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Abstract 

 

We revisit the finding that crashes can be deterministic and governed by log-periodic 

formulas [2, 3].  One- and two-harmonic equations are usually employed to fit daily data 

during bubble episodes.  But a three harmonics has been shown to fit anti-bubbles [5].  

Here we show that the three-harmonic formula can work for bubble episodes as well as 

anti-bubbles. This is illustrated with daily data from the Brazilian real-US dollar exchange 

rate.  And we also show that the three-harmonics can fit an intraday data set from that 

foreign exchange rate. 
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1. Introduction 

 

Some geophysicists have suggested that financial crashes, like material rupture [1], can 

sometimes be deterministic and governed by log-periodic formulas [2, 3].  Their finding 

has attracted reasonable media coverage and a best-selling book [4] is out on the pop-sci 

shelves of bookstores. 

This is not so surprising because its straightforward implication is for some 

financial crashes to be predictable.  Indeed the discoverers of log-periodicity have made the 

sanguine claim [2] of having picked out the signals prior to the Wall Street crashes of 1929, 

1962, and 1987, as well as the 1997 crash on the Hong Kong stock exchange.  And they 

also claim to have forecasted the Nasdaq high-tech bubble burst on April 2000 and 

correctly predicted the sudden upturn of the Japanese Nikkei index on January 1999. 

One-harmonic and two-harmonic log-periodic equations are usually employed to fit 

daily data [3].  An exception is a three-harmonic formula used to fit anti-bubbles (bear 

markets) in the Nikkei (from 1990 to 1998) and future gold prices (from 1980 to 1998) [5]. 

Cooperative imitation is key for the log-periodicity hypothesis in that crashes would 

result from the build-up of correlations.  Indeed self-reinforcing imitation between traders 

in a bull market leads to a bubble.  The build-up of stress pushes the market to a critical 

time interval.  After a threshold known as the critical point, many traders place the same 

order (i.e. sell) at the same time, thereby provoking the crash [4].  Imitation makes the 

system periodic on the eve of a crash.  And in that sense crashes are outliers with properties 

that are statistically distinct from the rest of the population. 

The log-periodicity hypothesis of crashes that are outliers departs from the 

conventional statistics that approaches extreme events.  If log-periodicity is present at 

certain times in financial data then this is suggestive that these periods of time present scale 

invariance in their time evolution.  (And this scaling has nothing to do with that related to 

the power law tails of returns [6].) 

This paper shows that a three-harmonic log-periodic formula (that encompasses the 

one- and two-harmonics) can fit bubble episodes, too.  What is more, it can fit bubbles in 

frequencies higher than daily ones.  To illustrate our case we take one financial series with 

two distinct frequencies.  One data set for the daily exchange rate between the Brazilian 



real and the US dollar and one for the intraday, 15-minute spaced real-dollar rate.  The 

three harmonics outperforms the one- and two-harmonics in that it adjusts better not only to 

the daily data but also to the higher frequency series. 

We also provide an example of both bubble and anti-bubble log-periodic behavior 

relative to a same crash in the daily real-dollar rate.  This has not been found previously 

because the crashes considered were disruptive enough to break down symmetry [5]. 

The rest of the paper is organized as follows.  Section 2 presents the data and 

adjusts the log-periodic formulas to them.  And Section 3 concludes. 

 

2. Data and analysis 

 

The data set for the daily frequency of the real-dollar series is for the period from 2 January 

1995 to 10 June 2005.  The set comprises 2,624 data points obtained from the Federal 

Reserve website.  Gaps between trading days are considered.  Doing so produces an 

unequally time-spaced data set that is fitted by a non-linear regression using SAS.  

Neglecting the gaps does not change results a great deal, however. 

The 15-minute set of the real-dollar rate comprises 9,327 data points from 9:30AM 

of 19 July 2001 to 4:30PM of 14 January 2003.  Gaps between office hours are also taken 

into account as above, though neglecting this does not significantly change results. 

Log-periodic cycles with a smooth trend component are generally described by a 

sum of log-periodic harmonics, i.e., 
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where τ  is the time starting with the onset of a bubble. Term λτBA +  is the trend across 

time, and A , B , and λ  give its shape. Parameters jθ , jC , and jφ  are angular log-

frequency, amplitude, and phase of the jth harmonic respectively.  We set 0>−= cttτ , 

where ct  is critical time.  If j = 1 (j = 2) in (1), the one- (two-) harmonic log-periodic model 

[3] obtains.  The three-harmonic log-periodic model holds if jλλ =  and jθθ = .  Such log-

periodic formulas can be alternatively derived from a Landau expansion up to the third 

order [5]. 



For the daily series, the critical time tc is estimated as 16 December 2002 using the 

three-harmonic log-periodic model, when the Brazilian currency reached its highest 

depreciation relative to the dollar.  This is seen as a mild crash.  Thanks to an exchange-rate 

bands policy, until December 1998 market participants could then easily use the 

information of a predictable daily revaluation of the Brazilian currency.  Thus the eventual 

crash of 13 January 1999 cannot be of log-periodic nature; it most probably resulted from 

the pegging of the exchange rate.  After the currency crisis, the real-dollar rate was let to 

float.  So the crash that is likely to be log-periodic (and referred to in this paper) is that 

related to the peak that the real-dollar rate reached at the time of president Lula’s election.  

Market participants self-organized imitatively and the result was a depreciating exchange 

rate that evolved log-periodically.  And the bubble eventually burst after the last-minute 

(credible) conversion of left-wing Lula to economic orthodoxy. 

 Figure  1 displays the log of the daily real-dollar rate from 31 July 2000 to 10 June 

2005 together with its one-, two-, and three-harmonic log-periodic fits respectively.  The 

three-harmonics formula outperforms the others for the period ranging from 31 July 2000 

to 7 October 2003 (from t = 2037 to t = 3200).  Yet from t = 3200 on (7 October 2003−10 

June 2005) the fit breaks down. 

 Given the crash at tc = 2905 (16 December 2002), we have taken τ = t − 2905 and 

predicted the anti-bubble behavior just by reflecting the fitted curve around τ = 0.  Figure 2 

shows the bubble, anti-bubble, their log-periodic adjustments, and the crash (vertical line).  

The log-periodic equations can predict the anti-bubble till τ ≈ 200 (3 July 2003).  Between 

this date and 29 April 2004 (200 < τ < 500), the exchange rate stabilizes.  Foreign exchange 

market participants went on standby perhaps to make sure that Lula’s conversion to 

economic orthodoxy was for real.  Then the anti-bubble resumes.  This is shown in Figure 2 

as the shift to the right.  Thus although the log-periodic equations fail to predict the anti-

bubble pattern, they are still able to track its trend.  The anti-bubble is symmetric though 

exhibiting an intermittent behavior.  Thus we provide an example of both bubble and anti-

bubble log-periodic behavior relative to a same crash.  This has not been found previously 

because the crashes considered were disruptive enough to break down the symmetry [5].  

Here we can find such a case because we are dealing with a mild crash that did not provoke 

a market rupture. 



 To illustrate the presence of log-periodicity in high-frequency data (non-existent in 

literature), we apply our equations to the intraday real-dollar rate.  Figure 3 shows the fit 

from 9:30AM of 28 May 2002 to 4:30PM of 14 January 2003 using one, two, and three 

harmonics.  As can be seen, the three-harmonic log-periodic formula adjusts better to the 

data as well.  The critical times were found from 16:30AM of 3 October 2002 to 10:00AM 

of 28 October 2002 (Table 2). 

Parameter values for all the fits are presented in Tables 1 and 2. 

 

3. Conclusion 
 

We revisit the finding that crashes can be deterministic and governed by log-periodic 

formulas [2, 3].  Literature usually employs one- and two-harmonic equations to fit daily 

data during bubble episodes.  By taking daily as well as intraday data from the exchange 

rate between the Brazilian real and US dollar, this paper shows that a three-harmonic log-

periodic formula outperforms the others.  If the three-harmonics can fit higher frequency 

data then the signatures of coming crashes may also be detected at short time scales. 

The three harmonics has been already shown to fit anti-bubbles [5].  Yet this paper 

shows that it can work for bubble episodes as well.  It also shows both bubble and anti-

bubble log-periodic behavior relative to a same crash, a result that is novel in literature. 
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Table 1 

 
Estimate ± Standard Error Parameter 

j = 1 j = 2 j = 3 
A 0.5813 ± 0.00806 0.5837 ± 0.00822 0.5815 ± 0.00819 
B 0.00169 ± 0.000321 0.00220 ± 0.000401 0.00243 ± 0.000431 
C1 −0.00053 ± 0.000092 0.000701 ± 0.000117 0.000780 ± 0.000126 
C2  0.000117 ± 0.000024 −0.00013 ± 0.000027 
C3   0.000077 ± 0.000019 
θ −9.2141 ± 0.0569 −8.7247 ± 0.0511 −8.5762 ± 0.0472 
φ1 71.2343 ± 0.3740 45.9033 ± 0.3340 57.4966 ± 0.3089 
φ2  −2.2059 ± 0.6898 −1.1958 ± 0.6386 
φ3   −120.0 ± 0.9603 
λ 0.8551 ± 0.0264 0.8153 ± 0.0253 0.7999 ± 0.0244 
ct  3 December 2002 29 November 2002 16 December 2002 

 
Table 2 
 

Estimate ± Standard Error Parameter 
j = 1 j = 2 j = 3 

A 0.9406 ± 0.00527 0.9212 ± 0.00440 0.9500 ± 0.00282 
B 0.00104 ± 0.000243 0.00135 ± 0.000222 0.000406 ± 0.000065 
C1 0.000263 ± 0.000057 0.000177 ± 0.000029 0.000073 ± 0.000012 
C2  0.000209 ± 0.000030 0.000100 ± 0.000014 
C3   0.000064 ± 9.503E-6 
θ 3.6766 ± 0.0535 3.4977 ± 0.0211 3.5673 ± 0.0159 
φ1 66.2759 ±0.4828 61.7290 ± 0.2031 61.2662 ± 0.1455 
φ2  2.7737 ± 0.3930 1.3608 ± 0.2795 
φ3   −4.9071 ± 0.4269 
λ 0.5944 ±0.0234 0.5768 ± 0.0162 0.6935 ±0.0162 
ct  10:00AM of 28 

October 2002 
10:15AM of 25 

October 2002 
16:30AM of 03 
October 200202 

 
Log-periodicity in daily (Table 1) and intraday (Table 2) real-dollar rate. 
Results for one-, two-, and three- harmonic log-periodic models. 
 
 



 
 
Figure 1.  Log of the daily real-dollar rate together with its one-, two-, and three-harmonic 
log-periodic fits, 31 July 2000−10 June 2005.  The three harmonics adjusts better to data, 
but from t = 3200 on (7 October 2003) all the fits break down.  See Table 1. 



 
 
Figure 2.  Bubble, anti-bubble, their log-periodic adjustments, and the crash (vertical line).  
Log-periodicity for the anti-bubble works till τ ≈ 200 (3 July 2003).  But although the log-
periodic equations fail to predict the anti-bubble from this date on, they can still track its 
trend (negatively sloped line shifted to the right). 



 

 
 
Figure 3.  Log-periodic fits of intraday real-dollar returns from 9:30AM of 28 May 2002 to 
4:30PM of 14 January 2003.  The three-harmonic log-periodic formula adjusts better to 
data.  See Table 2. 
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