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Abstract 
 
We employ our previously suggested exponentially damped Lévy flight [14] to study the multiscaling 
properties of 30 daily exchange rates against the US dollar together with a fictitious euro-dollar rate [16].  
Though multiscaling is not theoretically seen in either stable Lévy processes or abruptly truncated Lévy 
flights, it is even characteristic of smoothly truncated Lévy flights [11, 15].  We have already defined a 
class of  "quasi-stable" processes in connection with the finding that single scaling is pervasive among the 
dollar price of foreign currencies [8].  Here we show that the same goes as far as multiscaling is 
concerned.   Our novel findings incidentally reinforce the case for real-world relevance of the Lévy flights 
for modeling financial prices. 
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1.  Introduction 
 
 Financial prices are unlikely to follow Gaussian random walks [1].  Returns are 
larger than expected by Gaussian assumptions.  Financial markets are also likely to be 
governed by random Lévy processes. 

Ordinary Lévy distributions [2, 3] are stable and have fat power-law tails that 
decay more slowly than an exponential decay.  This feature can track extreme events, 
and that is plausible.  But it also leads to an infinite variance, which is implausible. 

Modifications to the ordinary Lévy distribution have been suggested in literature 
as an attempt to overturn such a drawback.  They were pioneered by Mantegna and 
Stanley [4], who carried out an abrupt truncation on the original distribution tails.  A 
canonical example of the use of the truncated Lévy flight (TLF) for real-world financial 
data is that of Mantegna and Stanley for the S&P500 [5].  Their approach has since been 
employed and extended to other asset prices [6, 7, 8, 9].  With finite data sets the TLF is 
not stable though, but has finite variance and slowly converges to a Gaussian 
equilibrium as implied by the central limit theorem. 
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 Owing to the sharp truncation, the characteristic function of the TLF is no longer 
infinitely divisible as well.  However, it is still possible to define a TLF with a smooth 
cutoff that yields an infinitely divisible characteristic function [10].  This has been 
dubbed a smoothly truncated Lévy flight (STLF).  In such a case, the cutoff is carried 
out by asymptotic approximation of a stable distribution valid for large values [11]. 

Yet the STLF breaks down in the presence of positive feedbacks [12, 13].  But 
the cutoff can still be alternatively combined with a statistical distribution factor to 
generate a gradually truncated Lévy flight (GTLF) [12, 13].  Nevertheless that 
procedure also brings fatter tails.  The GTLF itself also breaks down if the positive 
feedbacks are strong enough.  This apparently happens because the truncation function 
decreases exponentially. 
 Generally the sharp cutoff of the TLF makes moment scaling approximate and 
valid for a finite time interval only; for longer time horizons, scaling must break down.  
And the breakdown depends not only on time but also on moment order. 
 An exponentially damped Lévy flight (EDLF) which encompasses all the 
previous cases has been suggested [14] by some of us exactly because a distribution 
might be assumed to deviate from the Lévy in both a smooth and gradual fashion in the 
presence of positive feedbacks that may increase. 
 Whether scaling is single or multiple depends on how a Lévy flight is broken.  
While the abruptly truncated Lévy flight (the TLF itself) exhibits mere single scaling, 
the STLF shows multiscaling [11, 15].  Some of us have first employed an abruptly TLF 
[8] to fit data for daily exchange rates against the US; and we then realized that the 
same data set might be well fitted by an EDLF [14]. 
 Here we move up and focus on the multiscaling properties stemming from the 
EDLF.  We thus evaluate the multiscaling properties of the same 30 daily exchange 
rates against the dollar.  We also add a false euro [16] to our data sets.  We find 
multiscaling to be pervasive among these. We also connect the class of "quasi-stable" 
processes defined previously by some of us [8] with multiscaling.  This paper thus 
presents novel theoretical results together with an analysis of actual exchange rates.  
The paper then adds to the previous literature on multiscaling and exchange rates [17-
22]. 

The structure of the paper is as follows.  Section 2 presents the truncated variants 
of the Lévy distribution, including our previously defined EDLF.  Section 3 deals with 
the multiscaling properties of the EDLF, and Section 4 links the class of quasi-stable 
processes with multiscaling behavior. Section 5 exemplifies with actual exchange rates, 
and Section 6 concludes. 
 
 
2.  The ordinary Lévy distribution and its truncated variants 
 
 To begin with, let Sn be the sum of n independent and identically distributed 
random variables Xt, 
Sn = X1 + X2 + X3 …+ Xn   (1) 
with E(Xt) = 0.  A usual attitude in finance is to work with returns, i.e. 
Z∆t(t) = St – St – ∆t = Xt + Xt – 1 + … + Xt – ∆t + 1  (2) 
where ∆t is a time lag.  Now consider the symmetric Lévy distribution 
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where 0 < α < 2, and γ  > 0 is a scale factor. 
 The characteristic function of (3), )(Kϕ , is such that 



ln[ϕ(K)] = –γ∆t|K|α   (4)  
which satisfies ∆t ln[ϕ(K)] = ln[ϕ(∆t1/α K)].  This means that the corresponding 
probability distribution is 
L(Z∆t) = ∆t–1/α L(∆t–1/αZ∆t) = ∆t–1/α L( sZ )  (5) 
where sZ  = ∆t–1/α Z∆t is a scaled variable at ∆t. 

Let us define a modified Lévy flight (MLF) through 
)()()(P ttt ZfZLZ ∆∆∆ =η   (6) 

where η is a normalizing constant, and f(Z∆t) is the change carried out on the 
distribution. 
 The abruptly truncated Lévy flight (TLF) is an extension to which 
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where lmax is the step size at which the distribution begins to departure from the ordinary 
Lévy.  The TLF is not stable and has finite variance; therefore it converges to a 
Gaussian equilibrium according the central limit theorem.  The characteristic function of 
the TLF is no longer infinitely divisible.  Nevertheless approximate scaling can still 
occur for a finite time interval [23].  But scaling must break down for longer time 
intervals. 

We then consider the smoothly truncated Lévy flight (STLF) [10, 11].  The 
cutoff parameter λ0 > 0 is now introduced into Eq. (6) as 
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Function )( tsmooth Zf ∆  is based on the asymptotic approximation of a stable distribution 
of index α valid for large values of |Z∆t| when γ = 1.  It exhibits a power law behavior.  
For 0 < α < 1, the first term of the expansion of )( tZL ∆  can be approximated by 
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By taking into account the particular case of the Lévy where a = b, we get 
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where )/arctan( 0λθ K= , and )( αγ −Γ= C .  Now the characteristic function ends up 
infinitely divisible.  The convolutions of its corresponding distribution can be collapsed 
onto ∆t = 1 by scaling Z∆t and λ0.  By considering (6), (8), and (9), the approximate 
variance of the STLF obtains, i.e. 

)2()2/()1(2 21/22 αλπααηγπσ αα −Γ+Γ∆= −−
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where λs = ∆t1/αλ0 is the scaled value of λ0. 
 Finally the gradually truncated Lévy flight (GTLF) [12, 13] is defined as 
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where lc is the step size at which the distribution starts to deviate from the Lévy.  Here 
β0 and β1 are the constants related to the truncation.  By taking (6), (9), and (12) into 
account, the approximate variance is now given by 
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with β0 ≠ 1, cs ltl α/1−∆= , and 1
/1 ββ α−∆= ts . 

 Elsewhere [8] some of us have dealt with the currency data also presented here 
only to realize that their distributions deviate from the Lévy in a smooth and gradual 
fashion after |Z∆t| > lc.  Sometimes the deviations were also caught increasing.  Such 
class of deviations was already found to be positive [12, 13], which means even fatter 
tails.  It has been argued [12, 13] that, since the physical capacity of a system is limited, 
the feedback begins to decrease exponentially (and not abruptly) after a certain critical 
step size.  In contrast, in the presence of our previously found increasing deviations, we 
argue that an abrupt truncation is necessary still.  In such cases, using the truncation 
approaches as in Eqs. (7), (8), and (12) might prove not to be appropriate. 

For this very reason some of us have already suggested [14] a broader 
formulation for f(Z∆t) dubbed exponentially damped Lévy flight (EDLF).  The EDLF 
encompasses the previous TLF, STLF, and GTLF.  The EDLF is defined as 
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where 
[ ] 32 )|(|/||1)( 3max21
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and ϑ, λ1, λ2 ≤ 0, λ3 ≤ 0, τ1, τ2, and τ3 are parameters describing the deviations from the 
Lévy, lc is (as before) the step size at which the distribution begins to deviate from the 
Lévy, and lmax is the step size at which an abrupt truncation is carried out. 

Note that when lmax → ∞, we have 
3)|(|)( 321
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By setting ϑ = 0, τ1 = – 1 – α, lc = 0, and τ3 = 1 in Eqs. (15), (16), and (17), the resulting 
function is thus equivalent to the smooth case given by Eq. (8).  When lmax → ∞, the 
similar function for the gradual case can be found by setting ϑ = λ1 = λ2 = τ1 = 0.  The 
abrupt case is given by setting lc = 0 and choosing the appropriate parameters such that 
H(Z∆t) → – ∞.  By using (6), (9), and (15), and considering the case with lmax finite, ϑ = 
0, and λ3 = 0, the approximate variance is given by 
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max
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α−∆= , ccs ltl α/1−∆= , and )2,1( 12 τατ +−+ jBu  is the incomplete Beta 

function with 1 + jτ2 > 0,  2 – α + τ1 > 0, and u = 1 – lc/lmax. 
It is worth noting that expressions (11), (13), and (18) all exhibit power laws of 

type ασ /22 tvt ∆=∆ , where ν is a constant describing the “quasi-stable” processes that 
emerge from the truncation parameters for some interval ∆t1 ≤ ∆t ≤ ∆t2.  Quasi-stable 



processes were previously suggested by some of us [8] and will be revisited in Section 
4. 
 
 
3.  Power laws 
 
 By scaling Z∆t together with the truncation parameters, a distribution can be 
collapsed onto ∆t = 1.  We thus have 
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  Power laws for both the Kth absolute moment and norm of the characteristic 
function of the EDLF can now be derived.  By scaling Z∆t and using max
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Note that such a power law depends on α and lmax, lc, and λ3.  If it were dependent only 
on α, multiscaling could not emerge because ln ]|[| K
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the Kth sample mean of the lagged absolute values of St at the time interval ∆t and 1 
respectively.  For moments which are low enough (such as 0 < K < α), )(P tZ∆  is 
expected to be approximated by )( tZL ∆ , which in turn does not depend on the 
truncation parameters [11].  The reason why this might occur is that tails differ, and 
thereby they do not contribute a great deal to the low moment case [11].  Thus we 
expect  <|Z∆t|K> ≈ ∆t K/α <| Z~ |K> to hold for lower moments.  This means that the ratio 
R(K, ∆t) = <|S∆t|K>/<| S~ |K> scales with ∆t as R(K, ∆t) = ∆t K/α.  

By using (6), (9), and (15), and considering the case with K > α, lmax finite, ϑ = 
0, and λ3 = 0, we have for instance 
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and max
/1 ltlms
α−∆= , ccs ltl α/1−∆= , and ),1( 12 τατ +−+ KjBu  is the incomplete Beta 

function with 1 + jτ2 > 0, K – α + τ1 > 0, and u = 1 – lc/lmax. Thus the ratio 
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In such a situation, the ratio R(K, ∆t) scales as R(K, ∆t) = ∆t K/α if the ratio of (24) equals 
one.  Nakao [11] previously noted that the self-similarity of ]|[| K

ss ZE  breaks down if 

K > α.  If K < α then ]|[| K
ss ZE  ≈ ]|[| 1

KZE ; otherwise ]|[| K
ss ZE  ≠ ]|[| 1

KZE .  In 
practice the power law is of type R(K, ∆t) = ν∆t K/α  for some time interval ∆t, where ν 
is a constant describing the quasi-stable processes discussed in detail in Section 4.  In 
such situations, ratio (24) gets approximately equal to ν for 21  ttt ∆≤∆≤∆ .  By 
depending solely on how the truncation parameters are set, a number of distinct scaling 
patterns can be uncovered.  For example, if lc = 0 then ]|[| K

tZE ∆ / ]|[| 1
KZE  ≈ ατ /1 1−∆t  

The norm of the characteristic function can also be used to assess parameter γ by 
taking into account the same assumption that )(P tZ∆  ≈ )( tZL ∆  for low values of |K|.  
Since 

]E[)( tiKZeK ∆≡ϕ  = E[cos(KZ∆t) + isin(KZ∆t)] = E[cos(KZ∆t)] + iE[sin(KZ∆t)]  (25) 
then the squared norm of ϕ(K) is ||ϕ(K)||2 = E2[cos(KZ∆t)] + E2[sin(KZ∆t)].  For some K 
and ∆t, ||ϕ(K)|| can be estimated by 
|| )(ˆ Kϕ ||2 = <cos(KZ∆t)>2 + <sin(KZ∆t)>2              (26) 
By assuming that ln[ϕ(K)] ≈ –γ∆t|K|α for 0 < K < α, the “estimated” norm in logs of the 
characteristic function is ln||ϕ(K)||, and then we can expect that ln|| )(ˆ Kϕ || = –γ∆t|K|α. 
 Autocorrelations must be taken into account because of their effects on the 
characteristic function [8, 9].  Section 5 will show that for real-world currency data 
ln[ϕ(K)] ≈ –γ∆t|K|α can occur, but only for tiny values of ),0( 0kK ∈ , where k0 << α. 
 
 
4. Quasi-stable processes and multiscaling 
 
 Now consider a process with finite second moments.  For “central variables”, i.e. 

><−= ∆∆∆ ttt ZZZ '  [8], the characteristic function can always be written as [2] 

  )( 2/))(1(22 KwK ttteK ∆∆∆ +−= σσϕ    (27) 
where 0)0( =∆tw .  A “stable process” occurs whenever )(Kw t∆  = constant for all t∆  
within interval 2t tt ∆≤∆≤∆ 1  [8].  But quasi-stable processes are more likely in practice 
where )(Kw t∆  is almost constant in the interval above.  A “quasi-stable process” is 
similarly defined as )(Kw t∆  ≈ constant 2t tt ∆≤∆≤∆∀ 1 .  Some of us have shown [8] 
that a necessary condition for such a stability to occur is the presence of 
autocorrelations; otherwise 0)( →∆ Kw t  when ∞→∆t  due to the central limit 
theorem. 

Then we can show how multiscaling is related to the class of (quasi) stable 
processes.  By expanding (27) we get 
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where every pm  is constant as required by the condition of stability.  By definition we 
also have that 
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By comparing equal order terms in (28) and (29) we get 
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And if the autocorrelations are such that the second moment obeys a power law of type 
αϖσ /1tt ∆=∆   (31) 

where 21 ttt ∆≤∆≤∆ , then we have 
αϖ /][ p

p
p
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Eq. (32) is thus in accordance with the results in Section 3. 
 Elsewhere [8] some of us showed that autocorrelations even at the noise level 
are compatible with scaling power law (31).  Also, (31) together with the property of 
quasi-stability are sufficient for the emergence of the typical scaling in the probability 
of return to the origin of the TLF.  Here analysis has been extended to encompass 
multiscaling. 
 
 
5.  Data and analysis 
 

Now we are ready to assess the multiscaling properties in data coming from 
daily foreign exchange rates.  The data sets employed were taken from the Federal 
Reserve website at http://www.federalreserve.gov/releases/H10/hist/.  They refer to a 
currency value in US dollar terms.  These exchange rates were collected by the Federal 
Reserve Bank of New York from a sample of market participants.  They are noon 
buying rates in New York from cable transfers payable in the foreign currencies.  As 
standard, here we ignore “holes” from weekends and holidays; analysis thus focuses on 
trading days.  We take the historic values of 30 currencies from the website above.  
Since the series for the euro is too short, we have decided to take a false euro instead to 
get a longer series.  We build the fictitious series for the euro by following a 
methodology put forward by Ausloos and Ivanova [16].  Table 1 shows the 31 
currencies, historical time period, and number of data points. 

As observed, we have already shown [8] that autocorrelations are related to the 
emergence of the TLF in such a data set.  Parameters α and γ were estimated there by 
plotting L(0) against ∆t, where L(0) is the probability of return to the origin for a given 
∆t.  Alternatively, some of us have adopted a distinct parameter estimation practice [14] 
by using a maximum likelihood approach for α and γ together with nonlinear least 
squares for the other parameters.  The estimates then turned out to be only slightly 
different. 

Fig. 1 displays sample ratios R(K, ∆t) for several values of K in log-log plots of 
the exchange rates.  Some ratios exhibit power law dependence on ∆t.  Pictures with 
lines which are dependent on K emerge in some of the plots. 

By fitting logR(K, ∆t) = ξlog∆t for every K, we get the corresponding scaling 
exponents shown in Fig. 2.  Some curves show linear dependence on K, for 0 < K < α.  
However scaling breaks down after K > α, and a nonlinear behavior steps in. 

For comparison we take our previous estimates of α.  For Australia, α is equal to 
1.415 and 1.4753 in [8] and [14] respectively.  But at the first plot in Fig. 2 a linear 
behavior is found for 0 < K < 1.5.  After such an interval, the line gets constant.  For 
Brazil, α is estimated to be equal to 0.8906 and 0.596 in [8] and [14] respectively.  
However an approximate linear behavior is here found for 0 < K < 3.  China provides an 
interesting exception, though.  Here the linear behavior emerges for 0 < K < 1.0.  This 
seems at odds with the estimation of α greater than one found in [8]. 



The idiosyncratic behavior of the yuan has been assessed by some of us 
elsewhere [24].  Price changes of the yuan/dollar rate were found to display a Sierpinski 
triangle in an Iterative Function System clumpiness test.  The Sierpinski triangle is a 
fractal structure that emerges commonly in “the chaos game”, where randomness 
coexists with deterministic rules.  A threshold model with four states, two deterministic 
and two stochastic, was shown [24] to replicate these idiosyncratic features. 
 Fig. 3 displays the sample logarithm of the absolute characteristic function 
versus ∆t for several values of K.  A power law dependence on ∆t seems again to 
emerge from the pictures. 
 By fitting ln|| )(ˆ Kϕ || = ζ∆t for every K, the estimated values of ζ versus α̂|| K  
are plotted in Fig. 4.  Britain, Brazil and Canada show a linear dependence for all K < 3.  
For all the other cases, the linear dependence on the initial values of K are followed by 
nonlinear patterns. 
  Table 2 shows results for all currencies, where either single scaling or 
multiscaling is displayed in connection not only with exponent ξ but also with exponent 
ζ.  As can be seen, multiscaling is pervasive among foreign exchange rates. 
 
 
6.  Conclusion 

 
Whether scaling is single or multiple depends on how a Lévy flight is broken.  

While the abruptly truncated Lévy flight exhibits mere single scaling, the smoothly 
truncated one can show multiscaling [11, 15]. 

We have previously shown [8] that sharply truncated Lévy flights might prove to 
be suitable for describing daily exchange rate data.  A novelty in this paper is to move 
up and show that such sort of data set also presents multiscaling if the sharp truncation 
is dropped.  By using our previously suggested exponentially damped Lévy flight [14] 
we show that multiscaling is pervasive in the same set of data.  Also, the exponentially 
damped Lévy flight can help to understand the broken self-similarity of the Kth absolute 
moment.  The multiscaling stemming from the exponentially damped Lévy flight is 
related, too, to the class of quasi-stable processes previously put forward by some of us 
[8]. 

The finding that multiscaling seems to be pervasive among the 31 currencies 
studied strengthens the case for real-world relevance of the Lévy flights for modeling 
financial prices. 



Table 1 
Description of data sets. 
 
Country Currency Time Period Data Points 
Australia Australian Dollar 4Jan71 – 10Jan03 8025 
Austria Shilling 4Jan71 – 31Dec98 6999 
Belgium Belgian Franc 4Jan71 – 31Dec98 7013 
Brazil Real 2Jan95 – 10Jan03 2014 
Britain Pound 4Jan71 – 10Jan03 8032 
Canada Canadian Dollar 4Jan71 – 10Jan03 8038 
China Yuan 2Jan81 – 10Jan03 5471 
Denmark Krone 4Jan71 – 10Jan03 8031 
Euro Area False Euro 4Jan93 – 10Jan03 2521 
Finland Markka 4Jan71 – 31Dec98 6976 
France Franc 4Jan71 – 31Dec98 7021 
Germany Deutsche Mark 4Jan71 – 31Dec98 7021 
Ireland Pound 4Jan71 – 31Dec98 7021 
India Rupee 2Jan73 – 10Jan03 7525 
Italy Lira 4Jan71 – 31Dec98 7020 
Japan Yen 4Jan71 – 10Jan03 8026 
Malaysia Ringgit 4Jan71 – 10Jan03 8010 
Mexico Peso 8Nov93 – 10Jan03 2300 
Netherlands Guilder 4Jan71 – 31Dec98 7021 
New Zealand New Zealand Dollar 4Jan71 – 10Jan03 8016 
Portugal Escudo 2Jan73 – 31Dec98 6518 
Singapore Singapore Dollar 2Jan81 – 10Jan03 5531 
South Africa Rand 4Jan71 – 10Jan03 8005 
South Korea Won 13Apr81 – 10Jan03 5416 
Spain Peseta 2Jan73 – 31Dec98 6521 
Sri Lanka Rupee 2Jan73 – 10Jan03 7172 
Sweden Krona 4Jan71 – 10Jan03 8031 
Switzerland Swiss Franc 4Jan71 – 10Jan03 8032 
Taiwan Taiwan Dollar 30Oct83 – 10Jan03 4548 
Thailand Baht 2Jan81 – 10Jan03 5428 
Venezuela Bolivar 2Jan95 – 10Jan03 2013 

 



Table 2 
Single scaling and multiscaling in exchange rates. 
An approximate linear behavior for all K (all κ(α) = |K|α) gives evidence of mere single scaling. In turn, a 
linear behavior for initial values of K < αo (κ(α) < αo) followed by a nonlinear pattern after K > αo (κ(α) 
> αo) indicates the presence of multiscaling. 
 

Country Currency Exponent ξ Exponent ζ 
Australia Australian Dollar Multiscaling (2) Multiscaling (2) 
Austria Shilling Multiscaling (1.8) Single Scaling 
Belgium Belgian Franc Single Scaling Multiscaling (0.3) 
Brazil Real Single Scaling Single Scaling 
Britain Pound Single Scaling Single Scaling 
Canada Canadian Dollar Single Scaling Single Scaling 
China Yuan Multiscaling (1) Multiscaling (1) 
Denmark Krone Multiscaling (2) Single Scaling 
Euro Area False Euro Multiscaling (2.2) Single Scaling 
Finland Markka Multiscaling (2.1) Single Scaling 
France Franc Multiscaling (2) Single Scaling 
Germany Deutsche Mark Multiscaling (2) Single Scaling 
Ireland Pound Multiscaling (2) Single Scaling 
India Rupee Multiscaling (2) Multiscaling (1.4) 
Italy Lira Multiscaling (2.5) Multiscaling (0.1) 
Japan Yen Multiscaling (2) Multiscaling (0.25) 
Malaysia Ringgit Multiscaling (1.8) Multiscaling (2) 
Mexico Peso Multiscaling (2) Multiscaling (1.5) 
Netherlands Guilder Multiscaling (2.5) Single Scaling 
New Zealand New Zealand Dollar Multiscaling (1.5) Single Scaling 
Portugal Escudo Multiscaling (2.5) Multiscaling (0.2) 
Singapore Singapore Dollar Multiscaling (2) Single Scaling 
South Africa Rand Multiscaling (1) Multiscaling (2) 
South Korea Won Multiscaling (1.5) Multiscaling (2) 
Spain Peseta Multiscaling (2) Multiscaling (~0) 
Sri Lanka Rupee Multiscaling (~0) Multiscaling (~0) 
Sweden Krona Multiscaling (2) Multiscaling (3) 
Switzerland Swiss Franc Multiscaling (2.5) Single Scaling 
Taiwan Taiwan Dollar Multiscaling (1.5) Multiscaling (0.5) 
Thailand Baht Multiscaling (~0) Multiscaling (0.5) 
Venezuela Bolivar Multiscaling (1) Multiscaling (~0) 



 

 

 

 

 
 
Fig.1.  Estimated ratios R(K,∆t) of selected exchange rates for K = 0.0–3.0 at intervals 
of 0.2.  For each plot, the bottom line corresponds to K = 0.0, and the top one to K = 3.0. 



 

 

 

 

 
Fig.2. Estimated multiscaling exponents ξ for selected exchange rates.  An approximate 
linear behavior for all K indicates mere single scaling.  A linear behavior for initial 
values of K < α followed by a nonlinear pattern after K > α tracks the presence of 
multiscaling. 



 

 

 

 

 
Fig.3. Estimated ratios ln||ϕL(K)|| for selected exchange rates for K = 0.0–3.0 at intervals 
of 0.2.  For each plot, the upper line corresponds to K = 0.0, and the bottom one to 
K = 3.0. 



 

 

 

 

 
Fig.4. Estimated multiscaling exponents ζ for selected exchange rates.  An approximate 
linear behavior for all κ(α) = |K|α indicates mere single scaling.  A linear behavior for 
initial values of κ(α) < αo followed by a nonlinear pattern after κ(α) > αo tracks the 
presence of multiscaling. 
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