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ABSTRACT

In this paper we extend the model of Easley and O’Hara (1992) to allow the arrival rates of
informed and uninformed trades to be time-varying and forecastable. We specify a generalized au-
toregressive bivariate process for the arrival rates of informed and uninformed trades and estimate
the model on 16 actively traded stocks on the New York Stock Exchange over 15 years of transac-
tion data. Our results show that uninformed trades are highly persistent. Uninformed order arrivals
clump together, with high uninformed volume days likely to follow high uninformed volume days,
and conversely. This behavior is consistent with the passive characterization of the uninformed
found in the literature. But we do find an important difference in how the uninformed behave; they
avoid trading when the informed are forecasted to be present. Informed trades also exhibit complex
patterns, but these patterns are not consistent with the strategic behavior posited in the literature.
The informed do not appear to hide in order flow, but instead they trade persistently.

We also investigate the correlation between the arrival rates of trades and trade composition on
market volatility, liquidity and depth. We find that although volatility increases with the forecasted
arrival rates of total trades, it is relatively independent of the forecasted composition of the trade.
We use the opening bid-ask spread as a measure of market liquidity. We find that as the number of
trades increases over time, the relative proportion of informed trades decreases and hence, spreads
become narrower and the market becomes more liquid. Finally, we compute the price impact curve
of consecutive buy orders and report the half life of the price impact as a measure of market depth.
We find a positive correlation between the half life and total trades indicating that the market is

deeper in presence of more trades.



Time-Varying Arrival Rates of Informed and Uninformed Trades

|. Introduction

A fundamental insight of the microstructure literature is that order flow is informative regarding sub-
sequent price movements. This informational role arises because orders arrive from both informed and
uninformed traders, and market observers can infer new information regarding the value of the asset
from the composition and existence of trades. Thus, market parameters such as volume, volatility, mar-
ket depth, and liquidity are all linked in the sense that each is influenced by the underlying order arrival
processes. In this paper, we propose a dynamic microstructure model of trading, and we investigate
how the dynamics of trades and trade composition interact with the evolution of market liquidity, depth

and price volatility.

There are many reasons why understanding market liquidity, depth and price volatility are impor-
tant. From a practical perspective, the cost of trading in a security is inextricably linked to these market
variables, and market professionals devise trading strategies that explicitly incorporate these factors.
Moreover, the volatility process is important not only for influencing the risk and return to an investor
in the security, but also for understanding the behavior of derivative securities linked to the asset. From
a more academic perspective, understanding the evolution of liquidity, depth and volatility provides
insight into the price formation process as well as into concepts such as market efficiency. We argue
in this paper that understanding these market parameters requires understanding a more basic market

variable, the order arrival process.

To motivate our analysis, a useful construct is to view order arrivals as reflecting the behavior of
sheep and wolves. In sequential trade models (for example, Glosten and Milgrom, 1985) and in Kyle
(1985), the uninformed act as sheep, meekly heading to market where they will be preyed upon by the
more informed wolves. The informed traders, the wolves, also head to the market, driven by the need
to feast on the gains from their private information. In simple constructs, the sheep and wolves eschew
strategic considerations and thus move competitively (and mechanistically) to market. Kyle (1985)
introduced the concept of a strategic trader, or a smart wolf, who profits by timing his order arrivals

so as to hide among the sheep. Whether packs of wolves can similarly profit by strategic trading is



unclear as the equilibrium in Kyle’s model breaks down when the number of informed traders becomes
too large (see Back, Cao, and Willard, 2000). Despite scientific breakthroughs elsewhere, the sheep in
microstructure models remain quite docile. Admati and Pfleiderer (1988) and Foster and Vishwanathan
(1990) allowed for more introspective sheep who timed their trades to avoid the presence of wolves. In
these models, sheep herd by sending in orders when other sheep are known to be present; the wolves
respond by trading when the sheep trade. A problem in these models is either that multiple equilibria

abound, or that no equilibrium exists at all.

How then do actual traders behave in securities markets? Do uninformed traders meekly head to
market, or are they more sensitive to the dangers of certain trading environments? Are informed traders
strategic in the sense of hiding amongst the uninformed, or do more carnal urges force them to act more
competitively? These are empirical questions, and their answers have important implications for the

resultant price processes in markets.

In this paper, we develop a theoretical and empirical framework for addressing these questions. Our
model is a dynamic extension of the microstructure model of Easley and O’Hara (1992), in which a
competitive market maker sets bid and ask prices based on her forecast of the composition of the traders
(informed versus uninformed) and the probability of good or bad news. In Easley and O’Hara (1992)
the arrival rates of traders are assumed to be constant and iid over time. Easley, Kiefer, and O’Hara
(1997a) relaxed these stringent assumptions to allow for greater complexity in the arrival process for
uninformed trades, and in particular allowed uninformed trades to be path dependent within trading
days. Leiand Wu (2000) consider a model in which trades are independent within trading days, but have
arrival rates that follow a Markov switching process with history dependent switching probabilities. In
this research, we consider independent arrivals within trading days, but we allow the arrival rates of
informed and uninformed traders to be time-varying and forecastable. In particular, we propose a
generalized autoregressive bivariate vector process for (i) the arrival rates and (ii) the log of the arrival
rates. We estimate both models on 16 actively traded stocks listed on the New York Stock Exchange
over 15 years of transactions data. The performance of the two dynamic models is similar, suggesting

that common features of the trade dynamics underlie all stocks investigated.

Our approach is a blending of model-based microstructure with the literature analyzing the econo-

metric determinants of the joint dynamics between trades and prices. Examples of this research include



Hasbrouck (1991), Dufour and Engle (2000), Engle (2000), Engle and Russell (1998), Manganelli
(2000), and Engle and Lange (2001). In common with that literature, we develop a half-life measure
for market depth that is closely related to Engle and Lange’s VNET measure (defined as the excess
volume of buys and sells associated with a price movement). However, our approaches differ in that
we derive and estimate the trade implications on prices and markets from a dynamic microstructure
model, in contrast to their exogenous dynamic specification. Our work is also related to research link-
ing order imbalances to market wide liquidity, see, for example, Chordia, Roll, and Subrahmanyam
(2001). These authors relate overall trade imbalances to market returns and to market liquidity. Our
analysis also involves order imbalances, but our model analyzes the richer order flow processes, rather
than the static and exogenous total imbalance. Our model shows why particular components of order

imbalances matter, thus providing an econometric structure for investigating order flow information.

We find a number of results on the arrival processes, the most important of which we highlight here.
First, the arrival rates of both informed and uninformed trades are highly persistent. A heavy trading
day is more likely to be followed by another heavy trading day. Furthermore, uninformed traders tend
to follow their own type (herding), and they move to avoid informed traders. Intriguingly, uninformed
traders refrain from entering the market after a day with many informed traders; in effect, the sheep
remain in the barn when the trading climate is inclement. Informed traders, on the other hand, are
not as responsive to the arrival of uninformed traders. These traders exhibit little strategic behavior,
suggesting that information flow is well captured by models of competitive informed trading. This last
result may be particularly important for empirical analyses, as it suggests that informed trade per se

does not introduce complex patterns into either trades or the resultant prices.

Given the forecasted arrival rates, we then investigate the dynamic interactions between the arrival
rates and market volatility, liquidity, and market depth. We find that forecasted arrival rates of both
types of trades are positively correlated with intra-day volatility measures. Hence, potentially we could
use forecasted arrival rates to enhance the forecasting of daily volatilities. We also find the expected
result that market spreads are increasing in informed arrival rates, and the perhaps not so expected
result that information events appear to be fully revealed by each day’s end. We use Bayesian updating
to calculate a measure of market depth we term the half-life. This measure is defined as the number

of buys needed for the price impact to exceed some pre-specified maximum. Our analysis reveals a



number of interesting properties of this market depth measure, with a particular finding being that it
takes more trades to reveal information in a heavy trading day than in a light trading day (i.e. the market

is deeper in the presence of heavier trading activities).

The paper is organized as follows. Section Il describes the benchmark model of Easley and O’Hara
(1992) and our dynamic extensions. Section Il describes the data set and our estimation procedure.
Section IV discusses the implications of our estimates for the arrival processes of informed and unin-
formed trades. Section V describes the implications of our estimates for market volatility, liquidity and

depth. Section VI explores potential applications and future research.

[I. Model Formulation

A. The Static Model

We follow Easley and O’Hara (1992) and Easley, Kiefer and O’Hara (1996, 1997a, 1997b) in model-
ing a market in which a competitive market maker trades a risky asset with uninformed and informed
traders. Trade occurs ovérdiscrete trading days and, within each trading day, trade occurs in contin-
uous time. Information events occur between trading days with probatilityhen these events occur

they are either bad news, with probabildlyor good news with probabilityl — o. Traders informed

of bad news sell and those informed of good news buy. We assume that orders from these informed
traders follow a Poisson process with daily arrival natdJninformed traders trade for liquidity rea-

sons. We assume that buy and sell orders from uninformed traders each arrive at the market according
to a Poisson process with daily arrival rateA more extensive discussion of this structure can be found

in Easley, Kiefer and O’Hara (1996, 1997a, 1997b).



On dayt, conditional on the parameter vector of the modk= [, €,0,3] ", the probability of

observingB buys andSsells is given by

Priy = (B,S)|6] = a(1-8e ¥ (“+B€|)SB(8)S
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wherey; denotes the observation vector (number of buys and sells) fot.dBlye probability can be
regarded as a mixture of three Poisson probabilities, weighted by the probability of having a “good

news day’a(1—9), a “bad news daytid, and a “no news day”l(— a).

The model is static in the sense that each day the arrivals of an information event and trades, con-
ditional on information events, are drawn from identical and independent distributions. The likelihood
function can hence be written as a simple product of the above probability density over days. The log

likelihood function, after dropping a constant term and rearranging, can be written as

LUW}H_11©) = tTZ[—ZH—MInX—i—(B—i—S)In(LH—s)} (2)

;
+ len [a(1-8)e ™M ade MxE™M 4 (1—a)xBHSM]
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whereM = min(B, S) + max(B,S)/2, andx = ﬁ € [0,1]. Given an information eveng captures the
ratio of the arrival rates of “wrong trades” to that of “right trades.” A trade is “wrong” when it is a
buy in the presence of a bad signal or a sell in the presence of a good signal; a trade is “right” when it
conforms with the information signal. The factoringdf is done to increase the computing efficiency

and reduce truncation error, especially when the numbers of buys and sells are large.



B. Information Content of Trades

According to this model, data on daily arrivals of buys and sells contain information about the under-
lying parameters of the model. LET = S+ B denote the total number of trades per day. TRENT]

is equal to the sum of the Poisson arrival rates of informed and uninformed trades:

E[TT] = a(1-9d)(e+p+e)+ad(p+e+¢€)+(1—a)(e+¢€)=au+2e.

Furthermore, the expected value of the trade imbal&nheeS— B is given by:

EK] = ap(25-1).

Hence, when the probability of bad nedis not exactly one half, the mean of trade imbalance provides
information on the arrival of informed trades. A more informative quantity is the absolute value of the
trade imbalance. The expectation on absolute differences of Poisson variables takes rather complicated

forms(Katti 1960), but the following approximate relation holds wheslarge:

E(K[) = ap.

These relationships provide a basis for estimating and interpreting the arrival rates of trades. The
absolute trade imbalandk| contains information on the arrival of informed tradag, In contrast,

the variablegTT — |K|) is essentially the balanced trade in the market and contains information on the
arrival of uninformed trades. We incorporate these two trade quantities into our arrival rates forecasting

specifications.

C. Time-Varying Arrival Rates of Trades

The constant arrival rates in the above model imply that both the number of balancedltiadék |
and the trade imbalandk | should be iid over time. Yet, such a structure seems both rigid and unreal-
istic. A more complete structure would allow for autocorrelation for both series and cross-correlation

between them, in addition to a time trend for each series. To allow for these effects, we specify a dy-



namic vector process for the arrival rates of informed and unformed traders. The arrival rate of informed
trades isap and the arrival rate of the uninformed trade4és Let ¢ = [y, ZS]T denote the vector

of the two arrival rates. To remove any deterministic trend on arrival rate of trades, we model the de-
trended arrival rate§; = e 9',i = 1,2 as a vector stationary process, where the vegtofg;, 9]

captures the growth rates of the two arrival rates.

C.1. A generalized autoregressive specification on arrival rates of trades

We propose a bivariate generalized autoregressive forecasting relation on the detrended arrival rates of

informed and uninformed trades:

mt:w‘f‘i(bkmt—k‘i'qztrjztj, 3)
K=1 =
where{l; denotes the detrended timfarecast of the arrival rate vector attime 1, Z; = [|K| , TT — |K¢|] |
denote the timé-observables (humber of trade imbalance and balanced trade@-naﬂdit e 9t j=

1,2. As a first order approximatior; 1 [Zt} = {)i_1, and the specification in (3) is analogous to
the GARCH specification of Bollerslev (1986) on conditional volatilities. As in GARCH models, the

above forecasting relation can be rewritten a&\&MAmax|p,q],q) process:

B max{pa q
Py = w+ Z O+ Z)rjﬁt—p (4)
k=1 =
where
- (OIS I if k<
By = k k—1 <q ,

dy if k>q

and& = Zi —Fi 1 [Zt} =7 — Jir_1 denotes the forecasting error. The stationarity of the process
requires that the eigenvalues of be less than one. We spt= q = 1 for the model calibration.

Adding back the time trend, we can rewrite the forecasting relation as
Py = ¥ + DYy _1€9+TZy, (5)

where the producteed andyx_1€9 are short hands for element by element operations.



Given the forecasting relation in (5), the log likelihood function has the same form as in (2), with
the constant arrival rates replaced by their respective conditional forecasts. However, equation (5)
forecasts the product of the two parametepswhile in the likelihood function we need values of the
two parameters separately. To separate them, we assunoe thatfprobability of an information event,

is constant over timé.

A backward equation analogous to (3) also holds for the same time series:

p g-1
B = w+ > Pt Z]ertJrj-
k=1 =

We use this backward equation to forecast the starting valye f particular,
lIJt = (A)egt —+ (DL]JHle*g + th . (6)

Refer to Box and Jenkins (1976), Chapter 6.3, for details. Again, the proade®tandy..1e-9 both

denote element by element operations.

C.2. A generalized autoregressive specification on the logarithm of arrival rates

Since arrival rates only exist in the positive hyperplape, R?>*, we propose an alternative forecasting

relation on the logarithm of the arrival rates:

P -1
In[Dt:u)JrztDkln[Dt_kJr %Fth_J‘, @)
k=1 k=

whereMy is an approximate martingale difference vector formulated fZgm

Mit = - 17 I = 17 27 (8)

IThe growth of trades suggests that both uninformed and informed trades are time varying. Informed trades could vary
because of variation ip or a, or both. We find it more plausible that the arrival rate of informed traders is time varying than
that information events are time varying. However, it is also possible that information events follow a stochastic process that
we miss-identify as variation in informed trades with this assumption.



where the subscrigt denotes the-th element of the vector. The approximate martingale property
follows readily from the fact thak;_1 [Z;] = W;_1. The specification is analogous to the EGARCH

model of Nelson (1991) for conditional volatilities.

We again sep = q = 1 for the calibration. Plug in the time trend, we have:
INY; = w+dPg+ (I —P)gt+ PInP_1 + M. 9)
Again, a backward equation is used to determine the initial value:
NP = w—dg+ (I —P)gt+ PInWi 1+ Ey,

whereE; is a backward analogue M¢: Eit = Zit /Y1) — 1.

[1l. Data and Estimation

We estimate our two models using data fr@gstocks: Ashland (ASH), Exxon Mobil (XOM), Duke
Energy (DUK), Enron (ENE), AOL Time Warner (AOL), Philip Morris (MO), ATT (T), Pfizer (PFE),
Southwest Air (LUV), AMR (AMR), Dow Chemical (DOW), CitiGroup (C), JP Morgan Chase (JPM),
Wal Mart (WMT), Home Depot (HD), and General Electric (GE). We chose representative stocks from
a variety of industries which each had high trading volume and were listed on the NYSE. The latter

criterion is intended to avoid differences introduced by different trading platforms. Trade data for these

stocks are taken from the TAQ transactions database for the period January 3rd, 1983, to December

24th, 1998 (3891 business days). A minimum level of trading activity is necessary to extract the

information changes from each day, so we exclude days when there are either no buys or no sells. The

least active stock is Enron, from which we drop 69 inactive days, then Wal Mart (19 days), Exxon
Mobil (18 days), Southwest Air (7 days), Pfizer (4 days), ATT (4 days), Philip Morris (3 days), JP
Morgan Chase (2 days), Exxon Mobil (1 day), and Ashland (1 day). Furthermore, the data for AOL
Time Warner, CitiGroup, and Home Depot start late. The starting dates are, respectively, September

16th, 1996, October 29th, 1996, and April 19th, 1984.



The TAQ data provide a complete listing of quotes, depths, trades, and volume at each point in time
for each traded security. For our analysis, we require the number of buys and sells for each day, but the
TAQ data record only transactions, not who initiated the trade. This classification problem has been
dealt with in a number of ways in the literature, with most methods using some variant on the uptick
or downtick property of buys and sells. In this article, we use a technigue developed by Lee and Ready
(1991). Those authors propose defining trades above the midpoint of the bid-ask spread to be buys and
trades below the midpoint of the spread to be sells. Trades at the midpoint are classified depending
upon the price movement of the previous trade. Thus, a midpoint trade will be a sell if the midpoint
moves down from the previous trade (a downtick) and will be a buy if the midpoint moves up. If there
is no price movement then we move back to the prior price movement and use that as our benchmark.
We apply this algorithm to each transaction in our sample to determine the daily numbers of buys and

sells?

To investigate the interactions between trades and prices, we also download the dail®)obéarh(
(H), low (L), and close() prices from Bloomberg corresponding to the same stocks and time periods.
In particular, we proxy the intra-day volatility by the absolute returns on the open-¢lo§®/ Q|) and
high-low (nH /L).

We begin by analyzing the properties of the trade variables. Tat#ports the summary statistics
of the trade quantitie = [|K|, TT —|K|], or the imbalanced and balanced trade variables. \We observe

the following features:

1. Trades are increasingThe daily number of balanced trad€3 — |K| in general grows faster
than the trade imbalan¢é The estimated annual growth rate for the balanced trade ranges from
2.4% for DOW to 94% for AOL. The growth rate for the trade imbalance ranges from negative

for XOM (—3.66%) and DOW (1.51%) to 133% for AOL.

2. The number of balanced trades is more volatile than trade imbaldfmeall stocks investigated,
the standard deviation of the balanced trades is much larger than the standard deviation of the
trade imbalance. Standard deviations are measured on the detrended residuals. Furthermore, the

intercept of the detrending regression is also larger for the number of balancedTtiiade |

2The first trade at each day is excluded from our sample as it is determined by a different mechanism.
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than for the trade imbalandk |, implying that the number of balanced trades dominates the total

trades.

3. Trades are highly persistent.he number of balanced trades are more persistent than the trade
imbalance. The first order autocorrelation for balanced trade ranges from 0.697 to 0.953 while
that for the trade imbalance ranges from 0.145 and 0.772. Autocorrelations are measured on
the detrended residuals. This suggests a complexity to the order arrival process that is not well
captured by static models. It also suggests that informed and uninformed trade behavior may

exhibit interesting complex dynamics, an issue we address in the next section.

4. Balanced trades and trade imbalances are cross-correlafdte two quantities are generally
positively correlated. The cross-correlation coefficient between the balanced ffadé| and

the trade imbalancK| ranges from-0.004for XOM to 0.802 for Citigroup.

We next estimate the parameters of the two dynamic order arrival models in (5) and (9) by maximiz-
ing the log likelihood function in (2). We refer to the GARCH analogue as Model A and the EGARCH
as Model B. The results are summarized in Table Il for Model A and in Table 11l for Model B. The log
likelihoods from the two models are very close to each other, neither consistently dominates the other

across the 16 stocks. Estimates for the two models also imply similar properties for the arrival rates.

I\VV. The Dynamics of the Arrival Rates

We now turn to analyzing the behavior of the order arrival processes. The structural models derived in
Section Il provide a framework for analyzing the potentially complex processes characterizing order
flow. As reported above, the models can be estimated with reasonable precision, allowing us to test the
importance and significance of alternative behavioral hypotheses. Our focus here is on the dynamics
of informed and uninformed order flow, and in particular on the factors that influence the correlation

structures of trades.
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A. Are order flows correlated over time?

The basic structure analyzed in standard microstructure model is of orders arriving in a probabilistic
fashion from informed and uninformed traders. A simple construct of this behavior is to characterize
orders by Poisson arrival processes, where the arrival rates are constant, but may differ across informed
and uninformed traders. The models we derive here allow for much greater complexity in behavior,

and in particular we allow trades to be both auto-correlated and cross-correlated.

The persistence of the arrival rate for uninformed traders is captur@dpy dyo+ Moo for Model
A and ®,, for Model B. For informed traders, this persistence is capture@hy: ®11+11 and
®4,, respectively for Models A and B. The large, and positive estimates for all of these variables shows
that orders overall are highly auto-correlated, with a high arrival day more likely to be followed by
another high arrival date. This behavior is not unexpected given that many studies have shown volume
to be significantly, and positively auto-correlated. But this result is at variance with the predictions of
microstructure models in which trades are viewed as iid. Perhaps more importantly, the result suggests

that trade patterns are predictable across trading days.

We now turn to analyzing the specific behaviors exhibited by the informed and uninformed traders.
For most stocks, the arrival rate of uninformed trades is much more persistent that that of informed
trades. This suggests that uninformed trade is more likely to exhibit serial patterns across trading days
than is informed trade. Thus, the characterization of uninformed traders as sheep herding together is
consistent with these results. The uninformed do tend to move together, either trading or not trading,
but doing so persistently. Informed trade is also persistent, but the persistence is much lower than it is
for uninformed trade. This is consistent with new information being largely incorporated into security

prices by the end of a trading day.

A natural concern in interpreting these estimates is the stationarity of the underlying processes. As
noted earlier, theoretical models suggest both a wide range of possible equilibrium trading strategies,
as well as the possibility that no equilibrium exists at all. This issue can be addressed by examining
the eigenvalues for Models A and B. For the two processes to be stationary, the two eigenveﬁues of
for Model A and the two eigenvalues df for Model B need to be less than one. Table IV reports

these eigenvalues for the 16 stocks in our sample. The second eigenvalue is very close to one for

12
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Figure 1. Arrival Rates of Trades
The arrival rates of uninformed trades (top) and informed trades (bottom) are forecasted over time
based on Model B for Ashland, with parameter estimates in Table III.

most stocks. For three stocks under Model A and two under Model B, the second eigenvalue becomes
slightly greater than one, implying non-stationarity. These results further confirm that the arrival rates

are highly persistent.

Figure 1 shows a typical time series of the forecasted order arrival rates for one stock in our sample,
Ashland Oil. Here the distinctions between the two series are apparent. Uninformed trade dominates
the total order flow, a finding consistent with the general functioning of liquid markets. The arrival
rates of the uninformed trades not only grow faster over time, but they fluctuate more as well. This
greater volatility suggests that uninformed trade may exhibit complex dependencies, an issue we now

consider.

B. The sheep and the wolf: Do uninformed traders try to avoid informed traders?

From above we know that a high arrival day is likely to be followed by another high arrival day.
But what if the high total trade arrivals reflect greater informed trade? Will the uninformed continue

to arrive en mass to the market, or will they be dissuaded from trading by the expected presence of

13



informed traders? The impact of previous informed arrival rates on the current uninformed arrival rates
is captured b@m for Model A and by®,; for Model B. These variables measure the cross correlation
effects of lagged informed trade on uninformed trade. Thus, a direct test of this avoidance hypothesis

is to examine the sign and significance of these variables.

The estimates 0521 for Model A and of®,; for Model B are remarkably negative for all stocks.
This is evidence of the uninformed systematically avoiding trading when the informed are expected to
be present. This behavior is not predicted by microstructure models, which view the only determinant
of uninformed trading as the presence of other uninformed tréd&ust the strategy seems sensible
nonetheless. Why venture into the trading arena when it is more likely to be populated by wolves? A

better strategy is to simply stay away, and that appears to be what the uninformed tend to do.

The arrival of uninformed traders is also influenced by the most recent realizations on the number
of balanced trades and trade imbalances. In particular, the impact of the trade imhklaonehe
uninformed arrival is captured by,; — 22 in Model A. The results here are mixed. The estimates
for the difference are negative for seven firms and positive for nine. Hence, the impacts of the trade
imbalance are ambiguous. Estimates from Model B are harder to interpret as the imjpgowotild
be captured by

My T2

oy 2g
and hence is actually time-varying by model design. The time series averages of this impact are very

small and have mixed signs across stocks.

Alternatively, the impact of the total number of trades on the arrival rate of uninformed traders
is captured by 2> under both models. Here the estimates are unambiguously positive for all stocks,
implying that an increase in the total number of trades today forecasts an increase in the arrival of

uninformed traders tomorrow.

3An exception to this characterization is Lei and Wu (2000) who allow uninformed trade to be affected by factors such as
momentum and loss aversion.
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C. The wolf revisited: Do informed traders stalk uninformed traders?

If informed traders are strategic, then their trades should depend upon the order arrivals of the unin-
formed. In particular, Kyle’'s model dictates that the informed choose their orders to blend in with
the uninformed, suggesting that there would be strong cross-correlation effects of uninformed trade
on informed trade. Alternatively, if the informed act competitively then their trading strategy is more
mechanistic: trade until the price reaches the new true value, and then stop. This trading strategy

suggests little cross-effects, but would be characterized by strong autocorrelation effects.

We can test for just such behaviors in our model. The impact of previous day’s uninformed order
arrival on today’s informed arrivals is captured 612 for Model A and by®;, for Model B. If the
informed act strategically, we would expect these variables to be large and positive. The estimates
reveal a different story. The estimates in both Models are small, and they are not consistently positive
or negative across stocks. This is consistent with the simpler, competitive model of informed trade.
Informed traders act on information, and hence they do not respond to the activity of uninformed

traders.

Informed trades do tend to be affected by overall volume. The impact of the total number of trades
on the arrival rate of informed traders is capturedyunder both models. The estimates are positive
for all stocks and under both models. Thus, an increase in the total number of trades today forecasts
an increase in the arrival rates of both informed and uninformed trades tomorrow. The impact of the
trade imbalance variable is more problematic. This effect is captur&€dibyl 1> under model A. The

results here are predominantly positive. Under Model B, the impact is captured by

N1 2

ol 28’

which again is time varying and harder to interpret. The time series averages have mixed signs across

stocks.

In summary, we have found that the order arrival processes exhibit a wide range of complex be-
haviors. Uninformed trades tend to be highly persistent, and volatile. Uninformed order arrivals clump

together, with high volume days more likely to follow high volume days, and conversely. This behavior
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is consistent with the sheep characterization found in the literature, but with a significant difference:
the uninformed here are smart enough to try to avoid the wolf. The informed also exhibit complex
patterns, but these patterns are not consistent with the strategic behavior posited in the literature. The
informed do not appear to hide in the order flow, but instead trade persistently. There is a smaller au-
tocorrelation effect of informed order arrivals across days, consistent with information being revealed

during the trading day.

V. Interactions Between Trades and Market Volatility, Liquidity, and Depth

We now turn to analyzing the relation between trades and market parameters such as volatility, liquidity,
and depth. As noted in the Introduction, each of these parameters is linked to trades because the
order arrival process greatly influences subsequent market behavior. Our model provides a way to

characterize this inter-dependence, as well as a framework for testing specific hypotheses.

A. Intra-day volatility

To investigate the interaction between trades and price volatility, we construct two intra-day volatility

measures: (1) the absolute return on daily open-cle®/C|, and (2) daily high-lowjnH /L. Our

model provides detrended order arrival forecasts, so we use these predicted estimates to characterize

how the market’s beliefs regarding order arrivals affect price volatility.

A natural starting point is to consider what relation we would expect to find between trades and
volatility. A market with high order flow is generally viewed as a deep market, or one in which orders
can be accommodated without large impacts on price. In the same vein, it could be argued that greater
order flow brings greater potential for buyers and sellers to cross, and so again price effects would
be small. These arguments suggest that forecasted high order arrival rates would result in low market
volatility. Alternatively, there are two arguments for suggesting the opposite relation. First, large order
flow may expose market makers to significant inventory imbalances. To mitigate this exposure, market
makers may widen spreads or otherwise move prices, which would increase price volatility. Greater

order flow may also signal the presence of new information, and prices would naturally gravitate toward
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new equilibrium levels. Such information-linked effects would also suggest a positive relation between

order arrivals and price volatility.

Table V reports the correlation between the detrended arrival rates forecasts and the two (realized)
intra-day volatility measures. One result is immediately apparent: there is a positive relation between
order arrivals and volatility. This positive relation holds for 15 of the 16 stocks in our sample, and
is robust across both model specifications. Numerous researchers have shown that there is a positive
empirical relation between volume and volatility. But our results suggest that this relation is actually

deeper, that volatility is positively correlated with the predicted order arrival processes.

If information effects dominate inventory effects, then we would expect this link to be more positive
for information-based order arrivals than it is for uninformed order arrivals. The evidence in Table V
does not support this. While this effect holds true for some stocks, it does not for others. A more direct
test of the link between informed arrivals and volatility is to look at the correlation between the intra-
day volatility measures and the composition of trades. In particular, we d&fioethe the forecasted
proportion of informed trades, whefg is defined as:

S

& Ok + 28

Table VI reports these correlations. The signs of the correlations vary across stocks, yielding no clear
prediction. However, the estimated correlations are small in any case, suggesting little link between
trade composition and intra-day price volatility. These results indicate that while volatility increases

with the forecasted arrival rates of total trades, it is relatively independent of the forecasted trade com-

position.

In the same table, we also report the correlation of trade composition for¢castis the total
number of realized tradeET, as well as the realized proportion of trade imbalanie/TT. The
correlation withT T is negative, implying that the relative proportion of informed trades decreases with
increasing total trades. The correlations wih/TT are mostly positive as expected sirfecan be

regarded as an approximate forecasgkaf TT.
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B. Market liquidity and bid-ask spread

Market liquidity is often measured by the bid-ask spread of the security prices with markets in which
the bid-ask spread is small being interpreted as liquid markets. We use our model to derive the bid-ask
spread as a function of the trade sequence and arrival rate forecasts. We then use forecasted arrival rates

to determine how the components of order arrival affect market liquidity.

An application of Bayes rule shows that the probabilities of a g@pdind a badb) information

event conditional on a sell order at timeselk, are given by, respectively,

Pr(glselt) — Fm, Pr(blselt) =

Pr (b) (e +1)

Pr(b)re o)

wherePr (g) andPr (b), denote, respectively, the prior probabilities at timef a good and a bad
information event. LeV be the expected asset value conditional on good new¥ dwlthe expected
value conditional on bad news. L¥ét = (1— )V + 8V denote the unconditional expected value of the

asset.

In a competitive market, the bid price must provide the market maker a zero expected profit condi-
tional on a trade at the bid; that is, the arrival of a sell order. The bid price is thus the expected value of

the asset conditional on history and on the arrival of a sell order:

bidk

Pr(g|selt)V + Pr(b|selt)V + Pr(n|selt)V*

OPr(g)e—(1-3)Pr(g) (e+ 1)

Pr (b)u+e ’ (11)

= V'+(V-V)

wherePr(n|selt) = 1— Pr(g|selt) — Pr(b|sell) is the probability of no information event.

Analogously, the probabilities of a good and a bad information event conditional on a buy order,

buyt, are given by

Pr(b)e

(12)
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The ask price is therefore,

5Pt (g) (e 1) — (L=3)Pr (b)e.

Pr(g)u+¢ (13)

ask = V'+(V-V)

The bid-ask spread can now be computed from equations (11) and (13). In particular, at the opening,

the unconditional probabilities of good and bad information events are, respectively,
Pr(g) =(1-9%)a, Pr(b)=aa.

The opening bid-ask spread (OS) is therefore given by

(ap+ 2¢)

0S=(V-V)3(1 -9 M | (T Faure) (canre) |

If we further assume th&t= 1/2, i.e. bad and good news have equal probabilities, the opening bid-ask
spread simplifies to

0S= (V-V) au“rk — (V-V)B. (14)

Hence, the opening bid-ask spread is proportional to the significance of the informatiom\ive‘gn)

and the forecasted proportion of informed arriv@lsAs Table VI illustrates thgb is negatively corre-

lated with the total number of trades for most stocks, assuming relative time stability on the significance
of the information event( — V), market liquidity increases with increasing trades. Wbeh1/2, the
impacts are not exactly captured Pybut similar observations apply. Generally, more active markets

are more liquid markets.

C. Market depth and price impacts of consecutive trade orders

When a trader tries to load or unload a large position by putting in consecutive buy or sell orders to the
market, the price change could be significant. The price impact of a sequence of trade orders can be

computed by repeated application of equations (10)-(13).
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We take consecutive buy orders as an examplePE¥t!(g) andPr~(b) denote the probabilities
of a good and a bad information event conditionalNr 1 consecutive buy orders. From (13), we

have that the price impact &f consecutive buys is

askl = V' V-V,
PN 8PR 1 (g) (E+H) —(1-8) PR *(b)e
b PR (@) pte ‘

The probabilitiesPi)~(g) and PiN~1(b) can be readily updated via Bayes rule as in (12), starting
with the unconditional priors at the opening. As the number of consecutive buy orders increases, the
probability of a good information event increases and approaches unity while the probability of a bad
information event approaches zero. The price imp@latonverges t® and the price converges to the
expected upper bound of the asgefThe speed of convergence governs the depth of the market and is

determined by the arrival rate forecagise} on that day.

In Figure 2, we plot a typical price impact curwg!, as a function of the number of consecutive
buy ordersN, based on arrival rates forecasts on Ashland on December 24th, 1998 (the last day of
observation). On that day, the forecasted arrival rate of informed trades is 14.33 and that of uninformed
trades is 148.00. As shown in Figure 2, the price of the asset converges to the hight efleefewer

than 20 consecutive buys.

Similar curves can be computed fidrconsecutive sells and for any sequence of buys and sells.
Knowledge of the price impact curve is obviously very important for institutional portfolio managers

in designing strategies of loading or unloading large positions.

Engle and Lange (2001) define a market depth measure VNET, which is intended to capture the net
order flow associated with a fixed price movement. On each day, given the arrival rate forecasts, we
construct an analogous measure of market depth: the halt{itg 6f the price impacts for consecutive
buys. Our measure is defined as the number of bugseded for the price impagh to exceed half of
its maximum ). Nevertheless, our half life measure and VNET differ in at least two important aspects.
First, VNET is defined on the excess trading volume while we are only concerned with the number of
trades. Trade size does not play a role in our analysis. A second difference is that VNET implicitly

assumes that the sequence of trades does not matter, only the net trade imbalance affects prices. In
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Figure 2. Price Impacts of Consecutive Buys
The line depicts the price impact of consecutive by {or Ashland, based on the arrival rate fore-
casts from Model B on the last day of the data (December 24th, 1998). The parameter estimates of the
model are reported in Table IIl.

our model, however, the exact sequence of trading history also plays a role in the price movement. We
therefore specifically define the half life as a function of consecutive number of buys, not on net order

flows.

Figure 3 depicts two typical times series of our market depth forecasts for Enron on the left and
Pfizer on the right, implied by Model B estimates. For both stocks, the market depth measured by half

life has increased in the 90s.

Tables VIl reports the mean half life for each stock as well as its correlations with trades and price
volatilities. The half lives implied from the two models differ from each other, but they exhibit similar
overall trends: Stocks such as Pfizer and AOL Time Warner have a deeper market than stocks such as
Ashland. Furthermore, the half lives for most stocks are positively correlated with the total number of
tradesT T. It takes more trades to reveal information on a heavy trading day, i.e. the market is deeper
in presence of heavier trade activities. On the other hand, the correlation between the half lives and the

ratio of trade imbalance to total trades are mostly negative, implying that the market is deeper when we
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Figure 3. Time Varying Forecasts of Market Depth
Market depth is measured as the half lit¢/¢) of the price impact of consecutive buy orders, defined
as the number of consecutive buys needed for the impact to exceed half of its maximum. The half life
is computed for Enron on the left panel and Pfizer on the right panel, based on estimates of Model B,
reported in Table I1l.

have fewer informed trades. In summary, an increase in total trades increases the market depth while

an increase in informed trades reduces it.

VI. Residual Analysis

One way to investigate the robustness of our specification is to check for structure in the residuals of
forecasted order flows. If our specification captures the data well, we should find minimal structure
from the following forecasting residuals on the absolute trade imbal&j@nd balanced traddsT —

IKI:

 Zip — By 1 [Zi]

et = i=12

Bz 2, with  Zy = [|Ke|, TT — K]

The expected value on total trades is known analytic@jy; [T T;] = ok —1 + 2&;_1. We determine the
expected value oK| by simulation. The residuals are represented as a percentage of their respective
forecasted value. Table VIII reports the summary statistics for both residuals under Model A and under
Model B. For each stock, the first row reports the properties;oind the second row reports the

properties oky.
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Compared to the summary statisticsdiin Table |, the forecasting residuals exhibit much less
structure. In particular, the serial dependence (the first order autocorrelation) is significantly smaller,
and in many cases not significantly different from zero. The cross correlations between the two residu-

als are also smaller than those between the two elements of the raif. data

Nevertheless, one can still discern some remaining structure in the residuals. In particular, both
models seem to induce similar biases on the mean of the forecasting residuals. Both models under-

forecast the absolute trade imbalance but slightly over-forecast the balanced trades.

VIl. Conclusion

The dynamic models in this paper identify important forecasting relations in the arrival rates of trades.
While the models have implications for the trading behavior and price impacts of trades, for future
research, more information can be revealed and additional interesting applications can be found by

combining our dynamic quantity models of trades with dynamic models of prices.

As an example, recall that the opening bid-ask spread (OS) each day can be written as a product of

the significance of the information event and the composition of arrival rates.

wherep; captures the relative proportion of informed arrivals. Thus, given the forecasts of arrival rates,
together with information on the high and low expected values, we can compute the opening bid-ask
spread. Or upon the observation of the opening bid-ask spread, one can infer the high low difference,
which is also a measure of the significance of the information event. More significant news in either
direction would generate a higher high-low spread. We hence obtain a forecast of the significance of

the information event.

In an actively traded market, given the presence of an information event, the significance of the
information event will ultimately be revealed to the market at the close. In case of a positive information
event, the transaction price converge¥tand in case of a negative information event, it converges to

V. Therefore, the forecasted arrival rates and the opening bid-ask spread together reveal important
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information about the open-close spread. ét= (1— )V + 8V be the opening price, then the open-
close spread i61 —8)(V —V) in case of a bad new§(V —V) in case of a good news, and zero in case

of no news.

As the open-close spread can also be regarded as a daily volatility forecast, it is interesting to com-
pare a forecast from trade quantities and opening bid-ask spread with forecasts from the price process,
such as volatility forecasts via GARCH type models. One can further investigate whether incorporat-
ing the information from the trade process increases the forecasting efficiency of GARCH type models.
Furthermore, if the derivatives market only prices in GARCH type forecasts, information revealed from
the trade process can potentially be used to design profitable trading strategies. For example, when the
forecasted open-close spread is higher than already priced in the market, one can long a daily put, a
call, or a straddle and delta hedge. All these positions profit from increasing volatilities but are more

or less immune from directional bets.
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Table |
Summary Statistics of Trading Activities

Entries report the summary statistics of the trade quanftties||K|,V — |K|], where|K| = |S— B| is the trade
imbalance (difference between number of sells and buysYdne S+ B is the total number of trades (sells plus
buys) at each day. Under each ticker, the first row reports the properties of trade imbElamwbée the second
row reports the properties of the number of balanced tr&des |K|. The second columrgj reports the growth
rates, estimated from the following regression:

InZy =a+gt+e, i=12

The third column &) reports the regression intercept estimate. The fourth column (St Dev) reports the standard
deviation of the regression residual The fifth column (Auto) reports the first order autocorrelation of the
residual. The last columm) reports the cross-correlation between the trade imbaldficand the number of
balanced tradeE T — |K|, measured on the detrended residuals.

Ticker g,% a St Dev Auto p
ASH 5.073 0.921 10.190 0.145 0.206
11.495 2.721 37.044 0.809 —
XOM -3.662 3.685 47.322 0.326 -0.004
6.447 5.149 197.227 0.885 —
DUK 3.743 1.551 15.216 0.224 0.183
10.419 3.200 57.442 0.882 —
ENE 11.557 0.870 16.761 0.291 0.326
16.285 2.812 82.516 0.908 —
AOL 133.194 2.896 131.974 0.571 0.683
93.718 5.408 688.675 0.906 —
MO 14.643 2.323 83.095 0.579 0.455
15.132 4.655 340.383 0.899 —
T 6.033 3.369 78.816 0.433 0.132
4.495 5.808 235.872 0.815 —
PFE 13.650 2.170 76.184 0.683 0.625
13.944 4.431 375.726 0.953 —
LUV 17.934 0.360 21.802 0.452 0.416
18.387 2.476 88.850 0.873 —
AMR 5.503 2.071 27.079 0.267 0.369
7.186 4.388 128.836 0.836 —
DOW -1.513 2.928 31.871 0.419 0.125
2.394 5.121 88.271 0.697 —
C 22.445 1.482 76.227 0.772 0.802
24.244 3.341 314.672 0.951 —
JPM 12.619 1.609 33.315 0.473 0.554
13.800 3.778 151.941 0.898 —
WMT 11.009 2.490 58.606 0.514 0.210
15.338 4.057 207.550 0.907 —
HD 21.105 1.387 57.029 0.658 0.533
22.693 3.206 179.999 0.887 —
GE 10.925 2.557 57.672 0.398 0.328
12.771 5.057 452.945 0.947 —
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Table Il
Maximum Likelihood Estimates for Model A

Entries are maximum likelihood estimates of Model A:
lIJt = (A)egt + ch.IJt_]_eg + I'Zt,

wherey = [ok, 2&;] " denotes time forecasts of the arrival rates of informed and uninformed trades
attimet +1andZ = [[K|,TT — |K|]" denotes the realized trade imbalance and number of balanced
trades at timé. In the parentheses are standard errors. The last row reports the log likelihood value.

) ASH XOM DUK ENE AOL MO ATT PFE
5 05511 07743 05349 04816 05371 03834 05951 04482
(0.0142) (0.0092) (0.0127) (0.0136) (0.0000) (0.0132) (0.0111) (0.0145)
a 04092 05266 04867 04481 05203 04922 04908 04074
(0.0103) (0.0090) (0.0099) (0.0098) (0.0000) (0.0093) (0.0087) (0.0098)
0 00072 00001 00471 Q0523 Q0154 01445 00078 01389
(0.0044) (0.0043) (0.0031) (0.0041) (0.0000) (0.0009) (0.0078) (0.0014)
% 0.0093 00027 00491 Q0537 01593 01424 00321 01388
(0.0042) (0.0040) (0.0030) (0.0041) (0.0000) (0.0007) (0.0033) (0.0013)
w 21190 24286 23074 19913 30877 28442 08761 21160
(0.0957) (0.1300) (0.0956) (0.0861) (0.0000) (0.0688) (0.1187) (0.0640)
wp 78509 81612 78323 88338 101759 94953 55258 124808
(0.5016) (0.4496) (0.4637) (0.5569) (0.0000) (0.1034) (0.4442) (0.2546)
o 05204 06117 05046 05378 04863 06387 05042 05081
(0.0179) (0.0040) (0.0156) (0.0152) (0.0002) (0.0033) (0.0032) (0.0048)
d1s 0.0348 00413 00371 00329 Q0666 00260 Q0595 00314
(0.0028) (0.0009) (0.0025) (0.0021) (0.0000) (0.0006) (0.0013) (0.0009)
o ~1.7298 —1.2705 -1.6347 -2.0162 -19612 -0.9257 -18897 —2.8179
(0.1279) (0.0339) (0.1008) (0.1351) (0.0000) (0.0262) (0.0425) (0.0909)
P2y 11219 11360 11193 11417 12552 10549 12227 11769
(0.0123) (0.0022) (0.0101) (0.0116) (0.0001) (0.0011) (0.0028) (0.0039)
M1 00768 01302 00913 00719 01120 01305 00926 Q0575
(0.0033) (0.0024) (0.0033) (0.0028) (0.0000) (0.0025) (0.0017) (0.0015)
Mo 00720 00826 00718 00646 00815 00997 Q0877 00482
(0.0028) (0.0015) (0.0024) (0.0024) (0.0000) (0.0019) (0.0016) (0.0012)
M1 03022 04449 03335 03431 04376 03948 03671 03698
(0.0067) (0.0023) (0.0057) (0.0052) (0.0000) (0.0013) (0.0013) (0.0017)
Moo 03316 03590 03308 03574 02938 04627 04253 03471

(0.0035) (0.0012) (0.0036) (0.0029) (0.0001) (0.0006) (0.0007) (0.0009)

L(x10°) 59201 640319 99586 125957 313832 986538 1126279 748664
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Table Il (continued)
Maximum Likelihood Estimates for Model A

Entries are maximum likelihood estimates of Model A:
lIJt = (k)egt + ch.IJt_]_eg + FZt,

whereyy = [0k, 2&] " denotes time forecasts of the arrival rates of informed and uninformed trades
at timet+1andZ = [|K|,TT — |K|]" denotes the realized trade imbalance and number of balanced
trades at timé. In the parentheses are standard errors. The last row reports the log likelihood value.

e LUV AMR DOW C JPM WMT HD GE
5 0.2998 03827 05529 04275 05375 05864 05600 05008
(0.0138) (0.0153) (0.0129) (0.0143) (0.0131) (0.0106) (0.0156) (0.0130)
a 04276 04707 04161 04960 05191 05814 03397 04342
(0.0096) (0.0101) (0.0096) (0.0104) (0.0102) (0.0090) (0.0104) (0.0097)
0 0.0682 00996 00486 00809 00908 Q0614 Q0759 01229
(0.0035) (0.0039) (0.0027) (0.0042) (0.0028) (0.0013) (0.0018) (0.0022)
%@ 00701 01010 00452 Q0848 00918 Q0714 00790 01233
(0.0034) (0.0038) (0.0023) (0.0041) (0.0027) (0.0010) (0.0018) (0.0020)
w 20010 27846 22215 26584 29133 28769 27226 20085
(0.0718) (0.1719) (0.1242) (0.0897) (0.0957) (0.0617) (0.0929) (0.0734)
wp 6.7676 94418 102262 97331 94784 64879 106474 89251
(0.2306) (0.5416) (0.4643) (0.3617) (0.3080) (0.0899) (0.1842) (0.2661)
Py 05514 -0.3745 05461 05143 03432 Q7717 04794 05210
(0.0085) (0.0267) (0.0071) (0.0078) (0.0086) (0.0029) (0.0048) (0.0040)
P 0.0444 02131 00366 Q0577 00697 00210 00364 00301
(0.0020) (0.0069) (0.0014) (0.0016) (0.0022) (0.0005) (0.0013) (0.0008)
D1 ~1.4905 —45369 -1.7943 -1.7880 -2.1052 -0.4211 -2.0071 -1.9364
(0.0594) (0.1841) (0.0642) (0.0694) (0.0708) (0.0118) (0.0778) (0.0589)
D2y 11461 17012 11393 12133 12219 10334 11371 11186
(0.0068) (0.0259) (0.0054) (0.0070) (0.0074) (0.0007) (0.0033) (0.0020)
M1 00960 01202 00900 00630 01106 01370 00801 Q0973
(0.0026) (0.0029) (0.0022) (0.0016) (0.0026) (0.0022) (0.0025) (0.0023)
Mo 0.0863 00980 00716 00721 00982 01045 Q0727 Q0680
(0.0022) (0.0023) (0.0018) (0.0017) (0.0022) (0.0017) (0.0023) (0.0016)
M1 03294 04634 03817 02637 03840 02878 03282 04300
(0.0033) (0.0025) (0.0031) (0.0022) (0.0030) (0.0016) (0.0018) (0.0020)
Mo 0.3478 04002 03806 03358 03677 03886 03248 03994

(0.0018) (0.0012) (0.0014) (0.0013) (0.0016) (0.0010) (0.0010) (0.0008)

L(x1C°) 129931 293080 381600 350912 305118 530571 381229 1158519
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Table Il
Maximum Likelihood Estimates for Model B

Entries are maximum likelihood estimates of Model B:
INY; = w+ Pg+ (I — P)gt+ PInP_1 + MMy,

whereyy = [ap,2¢]" denotes the time forecasts of the arrival rates of informed and uninformed
trades attimeé+1andMj = Zit /Y1) — 1 is a martingale difference formulated frafn= [|K|, TT —
IK|]T. In the parentheses are standard errors. The last row reports the log likelihood value.

S ASH XOM DUK ENE AOL MO ATT PFE
5 05086 07037 04727 07731 03955 04553 05209 08315
(0.0147) (0.0107) (0.0127) (0.0116) (0.0635) (0.0149) (0.0115) (0.0096)
a 0.3896 06158 04880 02248 02409 04919 05303 01382
(0.0101) (0.0087) (0.0099) (0.0086) (0.0267) (0.0097) (0.0086) (0.0070)
N 00705 00831 00637 01138 00943 01425 Q0391 00821
(0.0016) (0.0012) (0.0025) (0.0011) (0.0072) (0.0006) (0.0004) (0.0010)
% 0.1020 00829 00999 01651 00637 01814 Q0457 02244
(0.0016) (0.0019) (0.0041) (0.0009) (0.0082) (0.0017) (0.0006) (0.0025)
W 1.0086 04368 01463 07891 16345 06154 01450 13101
(0.0278) (0.0131) (0.0281) (0.0263) (0.0649) (0.0097) (0.0134) (0.0327)
wp 05553 01691 01125 07238 03766 02941 01297 03011
(0.0136) (0.0039) (0.0181) (0.0184) (0.0127) (0.0049) (0.0071) (0.0078)
o 06718 07882 05642 07637 05218 06761 06031 04319
(0.0106) (0.0024) (0.0174) (0.0072) (0.0035) (0.0012) (0.0024) (0.0027)
Py ~0.1725 Q0471 02095 -0.1931 -0.0468 00710 02406 —0.1359
(0.0091) (0.0029) (0.0160) (0.0076) (0.0047) (0.0013) (0.0033) (0.0026)
(o -0.1386 -0.0583 -0.2693 -0.1523 -0.0897 -0.1594 -0.2104 —0.1358
(0.0061) (0.0009) (0.0183) (0.0094) (0.0014) (0.0008) (0.0020) (0.0014)
P2y 0.8862 10040 11238 08079 09797 10390 11190 09730
(0.0041) (0.0009) (0.0127) (0.0038) (0.0010) (0.0007) (0.0020) (0.0006)
M1 00784 01820 00825 Q0227 Q0749 00942 Q0812 00288
(0.0030) (0.0028) (0.0030) (0.0015) (0.0084) (0.0019) (0.0013) (0.0015)
Mo 04527 06226 03468 02495 05278 07779 06126 04768
(0.0091) (0.0042) (0.0096) (0.0122) (0.0032) (0.0018) (0.0025) (0.0029)
M1 00451 00585 Q0566 Q0254 00194 Q0511 Q0451 00092
(0.0015) (0.0009) (0.0015) (0.0010) (0.0021) (0.0010) (0.0008) (0.0005)
Mo 03325 03230 02880 03503 01939 04986 04308 03343

(0.0032) (0.0011) (0.0032) (0.0026) (0.0007) (0.0004) (0.0007) (0.0007)

L(x10°) 59190 640295 99590 125788 313359 986070 1126333 747764

30



Table Il (continued)
Maximum Likelihood Estimates for Model B

Entries are maximum likelihood estimates of Model B:

where; = [apk,2¢]" denotes the timé forecasts of the arrival rates of informed and uninformed

N = 0+ g+ (I - P)gt+ PInYr1 + My,

trades attimeé+1andMi = Zit /Y1) — 1 is a martingale difference formulated frafn= [|K|, TT —
IK|]T. In the parentheses are standard errors. The last row reports the log likelihood value.

) LUV AMR DOW C JPM WMT HD GE
5 07215 02314 03422 05545 03508 03596 05635 03970
(0.0156) (0.0129) (0.0121) (0.0140) (0.0136) (0.0109) (0.0165) (0.0132)
a 01618 02811 04220 05225 05034 05807 03002 04369
(0.0079) (0.0081) (0.0093) (0.0074) (0.0098) (0.0085) (0.0101) (0.0093)
0 01521 00294 00208 00012 01399 00707 01092 01014
(0.0015) (0.0015) (0.0010) (0.0000) (0.0015) (0.0005) (0.0007) (0.0006)
% 01679 00130 00199 01277 01829 00743 01536 01379
(0.0009) (0.0027) (0.0014) (0.0016) (0.0029) (0.0015) (0.0007) (0.0008)
w 07282 00826 00673 03374 01494 08912 04953 10596
(0.0124) (0.0258) (0.0312) (0.0050) (0.0128) (0.0091) (0.0069) (0.0100)
wp 0.3802 00689 00794 02884 00966 06926 03240 05735
(0.0048) (0.0139) (0.0158) (0.0042) (0.0077) (0.0074) (0.0036) (0.0064)
P 09184 03790 05753 10698 07296 06643 08860 Q07703
(0.0029) (0.0055) (0.0062) (0.0029) (0.0039) (0.0023) (0.0017) (0.0017)
Py ~02519 03072 02339 -0.1306 01159 00425 -0.0654 —0.0747
(0.0038) (0.0058) (0.0085) (0.0032) (0.0048) (0.0019) (0.0017) (0.0015)
o -0.0186 -0.3331 -0.2120 00576 -0.1614 -0.2391 -0.0539 —0.1131
(0.0013) (0.0056) (0.0049) (0.0025) (0.0038) (0.0023) (0.0010) (0.0014)
Pao 0.8697 11600 11084 08905 10673 10196 09468 09533
(0.0016) (0.0042) (0.0050) (0.0028) (0.0033) (0.0014) (0.0009) (0.0008)
M1 00525 00685 00958 Q0758 00742 01135 00556 00263
(0.0026) (0.0021) (0.0023) (0.0012) (0.0017) (0.0017) (0.0019) (0.0006)
Mo 05637 04782 05315 04578 05558 04699 04362 05197
(0.0053) (0.0033) (0.0052) (0.0024) (0.0057) (0.0021) (0.0021) (0.0054)
M1 00253 00419 00517 Q0623 00475 Q0845 00328 00160
(0.0013) (0.0013) (0.0012) (0.0010) (0.0010) (0.0013) (0.0011) (0.0004)
Mo 03235 03543 03676 04123 03730 04761 03145 03737
(0.0012) (0.0010) (0.0013) (0.0009) (0.0011) (0.0009) (0.0006) (0.0008)
L(x10°) 129704 293073 381629 350781 305117 530567 381154 1158491
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Table IV
Stationarity of the Dynamic Processes in Models A and B

Entries are the eigenvalues of the autocorrelation metrix® + I in Model A and® in Model B. The
eigenvalues should be less than one for the processes to be stationary.

Ticker Model A Model B

ASH 0.6473 0.9950 0.591 0.802
XOM 0.7464 1.0013 0.696 0.613
DUK 0.6281 0.9958 0.513 0.711
ENE 0.6821 0.9974 0.735 0.400
AOL 0.7401 1.0014 0.967 0.333
MO 0.7080 0.9855 0.688 0.595
T 0.7347 0.9921 0.799 0.696
PFE 0.6901 0.9950 0.850 0.732
LUV 0.6996 0.9979 0.967 0.990
AMR 0.3310 0.9957 0.992 0.959
DOW 0.6936 0.9918 0.989 1.004
C 0.7259 1.0018 0.987 1.005
JPM 0.5672 0.9979 0.821 0.971
WMT 0.8115 0.9936 0.986 0.976
HD 0.6209 0.9956 0.997 0.988
GE 0.6437 0.9959 0.983 0.991
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Table V
Correlations Between Arrival Rate Forecasts and Price Volatility

Entries are the correlations between the arrival rates (detrended) of informed and uninformed trades
() and absolute returns on daily open-cloda(©O/C)|) and high-low (n(H /L)).

Ticker Model A Model B
[In(O/C)| In(H/L) [ In(G/C)| In(H/L)

[o{1 2¢ (o {1 2€ (o (V1 2€ o 2€

ASH 0.0619 0.0225 0.1285 0.0535 0.1244 0.0826 0.2142 0.1586
XOM 0.1604 0.1471 0.2537 0.2329 0.0652 0.1268  0.1423 0.2757
DUK 0.1526  0.1279 0.2439 0.1961 0.1444 0.1284 0.2707 0.2507
ENE 0.0537 0.0355 0.1867 0.1614 0.0377 0.1123 -0.0038 0.2507
AOL 0.0712 0.0811 0.1657 0.1725 0.0649 0.0738 0.1568 0.1477

MO 0.1407  0.1544 0.2577 0.2795 0.1249 0.1137 0.1985 0.2181
T 0.1324 0.1345 0.1970 0.2513 0.1176 0.1252 0.2383 0.2720
PFE 0.1831 0.1998 0.3408 0.3479 0.0433 0.0799 0.0987 0.1893
LUV 0.1133 0.1081 0.2424 0.2220 0.0883 0.0662 0.1608 0.1847
AMR 0.1549 0.1629 0.3067 0.3161 0.1193 0.1596 0.2441 0.3109
DOwW 0.1472 0.1678 0.2668  0.2865 0.1238 0.1556  0.2228 0.2560
C 0.1314 0.1255 0.2384 0.2273 0.0943 0.1240 0.1563 0.2336

JPM 0.1490 0.1436 0.2369  0.2268 0.0966 0.0727 0.1376 0.0886
WMT  0.1575 0.1569 0.2712 0.2768 0.1446 0.1594 0.2549 0.2819
HD -0.0003 -0.0368 0.0556 -0.0061 0.0565 0.0109 0.1228 0.0592
GE 0.1849 0.2237 0.3647 0.4132 0.0334 0.2189 0.0989 0.4106

33



Table VI

Correlations Between Trade Composition Forecasts and Total Trades, Trade Imbalances, and

Entries are the correlation between the forecasted fraction of informed ffades

Price Volatilities

B=—_ "2

Ok + 2¢

and the total number of tradeE T), the ratio of trade imbalance to total tradds|(T T), and absolute

returns on daily open-closélit O/C|) and high-low [nH/L).

Ticker Model A Model B
TT K ing InH TT 8 ing T

ASH -0.6555 0.3063 0.0226  0.0685 -0.6225 0.2560 0.0270 0.0535
XOM  -0.3327 0.5292 -0.0159 -0.0253 -0.3657 0.4794 -0.0389 -0.0763

DUK -0.7017 0.2982 -0.0663 -0.0823 -0.7541  0.3002 -0.0607 -0.0628

ENE -0.7511 0.3611 -0.0297 -0.1325 -0.7034  0.2938 -0.0599 -0.2027
AOL 0.0527 -0.0410 -0.0159 0.0608 -0.5577 -0.0401 0.0073 0.0136

MO -0.1555 0.2476 -0.0414 -0.0541 -0.3559 0.0929 -0.0723 -0.1430
T 0.1787 0.3190 0.0349 0.0619 -0.2218 0.3811 -0.0375 -0.0718
PFE -0.3987 -0.0006 -0.1537 -0.2317 -0.5366 0.0125 -0.1792 -0.2736
LUV -0.7212 0.2766 -0.0668 -0.1420 -0.4089 0.1771  0.0230 -0.0084

AMR  -0.1129 0.0057 -0.0664 -0.1039 -0.4014 0.0326 -0.1382 -0.2597

DOW 0.0663 0.1936 -0.0255 -0.0127 -0.2244  0.2434 -0.0405 -0.0246
C -0.6319  0.2207 -0.0347 -0.0726 -0.6620 0.2104 -0.0634 -0.1293
JPM -0.4126  0.1484 -0.0134 -0.0145 -0.5045 0.1537 -0.0277 -0.0430
WMT -0.5137 0.4569 -0.0172 -0.0405 -0.6896  0.3921 -0.0621 -0.1172

HD -0.6102 0.2517 0.1141  0.1449 -0.6456  0.2604 0.1124  0.1473

GE -0.2605 0.2532 -0.0597 -0.0693 -0.6094 0.1910 -0.1821 -0.2971
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Table VII
Properties of the Half Life of Price Impacts

Entries report the mean half life(,) of price impacts and its correlations with the number of trades
(TT), the ratio of trade imbalance to total tradés|(T T) and absolute returns on daily open-close
(IIn©/CJ) and high-low [nH/L). The price impact oN consecutive buy orders is defined as

W= 3PR () (e+ W) — (1-8) P *(b)e
t PRt (g)pte ’
wherePiN~1(g) andPN~1(b) are, respectively, the probabilities of the good news and bad news at date

t, conditional onN — 1 consecutive buys, which is updated via Bayes rule. The half{ifgis then
defined as the minimum number of consecutive diysich that) > /2.

Ticker Model A Model B

K o] H KK o] H
Mean TT = |Ing| In T Mean TT = |lng InT

ASH 3.4242 0.6477 -0.3010 -0.0162 -0.0437 3.3910 0.6720 -0.2472 -0.0020 0.0060
XOM 5.9628 0.3770 -0.4816 0.0139 0.0232 5.1263 0.4831 -0.4263 0.0574 0.1034
DUK 3.4436 0.6562 -0.2650 0.0625 0.0905 3.2431 0.7598 -0.2376 0.0498 0.0745
ENE 3.5372 0.7787 -0.3524 0.0198 0.1197 6.9759 0.7473 -0.3038 0.0560 0.2031
AOL 4.2668 -0.1496 0.0529 0.0129 -0.0779 9.0777 0.7422 -0.0056 0.0666 0.0975
MO 3.7621 0.1476 -0.1987 0.0470 0.0578 44108 0.3434 -0.0660 0.0647 0.1302
T 48598 -0.1331 -0.2742 -0.0161 -0.0311 4.2812 0.2519 -0.2713 0.0308 0.0771
PFE 41724 0.4464 -0.0437 0.1308 0.1909 11.8016 0.7905 -0.0791 0.1979 0.2934
LUV 24784 0.7001 -0.2560 0.0503 0.1075 6.0131 0.5481 -0.2741 0.0203 0.0823
AMR 3.0041 0.0147 0.0001 0.0060 -0.0066 6.3631 0.4722 -0.0423 0.1489 0.2724
DOW 4.6692 -0.0154 -0.1406 0.0318 0.0224 3.8990 0.1728 -0.1847 0.0337 0.0197
C 3.1464 0.6713 -0.1675 0.0574 0.1041 42188 0.9017 -0.1309 0.1144 0.2111
JPM  3.8781 0.3217 -0.1282 0.0023 -0.0063 3.2632 0.4919 -0.1037 0.0384 0.0694
WMT 3.7766 0.5143 -0.4067 0.0292 0.0512 2.9543 0.7133 -0.3772 0.0769 0.1361
HD 3.8954 0.5473 -0.2489 -0.0909 -0.1262 3.9940 0.6434 -0.2800 -0.0882 -0.1053
GE 5.4387 0.2552 -0.1917 0.0451 0.0598 49054 0.7272 -0.2074 0.1716 0.2915
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Table VIII
Residual Analysis

Entries report the sample estimates of mean (Mean), standard deviation (St Dev), first order autocorrelation
(Auto), and cross-correlation coefficiem) (of the percentage forecasting residuals of the absolute trade imbal-
ance|K| and the balanced tradeT — |K|:

Zi —Ei_1[Zi] . .
AP0 with Zo= (K T — (K]
Eit ]E’(—l[Zi’[] ) I y 4y, WI t H t‘7 t | t”

The expected value on total trades&: 1 [T T] = a1 + 2€;—1. The expected value dK| is determined by
simulation. For each stock, the first row reports the properties of the first element and the second row reports that
of the second element of the residealThe arrival rates are forecasted based on parameters reported in Tables
II'and III.

Ticker Model A Model B
Mean St Dev Auto p Mean St Dev Auto p
ASH 0.373 1.159 -0.000 -0.118 0.455 1.253 0.036 -0.113
-0.076 0.371 0.028 — -0.081 0.369 0.010 —
XOM 0.318 1.055 0.189 -0.400 0.130 0.898 0.138 -0.394
-0.031 0.229 0.074 — -0.031 0.229 0.073 —
DUK 0.353 1.165 0.079 -0.296 0.341 1.152 0.080 -0.296
-0.065 0.310 -0.010 — -0.064 0.310 0.014 —
ENE 0.368 1.132 0.043 -0.204 1.986 2.651 0.116 -0.166
-0.063 0.331 0.028 — -0.143 0.306 0.046 —
AOL 0.303 0.971 -0.008 0.278 3.775 3.557 0.067 0.161
-0.015 0.340 0.108 — -0.124 0.321 0.253 —
MO 0.165 0.970 0.134 -0.039 0.247 1.076 0.233 -0.105
-0.029 0.263 0.043 — -0.094 0.251 0.020 —
T 0.342 1.104 0.274 -0.214 0.216 0.984 0.272 -0.211
-0.036 0.228 0.090 — -0.034 0.227 0.055 —
PFE 0.492 1.200 0.177 -0.046 4519 4.809 0.225 -0.107
-0.038 0.268 0.058 — -0.093 0.261 0.100 —
LUV 0.130 0.948 0.078 -0.053 2.491 3.135 0.032 -0.041
-0.076 0.428 0.069 — -0.184 0.381 0.104 —
AMR -0.022 0.879 0.026 0.053 3.390 3.966 0.067 0.040
-0.030 0.339 0.018 — -0.123 0.307 0.022 —
DOW 0.299 1.092 0.138 -0.113 0.279 1.063 0.120 -0.113
-0.031 0.251 0.051 — -0.027 0.251 0.048 —
C 0.260 0.973 0.098 -0.143 0.752 1.751 0.360 -0.103
-0.053 0.332 0.074 — -0.137 0.311 0.016 —
JPM 0.179 0.947 0.076 -0.115 0.229 0.988 0.116 -0.102
-0.036 0.277 0.065 — -0.030 0.280 0.028 —
WMT 0.191 0.915 0.170 -0.221 0.118 0.881 0.243 -0.203
-0.043 0.292 0.067 — -0.050 0.288 -0.010 —
HD 0.717 1.419 0.262 -0.065 0.844 1.545 0.306 -0.019
-0.064 0.378 0.107 — -0.072 0.373 0.094 —
GE 0.363 1.148 0.105 -0.156 0.284 1.086 0.236 -0.145

-0.021 0.210 0.068 — -0.024 0.210 0.063 —




