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Abstract

In a version of the Diamond and Dybvig [6] model with aggregate

uncertainty, we show that there exists an equilibrium with the following

properties: all consumers deposit at the bank, all patient consumers

wait for the last period to withdraw, and the bank fails with strictly

positive probability. Furthermore, we show that the probability of a

bank failure remains bounded away from zero as the number of con-

sumers increases. We interpret such an equilibrium as reflecting a bank

run, defined as an episode in which a large number of people withdraw

their deposits from a bank, forcing it to fail.

Our results show that we can have equilibrium bank runs with con-

sumers poorly informed about the true state of nature, a sequential

service constraint, an infinite marginal utility of consumption at zero,

and without consumers’ panic and sunspots. We therefore think that

aggregate risk in Diamond-Dybvig-like environments can be an impor-

tant element to explain bank runs.
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1 Introduction

Throughout history, we observe many episodes of a large number of people

withdrawing their deposits from a bank, forcing it to fail. Since the work

of Diamond and Dybvid [6], these bank run1 episodes are understood as a

consequence of an illiquid banking system: the main function of banks is to

lend long and to borrow short, thus yielding an illiquid asset structure; this

in turn creates the potential for bank runs.

Recently, Green and Lin [10, 11] have challenged this view, by showing

that bank runs can be eliminated when banks use more sophisticated con-

tracts in a Diamond and Dybvig environment. Thus, they conclude that the

lack of liquidity highlighted by Diamond and Dybvig does not necessarily

leads to bank runs. Green and Lin’s result then gave rise to the view that

the Diamond and Dybvig model is not appropriate to explain bank runs.
1We follow Allen and Gale [2, p. 1245] in defining the notion of a bank run:

“From the earliest times, banks have been plagued by the problem of bank

runs in which many or all of the bank’s depositors attempt to withdraw their

funds simultaneously.”

In particular, we will classify as a bank run an episode in which many depositors withdraw

(enough to make the bank fail) regardless of whether or not some of them are panicking.

Unfortunately, there is no consensus in the terminology; for instance, Peck and Shell [17]

refer to the episodes we call bank runs as “no-run rationing” or “running out of funds”.
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The main goal of our paper is to provide theoretical support for the

Diamond and Dybvig model. Some support has already been given by Peck

and Shell [16], who have shown that bank runs can occur due to sunspots

in equilibrium under the optimal contract, even when banks are allowed to

offer contracts similar to those in Green and Lin [11]. We provide additional

support by showing that bank runs can occur with positive probability in

equilibrium as a consequence of aggregate uncertainty and poorly informed

consumers. Furthermore, we show that the probability of bank runs remains

bounded away from zero as the size of the economy increases. This will allow

us to conclude that the positive probability of bank runs is mainly driven by

the desire to provide better risk sharing and more liquidity to consumers.

Thus, bank runs in our framework are directly related with liquidity.

Our results also show that bank runs can be generated in the presence

of many elements that make them costly to consumers and/or difficult to

occur in equilibrium. These include:

1. absence of consumers’ panic,

2. absence of sunspots,

3. absence of mixed strategies,

4. sequential service constraint (and so zero consumption to late with-

5



drawers),

5. an infinite marginal utility of consumption at zero,

6. absence of information about the true state of the economy,

7. recoverability of investment in the productive technology, and

8. a non-negligible probability of a high fraction of impatient consumers

occurring.

This suggests that bank runs are quite robust in our Diamond and Dybvig

framework.

Before we discuss each of the above elements and the reason why they

cause difficulties, we will present our results in more detail. We consider an

environment similar to the one in Diamond and Dybvig [6]. In particular,

consumers can be of two distinct types: impatient consumers, who need to

consume early, and patient consumers, willing to postpone consumption. In

contrast with them, we assume that there is a finite number of consumers.

We assume that there is aggregate uncertainty, modelled in the following

way: first, the probability of each consumer being impatient is chosen ac-

cording to a continuous density function; then, the consumers’ type is deter-

mined in an i.i.d. way. As in Diamond and Dybvig, the consumers’ type is

their own private information. Furthermore, we assume that although each
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consumer knows his type, he does not know the true value of the probability

of each consumer being impatient.

Consumers can deposit their initial endowment in a bank, or invest it

directly. The banking system is assumed to be competitive and so banks

offer contracts to depositors in order to maximize their ex-ante welfare.

Regarding the contracts that banks offer to consumers, we depart from

the optimal contracting approach of Green and Lin [10, 11], by following

their suggestion in [11, p. 24]. According to them, the incentive problems of

banking executives may be missing in their model. This may explain “(...)

why the banking contract in [their] model is not observed and why runs

have historically occurred.” In the contract proposed by Green and Lin, the

amount paid by the bank to an early depositor depends on the information

the bank has obtained from those who have already contacted it. However,

as Green and Lin point out, if each depositor does not have access to that

information, such contract is infeasible. Following this view, we assume that

the only information depositors have, besides their own type, is whether the

bank has failed or not. Specifically, we assume that a monetary authority

makes a public announcement whenever the bank fails and so, the bank can

make payments contingent on whether it has failed (in which case it pays

nothing) or not. However, the bank cannot make payments contingent on
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any other variable. Thus, we are taking Green and Lin’s suggestion to the

extreme, and, in fact, returning to the same type of contract considered

originally by Diamond and Dybvig.2 We want to emphasize that this is

an assumption on the technology to enforce contracts: although a contract

between the bank and the deposits that makes payments contingent on the

number of people who have already withdrawn can be verifiable by a third

party, we assume that those verification costs are too high to make them

efficient.

Our main result then shows that if a sufficiently high fraction of im-

patient consumers is possible to occur3 and if the number of consumers is

sufficiently high, then there exists an equilibrium in which:

1. every consumer deposits,

2. no patient consumer withdraws early and,

3. the bank fails with a strictly positive probability.
2We assume that consumers are isolated from each other, which implies the same

trading restrictions (i.e., that depositors cannot sell their position at the bank) as in

Diamond and Dybvig [6]. The importance of these trading restrictions has been analyzed

by Jacklin [14].
3i.e., if the support of density function determining the probability of each consumer

being impatient contains values sufficiently close to one.
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In the above equilibrium, the bank failure corresponds to a situation

where the fraction of impatient consumers is high. In such a case, we would

observe a large number of depositors trying to withdraw, which would force

the bank to fail — a situation that corresponds to a bank run.

There is a sense in which our result above is weak: if the probability of a

consumer being impatient is positive, then the probability that all consumers

are impatient is also positive. This implies that all that is required for a

positive probability of a bank run is that the bank offers an interest rate

greater than one. Thus, the only way for the bank to avoid a bank run is to

offer a contract in which there is absolutely no risk sharing. Our second main

result strengthens the above result by showing, under the same assumptions,

that the probability of a bank run is bounded away from zero.

The probability of a bank run, and the fact that it is bounded away from

zero, depends on how illiquid the bank is. The reason is better understood

by considering large economies, in which we are mainly interested. By the

law of large numbers, as the number of consumers increases, the fraction of

impatient depositors in the population converges to the probability of each

one being impatient. In the limit, if the support of the density function

determining the probability of each consumer being impatient is [t, t̄], the

bank will fail with a positive probability whenever it offers an interest rate
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higher than r̄ = 1/t̄. Thus, we can rephrase our second main result as

showing that the interest offered by the bank is higher and bounded away

from r̄. The main intuition behind it is that banks find it optimal to offer

an interest rate higher than r̄ in order to provide better risk sharing to

consumers. The fact that the interest rate offered by the bank is bounded

away from r̄ then leads to a probability of bank run that is bounded away

from zero.

Regarding the main results of the paper, our inspiration came from Wal-

lace [20, p. 12], where he writes: “In my model, the cause of a bank run

and a partial suspension is exogenous — an aggregate shock to tastes that

makes the number of people wanting to withdraw unusually large.” When

we combine this insight with the simple contracting approach, we find that

the bank prefers to face a positive probability of a bank run, and a conse-

quent failure, in order to provide better risk sharing to its depositors. As

suggested by Wallace, the bank run will occur when the number of impatient

consumers is high. Our results have, nevertheless, two important differences

compared with Wallace’s: first, bank runs have more severe consequences

in our results, since they cause banks to fail, whereas in Wallace’s they lead

to a partial suspension; second, Wallace’s result relies on the assumption

that there is a small amount of aggregate risk limited to a small group of
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individuals, which is not needed in ours — we believe that our result allows

us to think of bank runs as a large-scale, society-wide phenomenon.4

Although our results are intuitive, they are not easy to establish. Part

of the difficulty arises because we allow for several elements that make them

hard to occur in equilibrium. First, since all patient consumers prefer to

wait, there is no consumers’ panic in the bank runs of our model, an ele-

ment that was important in Diamond and Dybvig [6] and Peck and Shell

[16], among others. Second, our results do not require sunspots, which are

a crucial element for Peck and Shell’s result. Third, we restrict consumer

choice to pure strategies; without this assumption one can show the exis-

tence of a positive probability of a bank run as in Adão and Temzelides [1].

Fourth, we require banks to satisfy a sequential service constraint (which im-

plies that, in a bank run, late withdrawers will receive zero consumption).

Fifth, we allow for an infinite marginal utility of consumption at zero, which

together with the previous assumptions makes bank runs costly to those con-

sumers who are unable to withdraw. Sixth, we assume that consumers have

no information about the true state of the economy, and seventh, that the

investment in the productive technology can be recovered — without these

two assumptions, one can generate bank runs in which consumers run when
4See Peck and Shell [17] and Ennis and Keister [7] for a similar point.
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the state of the economy is bad, as in Allen and Gale [2]. Finally, we allow

for a non-negligible probability of a high fraction of impatient consumers

occurring; this increases the risk of a bank run, which is costly.

Furthermore, our results hold for (large, but) finite economies, and not

merely in a limit or in a continuum of agents economy. Thus, although we

infer them from the study of a limit economy, they cannot be regarded as

an artifact of an infinite population.5

In conclusion, we have shown that within the standard Diamond and

Dybvig [6] environment, bank runs can be explained as the result of ag-

gregate uncertainty, simple contracting, and without many of the elements

emphasized in the literature. Furthermore, in our framework, bank runs are

intimately linked with the consumer’s desire for liquidity, an idea expressed

originally by Diamond and Dybvig.

2 The model

In this section, we formally describe the model. The model presented here

is similar to that presented in Diamond and Dybvig [6].

There are three periods T = 0, 1, 2. There is a single consumption good.

There are two technologies: first, the consumer good can be stored from one
5See Barlo and Carmona [4], Carmona [5] and Meirowitz [15] for more on this issue.
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period to the other; the gross rate of return equals 1. Second, there is a

productive technology, by which one unit invested in period 0 yields R, with

R > 1, units of consumption in period 2; furthermore, if the investment is

interrupted in period 1, it will yield one unit (i.e., the investment can be

recovered).

There is a finite number of consumers denoted by n ∈ N. All consumers

are identical in period 0. Consumers receive an endowment of one unit of

consumption good in period 0 and zero in the remaining periods.

Each consumer can be of two distinct types, denoted by type 1 and

type 2. A type 1 consumer values consumption in period 1 only (impatient

consumer), whereas a type 2 consumer values consumption only in period 2

(patient consumer).

In period 1, nature draws a type for every consumer in the following way:

first, a number in t ∈ [0, 1] is drawn according to a probability measure µ;

then each consumer’s type is drawn in an i.i.d. way with a probability t of

being of type 1. It follows that the fraction of impatient consumers equals

i ∈ Sn = {k/n : k = 0, . . . , n} with probability pn,t(i) = tni(1− t)n−ni when

there are n consumers and the probability of each being a type 1 is t.

Each consumer knows his own type, but not the type of the others; i.e.,

consumers’ type is their own private information. Furthermore, no consumer
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knows the realized value of t.

We make the following assumptions on the uncertainty:

Assumption 1 1. The support of µ is an interval contained in [0, t′],

where 0 < t′ ≤ 1;

2. there exists a continuous function f : supp(µ) → R+ such that µ(B) =

∫
B f for every Borel measurable set B ⊆ [0, 1].

The continuity of the density f implies that if t̄ = max{t : t ∈ supp(µ)},

then F (t) =
∫ t
0 f < 1 for all t < t̄. Given any t̄ ∈ [0, 1], we write f ∈ Ft̄,B,x

when f is continuous, bounded by B > 0, t̄ = max{t : t ∈ supp(µ)} and

x =
∫ 1
0 tf(t)dt.

Let c1 denote the individual consumption received by a consumer in

period 1, let c2 denote individual consumption received in period 2, and let

Θ be the type of the agent. The utility derived by every agent from the

consumption of the bundle (c1, c2) is

U(c1, c2,Θ) =





u(c1) if Θ = 1,

u(c1 + c2) otherwise,
(1)

where u : R+ → R is twice continuously differentiable, strictly increasing

and strictly concave. Furthermore, we assume:

Assumption 2 1. −cu′′(c)/u′(c) > 1 for c ≥ 1;
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2. u(0) = 0;

3. limc→0 u′(c)c ∈ R.

Every agent is assumed to maximize the ex-ante (relative to period 0) ex-

pected utility E[U(c1, c2, Θ)].6

We next describe the banking industry. There is a representative bank

behaving competitively. The bank offers to the depositors a contract speci-

fying a fixed claim of r per unit deposited to agents withdrawing in period

1. The bank is mutually owned, and it is liquidated in period 2. This im-

plies that period 2 withdrawers will share the remainder of the bank’s assets

equally among themselves.

If and when the bank fails, consumers will be informed (say, by a regu-

latory entity). The bank is closed and the remaining assets are distributed

in period 2 to those claiming it. We assume that no impatient consumer
6An example of a function satisfying all the above assumptions is u(c) = − exp−2c +1.

In this case, we would have limc→0 u′(c) = 2. An example of a function satisfying

limc→0 u′(c) = ∞ is

u(c) =

8>><>>:
√

c if c ≤ 1/2,

−
√

2c−1

4
+
√

2 otherwise.

(2)

This function satisfies all the assumptions except that it does not have a second derivative

at 1/2. Nevertheless, all our results extend to the case in which u′′ is continuous for all

c ≥ 1.
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will claim anything in period 2; in any case, an impatient consumer is in-

different between claiming or not, and so we can justify this assumption by

postulating a positive cost of exercising it.

Thus, the amounts received by depositors are as follows: Let A denote

the total amount deposited in period 0 and r be the interest rate offered by

the bank. Consider a depositor j willing to withdraw in period 1 and let

fj denote the number of withdrawers arriving at the bank before consumer

j. Then j’s period 1 payoff is equal to r if rfj ≤ A and 0 otherwise. If a

depositor waits for period 2 to withdraw, then he receives

max
{

R(A− rf)
1− f

, 0
}

, (3)

where f denotes the fraction of the depositors who have withdrawn in period

1.

We assume that consumers are isolated from each other during period

1, although each one contacts the bank at some point in that period. As

Wallace [19] has shown, this implies that the bank has to satisfy a sequential

service constraint; that is, the bank must serve the depositors withdrawing

in period 1 in the (random) order that they arrive at the bank until it runs

out of assets. We assume that all orderings are equally likely, and so each

occurs with a probability of 1/m! when there are 0 ≤ m ≤ n withdrawers.

In order to evaluate different strategies, each consumer needs to know the
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probability of arriving at the bank before it fails. If the bank can fully pay

k depositors, then the probability that a given consumer is fully paid equals

min{1, k(m − 1)!/m!} = min{1, k/m}. We will write this probability as

α(m/n, k/n), that is, we use as arguments the fraction of depositors trying

to withdraw and the fraction of depositors that can be fully paid in period

1. In general, this probability depends on the interest rate r offered by the

bank and on the strategies chosen by the other consumers. We let kn(r)

satisfy rkn(r) ≤ 1 and r(kn(r) + 1/n) > 1; thus, nkn(r) is the number of

depositors that can be fully paid in period 1 when the bank offers r.

A strategy of the bank is the choice of r ∈ [1, R]; the bank chooses r

in order to maximize ex-ante utility of the consumers (recall that they are

equal ex-ante). This behavior is motivated by the competitive nature of the

banking industry.7 More generally, we could assume that the bank offers

r ∈ R, but risk-aversion will ensure that r ∈ [1, R]. The bank chooses the

interest rate in period 0 and then announces it to the consumers.

In period 0, each consumer will choose whether to deposit given the

interest rate offered by the bank; those that do not deposit will invest in

the productive technology. For simplicity, we assume that consumers have
7Adão and Temzelides [1] have shown in a similar framework that another type of bank’s

behavior is possible in equilibrium; however, bank’s maximization of the ex-ante utility of

the consumers is the only behavior plausible in more refined notions of equilibrium.
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to deposit all of the endowment. In period 1 each consumer learns her type

and then chooses either to withdraw from the bank or to wait, depending

on her type, on the interest rate and on her deposit choice. Consumers that

withdraw their deposit in period 1 can either consume the goods received

or store them.8 Hence, a strategy for a consumer is (d,w), where d is a

function from [1, r] into {0, 1}, and w is a function from [1, R]× {0, 1} ×Θ

into {0, 1}. We make the convention that d(r) = 1 stands for the choice

of depositing, and similarly w(r, d, Θ) = 1 means that she will withdraw in

period 1.9

A symmetric equilibrium is then r∗, d∗, and w∗ such that w∗(r, d,Θ) is

optimal for all (r, d,Θ), d∗(r) is optimal for all r, and r∗ is optimal taking

as given agents’ strategies.

The bank fails in the first period if d∗(r∗) = 1 and 1 < r∗m/n where r∗ is

an equilibrium interest rate and m is the number of depositors that choose

to withdraw (i.e., w∗(r∗, 1, Θ) = 1). That is, the total value of assets that

depositors plan to withdraw in period 1 strictly exceeds the total value of

assets owned by the bank, also in period 1.
8This implies that storage will only be helpful for patient consumers who withdraw

early.
9Note that we only allow pure strategies. It is important to note that it is possible to

have bank runs in a mixed strategy equilibrium, as shown by Adão and Temzelides [1].

18



We say that an equilibrium bank run without consumers’ panic occurs

asymptotically with positive probability if there exists N ∈ N such that

n ≥ N implies the existence of a symmetric equilibrium with the follow-

ing properties:

1. every consumer deposits (i.e., d∗(r∗) = 1),

2. all patient consumers wait (i.e., w∗(r∗, d∗(r∗), 2) = 0),

3. the bank fails in the first period with strictly positive probability.

In the above equilibrium there is a bank run in the sense that a large

number of depositors go to the bank, causing it to fail. However, since all

patient consumers prefer to wait, we say that there is no consumers’ panic.

3 Equilibrium Bank Runs

In this section, we study whether equilibrium bank runs exist and how robust

they are. In Section 3.1, we give a sufficient condition that guarantees

the existence of equilibrium bank runs with positive probability in large

economies. Then, in Section 3.2, we show that under the same assumption,

the probability of bank runs is bounded away from zero as the number of

consumers increases.
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3.1 Existence of Equilibrium Bank Runs

In an equilibrium bank run, all consumers choose to deposit and patient

consumers prefer to wait. So, it is necessary to guarantee the existence of

equilibria with these properties, which one can do under the assumptions

made in Section 2.

We can construct such an equilibrium by studying a particular maximiza-

tion problem. This problem consists of choosing an interest rate r in order

to maximize consumers’ ex-ante utility among those that make consumers

prefer to deposit and impatient consumers to wait, given that everyone is

depositing and every patient depositor is waiting.

We describe this problem below which is indexed by the number of con-

sumers. The ex-ante expected utility if all follow the above strategy can

be obtained as follows: if a consumer is of type 1, then he receives r with

probability α(i, kn(r)) when the fraction of impatient consumers is i and

the bank can fully pay nkn(r) consumers. If the consumer is of type 2, he

receives max{0, R(n−ri)
n−i }. Thus, letting Un(r) denote the ex-ante expected

utility, we have

Un(r) =
∫ 1

0
f(t)


t

∑

i∈Sn−1

pn−1,t(i)α
(

(n− 1)i + 1
n

, kn(r)
)

u(r)

+(1− t)
∑

i∈Sn−1

pn−1,t(i)u
(

max
{

0,
R(n− r(n− 1)i)

n− (n− 1)i

})
dt.

(4)
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In particular, suppose that the bank offers an interest rate equal to r,

all consumers deposit, and all patient consumers wait for the second period

to withdraw. Then, the expected utility for a patient consumer equals

∫ 1

0
f(t)

∑

i∈Sn−1

pn−1,t(i)u
(

max
{

0,
R(n− r(n− 1)i)

n− (n− 1)i

})
dt. (5)

If one patient consumer decides to withdraw in period 1, then his expected

utility, when all the other patient consumers withdraw in period 2, is given

by
∫ 1

0
f(t)

∑

i∈Sn−1

pn−1,t(i)α
(

(n− 1)i + 1
n

, kn(r)
)

u(r)dt. (6)

Thus, letting

Wn = {r ∈ [1, R] : WLn(r) ≥ WRn(r)} , (7)

where WLn(r) is defined by equation (5) and WRn(r) by equation (6), we

have that any patient consumer will choose to withdraw in period 2 provided

that r belongs to W , all consumers deposits, and all other patient consumers

wait for period 2 to withdraw.

If a consumer decides not to deposit, then his ex-ante expected utility is

simply
∫ 1

0
f(t) [tu(1) + (1− t)u(R)] dt, (8)

which is equal to Un(1). Hence, letting

Dn = {r ∈ [1, R] : Un(r) ≥ Un(1)} , (9)
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we see that any consumer will choose to deposit provided that r belongs to

D, all other consumers deposit, and all patient consumers wait for period 2

to withdraw.

Thus, consider the following problem:

max
r∈[1,R]

Un(r)

subject to r ∈ Wn ∩Dn,

(10)

One can show that this problem has a solution (see Lemma 11 in the Ap-

pendix). It is then easy to construct an equilibrium in which all consumers

deposit and all patient consumers wait (see Lemma 12).

Although the existence of such equilibria is necessary for our purposes, it

is not enough. Without further assumptions, the interest rate offered by the

bank in such equilibria may be equal to one, in which case there will be no

bank run. Thus, we need additional assumptions in order to guarantee that

bank runs occur with positive probability. Essentially, we need the support

of f to have values sufficiently close to one, and a large population.

Proposition 1 For every B > 0 and x ∈ (0, 1) there exists τ ∈ [0, 1] such

that if τ < t̄ < 1 and f ∈ Ft̄,B,x then an equilibrium bank run without

consumers’ panic occurs asymptotically with positive probability.

One crucial element needed for Proposition 1 is a large population. By
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the law of large numbers, the fraction of impatient consumers in the pop-

ulation converges to the probability of each consumer being impatient as

the size of the population increases. This implies that in the limit there is

only one source of aggregate uncertainty, which is the one represented by f .

This is in contrast with what happens in any finite economy, where some

aggregate uncertainty stems from the consumers’ idiosyncratic preference

shocks. This is important partly because the probability that the fraction

of impatient consumers is between t̄ and 1 is always positive in any finite

economy, but is zero in the limit.

The above comment suggests that the analysis of a limit problem where

the law of large numbers holds might be useful and easier. In the Appendix

A.1 we show that problem (10) converges, in the sense that all the functions

involved converge uniformly, to the following problem:

max
r∈[1,R]

U(r) =
∫ 1

0
f(t)

[
tα(t, k(r))u(r) + (1− t)u

(
max

{
0,

R(1− rt)
1− t

})]
dt

subject to r ∈ W ∩D,

(11)

where k(r) = 1/r, D = {r ∈ [1, R] : U(r) ≥ U(1)} and

W =
{

r ∈ [1, R] :
∫ 1

0
f(t)u

(
max

{
0,

R(1− rt)
1− t

})
dt ≥

∫ 1

0
f(t)α(t, k(r))u(r)dt

}
.

(12)

In this problem, the variable t can be thought of as the fraction of im-

patient consumers in the population. In this way, it is very similar to the
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one considered initially by Diamond and Dybvig [6].

The analysis of the limit problem above reveals that its solution exceeds

r̄ = 1/t̄, provided that t̄ is sufficiently close to 1. This allows us to conclude

that the solution to problem (10) is also greater than r̄ if the population is

large enough, leading directly to a positive probability of bank runs. This

reasoning illustrates why we need the support of f to have values sufficiently

close to one.

3.2 A Limit Result on the Probability of Bank Runs

As we have pointed out above, there are two sources of aggregate uncertainty

in a finite economy. This implies that there are two reasons for having

a positive probability of bank runs whenever the bank offers an interest

rate greater than 1. First, for any possible t > 0, the probability that the

fraction of impatient consumers is greater than 1/r is always positive — this

probability has to do with the distribution associated with pn,t. A second

reason has to do with the distribution associated with f and which can also

(by the law of large numbers) be thought of as representing the probability

that the fraction of impatient consumers is greater than 1/r.

Clearly, the second effect alluded to above can only take place if r exceeds

r̄. If this is not the case, then the probability of bank runs is essentially
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due only to the consumers’ idiosyncratic shocks, and would vanish as the

population size increases. What Proposition 2 below shows is that this is

not the case: in fact, it shows that part of a positive probability of bank runs

comes from the desire to provide a better risk sharing, which is expressed in

an interest rate greater and bounded away from r̄.

We now turn to Proposition 2. Under the conditions of Proposition 1,

we know that asymptotically there exist equilibrium bank runs. For every n

sufficiently large, let (r∗n, d∗n, w∗n) be an equilibrium in which there is a bank

run without consumers’ panic. Let γn be the corresponding probability of a

bank run.

Proposition 2 The sequence {γn}n is bounded away from 0.

At this point we can provide an easy illustration of why it is necessary

that the support of f has values sufficiently close to one: if R = 2 and

t̄ = 1/3, then r̄ = 3 > R. Thus, an upper bound for γn is obtained when

the bank offers rn = R for all n, which we denote by γ̃n. It follows easily

from the law of large numbers that in this case γ̃n converges to zero. Thus,

we need r̄ to be large.
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4 Concluding Remarks

We used the standard Diamond and Dybvig [6] framework to show that bank

runs can be explained as the result of aggregate uncertainty and without

many of the elements emphasized in the literature. In our version of the

Diamond and Dybvig framework, bank runs will occur whenever there is

a large number of depositors in need of short-term funds. Such bank runs

are possible because banks will choose to offer a high short-term interest

rate in order to provide better risk sharing for their depositors; however, the

interest rate offered is so high that it leads to a positive probability that the

bank will not have enough funds to pay all early withdrawers. Hence, the

above bank runs are a direct consequence of the degree of banks’ liquidity.

Furthermore, our construction is such that the probability of a bank run is

sufficiently small to guarantee that those who do not need funds early will

prefer not to withdraw early. We thus depart from the idea that in a bank

run some depositors withdraw when they do not need — this is the sense in

which such runs involve no consumers’ panic.

The type of equilibria on which we concentrate reflects some practical

features of the banking system: banks offer liquidity and risk sharing to

depositors, people deposit and withdraw only when they have to, and some-

times banks fail. Furthermore, an equilibrium of this type has the property
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of having no consumer panic, and still bank runs occur with a positive,

bounded away from zero, probability.

Although not explicitly modelled, we interpret the aggregate uncertainty

over the number of early withdrawers as reflecting business cycle conditions.

For instance, we expect the number of people who need short-term funding

to be influenced by the unemployment rate — this will be the case as long

as unemployed individuals try to compensate the loss of income by using

their assets to smooth out consumption. We then expect that fundamental

shocks that lead to a large number of early withdrawers can create bank

runs. Therefore, our results are consistent with the business cycle view of

bank runs, a view that has received some empirical support (see Gorton [9]

and Kaminsky and Reinhart [12]). This suggests that explicitly introducing

the type of fundamental shocks studied in the business cycle literature might

be promising, a challenge we take up in Amaral and Carmona [3].
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A Appendix

In this appendix, we will prove our results. In Section A.1, and following

Hildenbrand [13], we will start by showing that problem (10) converges to

the type of problem studied by Diamond and Dybvig [6] as the number of

consumers goes to infinity. Although we are interested in finite economies,

the latter problem is interesting because it is easy to study. This is essentially

because the law of large numbers holds.

In Section A.2, we study the limit problem. The main result there

(Lemma 7) shows that the interest rate offered by the bank is sufficiently

high to allow for bank runs in the limit problem under certain conditions.10

The main difficulty regarding this result has to do with the possibility that

the marginal utility of consumption is not bounded above; therefore, much

of the effort is devoted to showing that standard limit results, such as the

Lebesgue’s dominated convergence theorem is still applicable.

In Section A.3, we show that for every n ∈ N (n denotes the population

size) there exists an equilibrium in which all consumers deposit at the bank

and all patient consumers wait to withdraw. Finally, and under the same

conditions as in Lemma 7, we show in Section A.4 that there is a positive
10For an illustration of the idea of Lemma 7, see the last column of Table 1 in Ennis

and Keister [7].
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probability of an equilibrium bank run in large finite economies; furthermore,

we show in Section A.5 that such a probability of an equilibrium bank run

remains bounded away from zero as the number of consumers increases.

A.1 The Limit Problem

Lemma 1 For any continuous function h : [α, β]× [a, b] → R, with [a, b] ⊆

[0, 1],
∫

[a,b]
h(r, i)dpn,t(i) → h(r, t)

uniformly in r and t.

Proof. Let ε > 0. Since h is continuous in [α, β] × [a, b], a compact

set, h is bounded. Let B > ε be such that |h| ≤ B and let δ > 0 be such

that |x− y| < δ implies that |h(x)− h(y)| < ε/2. Then, since pn,t(Bδ(t)) ≥

1− t(1−t)
nδ2 (see Freund [8, p. 190]), it follows that

∣∣∣∣∣
∫

[a,b]
h(r, i)dpn,t(i)− h(r, t)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

Bδ(t)
hdpn,t − pn,t(Bδ(t))h(r, t)

∣∣∣∣∣+

∣∣∣∣∣
∫

Bc
δ(t)

hdpn,t − pn,t(Bc
δ(t))h(r, t)

∣∣∣∣∣ ≤
(

1− t(1− t)
nδ2

)
ε

2
+

t(1− t)
nδ2

2B ≤
(

1− 1
4nδ2

)
ε

2
+

1
4nδ2

2B < ε,

(13)

if n is sufficiently large. Thus, sup(r,t) |
∫
[a,b] h(r, i)dpn,t(i) − h(r, t)| ≤ ε for

n sufficiently large, which completes the proof.
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Lemma 2 Let h and hn, for all n ∈ N, be real-valued functions on [α, β]×

[a, b], with [a, b] ⊆ [0, 1], satisfying h is continuous and hn converges uni-

formly to h. Then,

∫

[a,b]
hn(r, i)dpn,t(i) → h(r, t)

uniformly on r and t.

Proof. Let ε > 0. Then, since

∣∣∣∣∣
∫

[a,b]
hn(r, i)dpn,t(i)−

∫

[a,b]
h(r, i)dpn,t(i)

∣∣∣∣∣ ≤
∫

[a,b]
|hn−h|dpn,t ≤ sup

(r,i)
|hn(r, i)−h(r, i)|,

(14)

it follows by lemma 1 that
∣∣∣∣∣
∫

[a,b]
hn(r, i)dpn,t(i)− h(r, t)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

[a,b]
hn(r, i)dpn,t(i)−

∫

[a,b]
h(r, i)dpn,t(i)

∣∣∣∣∣+

∣∣∣∣∣
∫

[a,b]
h(r, i)dpn,t(i)− h(r, t)

∣∣∣∣∣ < ε,

(15)

if n is sufficiently large. Thus, sup(r,t) |
∫
[a,b] hn(r, i)dpn,t(i)− h(r, t)| ≤ ε for

n sufficiently large, which completes the proof.

Define for t, i ∈ [0, 1].

V 1
n (r, i) = α

(
i +

1− i

n
, kn(r)

)
u(r), (16)

and

V 2
n (r, i) = u

(
max

{
0,

R
(
1− r

(
1− 1

n

)
i
)

1− (
1− 1

n

)
i

})
. (17)
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Also let k(r) = 1/r,

V 1(r, i) = α(i, k(r))u(r), (18)

and

V 2(r, i) = u

(
max

{
0,

R(1− ri)
1− i

})
. (19)

Lemma 3 1. kn(r) converges to k(r) uniformly;

2. α(i + (1 − i)/n, kn(r)) converges to α(i, k(r)) uniformly in i ∈ [0, 1]

and r ∈ [1, R];

3. tV 1
n (r, i)+(1−t)V 2

n (r, i) converges uniformly to tV 1(r, i)+(1−t)V 2(r, i)

in i ∈ [0, 1− ε] and r ∈ [1, R] for all ε > 0;

4. (r, i) 7→ tV 1(r, i) + (1− t)V 2(r, i) is continuous when i ∈ [0, 1− ε] and

r ∈ [1, R] for all ε > 0 and t ∈ [0, 1].

Proof. 1. We have that

k(r)− 1
n
≤ kn(r) ≤ k(r), (20)

which implies that |kn(r) − k(r)| ≤ 1/n and so, kn(r) converges uniformly

to k(r). Equation (20) can be established as follows: if kn(r) > k(r), then

rkn(r) > rk(r) = 1, a contradiction; if kn(r) < k(r) + 1/n, then r(kn(r) +

1/n) < rk(r) = 1, a contradiction.
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2. We start by noting the following fact: if (r, i) 7→ an(r, i) converges

uniformly (in i and r) to (r, i) 7→ a(r, i), (r, i) 7→ bn(r, i) converges uniformly

to (r, i) 7→ b(r, i), both a and b are bounded and b and bn are bounded away

from zero (i.e., there is η > 0 such that b(r, i) ≥ η and bn(r, i) ≥ η for all

(r, i) and all n), then an/bn converges uniformly to a/b.

Suppose that i ≥ 1/r. Then α(i, k(r)) = 1/(ri) and since k(r) ≥ kn(r)

and i+(1− i)/n ≥ i, it follows that α(i+(1− i)/n, kn(r)) = kn(r)/(i+(1−

i)/n). In order to apply the above fact, let an(r, i) = kn(r), a(r, i) = 1/r,

bn(r, i) = i + (1− i)/n and b(r, i) = i. Since all the conditions are satisfied

(in particular, bn(r, i) ≥ b(r, i) ≥ 1/R), it follows that sup(r,i):ri≥1 |α(i+(1−

i)/n, kn(r))− α(i, k(r))| converges to zero.

Finally, suppose that i < 1/r. Then, k(r) = 1 and so

|α(i + (1− i)/n, kn(r))− α(i, k(r))| = 1−min

{
1,

kn(r)
i + 1−i

n

}
≤

1− kn(r)
1 + 1/n

≤ 1− k(r)− 1/n

1 + 1/n
= 1− 1− 1/n

1 + 1/n
.

(21)

Thus, sup(r,i):ri<1 |α(i+(1− i)/n, kn(r))−α(i, k(r))| → 0. Hence, α(i+(1−

i)/n, kn(r)) converges to α(i, k(r)) uniformly in r and i.

3. It follows from part 2 that V 1
n (r, i) converges uniformly to V 1(r, i).

It remains to show that V 2
n (r, i) converges uniformly to V 2(r, i) if r ∈
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[1, R] and i ∈ [0, 1− ε], with ε > 0. Define

βn(r, i) = max

{
0,

R(1− r(1− 1
n)i)

1− (1− 1
n)i

}

and

β(r, i) = max
{

0,
R(1− ri)

1− i

}
.

Since βn(1, i) = β(1, i) = R, we may assume that r > 1. Note also that

βn(r, i) ≥ β(r, i).

If i ≤ 1/r then β(r, i) ≥ 0, and we readily see that all the conditions

of the fact in part 2 of this proof are satisfied: let a(r, i) = R(1 − ri),

an(r, i) = R(1− ri(1− 1/n)), b(r, i) = 1− i and bn(r, i) = 1− i(1− 1/n); in

particular bn ≥ b ≥ ε.

If i > 1/r, then β(r, i) = 0 and since βn(r, i) is decreasing in i, we obtain

|βn(r, i)− β(r, i)| ≤ R(1− r(1− 1
n)1

r )
1− (1− 1

n)1
r

≤ R
1/n

1− 1/r
≤ R

εn
→ 0.

(22)

Thus, βn(r, i) converges uniformly to β(r, i). Since u is continuous, then

V 2
n (r, i) converges uniformly to V 2(r, i).

4. Obvious.

Let

U(r) =
∫ 1

0
f(t)

[
tα(t, k(r))u(r) + (1− t)u

(
max

{
0,

R(1− rt)
1− t

})]
dt,

(23)

33



and k(r) = 1/r.

Lemma 4 Let B > 0, x ∈ (0, 1), 0 < t̄ < 1 and f ∈ Ft̄,B,x. Then, Un(r)

converges uniformly to U(r).

Proof. We may write

Un(r) =
∫ t̄

0
f(t)Vn(r, t)dt, (24)

where

Vn(r, t) =
∫ 1

0

(
tV 1

n (r, i) + (1− t)V 2
n (r, i)

)
dpn−1,t(i). (25)

We may also define

V (r, t) = tα(t, k(r))u(r) + (1− t)u
(

max
{

0,
R(1− rt)

1− t

})

and write U(r) =
∫ t̄
0 f(t)V (r, t)dt. Thus, in order to prove the lemma, it is

enough to show that Vn converges uniformly to V for r ∈ [1, R] and t ∈ [0, t̄].

Let 0 < η < 1− t̄. Then,

|Vn(r, t)−V (r, t)| ≤
∣∣∣∣∣
∫ t̄+η

0
Vn(r, i)dpn−1,t(i)− V (r, t)

∣∣∣∣∣+
∣∣∣∣
∫ 1

t̄+η
Vn(r, i)dpn−1,t(i)

∣∣∣∣ .

(26)

Since pn−1,t(Bη(t)) ≥ 1− t(1−t)
(n−1)η2 (see Freund [8, p. 190]), we have that

∣∣∣∣
∫ 1

t̄+η
Vn(r, i)dpn−1,t(i)

∣∣∣∣ ≤ u(R)pn−1,t([t̄ + η, 1]) ≤

u(R)pn−1,t([0, t− η] ∪ [t + η, 1]) ≤ u(R)
t(1− t)

(n− 1)η2
≤ u(R)

1
4(n− 1)η2

.

(27)
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Since u(R)/[4(n− 1)η2] converges to zero and is independent of r and t, it

remains to show that
∣∣∣∣∣
∫ t̄+η

0
Vn(r, i)dpn−1,t(i)− V (r, t)

∣∣∣∣∣

converges to zero uniformly. This follows from Lemma 2 and 3.

Let

WL(r) =
∫ 1

0
f(t)u

(
max

{
0,

R(1− rt)
1− t

})
dt (28)

and

WR(r) =
∫ 1

0
f(t)α(t, k(r))u(r)dt. (29)

Lemma 5 Let B > 0, x ∈ (0, 1), 0 < t̄ < 1 and f ∈ Ft̄,B,x. Then, WLn(r)

converges uniformly to WL(r) and WRn(r) converges uniformly to WR(r).

Proof. Analogous to Lemma 4.

A.2 Analysis of the Limit Problem

Let D = {r ∈ [1, R] : U(r) ≥ U(1)} and W = {r ∈ [1, R] : WL(r) ≥

WR(r)}.

Lemma 6 The function U has a maximizer in D ∩W .

Proof. Note that the set D∩W is compact, and non-empty, since r = 1

belongs to D ∩ W . The function U is a continuous function of r. Hence,

there exists r∗ that maximizes U in D ∩W .

35



Lemma 7 For all B > 0 and x ∈ (0, 1), there is τ ∈ [0, 1] such that if

τ < t̄ < 1 and f ∈ Ft̄,B,x the following holds:

There exists r̃ > 1/t̄ such that U(r̃) > U(r) for all 1 ≤ r ≤ 1/t̄ and

WL(r̃) > WR(r̃).

Lemma 7 is the key lemma to establish Proposition 1. Before presenting

its proof, we need some technical lemmas.

Lemma 8
∫ r
0 u′ = u(r) for any r > 0.

Proof. Let 0 < δ < r. Then
∫ r
δ u′ = u′(r) − u′(δ) (see Wheeden and

Zygmund [21, Theorem 5.52, p.83] and Rudin [18, Theorem 6.21, p. 134]).

Define hk = χ[1/k,r]u
′ for all k ∈ N. Since hk ≥ 0 for all k, and hk ↗ u′,

it follows that
∫ r
0 hk →

∫ r
0 u′. Hence,

∫ r
0 u′ = limk[u(r) − u(1/k)] = u(r) −

u(0) = u(r).

Let g(r, t) = R(1−rt)
1−t .

Lemma 9
∫ 1/r
0 u′(g(r, t))dt =

∫ R
0 u′(y) R(r−1)

(Rr−y)2
dy for all r > 1.

Proof. We start by noting the following extension of the change of

variable theorem (Rudin [18, Theorem 6.19, p. 132]): if γ : [A,B] → [b, a]

is a strictly decreasing continuous function with γ′ Riemann integrable and

h is Riemann integrable on [b, a], then
∫ a
b h(x)dx =

∫ B
A (−γ′(y))h(γ(y))dy.
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Let 0 < δ < 1/r. Let γ(y) = R−y
Rr−y . Then −γ(y) = R(r−1)

(Rr−y)2
, and is

therefore bounded by 1/R(r − 1). Thus, by the above,

∫ δ

0
u′ ◦ g(r, t)dt =

∫ R

R(1−rδ)
1−δ

u′(y)
R(r − 1)
(Rr − y)2

dy. (30)

Using an argument similar to that in Lemma 8, we can show that

∫ 1/r

0
u′(g(r, t))dt = lim

δ→1/r

∫ δ

0
u′(g(r, t))dt =

∫ R

0
u′(y)

R(r − 1)
(Rr − y)2

dy. (31)

We can now proceed with the proof of Lemma 7.

Proof of Lemma 7. Since WL(1) = u(R) > u(1) = WR(1), then

there exists ζ > 0 such that 1 < r < 1 + ζ implies WL(r) > WR(r).

Let f be such that
∫ 1
0 tf(t)dt = x. Consider the following function

M : [0, 1] → R defined by

M(r) =
∫ 1

0
[u′(r)−Ru′(g(r, t))]tf(t)dt. (32)

Clearly, M(1) = [u′(1) − Ru′(R)]
∫ 1
0 tf(t)dt = [u′(1) − Ru′(R)]x and so

M(1) > 0 (see Diamond and Dybvig [6, footnote 2]).

Let {t̄k}k ⊂ (0, 1) be such that limk t̄k = 1 and {fk} be a sequence of

densities belonging to Ft̄k,B,x, but otherwise arbitrary. Let r̄k = 1/t̄k, for

all k.

Claim 1 limk

∫ 1
0 [u′(r̄k)−Ru′(g(r̄k, t))]tfk(t)dt = [u′(1)−Ru′(R)]x.
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Proof. Since u′ is continuous, we have that u′(r̄k)x → u′(1)x; thus, it

remains to show that
∫ 1
0 u′ ◦ g(r̄k, t)tfk(t)dt → xu′(R). Note that xu′(R) =

∫ 1
0 u′ ◦ g(1, t)tfk(t)dt for all k. We have that u′ ◦ g(r̄k, t)tfk(t) ≥ u′(R) for

all t ∈ [0, t̄k] and so

∣∣∣∣
∫ 1

0
u′ ◦ g(r̄k, t)tfk(t)dt−

∫ 1

0
u′ ◦ g(1, t)tfk(t)dt

∣∣∣∣

≤ B

∫ 1

0
(u′ ◦ g(r̄k, t)− u′ ◦ g(1, t))χ[0,t̄k]dt.

(33)

Since
∫ 1
0 u′ ◦ g(1, t))χ[0,t̄k]dt → u′(R) =

∫ 1
0 u′ ◦ g(1, t)dt, it is enough to show

that

∫ t̄k

0
u′ ◦ g(r̄k, t)dt =

∫ 1

0
u′ ◦ g(r̄k, t)χ[0,t̄k]dt →

∫ 1

0
u′ ◦ g(1, t)dt.

Clearly, 0 ≤ u′ ◦ g(r̄k, t)χ[0,t̄k] → u′ ◦ g(1, t). Let ε > 0. Then, by the

bounded convergence theorem (Wheeden and Zygmund [21, Corollary 5.37,

p. 76])
∫ 1−ε
0 u′ ◦ g(r̄k, t)dt → u′(R)(1− ε). By Lemma 9, for k large,

∫ 1

1−ε
u′◦g(r̄k, t)χ[0,t̄k]dt =

∫ t̄k

1−ε
u′◦g(r̄k, t)dt =

∫ R(1−r̄k+εr̄k)/ε

0
u′(y)

R(r̄k − 1)
(Rr̄k − y)2

dy.

(34)
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We have that
∫ R(1−r̄k+εr̄k)/ε

0
u′(y)

R(r̄k − 1)
(Rr̄k − y)2

dy ≤

R(r̄k − 1)
(Rr̄k − 1)2

∫ 1

0
u′(y)dy + u′(1)R(r̄k − 1)

∫ R(1−r̄k+εr̄k)/ε

1

1
(Rr̄k − y)2

dy =

u(1)
R(r̄k − 1)
(Rr̄k − 1)2

+ u′(1)
[

R(r̄k − 1)
Rr̄k −R(1− r̄k + εr̄k)/ε

− R(r̄k − 1)
Rr̄k − 1

]
=

u(1)
R(r̄k − 1)
(Rr̄k − 1)2

+ u′(1)
[
ε− R(r̄k − 1)

Rr̄k − 1

]
→k→∞

εu′(1).

(35)

Thus,

u′(R) ≤ lim inf
k

∫ t̄k

0
u′◦g(r̄k, t)dt ≤ lim sup

k

∫ t̄k

0
u′◦g(r̄k, t)dt ≤ εu′(1)+(1−ε)u′(R),

(36)

and so limk

∫ t̄k
0 u′ ◦ g(r̄k, t)dt = u′(R).

Hence, it follows from claim 1 that there exists 0 < τ < 1 such that if

τ < t̄ < 1 and f ∈ Ft̄,B,x, then Mf (r̄) > Mf (1) and WL(r) > WR(r) for all

r ∈ [1, r̄].

Let t̄ ∈ (τ, 1) and f ∈ Ft̄,B,x. Note that U is concave in [0, r̄], where r̄ =

1/t̄ as before. This follows from the fact that both u and r 7→ u ◦ g(r, t) are

concave for all t ∈ [0, r̄]: we have that ∂u◦g(r, t)/∂r = u′′ ◦g(r, t)(tR)2/(1−

t)2 < 0.

Claim 2 U ′(r) = M(r) for all r ∈ [1, r̄].
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Proof. Let r ∈ (1, r̄] and let rk ↗ r. Then

U(rk)− U(r)
rk − r

=
∫ t̄

0
f(t)

[
t
u(rk)− u(r)

rk − r
+ (1− t)

u ◦ g(rk, t)− u ◦ g(r, t)
rk − r

]
dt.

(37)

So, it is enough to show that

∫ t̄

0
f(t)t

u(rk)− u(r)
rk − r

dt →
∫ t̄

0
f(t)u′(r)dt,

and

∫ t̄

0
f(t)(1− t)

u ◦ g(rk, t)− u ◦ g(r, t)
rk − r

dt →
∫ t̄

0
f(t)tRu′ ◦ g(r, t)dt.

We have that {(u(rk)− u(r))/(rk − r)}k is non-negative and decreasing

and that t 7→ tf(t)(u(r1)− u(r))/(r1 − r) is integrable. The desired conver-

gence then follows from the monotone convergence theorem (see Wheeden

and Zygmung [21, Theorem 5.32, p. 75]). Similarly, {(u ◦ g(rk, t) − u ◦

g(r, t))/(rk − r)}k is non-positive and decreasing, and so {−(u ◦ g(rk, t) −

u ◦ g(r, t))/(rk − r)}k is non-negative and increasing, and so the desired

convergence follows also from the monotone convergence theorem.

The case r ∈ [1, r̄) and rk ↘ r is analogous.

Since U is concave, then M is decreasing. This implies that U(r̄) ≥ U(r)

for all 1 ≤ r ≤ r̄ as follows: A necessary condition for a solution to the
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problem

max
r∈[1,R]

U(r)

subject to r ∈ W ∩D

and r ≤ r̄.

(38)

is that

[r − r̄]M(r) = 0; (39)

Since M(r) > 0 for all r ∈ [1, r̄], it follows that r̄ maximizes U(r) in [1, r̄].

Finally, we claim that there exists r̃ > r̄ such that U(r̃) > U(r̄) and

WL(r̃) > WR(r̃).

Since WL(r̄) > WR(r̄), we conclude that there exists a ball B(r̄) around

r̄ such that r ∈ B(r̄) implies WL(r) > WR(r). Therefore, to prove the

existence of r̃ with the above properties, it is enough to show that

lim
r↘r̄

U(r)− U(r̄)
r − r̄

> 0. (40)

This is so, because if equation (40) holds, then it cannot be the case that

U(r)−U(r̄)
r−r̄ ≤ 0 for all r > r̄ in the ball B(r̄) around r̄. This implies the

existence of r̃ > r̄ in B(r̄) such that U(r̃)−U(r̄)
r̃−r̄ > 0; this, of course, implies

that U(r̃) > U(r̄).
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We have that

U(r)− U(r̄)
r − r̄

=
∫ 1/r

0

[
t
u(r)− u(r̄)

r − r̄
+ (1− t)

u ◦ g(r, t)− u ◦ g(r̄, t)
r − r̄

]
f(t)dt+

1
r − r̄

∫ t̄

1/r
{t[α(t, k(r))u(r)− u(r̄)]− (1− t)u ◦ g(r̄, t)}f(t)dt.

(41)

Let {rk}k be such that rk ↘ r̄. Note that α(t, k(rk)) = 1/(trk) = tk/t,

with tk = 1/rk. Let ε > 0; if k ∈ N is sufficiently large, then we have that

|tku(rk)− tu(r̄)| < ε for all t ∈ [tk, t̄] since

|tku(rk)− tu(r̄)| ≤ tk|u(rk)− u(r̄)|+ u(r̄)|tk − t|

≤ t̄|u(rk)− u(r̄)|+ u(r̄)|tk − t̄|,
(42)

and tk → t̄. Therefore,
∣∣∣∣∣

1
rk − r̄

∫ t̄

1/rk

{t[α(t, k(rk))u(rk)− u(r̄)]f(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
1

rk − r̄

∫ 1/r̄

1/rk

[tku(rk)− tu(r̄)]f(t)dt

∣∣∣∣∣ ≤

ε

rk − r̄

∫ 1/r̄

1/rk

f(t)dt = ε
F (1/r̄)− F (1/rk)

r − r̄
→ ε

f(1/r̄)
r̄2

.

(43)

Since ε is arbitrary, then

lim
k

1
rk − r̄

∫ t̄

1/rk

{t[α(t, k(r))u(r)− u(r̄)]f(t)dt = 0. (44)

Also, by the fundamental theorem of calculus,

1
rk − r̄

∫ 1/r̄

1/rk

(1− t)f(t)u ◦ g(r̄, t)dt → (1− t̄)f(t̄)u ◦ g(r̄, t̄)/r̄2 = 0, (45)
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since g(r̄, t̄) = 0 and u(0) = 0. Hence, it remains to show that

lim
r↘r̄

∫ 1/r

0

[
t
u(r)− u(r̄)

r − r̄
+ (1− t)

u ◦ g(r, t)− u ◦ g(r̄, t)
r − r̄

]
f(t)dt > 0. (46)

Defining

hk(t) =





[
tu(rk)−u(r̄)

rk−r̄ + (1− t)u◦g(rk,t)−u◦g(r̄,t)
rk−r̄

]
f(t) if t ∈ [0, 1/rk]

0 otherwise,

(47)

we see that limk hk(t) → [u′(r̄) − Ru′ ◦ g(r̄, t)]tf(t)χ[0,1/r̄). Thus, by Claim

3 and the Bounded Convergence Theorem, we obtain

lim
r↘r̄

∫ 1/r

0

[
t
u(r)− u(r̄)

r − r̄
+ (1− t)

u ◦ g(r, t)− u ◦ g(r̄, t)
r − r̄

]
f(t)dt =

lim
k→∞

∫ 1

0
hk(t)dt =

∫ 1

0
[u′(r̄)−Ru′ ◦ g(r̄, t)]tf(t)dt = M(r̄) > 0.

(48)

Thus, it remains only to show that the sequence of functions {hk} is

bounded, which is done in the following claim.

Claim 3 There exists M ∈ R such that |hk| ≤ M for all k ∈ N.

Proof. Let

h1
k = t

u(rk)− u(r̄)
rk − r̄

χ[0,1/rk]

and

h2
k = (1− t)

u ◦ g(rk, t)− u ◦ g(r̄, t)
rk − r̄

χ[0,1/rk].

Obviously, |hk| ≤ |h1
k|+ |h2

k|.
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Since u is concave, then

{
u(rk)− u(r̄)

rk − r̄

}

k

increases. Thus |h1
k(t)| ≤ tu′(r̄) ≤ u′(r̄).

Define

φk(t) = u ◦ g(rk, t)− u ◦ g(r̄, t), (49)

for t ∈ [0, 1/rk] (note that φk(t) = (rk − r̄)h2
k(t)). Then,

φ′k =
R

(1− t)2
[
u′ ◦ g(r̄, t)(r̄ − 1)− u′ ◦ g(rk, t)(rk − 1)

]
. (50)

Since 0 < r̄ − 1 < rk − 1 and 0 < u′ ◦ g(r̄, t) < u′ ◦ g(rk, t), then φ′k < 0.

Thus, h2
k(1/rk) ≤ hk(t) ≤ 0 for all t ∈ [0, 1/rk].

Consider

|h2
k(1/rk)| =

u
(

R(rk−r̄)
rk−1

)

rk − r̄
.

By the mean value theorem, we have that

|h2
k(1/rk)| = u′

(
R(ck − r̄)

ck − 1

)
R(ck − r̄)
(ck − 1)2

, (51)

for r̄ ≤ c ≤ rk. Note that rk − r̄ ≤ R(rk − r̄)/(rk − 1) and so u′(rk − r̄) ≥

u′(R(rk − r̄)/(rk − 1)). Since limc→0 cu′(c) ∈ R, there exists m ∈ R such

that limk u′(rk − r̄)(rk − r̄) ≤ m. Then, lim supk u′(R(rk − r̄)/(rk − 1)) ≤

limk u′(rk−r̄)(rk−r̄) ≤ m; hence {|h2
k(1/rk)|}, and therefore |h2

k|, is bounded

by Rm/(r̄ − 1).

This completes the proof.
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A.3 Existence of a Non-Autarkic Equilibrium with a Finite

Number of Consumers

In this section we establish the existence of an equilibrium in which all

consumers deposit at the bank.

Lemma 10 For any n, Un is upper semi-continuous.

Proof. Note that

kn(r) =





1 if r = 1

n−j
n if n

n−j+1 < r ≤ n
n−j , j = 1, . . . , n− 1

0 if r > n

(52)

Thus, kn is upper semi-continuous, and so is Un.

Lemma 11 The program

max
r∈[1,R]

Un(r)

subject to r ∈ Wn ∩Dn,

(53)

has a solution.

Proof. Let Ij = [ n
n−j+1 , n

n−j ] for j = 1, . . . , n − 1, In = [n,∞) and

I0 = {1}. For each j = 0, . . . , n, consider the following problem, denoted

P j :

max
r

U j
n(r) = EtEi

[
n− j

(n− 1)i + 1
u(r) + (1− t)u

(
max

{
R(n− r(n− 1)i

n− (n− 1)i

})]

subject to r ∈ Ij ∩W j
n ∩Dn,

(54)
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where

W j
n = {r ∈ [1, R] : WL(r) ≥ n− j

(n− 1)i + 1
u(r)}, (55)

for j = 1, . . . , n and W 0
n = Wn. Let S be the set of those js for which the

constraint set is non-empty; the set S is non-empty since 1 ∈ I1 ∩W 0
n ∩Dn

and so 0 ∈ S. Then, if j ∈ S, the above problem has a solution, since

the objective function is upper semi-continuous, and the constraint set is

compact. Let r∗j be a solution to P j .

Since Un jumps down if (and only if) r ∈ {1, n
n−1 , n

n−2 , . . . , n}, it fol-

lows that n
n−j is a solution to P j , j > 0 then U j−1

n (r∗j−1) ≥ U j−1
n ( n

n−j ) =

Un( n
n−j ) > U j

n( n
n−j ). Thus, in order to find a maximum in [1, R] we can

concentrate on those js for which n
n−j is not a solution to P j ; let J be such

a set. Let r∗ be a solution to maxr∈{r∗j :j∈J} Un(r).

We claim that r∗ solves the problem (53). Letting Ĩj = ( n
n−j+1 , n

n−j ] for

j = 1, . . . , n − 1, Ĩn = (n,∞) and Ĩ0 = {1}, we can separate it into the

following problems, denoted P̃ j :

max
r

U j
n(r) = EtEi

[
n− j

(n− 1)i + 1
u(r) + (1− t)u

(
max

{
R(n− r(n− 1)i

n− (n− 1)i

})]

subject to r ∈ Ĩj ∩W j
n ∩Dn.

(56)

Since for j ∈ J the solution does not involve n
n−j , P̃ j has the same solutions

as P j . Hence, r∗ is a solution to program (53).
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Lemma 12 For all n, there is a symmetric equilibrium in which all con-

sumers deposit.

Proof. The strategies are: the bank offers r∗, and the consumers choose

d∗(r) =





1 if r ∈ Dn ∩Wn

0 otherwise,
(57)

w∗(r, d, 2) =





0 if r ∈ Dn ∩Wn and d = 1

1 otherwise,
(58)

and w∗(r, d, 1) = 1 for all (r, d).

A.4 A Positive Probability of an Equilibrium Bank Run

In this section we prove Proposition 1. By Corollary 12, there is an equilib-

rium in which all consumers deposit for all n ∈ N and all functions f .

Let τ be as in Lemma 7 and let t̄ > τ and f ∈ Ft̄. Then, there is r̃ > 1/t̄

such that U(r̃) > U(r) for all r ∈ [1, 1/t̄] and WL(r̃) > WR(r̃). Then,

by Lemmas 4 and 5, it follows that Un(r̃) > Un(r) for all r ∈ [1, 1/t̄] and

WLn(r̃) > WRn(r̃) if n is large. Thus, r∗n > 1/t̄. Hence, the bank fails with

a probability given by

∫ t̄

0
f(t)


 ∑

i∈Sn:i>1/r∗n

pn,t(i)


dt > 0, (59)

since
∑

i∈Sn:i>1/r∗ pn,t(i) > 0 if t > 0.
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A.5 A Limit Result on the Probability of an Equilibrium

Bank Run

Here we prove proposition 2. First, we claim that the sequence of interest

rates is bounded away from r̄.

Claim 4 There exists ε > 0 such that r∗n ≥ r̄ + ε for all n.

Proof. Suppose not. Then there is a subsequence {r∗nk
} such that

r∗nk
→ r̄. Let r̃ be as in Lemma 7. Then, Unk

(r∗nk
) ≥ Unk

(r̃) for all k and

Lemma 4 imply that U(r̄) ≥ U(r̃), a contradiction.

Hence,
{

i >
1

r̄ + ε

}
⊆

{
i >

1
r∗n

}
,

and so

γn =
∫ t̄

0
f(t)


 ∑

i∈Sn:i>1/r∗n

pn,t(i)


dt ≥

∫ t̄

0
f(t)

(∫ 1

0
χ(1/(r̄+ε),1]dpn,t

)
dt.

(60)

Let δ > 0 and g : [0, 1] → [0, 1] be a continuous function satisfying

g = χ(1/(r̄+ε),1] in [0, 1/(r̄ + ε)] ∪ [1/(r̄ + ε) + δ, 1]. Then,

∫ t̄

0
f

(∫ 1

0
gdpn,t

)
dt →

∫ t̄

0
fg ≥ 1− F (1/(r̄ + ε) + δ). (61)

Since g ≤ χ(1/(r̄+ε),1], we obtain

lim inf
n

∫ t̄

0
f(t)

(∫ 1

0
χ(1/(r̄+ε),1]dpn,t

)
dt ≥ 1− F (1/(r̄ + ε) + δ); (62)
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since this holds for all δ > 0, it follows that

lim inf
n

∫ t̄

0
f(t)

(∫ 1

0
χ(1/(r̄+ε),1]dpn,t

)
dt ≥ 1− F (1/(r̄ + ε)), (63)

by letting δ → 0. Hence,

lim inf
n

γn ≥ 1− F (1/(r̄ + ε)) > 0, (64)

as desired.
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