 4 and the corresponding
G(Z,-) can be written as

G(Z,x) = 21 + (22 + z3x)e ", Vz >0.
For z # 0 the Frechét derivative with respect to z is
0:G(Z,x) = (1 e ™% ze ™%  — z4(29 + 232)e )T, (18)
and with respect to x is
0,G(Z,z) = [23 — 24(22 + 23x)]e 4",

Note that for the image of these maps to be in H, z4 > —v/2. Therefore we
choose our parameter space Z = {z € R* : z4 # 0,24 > —7/2}.
Now we choose o(r;, z) = o for the HIM model, then by (17), we can obtain
the dynamics of Z which is a projection of this forward rate curve as follows.
Since o(r, z) is a constant, therefore by (11), we can derive that

wW(G(Z,x)) = [23 — 24(22 + z32)]e >4 + 0.

Using the inner product defined in (3), it is straightforward to obtain the dy-
namics of the projected multi-factor Z. Because it is tedious, we include it in
Appendix.

4 Parametric Estimation of the Original HIM
Models

In this section, we discuss parametric estimations of the original HIM model
M by using its projection on some finite dimension manifold G. Generally
speaking, estimating parameters of an infinite dimensional SDE is usually hard
to implement. However, since we have already derived the SDE (17) governing
the dynamics of its projected finite dimensional vector Z, this provides us an
much easier way to empirically investigate of the HJM original model.



Suppose @ is the parameter set in the HJM model and thus by projecting
this forward curve into a finite dimensional manifold G, we have the following
general form for the diffusion process of 7.

dz, = A(%,0) + B(2,0) o dWy, (19)

where W is a m-dimensional standard Brownian motion.

Here we apply a generalized method of moments (GMM) proposed by Hansen
(1982 [6]) to estimating #. For banks, periodic calibrating the initial forward
curve produces a time series {Z;, }1<x<n. Assume that A = t; — t;, for each
k=1,...,N. By discretizing (19), we obtain a discrete-time model:

2?751@+1 - Etk = A(’ak70)A + % [B(’??tk+176) + B(gtk:e)] €, Vk=12,N,
(20)
where €}, is a m-dimensional Gaussian random vector with mean 0 and covari-
ance matrix AI, i.e., {€x}1<k<n are mutually independent.
Now we construct the moment functions hy () as follows:

hk(e) = Ztk+1 - Zﬁk - A(Ztkae)Aa (21)

and denote the sample average by fn(6) = & Eszl hi (), then by simply
letting .
On = min{(fn(8), fn (6))}, (22)

we obtain the least square estimator of §. Under fairly general conditions (see
[6]), the estimator 6 offers a consistent estimator of 6.

Remark 4.1 If the dimension of 8 is high, it is straightforward to strengthen
this algorithm by adding more moment functions.

As argued by Hansen in [6], the estimator (22) is generally not efficient as far
as its convergence rate is concerned. The least squares estimator of (22) can be
improved by taking a weighted least squares estimator. Suppose evaluated at
the true value {hy(6o)} is strictly stationary, then define

F,, =F {hk(00)hk_,,(00)’} . (23)
Assuming these quantities are absolutely summable, we define

5= 3 .. (24)

Vv=—00

The optimal GMM estimator is given by

6y = min{fn (6)S™' R (6)}, (25)



(25) needs an initial estimate of S, which calls for an initial estimate §. The

initial estimate of € is given by (22), which can be used to calculate an estimate
for S as follows([8]):

q
Sn=Ton+Y (1= @/(g+ 1) (Tuon +Tun) (26)
v=1
where
. 1 X . .
— !
Lon = ; (8- (9) (27)

where 6 is the estimator obtained using (22). This estimate of S is then used
to compute an estimator of 8 using 25. This recursion can be carried until the
estimator becomes stable.

5 Appendix

5.1 The Results of Projected Nelson Siegal Dynamics

First, we have

Lo 0G(Z,), _ ym—malyta) o
WG, FE)y - T maOa) 7
R 0G (%, ) o? 23 22323
G ) T . =
{(G(&, ) 0z ) (fy+z4)2+7+2z4 v+ 224
s (_ o2 _ 23 2z )_ZZ(Z3+22(’7+224))
vt (r+2a)? v+2am (v +224)2 7
.\ 9G(%,) z3 a*(2+ (v + 24)%)
G ) T . =
(@), ) = e T
25223 + 22(v + 224)) | 28(323 + 22(y + 224))
(7 + 224)° (7 + 224)?
s (_ o? B 29 t (_ 2 2 ))
U +a)? (42?7 (v+2m)® v +2a4))]
.\ 9G(%,) [zs?(—w +29%24 + 5v27 + 425)
< (G(th ))7 824 ) 4 (’7+2Z4)3

_23(0% (v +224)* (2 + 7% + v20) + 20(y + 20)% (v + 3027 +421))

O+ 2070 + 220)°

+ o? 22723 +2 ( 2 n 29
20 [ —
2 (v+24)%  v+2z \v+z  v+2xu

it



and

0G(Z,-) o
G(%,"),———=) = -,
(U( (Zt, ))a 621 ) v
0G (2, ) o
G(Z s ))y T oL = )
(GG 5 =
0G(%,-) o
G 2 7))y T . = VR
<J( ( t )) 823 > (7 ¥ Z4)2
o 0G (%, ) o(23 + z2(y + 24))
<U(G(zt7 ))7 ) - 3 .
0z4 (v + 24)
We also can derive the symmetric matrix W.
1
Wll = Ve
Y
1
Wi = ,
12 ~+ 7
1
Wis = ——,
o (7 + 24)?
23 4+ 22(7 + 24)
Wiy = —-z——FF——
14 24 (v + 24)2
1+ 23
Wi = ,
22 Y+ 22
=14 yzq + 23
Wy = —— %
* (7 +224)°
Wos = g 2atz2(y+2z4) 23(—23(7 + 24) + z024(7 + 224))
“ (v + 224)* (7 + 224)? ’
2+ 92 + 2y24 + 223
Wss = 3
(v + 224)
24(=23(2 + 72 + 2y24 + 222) + 2o(—y + (=2 + ¥?) 24 + 3722 + 223))
W34 = 3 )
(v +22)
1 20,2 2 2 2 2 2
= — 2 1 2 2 2
Was T 2 (25 (25(v + 224)° (1 + 25) + 23 (2 + 7° + 2724 + 227)
—22223(=7 + (=2 +7*)2a + 3yz{ + 220))).
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