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A new model of financial market is proposed, based the sequential and inter-temporal nature of
trader-trader interaction. In this pattern-based speculation model, the traders open and close their
positions explicitely. Information ecology can be precisely characterised, and is strikingly similar to
that of the Minority Game. Naive and sophisticated agents are shown to give rise to very different
phenomenology.

PACS numbers:

Agent-based modelling is a way to mimic financial
market phenomenology [1–9] that focuses on individual
behaviour. Because this approach requires to find the
right and delicate balance between simple and non-trivial
rules, the complexity of the agents varies tremendously
from model to model. At the same time, such models
bring insights into financial market dynamics as long as
they are amenable to analysis. As a consequence, the
best strategy for building and studying this kind of mod-
els is to start from well-understood specimens, and either
to push their boundaries, or to borrow their framework
and create a new breed of models. For instance the Mi-
nority Game (MG) can be exactly solved despite being
highly non-trivial [10, 11]. Many of its variants can still
be solved exactly, including market-oriented games that
are able to reproduce a subset of market phenomenology
[5, 9, 12].[29]

Although minority mechanisms are at work in finan-
cial markets [13, 14], as we shall see below, the latter are
more complex, mostly because the gains of traders are
intrinsically intertemporal. In real life, one first opens a
position, waits, and then closes it.[30] Here I extend the
discussion of Ref. [14] and show in what limits each mech-
anism is present in financial markets. Then, I propose a
new simple model of pattern-based speculation that con-
tains each of them. As one takes inspiration from MG
framework, one can immediately implement some of its
extensions known to be relevant to financial markets.

NATURE OF FINANCIAL MARKETS

The nature of financial markets is puzzling. On the
one hand, they are very competitive, and not everybody
can earn money in them, implying implicitely a minority
game. On the other hand it is common knowledge that
one wishes to anticipate the crowd; one might conclude
from that statement that they are majority game, which
is also incorrect: they are best described as an “escape
game” [15], which contains two minority games, and one
delayed majority game.

The main reason why this point is still somewhat un-

clear after so many years is due to the intertemporal na-
ture of financial markets: all the traders are not active at
the same time, hence perfect synchronisation cannot be
achieved; even worse, all the trade orders arrive sequen-
tially, hence simultaneity is a theoretician’s phantasm at
best —which is rarely recognised in the literature. Let
us review carefully the process of opening and closing a
position.

Placing oneself in event time, which increases by one
unit whenever an order is placed, makes the discussion
easier. At time ti, trader i decides to open a position
ai = ±1 by placing a market order.[31] His physical re-
action time results in a delay in event time of δti which
varies from transaction to transaction; the transaction
takes place at time ti + δti and log-price p(ti + δti).[32]
During that time period, the order book changes; as a
consequence p(ti + δti) is likely to differ from p(ti):

p(ti + δti) = p(ti) +

ti+δti
∑

tj=ti

I [a(tj), tj ] (1)

where I is the price impact function, and a(tj) is the
sign and size of the order at time tj . In principle, a(tj)
could be a limit order that would modify I . For the
sake of simplicity, only market orders and linear impact
I(x) = x [16] will be considered here. In that case,

p(ti + δti) = p(ti) + A(ti) (2)

where

A(ti) =

δti
∑

τ=0

N
∑

j=1

ajδti+τ,tj+τj
, (3)

where the sum
∑

j is over all the traders possibly inter-
ested in trading this particular asset. Equation (3) means
that the group of traders with which trader i interacts
through market impact is different at each transaction,
and that among this group, everyone has a different but
partially overlapping interacting group.

The position is held for some time. At t′, the trader de-
cides to close his position, obtaining for the same reason
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as before p(t′ + δt′i). His real payoff is

ai[p(t′ + δt′i) − p(t + δti)] = −aiA(ti) + ai[

t
∑

ti<t<t′
i

A(t)]

−(−ai)A(t′i). (4)

The first and the last terms come from market impact
and reaction time. They are minority-game payoffs:
one’s market impact is reduced if one acts against the
crowd (in this case, this means taking an action opposite
to the majority of orders executed during the time delay).
The central term represents the capital gain that could
be achieved without reaction time nor market impact. It
describes a delayed majority game, that is, a majority
game to which trader i does not take part: whereas A(ti)
and A(t′i) contain a contribution of trader i, the middle
term does not.

The nature of financial markets depends therefore on
the trading frequency and reaction time of each trader,
and on the activity of the market: the relative impor-
tance of minority games decreases as the holding time
t′i − ti increases; reversely, somebody who trades at each
time step plays a minority game. Interestingly, this is
consistent with the behaviour of market makers who try
and stabilise the price so as to minimise inventory risk,
thereby inducing a mean-reverting behaviour. This is
also precisely what minority players do.

A comparison between this market mechanism and the
$-game [6, 7] is in order. In the $-game, the traders make
a transaction at each time step and the payoff of trader
i is ai(t)A(t + 1). Replacing t + 1 by t + δt and assuming
that trader i opens a position at time t and closes it at
time t + δt, makes the $-game payoff look like Eq. (4)
without market impact nor reaction time, i.e. without
minority games. There are two possible ways for that
kind of payoff to appear. First, if one knows in advance
one’s exact impact (that includes the reaction time), or if
one’s reaction time is negligible, which only happens for
infrequently traded stocks and if the size of the market
order is smaller than the volume available at the best
price, provided that the best prices do not change during
the submission of the order. The other possibility is that
the holding time δt is very large, in which limit market
impact becomes much smaller than the price return δt.
In both cases, there is however an inconsistency: in the
$-game, A(t + 1) also contains the contribution of trader
i as it forces the traders to be active at each time step
and not to hold and close their positions explicitely.[33]
Finally, if the agents have expectations on the nature
of the market, that is, on the middle term of Eq (4),
the $-game payoff involves only one time step, and is a
minority payoff for contrarians and a majority payoff for
trend-followers [13].

All the above discussion clearly shows the need for a
model whose strategy space would be as simple as that

of the Minority Game, while allowing the traders to hold
positions.

THE BASIC MODEL

The agents base their trading decisions on patterns,
such as mispricing (over/undervaluation), technical anal-
ysis, crossing of moving averages, etc. The ensemble the
patterns comprises all kinds of information regarded as
possibly relevant by all the traders. Each trader recog-
nises only a few patterns; every time one of his patterns
arises, he decides whether to open a position. How to
close a position is a matter of more variations: one can
assume a fixed-time horizon, stop gains, stop losses, etc.
In this paper, a trader closes a position only when he
recognises a pattern, which is how people using crossings
of moving averages behave, for example. Accordingly,
each trader measures the average return between all the
pairs of patterns that he is able to recognise.

Defining what “average return” precisely means brings
in the well-known problem of measuring returns of trad-
ing strategies in a backtesting, i.e., without actually using
them. This is due to market impact and results usually
in worse-than-expected gains when a strategy is used.
Estimating correctly one’s market impact is therefore a
crucial but hard aspect of backtesting. There are two
types of delusions in the present model. The first, tem-
poral inaccuracy, is due to the over/underestimation of
reaction time. Self-impact on the other hand is the im-
pact that a real trade has on the price and market, which
is not present in data used for backtesting. Both cause
imprecision in estimating returns of strategies not being
used and, accordingly, both are actively investigated by
practitioners.

Mathematically, N traders can submit buy orders (+1)
or sell orders (−1). They base their decisions on pat-
terns µ = 1, · · · , P , which classify the state of the market.
Each trader i = 1, · · · , N is able to recognise S patterns
µi,1, · · · , µi,S , and is active, i.e., may wish to buy or sell
one share of stock, only when µ(t) ∈ {µi,1, · · · , µi,S}. The
kind of position taken (ai(t) ∈ {0,±1}) is determined by
the cumulative price return between two consecutive oc-
currences of patterns. The time unit is that of pattern
change, i.e., at each time step, µ(t) is drawn at random
and uniformly from 1, · · · , P . The duration of a time step
is assumed to be larger than the time needed to placed
an order. The order in which agents’ actions arrive is
disregarded here, although it would be straightforward
to take it into account. Therefore, at time t, the excess
return A(t) =

∑N
i=1 ai(t) results in a (log-) price change

of

p(t + 1) = p(t) + A(t). (5)

p(t+1), not p(t) is the price actually obtained by the peo-
ple who placed their order at time t. There are therefore
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various ways to compute returns between two patterns.
Assume that µ(t) = µ and that t′ > t is the first sub-
sequent occurrence of pattern ν: p(t′) − p(t) is the price
difference that does not take into account price impact,
whereas p(t′+1)−p(t+1) is the realistic price difference.
The cumulative price return Ui,µ→ν between pattern µ
and ν evolves according to

Ui,µ→ν(t′ + 1) = Ui,µ→ν(t)

+ p(t′ + 1) − p(t + 1) − (1 − αi(t))ζi[A(t′) − A(t)].(6)

ζ is the naivety factor: simplex, or naive, agents have
ζi = 1 and fail to take reaction time into account prop-
erly, while sapiens, or sophisticated, agents have ζi = 0
and compute perfectly the average price return. Finally,
the variable αi(t) states whether the agent has opened a
position at time t (αi(t) = 1), or stayed outside of the
market (αi(t) = 0). When an agent trades, he perceives
perfectly the effect of his reaction time whatever ζi. In
practice, ζi 6= 0, and can be of any sign and value. This
is because estimating reaction time exactly is impossi-
ble: even if real traders are often acutely aware of its
importance, they always over or underestimate it.

An agent only trades between his E best pairs of pat-
terns, where E ≤ S − 1 is his maximal exposure. In
the following, the simplest case S = 2 is analysed, and
E = 1. When µ(t) = µi,1, trader i closes his position if
he has an opened one. Then depending on the sign of
Ui,µ1→µ2

(t), he buys one share (Ui,µ1→µ2
(t) > 0) or sells

one share (Ui,µ1→µ2
(t) < 0)[34], and holds his position

until µ(t) = µi,2.[? ]
Thus the basic model has four parameters so far: N , S,

P , and E, and retains from the MG the heterogeneity of
the agents, limited cognition abilities, and the distinction
between naive and sophisticated agents.

Relevant quantities include the variance of A

σ2 =
〈A2〉 − 〈A〉2

P
, (7)

the naive predictability

J =
1

P 2

∑

µ,ν,µ 6=ν

〈A(t)|µ → ν〉2, (8)

where 〈A(t)|µ → ν〉 stands for the average price differ-
ence between the occurrence of µ at time t and the next
occurrence of ν. J measures predictability that the naive
agents hope to exploit. Another closely related quantity
is

K =
1

P 2

∑

µ,ν

〈A(t + 1)|µ → ν〉2 (9)

is the exploitable predictability that takes into account
price impact. Finally, a measure of price impact pre-
dictability is given by the average return conditional to
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FIG. 1: Price time series with ε = 0 (N = 1000, P = 32,
S = 2, ζ = 0)

a given pattern

H =

∑

µ〈A|µ〉2

P
. (10)

Before carrying out numerical simulations, one should
keep in mind that the price is bounded between −N and
+N , since the traders are not allowed to have an expo-
sure larger than 1. Assume that ε = 0, and that all the
scores are have random and small initial valuation (oth-
erwise nobody trades in the first place). One observes in
such case beginnings of bubbles or anti-bubbles, the price
rising or decreasing to ±N , and then staying constant.
Indeed, the price increase/decrease is echoed in the scores
of all the agents, which have all the same sign, therefore
all stipulate the same action. The price is stuck (Fig 1),
as nobody wants to close its position, because everybody
is convinced that the price should carry on on its way
up/down. This phenomenon is found for all values of ζ.

The way to break the bubble is to make the agents
compare the average returns to a risk-free interest rate
ε > 0 [6, 9, 12]. When an agent detects a pattern at time
t, he opens a position only if |U | > εt. If the price has
reached ±N , the time needed to break the bubble is at
least of order N/(ε).

Figure 2 illustrates the typical price time series for
ε > 0: first a bubble, then a waiting time until some
traders begin to withdraw from the market. The price
goes back to 0 and then fluctuates for a while. How these
fluctuations are interpreted by the agents depends on ζ
and ε: increasing ζ makes it more difficult for the agents
to understand that they should refrain from trading, be-
cause they are not capable of disentangling their own
contribution from these fluctuations. Accordingly, the
larger ζ, the later the agents withdraw from the market,
and the smaller ε, the longer it takes (Fig. 3). In this
figure, the maximum number of iteration was capped at
106; naive agents need therefore a very long time before
withdrawing if ε is small. The scaling Tw ∝ N/ε holds
only for small ζ and ε. For large ε, ζ does not matter
much.
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FIG. 2: Price time series with ε = 0.01 (N = 1000, P = 32,
S = 2). Black lines are for simplex traders and green lines are
for sapiens traders.
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FIG. 3: Scaled time to withdraw as a function of ε. P =
10, N = 50 (full symbols) and 100 (empty symbols), ζ = 0
(circles), 0.75 (squares), 0.85 (diamonds) and 1 (triangles);
average over 500 samples

All the agents eventually withdraw from the market.
This makes complete sense, as there is no reason to
trade. Naivety results in a diminished ability to with-
draw rapidly enough from a non-predictable market, and,
as a by-product, larger price fluctuations. This is consis-
tent with the fact that volatility in real markets is much
larger than if the traders were as rational as mainstream
Economics theory assumes [20]. Naivety, an unavoidable
deviation from rationality, is suggested here as one pos-
sible cause of excess volatility.

Noise traders

First, as the traders try and measure average returns,
adding noise to the price evolution (A(t) → A(t)+Nnη(t)
where η(t) is uniformly distributed between −1 and 1)
does not provide any trading opportunity, but makes
it more difficult to estimate precisely average returns.
Accordingly, the agents should withdraw later, and the
larger ζ, the later. This is precisely what happens: Fig 4
reports the average behaviour of Tw for sophisticated and
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FIG. 4: Scaled time to withdraw as a function of Nn. P = 10,
N = 100, ε = 0.1, ζ = 0 (circles) and 1 (squares); average over
500 samples

naive agents. One can therefore reinterpret this figure as
a clue that naive agents a blinded by the fluctuations
that they produce themselves.

Market impact heterogeneity

Real traders are heterogeneous in more than a way. In
a population where each trader has his own ζi, people
with a small ζi evaluate gain opportunities better. This
also means that the impact of people with large ζi pro-
vides predictability to the agents with a lower ζi, and
therefore the former are exploited by the latter, giving a
good reason to trade to sophisticated agents as long as
naive agents actively trade in the market.

MARKET INFORMATION STRUCTURE

Up to now, the model showed how hard it is not to
trade. But how hard is it to make the agents want to
trade?

As in the MG [23], and following the picture proposed
in Ref. [21], one can distinguish between speculators and
producers. The latter do not care much about market
timing and adjust more slowly their strategies because
need the market for other purposes than mere specula-
tion. A simple way to include Np producers in the model
is to assume that they induce a bias in the excess demand

that depends on µ(t), i.e., A(t) = A
µ(t)
prod +Aspec(t). Each

producer has a fixed contribution ±1 to Aµ
prod, hence

Aµ
prod ∝

√

Np. In that way, the amount of market im-
pact predictability is well controlled.

If there is no information structure in the market, i.e.,
if µ(t) does not depend at all on past patterns, the effect
of producers is akin to that of noise traders, hence, the
speculators cannot exploit the predictability left by the
producers. This is because the speculators need some
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FIG. 5: Volatility σ2 (circles), price impact H/P (squares),
naive (down triangles) and sophisticated (up triangles) pre-
dictability, scaled fraction of active speculators (diamonds),
and average gain per agent (right triangles); P = 10, Np =
100 ε = 0.05; empty symbols: average over 10000 samples of
speculators; filled symbols: average over 1000 samples

temporal correlation between occurring biases in order
to exploit them, which happens when the transitions
between market states are not equiprobable, i.e., when
the transition matrix between patterns W is such that
Wµ→ν 6= 1/P . This assumption is supported by an em-
pirical study [22] which determined states of the market
with a clustering method, and found that the transitions
between the states is highly non-random and has long-
term memory which we neglect here. Numerically, we
chose to fix Wµ→ν to a random number between 0 and 1
and then normalised the transition probabilities; the vari-
ance of Wµ→ν is a parameter of the game, which controls
the amount of correlation between biases induced by the
producers.

Adding more producers increases linearly the values
of predictability J and K, as well as H and σ2. Then,
keeping fixed the number of producers and their actions,
adding more and more sophisticated speculators first de-
creases σ2, H , J and K, which reach a minimum and then
increase again (Fig 5); this seems to occur at N ' P 2,
where on average every pair of patterns is attributed to
some speculator. However, the average total number of
speculators in the market reaches a plateau. The fact
that the fluctuations σ2 increase for N > P 2 means that
the agents with the same pair of patterns enter and with-
draw from the market in a synchronous way. Avoiding
such synchronicity can be realized by letting the agents
have heterogeneous εi or ζi. The average gain of the spec-
ulators becomes negative for N < P 2; if evolving capitals
were implemented, less speculators would survive, which
would lower N , thus keeping the average gain at or above
zero.

The relationship between the producers and the spec-
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FIG. 6: Number of active speculators as a function of time
(P = 10, N = 1000, Np = 100000, ε = 0.001)

ulators can be described as a symbiosis: without produc-
ers, the speculators do not trade; without speculators,
the producers lose more on average, as the speculators
(with evolving capital) reduce H . This picture, remark-
ably similar to that of the Minority Game with producers
[23–25], justifies fully in retrospect the study of informa-
tion ecology in Minority Games. But in contrast to the
MG speculators, the agents here are not able to remove
much predictability. A more refined mapping between
the state of the world and the perceived patterns such as
the one proposed in Ref [26] might improve information
efficiency.

Guided by the conceptual similarity between the grand
canonical MG with producers and the present model, we
expect to see volatility clustering when the number of
agents is large, and if ε > 0; more generally, as argued
in Ref. [27], any mechanism responsible for switching
between being in and out of the market should produce
volatility clustering. This is exactly what happens, as
shown by Fig. 6, where the volume Nact has clearly a long
term memory. Whether this model is able to reproduce
faithfully real-market phenomenology is still unclear.

CONCLUSION

This model provides a new simple yet remarkably rich
market modelling framework that builds on the Minor-
ity Game. It is readily extendable, and many relevant
modifications are to be studied. The similarity of infor-
mation ecology between the present model and the MG is
striking. Whether this model is exactly solvable is under
scrutiny.
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