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ABSTRACT

In this paper we extend the model of Easley and O’Hara (1992) to allow the arrival rates of

informed and uninformed trades to be time-varying and forecastable. We specify a generalized au-

toregressive bivariate process for the arrival rates of informed and uninformed trades and estimate

the model on 16 actively traded stocks on the New York Stock Exchange over 15 years of transac-

tion data. Our results show that uninformed trades are highly persistent. Uninformed order arrivals

clump together, with high uninformed volume days likely to follow high uninformed volume days,

and conversely. This behavior is consistent with the passive characterization of the uninformed

found in the literature. But we do find an important difference in how the uninformed behave; they

avoid trading when the informed are forecasted to be present. Informed trades also exhibit complex

patterns, but these patterns are not consistent with the strategic behavior posited in the literature.

The informed do not appear to hide in order flow, but instead they trade persistently.

We also investigate the correlation between the arrival rates of trades and trade composition on

market volatility, liquidity and depth. We find that although volatility increases with the forecasted

arrival rates of total trades, it is relatively independent of the forecasted composition of the trade.

We use the opening bid-ask spread as a measure of market liquidity. We find that as the number of

trades increases over time, the relative proportion of informed trades decreases and hence, spreads

become narrower and the market becomes more liquid. Finally, we compute the price impact curve

of consecutive buy orders and report the half life of the price impact as a measure of market depth.

We find a positive correlation between the half life and total trades indicating that the market is

deeper in presence of more trades.



Time-Varying Arrival Rates of Informed and Uninformed Trades

I. Introduction

A fundamental insight of the microstructure literature is that order flow is informative regarding sub-

sequent price movements. This informational role arises because orders arrive from both informed and

uninformed traders, and market observers can infer new information regarding the value of the asset

from the composition and existence of trades. Thus, market parameters such as volume, volatility, mar-

ket depth, and liquidity are all linked in the sense that each is influenced by the underlying order arrival

processes. In this paper, we propose a dynamic microstructure model of trading, and we investigate

how the dynamics of trades and trade composition interact with the evolution of market liquidity, depth

and price volatility.

There are many reasons why understanding market liquidity, depth and price volatility are impor-

tant. From a practical perspective, the cost of trading in a security is inextricably linked to these market

variables, and market professionals devise trading strategies that explicitly incorporate these factors.

Moreover, the volatility process is important not only for influencing the risk and return to an investor

in the security, but also for understanding the behavior of derivative securities linked to the asset. From

a more academic perspective, understanding the evolution of liquidity, depth and volatility provides

insight into the price formation process as well as into concepts such as market efficiency. We argue

in this paper that understanding these market parameters requires understanding a more basic market

variable, the order arrival process.

To motivate our analysis, a useful construct is to view order arrivals as reflecting the behavior of

sheep and wolves. In sequential trade models (for example, Glosten and Milgrom, 1985) and in Kyle

(1985), the uninformed act as sheep, meekly heading to market where they will be preyed upon by the

more informed wolves. The informed traders, the wolves, also head to the market, driven by the need

to feast on the gains from their private information. In simple constructs, the sheep and wolves eschew

strategic considerations and thus move competitively (and mechanistically) to market. Kyle (1985)

introduced the concept of a strategic trader, or a smart wolf, who profits by timing his order arrivals

so as to hide among the sheep. Whether packs of wolves can similarly profit by strategic trading is
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unclear as the equilibrium in Kyle’s model breaks down when the number of informed traders becomes

too large (see Back, Cao, and Willard, 2000). Despite scientific breakthroughs elsewhere, the sheep in

microstructure models remain quite docile. Admati and Pfleiderer (1988) and Foster and Vishwanathan

(1990) allowed for more introspective sheep who timed their trades to avoid the presence of wolves. In

these models, sheep herd by sending in orders when other sheep are known to be present; the wolves

respond by trading when the sheep trade. A problem in these models is either that multiple equilibria

abound, or that no equilibrium exists at all.

How then do actual traders behave in securities markets? Do uninformed traders meekly head to

market, or are they more sensitive to the dangers of certain trading environments? Are informed traders

strategic in the sense of hiding amongst the uninformed, or do more carnal urges force them to act more

competitively? These are empirical questions, and their answers have important implications for the

resultant price processes in markets.

In this paper, we develop a theoretical and empirical framework for addressing these questions. Our

model is a dynamic extension of the microstructure model of Easley and O’Hara (1992), in which a

competitive market maker sets bid and ask prices based on her forecast of the composition of the traders

(informed versus uninformed) and the probability of good or bad news. In Easley and O’Hara (1992)

the arrival rates of traders are assumed to be constant and iid over time. Easley, Kiefer, and O’Hara

(1997a) relaxed these stringent assumptions to allow for greater complexity in the arrival process for

uninformed trades, and in particular allowed uninformed trades to be path dependent within trading

days. Lei and Wu (2000) consider a model in which trades are independent within trading days, but have

arrival rates that follow a Markov switching process with history dependent switching probabilities. In

this research, we consider independent arrivals within trading days, but we allow the arrival rates of

informed and uninformed traders to be time-varying and forecastable. In particular, we propose a

generalized autoregressive bivariate vector process for (i) the arrival rates and (ii) the log of the arrival

rates. We estimate both models on 16 actively traded stocks listed on the New York Stock Exchange

over 15 years of transactions data. The performance of the two dynamic models is similar, suggesting

that common features of the trade dynamics underlie all stocks investigated.

Our approach is a blending of model-based microstructure with the literature analyzing the econo-

metric determinants of the joint dynamics between trades and prices. Examples of this research include
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Hasbrouck (1991), Dufour and Engle (2000), Engle (2000), Engle and Russell (1998), Manganelli

(2000), and Engle and Lange (2001). In common with that literature, we develop a half-life measure

for market depth that is closely related to Engle and Lange’s VNET measure (defined as the excess

volume of buys and sells associated with a price movement). However, our approaches differ in that

we derive and estimate the trade implications on prices and markets from a dynamic microstructure

model, in contrast to their exogenous dynamic specification. Our work is also related to research link-

ing order imbalances to market wide liquidity, see, for example, Chordia, Roll, and Subrahmanyam

(2001). These authors relate overall trade imbalances to market returns and to market liquidity. Our

analysis also involves order imbalances, but our model analyzes the richer order flow processes, rather

than the static and exogenous total imbalance. Our model shows why particular components of order

imbalances matter, thus providing an econometric structure for investigating order flow information.

We find a number of results on the arrival processes, the most important of which we highlight here.

First, the arrival rates of both informed and uninformed trades are highly persistent. A heavy trading

day is more likely to be followed by another heavy trading day. Furthermore, uninformed traders tend

to follow their own type (herding), and they move to avoid informed traders. Intriguingly, uninformed

traders refrain from entering the market after a day with many informed traders; in effect, the sheep

remain in the barn when the trading climate is inclement. Informed traders, on the other hand, are

not as responsive to the arrival of uninformed traders. These traders exhibit little strategic behavior,

suggesting that information flow is well captured by models of competitive informed trading. This last

result may be particularly important for empirical analyses, as it suggests that informed trade per se

does not introduce complex patterns into either trades or the resultant prices.

Given the forecasted arrival rates, we then investigate the dynamic interactions between the arrival

rates and market volatility, liquidity, and market depth. We find that forecasted arrival rates of both

types of trades are positively correlated with intra-day volatility measures. Hence, potentially we could

use forecasted arrival rates to enhance the forecasting of daily volatilities. We also find the expected

result that market spreads are increasing in informed arrival rates, and the perhaps not so expected

result that information events appear to be fully revealed by each day’s end. We use Bayesian updating

to calculate a measure of market depth we term the half-life. This measure is defined as the number

of buys needed for the price impact to exceed some pre-specified maximum. Our analysis reveals a
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number of interesting properties of this market depth measure, with a particular finding being that it

takes more trades to reveal information in a heavy trading day than in a light trading day (i.e. the market

is deeper in the presence of heavier trading activities).

The paper is organized as follows. Section II describes the benchmark model of Easley and O’Hara

(1992) and our dynamic extensions. Section III describes the data set and our estimation procedure.

Section IV discusses the implications of our estimates for the arrival processes of informed and unin-

formed trades. Section V describes the implications of our estimates for market volatility, liquidity and

depth. Section VI explores potential applications and future research.

II. Model Formulation

A. The Static Model

We follow Easley and O’Hara (1992) and Easley, Kiefer and O’Hara (1996, 1997a, 1997b) in model-

ing a market in which a competitive market maker trades a risky asset with uninformed and informed

traders. Trade occurs overT discrete trading days and, within each trading day, trade occurs in contin-

uous time. Information events occur between trading days with probabilityα. When these events occur

they are either bad news, with probabilityδ, or good news with probability,1− δ. Traders informed

of bad news sell and those informed of good news buy. We assume that orders from these informed

traders follow a Poisson process with daily arrival rateµ. Uninformed traders trade for liquidity rea-

sons. We assume that buy and sell orders from uninformed traders each arrive at the market according

to a Poisson process with daily arrival rateε. A more extensive discussion of this structure can be found

in Easley, Kiefer and O’Hara (1996, 1997a, 1997b).
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On dayt, conditional on the parameter vector of the model,Θ ≡ [µ,ε,α,δ]>, the probability of

observingB buys andSsells is given by

Pr[yt = (B,S)|Θ] = α(1−δ)e−(µ+2ε) (µ+ ε)B(ε)S

B!S!

+αδe−(µ+2ε) (µ+ ε)S(ε)B

B!S!

+(1−α)e−2ε (ε)B+S

B!S!
, (1)

whereyt denotes the observation vector (number of buys and sells) for dayt. The probability can be

regarded as a mixture of three Poisson probabilities, weighted by the probability of having a “good

news day”α(1−δ), a “bad news day”αδ, and a “no news day” (1−α).

The model is static in the sense that each day the arrivals of an information event and trades, con-

ditional on information events, are drawn from identical and independent distributions. The likelihood

function can hence be written as a simple product of the above probability density over days. The log

likelihood function, after dropping a constant term and rearranging, can be written as

L({yt}Tt=1|Θ) =
T

∑
t=1

[−2ε +M lnx+(B+S) ln(µ+ ε)] (2)

+
T

∑
t=1

ln
[
α(1−δ)e−µxS−M + αδe−µxB−M +(1−α)xB+S−M] ,

whereM ≡min(B,S) + max(B,S)/2, andx≡ ε
µ+ε ∈ [0,1]. Given an information event,x captures the

ratio of the arrival rates of “wrong trades” to that of “right trades.” A trade is “wrong” when it is a

buy in the presence of a bad signal or a sell in the presence of a good signal; a trade is “right” when it

conforms with the information signal. The factoring ofxM is done to increase the computing efficiency

and reduce truncation error, especially when the numbers of buys and sells are large.
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B. Information Content of Trades

According to this model, data on daily arrivals of buys and sells contain information about the under-

lying parameters of the model. LetTT = S+B denote the total number of trades per day. ThenE[TT]

is equal to the sum of the Poisson arrival rates of informed and uninformed trades:

E [TT] = α(1−δ)(ε +µ+ ε)+ αδ(µ+ ε + ε)+(1−α)(ε + ε) = αµ+2ε.

Furthermore, the expected value of the trade imbalanceK = S−B is given by:

E [K] = αµ(2δ−1) .

Hence, when the probability of bad newsδ is not exactly one half, the mean of trade imbalance provides

information on the arrival of informed trades. A more informative quantity is the absolute value of the

trade imbalance. The expectation on absolute differences of Poisson variables takes rather complicated

forms(Katti 1960), but the following approximate relation holds whenµ is large:

E [|K|] .= αµ.

These relationships provide a basis for estimating and interpreting the arrival rates of trades. The

absolute trade imbalance|K| contains information on the arrival of informed trades,αµ. In contrast,

the variable(TT−|K|) is essentially the balanced trade in the market and contains information on the

arrival of uninformed trades. We incorporate these two trade quantities into our arrival rates forecasting

specifications.

C. Time-Varying Arrival Rates of Trades

The constant arrival rates in the above model imply that both the number of balanced tradesTT−|K|
and the trade imbalance|K| should be iid over time. Yet, such a structure seems both rigid and unreal-

istic. A more complete structure would allow for autocorrelation for both series and cross-correlation

between them, in addition to a time trend for each series. To allow for these effects, we specify a dy-
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namic vector process for the arrival rates of informed and unformed traders. The arrival rate of informed

trades isαµ and the arrival rate of the uninformed trades is2ε. Let ψ = [αµ,2ε]> denote the vector

of the two arrival rates. To remove any deterministic trend on arrival rate of trades, we model the de-

trended arrival rates̃ψit = ψit e−git , i = 1,2, as a vector stationary process, where the vectorg≡ [g1,g2]>

captures the growth rates of the two arrival rates.

C.1. A generalized autoregressive specification on arrival rates of trades

We propose a bivariate generalized autoregressive forecasting relation on the detrended arrival rates of

informed and uninformed trades:

ψ̃t = ω +
p

∑
k=1

Φkψ̃t−k +
q−1

∑
j=0

Γ j Z̃t− j , (3)

whereψ̃t denotes the detrended timet forecast of the arrival rate vector at timet +1, Zt ≡ [|Kt | ,TTt−|Kt |]>

denote the time-t observables (number of trade imbalance and balanced trades), andZ̃ it = Z it e−git , i =

1,2. As a first order approximation,Et−1

[
Z̃t

]
.= ψ̃t−1, and the specification in (3) is analogous to

the GARCH specification of Bollerslev (1986) on conditional volatilities. As in GARCH models, the

above forecasting relation can be rewritten as anARMA(max[p,q] ,q) process:

ψ̃t
.= ω +

max[p,q]

∑
k=1

Φ̂kψ̃t−k +
q

∑
j=0

Γ jξt− j , (4)

where

Φ̂k =





Φk + Γk−1 if k≤ q

Φk if k> q
,

and ξt ≡ Z̃t −Et−1

[
Z̃t

]
.= Z̃t − ψ̃t−1 denotes the forecasting error. The stationarity of the process

requires that the eigenvalues ofΦ̂k be less than one. We setp = q = 1 for the model calibration.

Adding back the time trend, we can rewrite the forecasting relation as

ψt = ωegt + Φψt−1eg + ΓZt , (5)

where the productsωegt andψt−1eg are short hands for element by element operations.
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Given the forecasting relation in (5), the log likelihood function has the same form as in (2), with

the constant arrival rates replaced by their respective conditional forecasts. However, equation (5)

forecasts the product of the two parametersαµ while in the likelihood function we need values of the

two parameters separately. To separate them, we assume thatα, the probability of an information event,

is constant over time.1

A backward equation analogous to (3) also holds for the same time series:

ψ̃t = ω +
p

∑
k=1

Φkψ̃t+k +
q−1

∑
j=0

Γ j Z̃t+ j .

We use this backward equation to forecast the starting value ofψ. In particular,

ψt = ωegt + Φψt+1e−g + ΓZt . (6)

Refer to Box and Jenkins (1976), Chapter 6.3, for details. Again, the productsωegt andψt+1e−g both

denote element by element operations.

C.2. A generalized autoregressive specification on the logarithm of arrival rates

Since arrival rates only exist in the positive hyperplane,ψ ∈R2+, we propose an alternative forecasting

relation on the logarithm of the arrival rates:

ln ψ̃t = ω +
p

∑
k=1

Φk ln ψ̃t−k +
q−1

∑
k=0

Γ jM t− j , (7)

whereM t is an approximate martingale difference vector formulated fromZt :

M it =
Z it

ψi(t−1)
−1, i = 1,2, (8)

1The growth of trades suggests that both uninformed and informed trades are time varying. Informed trades could vary

because of variation inµ or α, or both. We find it more plausible that the arrival rate of informed traders is time varying than

that information events are time varying. However, it is also possible that information events follow a stochastic process that

we miss-identify as variation in informed trades with this assumption.
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where the subscripti denotes thei-th element of the vector. The approximate martingale property

follows readily from the fact thatEt−1 [Zt ]
.= ψt−1. The specification is analogous to the EGARCH

model of Nelson (1991) for conditional volatilities.

We again setp = q = 1 for the calibration. Plug in the time trend, we have:

lnψt = ω + Φg+(I −Φ)gt + Φ lnψt−1 + ΓM t . (9)

Again, a backward equation is used to determine the initial value:

lnψt = ω−Φg+(I −Φ)gt + Φ lnψt+1 + ΓEt ,

whereEt is a backward analogue toM t : Eit ≡ Z it/ψi(t+1)−1.

III. Data and Estimation

We estimate our two models using data from16 stocks: Ashland (ASH), Exxon Mobil (XOM), Duke

Energy (DUK), Enron (ENE), AOL Time Warner (AOL), Philip Morris (MO), ATT (T), Pfizer (PFE),

Southwest Air (LUV), AMR (AMR), Dow Chemical (DOW), CitiGroup (C), JP Morgan Chase (JPM),

Wal Mart (WMT), Home Depot (HD), and General Electric (GE). We chose representative stocks from

a variety of industries which each had high trading volume and were listed on the NYSE. The latter

criterion is intended to avoid differences introduced by different trading platforms. Trade data for these

stocks are taken from the TAQ transactions database for the period January 3rd, 1983, to December

24th, 1998 (3891 business days). A minimum level of trading activity is necessary to extract the

information changes from each day, so we exclude days when there are either no buys or no sells. The

least active stock is Enron, from which we drop 69 inactive days, then Wal Mart (19 days), Exxon

Mobil (18 days), Southwest Air (7 days), Pfizer (4 days), ATT (4 days), Philip Morris (3 days), JP

Morgan Chase (2 days), Exxon Mobil (1 day), and Ashland (1 day). Furthermore, the data for AOL

Time Warner, CitiGroup, and Home Depot start late. The starting dates are, respectively, September

16th, 1996, October 29th, 1996, and April 19th, 1984.
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The TAQ data provide a complete listing of quotes, depths, trades, and volume at each point in time

for each traded security. For our analysis, we require the number of buys and sells for each day, but the

TAQ data record only transactions, not who initiated the trade. This classification problem has been

dealt with in a number of ways in the literature, with most methods using some variant on the uptick

or downtick property of buys and sells. In this article, we use a technique developed by Lee and Ready

(1991). Those authors propose defining trades above the midpoint of the bid-ask spread to be buys and

trades below the midpoint of the spread to be sells. Trades at the midpoint are classified depending

upon the price movement of the previous trade. Thus, a midpoint trade will be a sell if the midpoint

moves down from the previous trade (a downtick) and will be a buy if the midpoint moves up. If there

is no price movement then we move back to the prior price movement and use that as our benchmark.

We apply this algorithm to each transaction in our sample to determine the daily numbers of buys and

sells.2

To investigate the interactions between trades and prices, we also download the daily open (O), high

(H), low (L), and close (C) prices from Bloomberg corresponding to the same stocks and time periods.

In particular, we proxy the intra-day volatility by the absolute returns on the open-close (| lnC/O|) and

high-low (lnH/L).

We begin by analyzing the properties of the trade variables. Table1 reports the summary statistics

of the trade quantitiesZ = [|K|,TT−|K|], or the imbalanced and balanced trade variables. We observe

the following features:

1. Trades are increasing.The daily number of balanced tradesTT− |K| in general grows faster

than the trade imbalanceK. The estimated annual growth rate for the balanced trade ranges from

2.4% for DOW to 94% for AOL. The growth rate for the trade imbalance ranges from negative

for XOM (−3.66%) and DOW (−1.51%) to 133% for AOL.

2. The number of balanced trades is more volatile than trade imbalance.For all stocks investigated,

the standard deviation of the balanced trades is much larger than the standard deviation of the

trade imbalance. Standard deviations are measured on the detrended residuals. Furthermore, the

intercept of the detrending regression is also larger for the number of balanced tradesTT−|K|

2The first trade at each day is excluded from our sample as it is determined by a different mechanism.
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than for the trade imbalance|K|, implying that the number of balanced trades dominates the total

trades.

3. Trades are highly persistent.The number of balanced trades are more persistent than the trade

imbalance. The first order autocorrelation for balanced trade ranges from 0.697 to 0.953 while

that for the trade imbalance ranges from 0.145 and 0.772. Autocorrelations are measured on

the detrended residuals. This suggests a complexity to the order arrival process that is not well

captured by static models. It also suggests that informed and uninformed trade behavior may

exhibit interesting complex dynamics, an issue we address in the next section.

4. Balanced trades and trade imbalances are cross-correlated.The two quantities are generally

positively correlated. The cross-correlation coefficient between the balanced tradeTT−|K| and

the trade imbalance|K| ranges from−0.004for XOM to 0.802 for Citigroup.

We next estimate the parameters of the two dynamic order arrival models in (5) and (9) by maximiz-

ing the log likelihood function in (2). We refer to the GARCH analogue as Model A and the EGARCH

as Model B. The results are summarized in Table II for Model A and in Table III for Model B. The log

likelihoods from the two models are very close to each other, neither consistently dominates the other

across the 16 stocks. Estimates for the two models also imply similar properties for the arrival rates.

IV. The Dynamics of the Arrival Rates

We now turn to analyzing the behavior of the order arrival processes. The structural models derived in

Section II provide a framework for analyzing the potentially complex processes characterizing order

flow. As reported above, the models can be estimated with reasonable precision, allowing us to test the

importance and significance of alternative behavioral hypotheses. Our focus here is on the dynamics

of informed and uninformed order flow, and in particular on the factors that influence the correlation

structures of trades.

11



A. Are order flows correlated over time?

The basic structure analyzed in standard microstructure model is of orders arriving in a probabilistic

fashion from informed and uninformed traders. A simple construct of this behavior is to characterize

orders by Poisson arrival processes, where the arrival rates are constant, but may differ across informed

and uninformed traders. The models we derive here allow for much greater complexity in behavior,

and in particular we allow trades to be both auto-correlated and cross-correlated.

The persistence of the arrival rate for uninformed traders is captured byΦ̂22 = Φ22+Γ22 for Model

A and Φ22 for Model B. For informed traders, this persistence is captured byΦ̂11 = Φ11 + Γ11 and

Φ11, respectively for Models A and B. The large, and positive estimates for all of these variables shows

that orders overall are highly auto-correlated, with a high arrival day more likely to be followed by

another high arrival date. This behavior is not unexpected given that many studies have shown volume

to be significantly, and positively auto-correlated. But this result is at variance with the predictions of

microstructure models in which trades are viewed as iid. Perhaps more importantly, the result suggests

that trade patterns are predictable across trading days.

We now turn to analyzing the specific behaviors exhibited by the informed and uninformed traders.

For most stocks, the arrival rate of uninformed trades is much more persistent that that of informed

trades. This suggests that uninformed trade is more likely to exhibit serial patterns across trading days

than is informed trade. Thus, the characterization of uninformed traders as sheep herding together is

consistent with these results. The uninformed do tend to move together, either trading or not trading,

but doing so persistently. Informed trade is also persistent, but the persistence is much lower than it is

for uninformed trade. This is consistent with new information being largely incorporated into security

prices by the end of a trading day.

A natural concern in interpreting these estimates is the stationarity of the underlying processes. As

noted earlier, theoretical models suggest both a wide range of possible equilibrium trading strategies,

as well as the possibility that no equilibrium exists at all. This issue can be addressed by examining

the eigenvalues for Models A and B. For the two processes to be stationary, the two eigenvalues ofΦ̂

for Model A and the two eigenvalues ofΦ for Model B need to be less than one. Table IV reports

these eigenvalues for the 16 stocks in our sample. The second eigenvalue is very close to one for
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Figure 1. Arrival Rates of Trades
The arrival rates of uninformed trades (top) and informed trades (bottom) are forecasted over time
based on Model B for Ashland, with parameter estimates in Table III.

most stocks. For three stocks under Model A and two under Model B, the second eigenvalue becomes

slightly greater than one, implying non-stationarity. These results further confirm that the arrival rates

are highly persistent.

Figure 1 shows a typical time series of the forecasted order arrival rates for one stock in our sample,

Ashland Oil. Here the distinctions between the two series are apparent. Uninformed trade dominates

the total order flow, a finding consistent with the general functioning of liquid markets. The arrival

rates of the uninformed trades not only grow faster over time, but they fluctuate more as well. This

greater volatility suggests that uninformed trade may exhibit complex dependencies, an issue we now

consider.

B. The sheep and the wolf: Do uninformed traders try to avoid informed traders?

From above we know that a high arrival day is likely to be followed by another high arrival day.

But what if the high total trade arrivals reflect greater informed trade? Will the uninformed continue

to arrive en mass to the market, or will they be dissuaded from trading by the expected presence of
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informed traders? The impact of previous informed arrival rates on the current uninformed arrival rates

is captured bŷΦ21 for Model A and byΦ21 for Model B. These variables measure the cross correlation

effects of lagged informed trade on uninformed trade. Thus, a direct test of this avoidance hypothesis

is to examine the sign and significance of these variables.

The estimates of̂Φ21 for Model A and ofΦ21 for Model B are remarkably negative for all stocks.

This is evidence of the uninformed systematically avoiding trading when the informed are expected to

be present. This behavior is not predicted by microstructure models, which view the only determinant

of uninformed trading as the presence of other uninformed traders.3 But the strategy seems sensible

nonetheless. Why venture into the trading arena when it is more likely to be populated by wolves? A

better strategy is to simply stay away, and that appears to be what the uninformed tend to do.

The arrival of uninformed traders is also influenced by the most recent realizations on the number

of balanced trades and trade imbalances. In particular, the impact of the trade imbalance|K| on the

uninformed arrival is captured byΓ21−Γ22 in Model A. The results here are mixed. The estimates

for the difference are negative for seven firms and positive for nine. Hence, the impacts of the trade

imbalance are ambiguous. Estimates from Model B are harder to interpret as the impact of|K| would

be captured by
Γ21

αµt
− Γ22

2εt

and hence is actually time-varying by model design. The time series averages of this impact are very

small and have mixed signs across stocks.

Alternatively, the impact of the total number of trades on the arrival rate of uninformed traders

is captured byΓ22 under both models. Here the estimates are unambiguously positive for all stocks,

implying that an increase in the total number of trades today forecasts an increase in the arrival of

uninformed traders tomorrow.

3An exception to this characterization is Lei and Wu (2000) who allow uninformed trade to be affected by factors such as

momentum and loss aversion.
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C. The wolf revisited: Do informed traders stalk uninformed traders?

If informed traders are strategic, then their trades should depend upon the order arrivals of the unin-

formed. In particular, Kyle’s model dictates that the informed choose their orders to blend in with

the uninformed, suggesting that there would be strong cross-correlation effects of uninformed trade

on informed trade. Alternatively, if the informed act competitively then their trading strategy is more

mechanistic: trade until the price reaches the new true value, and then stop. This trading strategy

suggests little cross-effects, but would be characterized by strong autocorrelation effects.

We can test for just such behaviors in our model. The impact of previous day’s uninformed order

arrival on today’s informed arrivals is captured byΦ̂12 for Model A and byΦ12 for Model B. If the

informed act strategically, we would expect these variables to be large and positive. The estimates

reveal a different story. The estimates in both Models are small, and they are not consistently positive

or negative across stocks. This is consistent with the simpler, competitive model of informed trade.

Informed traders act on information, and hence they do not respond to the activity of uninformed

traders.

Informed trades do tend to be affected by overall volume. The impact of the total number of trades

on the arrival rate of informed traders is captured byΓ12 under both models. The estimates are positive

for all stocks and under both models. Thus, an increase in the total number of trades today forecasts

an increase in the arrival rates of both informed and uninformed trades tomorrow. The impact of the

trade imbalance variable is more problematic. This effect is captured byΓ11−Γ12 under model A. The

results here are predominantly positive. Under Model B, the impact is captured by

Γ11

αµt
− Γ12

2εt
,

which again is time varying and harder to interpret. The time series averages have mixed signs across

stocks.

In summary, we have found that the order arrival processes exhibit a wide range of complex be-

haviors. Uninformed trades tend to be highly persistent, and volatile. Uninformed order arrivals clump

together, with high volume days more likely to follow high volume days, and conversely. This behavior
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is consistent with the sheep characterization found in the literature, but with a significant difference:

the uninformed here are smart enough to try to avoid the wolf. The informed also exhibit complex

patterns, but these patterns are not consistent with the strategic behavior posited in the literature. The

informed do not appear to hide in the order flow, but instead trade persistently. There is a smaller au-

tocorrelation effect of informed order arrivals across days, consistent with information being revealed

during the trading day.

V. Interactions Between Trades and Market Volatility, Liquidity, and Depth

We now turn to analyzing the relation between trades and market parameters such as volatility, liquidity,

and depth. As noted in the Introduction, each of these parameters is linked to trades because the

order arrival process greatly influences subsequent market behavior. Our model provides a way to

characterize this inter-dependence, as well as a framework for testing specific hypotheses.

A. Intra-day volatility

To investigate the interaction between trades and price volatility, we construct two intra-day volatility

measures: (1) the absolute return on daily open-close| lnO/C|, and (2) daily high-low,lnH/L. Our

model provides detrended order arrival forecasts, so we use these predicted estimates to characterize

how the market’s beliefs regarding order arrivals affect price volatility.

A natural starting point is to consider what relation we would expect to find between trades and

volatility. A market with high order flow is generally viewed as a deep market, or one in which orders

can be accommodated without large impacts on price. In the same vein, it could be argued that greater

order flow brings greater potential for buyers and sellers to cross, and so again price effects would

be small. These arguments suggest that forecasted high order arrival rates would result in low market

volatility. Alternatively, there are two arguments for suggesting the opposite relation. First, large order

flow may expose market makers to significant inventory imbalances. To mitigate this exposure, market

makers may widen spreads or otherwise move prices, which would increase price volatility. Greater

order flow may also signal the presence of new information, and prices would naturally gravitate toward
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new equilibrium levels. Such information-linked effects would also suggest a positive relation between

order arrivals and price volatility.

Table V reports the correlation between the detrended arrival rates forecasts and the two (realized)

intra-day volatility measures. One result is immediately apparent: there is a positive relation between

order arrivals and volatility. This positive relation holds for 15 of the 16 stocks in our sample, and

is robust across both model specifications. Numerous researchers have shown that there is a positive

empirical relation between volume and volatility. But our results suggest that this relation is actually

deeper, that volatility is positively correlated with the predicted order arrival processes.

If information effects dominate inventory effects, then we would expect this link to be more positive

for information-based order arrivals than it is for uninformed order arrivals. The evidence in Table V

does not support this. While this effect holds true for some stocks, it does not for others. A more direct

test of the link between informed arrivals and volatility is to look at the correlation between the intra-

day volatility measures and the composition of trades. In particular, we defineβt to the the forecasted

proportion of informed trades, whereβt is defined as:

βt ≡ αµt

αµt +2εt
.

Table VI reports these correlations. The signs of the correlations vary across stocks, yielding no clear

prediction. However, the estimated correlations are small in any case, suggesting little link between

trade composition and intra-day price volatility. These results indicate that while volatility increases

with the forecasted arrival rates of total trades, it is relatively independent of the forecasted trade com-

position.

In the same table, we also report the correlation of trade composition forecastsβ with the total

number of realized tradesTT, as well as the realized proportion of trade imbalance,|K|/TT. The

correlation withTT is negative, implying that the relative proportion of informed trades decreases with

increasing total trades. The correlations with|K|/TT are mostly positive as expected sinceβt can be

regarded as an approximate forecast of|K|/TT.
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B. Market liquidity and bid-ask spread

Market liquidity is often measured by the bid-ask spread of the security prices with markets in which

the bid-ask spread is small being interpreted as liquid markets. We use our model to derive the bid-ask

spread as a function of the trade sequence and arrival rate forecasts. We then use forecasted arrival rates

to determine how the components of order arrival affect market liquidity.

An application of Bayes rule shows that the probabilities of a good(g) and a bad(b) information

event conditional on a sell order at timet, sellt , are given by, respectively,

Pr(g|sellt) =
Prt (g)ε

Prt (b)µ+ ε
, Pr(b|sellt) =

Prt (b)(ε +µ)
Prt (b)µ+ ε

, (10)

wherePrt (g) andPrt (b), denote, respectively, the prior probabilities at timet of a good and a bad

information event. LetV be the expected asset value conditional on good news andV be the expected

value conditional on bad news. LetV∗ ≡ (1−δ)V +δV denote the unconditional expected value of the

asset.

In a competitive market, the bid price must provide the market maker a zero expected profit condi-

tional on a trade at the bid; that is, the arrival of a sell order. The bid price is thus the expected value of

the asset conditional on history and on the arrival of a sell order:

bidt = Pr(g|sellt)V +Pr(b|sellt)V +Pr(n|sellt)V∗

= V∗+
(
V−V

) δPrt (g)ε− (1−δ)Prt (g)(ε +µ)
Prt (b)µ+ ε

, (11)

wherePr(n|sellt) = 1−Pr(g|sellt)−Pr(b|sellt) is the probability of no information event.

Analogously, the probabilities of a good and a bad information event conditional on a buy order,

buyt , are given by

Pr(g|buyt) =
Prt (g)(ε +µ)
Prt (g)µ+ ε

; Pr(b|buyt) =
Prt (b)ε

Prt (g)µ+ ε
. (12)
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The ask price is therefore,

askt = V∗+
(
V−V

) δPrt (g)(ε +µ)− (1−δ)Prt (b)ε
Prt (g)µ+ ε

. (13)

The bid-ask spread can now be computed from equations (11) and (13). In particular, at the opening,

the unconditional probabilities of good and bad information events are, respectively,

Pr(g) = (1−δ)α, Pr(b) = δα.

The opening bid-ask spread (OS) is therefore given by

OS=
(
V−V

)
δ(1−δ)αµ

[
(αµ+2ε)

((1−δ)αµ+ ε)(δαµ+ ε)

]
.

If we further assume thatδ = 1/2, i.e. bad and good news have equal probabilities, the opening bid-ask

spread simplifies to

OS=
(
V−V

) αµ
αµ+2ε

=
(
V−V

)
β. (14)

Hence, the opening bid-ask spread is proportional to the significance of the information event
(
V−V

)

and the forecasted proportion of informed arrivals,β. As Table VI illustrates thatβ is negatively corre-

lated with the total number of trades for most stocks, assuming relative time stability on the significance

of the information event (V−V), market liquidity increases with increasing trades. Whenδ 6= 1/2, the

impacts are not exactly captured byβ, but similar observations apply. Generally, more active markets

are more liquid markets.

C. Market depth and price impacts of consecutive trade orders

When a trader tries to load or unload a large position by putting in consecutive buy or sell orders to the

market, the price change could be significant. The price impact of a sequence of trade orders can be

computed by repeated application of equations (10)-(13).
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We take consecutive buy orders as an example. LetPrN−1
t (g) andPrN−1

t (b) denote the probabilities

of a good and a bad information event conditional onN−1 consecutive buy orders. From (13), we

have that the price impact ofN consecutive buys is

askNt = V∗+(V−V)γN
t ,

γN
t =

δPrN−1
t (g)(ε +µ)− (1−δ)PrN−1

t (b)ε
PrN−1

t (g)µ+ ε
.

The probabilitiesPrN−1
t (g) and PrN−1

t (b) can be readily updated via Bayes rule as in (12), starting

with the unconditional priors at the opening. As the number of consecutive buy orders increases, the

probability of a good information event increases and approaches unity while the probability of a bad

information event approaches zero. The price impactγN
t converges toδ and the price converges to the

expected upper bound of the assetV. The speed of convergence governs the depth of the market and is

determined by the arrival rate forecasts (µ,ε) on that day.

In Figure 2, we plot a typical price impact curve,γN
t , as a function of the number of consecutive

buy orders,N, based on arrival rates forecasts on Ashland on December 24th, 1998 (the last day of

observation). On that day, the forecasted arrival rate of informed trades is 14.33 and that of uninformed

trades is 148.00. As shown in Figure 2, the price of the asset converges to the high valueV after fewer

than 20 consecutive buys.

Similar curves can be computed forN consecutive sells and for any sequence of buys and sells.

Knowledge of the price impact curve is obviously very important for institutional portfolio managers

in designing strategies of loading or unloading large positions.

Engle and Lange (2001) define a market depth measure VNET, which is intended to capture the net

order flow associated with a fixed price movement. On each day, given the arrival rate forecasts, we

construct an analogous measure of market depth: the half life (τ1/2) of the price impacts for consecutive

buys. Our measure is defined as the number of buysN needed for the price impactγN
t to exceed half of

its maximum (δ). Nevertheless, our half life measure and VNET differ in at least two important aspects.

First, VNET is defined on the excess trading volume while we are only concerned with the number of

trades. Trade size does not play a role in our analysis. A second difference is that VNET implicitly

assumes that the sequence of trades does not matter, only the net trade imbalance affects prices. In
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Figure 2. Price Impacts of Consecutive Buys
The line depicts the price impact of consecutive buys (γN

t ) for Ashland, based on the arrival rate fore-
casts from Model B on the last day of the data (December 24th, 1998). The parameter estimates of the
model are reported in Table III.

our model, however, the exact sequence of trading history also plays a role in the price movement. We

therefore specifically define the half life as a function of consecutive number of buys, not on net order

flows.

Figure 3 depicts two typical times series of our market depth forecasts for Enron on the left and

Pfizer on the right, implied by Model B estimates. For both stocks, the market depth measured by half

life has increased in the 90s.

Tables VII reports the mean half life for each stock as well as its correlations with trades and price

volatilities. The half lives implied from the two models differ from each other, but they exhibit similar

overall trends: Stocks such as Pfizer and AOL Time Warner have a deeper market than stocks such as

Ashland. Furthermore, the half lives for most stocks are positively correlated with the total number of

tradesTT. It takes more trades to reveal information on a heavy trading day, i.e. the market is deeper

in presence of heavier trade activities. On the other hand, the correlation between the half lives and the

ratio of trade imbalance to total trades are mostly negative, implying that the market is deeper when we
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Figure 3. Time Varying Forecasts of Market Depth
Market depth is measured as the half life (τ1/2) of the price impact of consecutive buy orders, defined
as the number of consecutive buys needed for the impact to exceed half of its maximum. The half life
is computed for Enron on the left panel and Pfizer on the right panel, based on estimates of Model B,
reported in Table III.

have fewer informed trades. In summary, an increase in total trades increases the market depth while

an increase in informed trades reduces it.

VI. Residual Analysis

One way to investigate the robustness of our specification is to check for structure in the residuals of

forecasted order flows. If our specification captures the data well, we should find minimal structure

from the following forecasting residuals on the absolute trade imbalance|K| and balanced tradesTT−
|K|:

eit =
Z it −Et−1 [Z it ]
Et−1 [Z it ]

, i = 1,2, with Zt = [|Kt |,TTt −|Kt |] .

The expected value on total trades is known analytically:Et−1 [TTt ] = αµt−1+2εt−1. We determine the

expected value of|K| by simulation. The residuals are represented as a percentage of their respective

forecasted value. Table VIII reports the summary statistics for both residuals under Model A and under

Model B. For each stock, the first row reports the properties ofe1t and the second row reports the

properties ofe2t .
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Compared to the summary statistics ofZ in Table I, the forecasting residuals exhibit much less

structure. In particular, the serial dependence (the first order autocorrelation) is significantly smaller,

and in many cases not significantly different from zero. The cross correlations between the two residu-

als are also smaller than those between the two elements of the raw dataZ.

Nevertheless, one can still discern some remaining structure in the residuals. In particular, both

models seem to induce similar biases on the mean of the forecasting residuals. Both models under-

forecast the absolute trade imbalance but slightly over-forecast the balanced trades.

VII. Conclusion

The dynamic models in this paper identify important forecasting relations in the arrival rates of trades.

While the models have implications for the trading behavior and price impacts of trades, for future

research, more information can be revealed and additional interesting applications can be found by

combining our dynamic quantity models of trades with dynamic models of prices.

As an example, recall that the opening bid-ask spread (OS) each day can be written as a product of

the significance of the information event and the composition of arrival rates.

OSt = (V−V)βt ,

whereβt captures the relative proportion of informed arrivals. Thus, given the forecasts of arrival rates,

together with information on the high and low expected values, we can compute the opening bid-ask

spread. Or upon the observation of the opening bid-ask spread, one can infer the high low difference,

which is also a measure of the significance of the information event. More significant news in either

direction would generate a higher high-low spread. We hence obtain a forecast of the significance of

the information event.

In an actively traded market, given the presence of an information event, the significance of the

information event will ultimately be revealed to the market at the close. In case of a positive information

event, the transaction price converges toV and in case of a negative information event, it converges to

V. Therefore, the forecasted arrival rates and the opening bid-ask spread together reveal important
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information about the open-close spread. LetV∗ = (1−δ)V + δV be the opening price, then the open-

close spread is(1−δ)(V−V) in case of a bad news,δ(V−V) in case of a good news, and zero in case

of no news.

As the open-close spread can also be regarded as a daily volatility forecast, it is interesting to com-

pare a forecast from trade quantities and opening bid-ask spread with forecasts from the price process,

such as volatility forecasts via GARCH type models. One can further investigate whether incorporat-

ing the information from the trade process increases the forecasting efficiency of GARCH type models.

Furthermore, if the derivatives market only prices in GARCH type forecasts, information revealed from

the trade process can potentially be used to design profitable trading strategies. For example, when the

forecasted open-close spread is higher than already priced in the market, one can long a daily put, a

call, or a straddle and delta hedge. All these positions profit from increasing volatilities but are more

or less immune from directional bets.
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Table I
Summary Statistics of Trading Activities

Entries report the summary statistics of the trade quantitiesZ = [|K|,V−|K|], where|K| = |S−B| is the trade
imbalance (difference between number of sells and buys) andTT = S+B is the total number of trades (sells plus
buys) at each day. Under each ticker, the first row reports the properties of trade imbalance|K| while the second
row reports the properties of the number of balanced tradesTT−|K|. The second column (g) reports the growth
rates, estimated from the following regression:

lnZ it = a+git +et , i = 1,2.

The third column (a) reports the regression intercept estimate. The fourth column (St Dev) reports the standard
deviation of the regression residualet . The fifth column (Auto) reports the first order autocorrelation of the
residual. The last column (ρ) reports the cross-correlation between the trade imbalance|K| and the number of
balanced tradesTT−|K|, measured on the detrended residuals.

Ticker g,% a St Dev Auto ρ

ASH 5.073 0.921 10.190 0.145 0.206
11.495 2.721 37.044 0.809 —

XOM -3.662 3.685 47.322 0.326 -0.004
6.447 5.149 197.227 0.885 —

DUK 3.743 1.551 15.216 0.224 0.183
10.419 3.200 57.442 0.882 —

ENE 11.557 0.870 16.761 0.291 0.326
16.285 2.812 82.516 0.908 —

AOL 133.194 2.896 131.974 0.571 0.683
93.718 5.408 688.675 0.906 —

MO 14.643 2.323 83.095 0.579 0.455
15.132 4.655 340.383 0.899 —

T 6.033 3.369 78.816 0.433 0.132
4.495 5.808 235.872 0.815 —

PFE 13.650 2.170 76.184 0.683 0.625
13.944 4.431 375.726 0.953 —

LUV 17.934 0.360 21.802 0.452 0.416
18.387 2.476 88.850 0.873 —

AMR 5.503 2.071 27.079 0.267 0.369
7.186 4.388 128.836 0.836 —

DOW -1.513 2.928 31.871 0.419 0.125
2.394 5.121 88.271 0.697 —

C 22.445 1.482 76.227 0.772 0.802
24.244 3.341 314.672 0.951 —

JPM 12.619 1.609 33.315 0.473 0.554
13.800 3.778 151.941 0.898 —

WMT 11.009 2.490 58.606 0.514 0.210
15.338 4.057 207.550 0.907 —

HD 21.105 1.387 57.029 0.658 0.533
22.693 3.206 179.999 0.887 —

GE 10.925 2.557 57.672 0.398 0.328
12.771 5.057 452.945 0.947 —
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Table II
Maximum Likelihood Estimates for Model A

Entries are maximum likelihood estimates of Model A:

ψt = ωegt + Φψt−1eg + ΓZt ,

whereψt ≡ [αµt ,2εt ]> denotes timet forecasts of the arrival rates of informed and uninformed trades
at timet + 1 andZ ≡ [|K|,TT− |K|]> denotes the realized trade imbalance and number of balanced
trades at timet. In the parentheses are standard errors. The last row reports the log likelihood value.

Θ ASH XOM DUK ENE AOL MO ATT PFE

δ 0.5511 0.7743 0.5349 0.4816 0.5371 0.3834 0.5951 0.4482
( 0.0142 ) ( 0.0092 ) ( 0.0127 ) ( 0.0136 ) ( 0.0000 ) ( 0.0132 ) ( 0.0111 ) ( 0.0145 )

α 0.4092 0.5266 0.4867 0.4481 0.5203 0.4922 0.4908 0.4074
( 0.0103 ) ( 0.0090 ) ( 0.0099 ) ( 0.0098 ) ( 0.0000 ) ( 0.0093 ) ( 0.0087 ) ( 0.0098 )

g1 0.0072 0.0001 0.0471 0.0523 0.0154 0.1445 0.0078 0.1389
( 0.0044 ) ( 0.0043 ) ( 0.0031 ) ( 0.0041 ) ( 0.0000 ) ( 0.0009 ) ( 0.0078 ) ( 0.0014 )

g2 0.0093 0.0027 0.0491 0.0537 0.1593 0.1424 0.0321 0.1388
( 0.0042 ) ( 0.0040 ) ( 0.0030 ) ( 0.0041 ) ( 0.0000 ) ( 0.0007 ) ( 0.0033 ) ( 0.0013 )

ω1 2.1190 2.4286 2.3074 1.9913 3.0877 2.8442 0.8761 2.1160
( 0.0957 ) ( 0.1300 ) ( 0.0956 ) ( 0.0861 ) ( 0.0000 ) ( 0.0688 ) ( 0.1187 ) ( 0.0640 )

ω2 7.8509 8.1612 7.8323 8.8338 10.1759 9.4953 5.5258 12.4808
( 0.5016 ) ( 0.4496 ) ( 0.4637 ) ( 0.5569 ) ( 0.0000 ) ( 0.1034 ) ( 0.4442 ) ( 0.2546 )

Φ̂11 0.5204 0.6117 0.5046 0.5378 0.4863 0.6387 0.5042 0.5081
( 0.0179 ) ( 0.0040 ) ( 0.0156 ) ( 0.0152 ) ( 0.0002 ) ( 0.0033 ) ( 0.0032 ) ( 0.0048 )

Φ̂12 0.0348 0.0413 0.0371 0.0329 0.0666 0.0260 0.0595 0.0314
( 0.0028 ) ( 0.0009 ) ( 0.0025 ) ( 0.0021 ) ( 0.0000 ) ( 0.0006 ) ( 0.0013 ) ( 0.0009 )

Φ̂21 −1.7298 −1.2705 −1.6347 −2.0162 −1.9612 −0.9257 −1.8897 −2.8179
( 0.1279 ) ( 0.0339 ) ( 0.1008 ) ( 0.1351 ) ( 0.0000 ) ( 0.0262 ) ( 0.0425 ) ( 0.0909 )

Φ̂22 1.1219 1.1360 1.1193 1.1417 1.2552 1.0549 1.2227 1.1769
( 0.0123 ) ( 0.0022 ) ( 0.0101 ) ( 0.0116 ) ( 0.0001 ) ( 0.0011 ) ( 0.0028 ) ( 0.0039 )

Γ11 0.0768 0.1302 0.0913 0.0719 0.1120 0.1305 0.0926 0.0575
( 0.0033 ) ( 0.0024 ) ( 0.0033 ) ( 0.0028 ) ( 0.0000 ) ( 0.0025 ) ( 0.0017 ) ( 0.0015 )

Γ12 0.0720 0.0826 0.0718 0.0646 0.0815 0.0997 0.0877 0.0482
( 0.0028 ) ( 0.0015 ) ( 0.0024 ) ( 0.0024 ) ( 0.0000 ) ( 0.0019 ) ( 0.0016 ) ( 0.0012 )

Γ21 0.3022 0.4449 0.3335 0.3431 0.4376 0.3948 0.3671 0.3698
( 0.0067 ) ( 0.0023 ) ( 0.0057 ) ( 0.0052 ) ( 0.0000 ) ( 0.0013 ) ( 0.0013 ) ( 0.0017 )

Γ22 0.3316 0.3590 0.3308 0.3574 0.2938 0.4627 0.4253 0.3471
( 0.0035 ) ( 0.0012 ) ( 0.0036 ) ( 0.0029 ) ( 0.0001 ) ( 0.0006 ) ( 0.0007 ) ( 0.0009 )

L(×105) 5.9201 64.0319 9.9586 12.5957 31.3832 98.6538 112.6279 74.8664
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Table II (continued)
Maximum Likelihood Estimates for Model A

Entries are maximum likelihood estimates of Model A:

ψt = ωegt + Φψt−1eg + ΓZt ,

whereψt ≡ [αµt ,2εt ]> denotes timet forecasts of the arrival rates of informed and uninformed trades
at timet + 1 andZ ≡ [|K|,TT− |K|]> denotes the realized trade imbalance and number of balanced
trades at timet. In the parentheses are standard errors. The last row reports the log likelihood value.

Θ LUV AMR DOW C JPM WMT HD GE

δ 0.2998 0.3827 0.5529 0.4275 0.5375 0.5864 0.5600 0.5008
( 0.0138 ) ( 0.0153 ) ( 0.0129 ) ( 0.0143 ) ( 0.0131 ) ( 0.0106 ) ( 0.0156 ) ( 0.0130 )

α 0.4276 0.4707 0.4161 0.4960 0.5191 0.5814 0.3397 0.4342
( 0.0096 ) ( 0.0101 ) ( 0.0096 ) ( 0.0104 ) ( 0.0102 ) ( 0.0090 ) ( 0.0104 ) ( 0.0097 )

g1 0.0682 0.0996 0.0486 0.0809 0.0908 0.0614 0.0759 0.1229
( 0.0035 ) ( 0.0039 ) ( 0.0027 ) ( 0.0042 ) ( 0.0028 ) ( 0.0013 ) ( 0.0018 ) ( 0.0022 )

g2 0.0701 0.1010 0.0452 0.0848 0.0918 0.0714 0.0790 0.1233
( 0.0034 ) ( 0.0038 ) ( 0.0023 ) ( 0.0041 ) ( 0.0027 ) ( 0.0010 ) ( 0.0018 ) ( 0.0020 )

ω1 2.0010 2.7846 2.2215 2.6584 2.9133 2.8769 2.7226 2.0085
( 0.0718 ) ( 0.1719 ) ( 0.1242 ) ( 0.0897 ) ( 0.0957 ) ( 0.0617 ) ( 0.0929 ) ( 0.0734 )

ω2 6.7676 9.4418 10.2262 9.7331 9.4784 6.4879 10.6474 8.9251
( 0.2306 ) ( 0.5416 ) ( 0.4643 ) ( 0.3617 ) ( 0.3080 ) ( 0.0899 ) ( 0.1842 ) ( 0.2661 )

Φ̃11 0.5514 −0.3745 0.5461 0.5143 0.3432 0.7717 0.4794 0.5210
( 0.0085 ) ( 0.0267 ) ( 0.0071 ) ( 0.0078 ) ( 0.0086 ) ( 0.0029 ) ( 0.0048 ) ( 0.0040 )

Φ̃12 0.0444 0.2131 0.0366 0.0577 0.0697 0.0210 0.0364 0.0301
( 0.0020 ) ( 0.0069 ) ( 0.0014 ) ( 0.0016 ) ( 0.0022 ) ( 0.0005 ) ( 0.0013 ) ( 0.0008 )

Φ̃21 −1.4905 −4.5369 −1.7943 −1.7880 −2.1052 −0.4211 −2.0071 −1.9364
( 0.0594 ) ( 0.1841 ) ( 0.0642 ) ( 0.0694 ) ( 0.0708 ) ( 0.0118 ) ( 0.0778 ) ( 0.0589 )

Φ̃22 1.1461 1.7012 1.1393 1.2133 1.2219 1.0334 1.1371 1.1186
( 0.0068 ) ( 0.0259 ) ( 0.0054 ) ( 0.0070 ) ( 0.0074 ) ( 0.0007 ) ( 0.0033 ) ( 0.0020 )

Γ11 0.0960 0.1202 0.0900 0.0630 0.1106 0.1370 0.0801 0.0973
( 0.0026 ) ( 0.0029 ) ( 0.0022 ) ( 0.0016 ) ( 0.0026 ) ( 0.0022 ) ( 0.0025 ) ( 0.0023 )

Γ12 0.0863 0.0980 0.0716 0.0721 0.0982 0.1045 0.0727 0.0680
( 0.0022 ) ( 0.0023 ) ( 0.0018 ) ( 0.0017 ) ( 0.0022 ) ( 0.0017 ) ( 0.0023 ) ( 0.0016 )

Γ21 0.3294 0.4634 0.3817 0.2637 0.3840 0.2878 0.3282 0.4300
( 0.0033 ) ( 0.0025 ) ( 0.0031 ) ( 0.0022 ) ( 0.0030 ) ( 0.0016 ) ( 0.0018 ) ( 0.0020 )

Γ22 0.3478 0.4002 0.3806 0.3358 0.3677 0.3886 0.3248 0.3994
( 0.0018 ) ( 0.0012 ) ( 0.0014 ) ( 0.0013 ) ( 0.0016 ) ( 0.0010 ) ( 0.0010 ) ( 0.0008 )

L(×105) 12.9931 29.3080 38.1600 35.0912 30.5118 53.0571 38.1229 115.8519
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Table III
Maximum Likelihood Estimates for Model B

Entries are maximum likelihood estimates of Model B:

lnψt = ω + Φg+(I −Φ)gt + Φ lnψt−1 + ΓM t ,

whereψt ≡ [αµt ,2εt ]> denotes the timet forecasts of the arrival rates of informed and uninformed
trades at timet +1 andM it ≡ Z it/ψi(t−1)−1 is a martingale difference formulated fromZ ≡ [|K|,TT−
|K|]>. In the parentheses are standard errors. The last row reports the log likelihood value.

Θ ASH XOM DUK ENE AOL MO ATT PFE

δ 0.5086 0.7037 0.4727 0.7731 0.3955 0.4553 0.5209 0.8315
( 0.0147 ) ( 0.0107 ) ( 0.0127 ) ( 0.0116 ) ( 0.0635 ) ( 0.0149 ) ( 0.0115 ) ( 0.0096 )

α 0.3896 0.6158 0.4880 0.2248 0.2409 0.4919 0.5303 0.1382
( 0.0101 ) ( 0.0087 ) ( 0.0099 ) ( 0.0086 ) ( 0.0267 ) ( 0.0097 ) ( 0.0086 ) ( 0.0070 )

g1 0.0705 0.0831 0.0637 0.1138 0.0943 0.1425 0.0391 0.0821
( 0.0016 ) ( 0.0012 ) ( 0.0025 ) ( 0.0011 ) ( 0.0072 ) ( 0.0006 ) ( 0.0004 ) ( 0.0010 )

g2 0.1020 0.0829 0.0999 0.1651 0.0637 0.1814 0.0457 0.2244
( 0.0016 ) ( 0.0019 ) ( 0.0041 ) ( 0.0009 ) ( 0.0082 ) ( 0.0017 ) ( 0.0006 ) ( 0.0025 )

ω1 1.0086 0.4368 0.1463 0.7891 1.6345 0.6154 0.1450 1.3101
( 0.0278 ) ( 0.0131 ) ( 0.0281 ) ( 0.0263 ) ( 0.0649 ) ( 0.0097 ) ( 0.0134 ) ( 0.0327 )

ω2 0.5553 0.1691 0.1125 0.7238 0.3766 0.2941 0.1297 0.3011
( 0.0136 ) ( 0.0039 ) ( 0.0181 ) ( 0.0184 ) ( 0.0127 ) ( 0.0049 ) ( 0.0071 ) ( 0.0078 )

Φ11 0.6718 0.7882 0.5642 0.7637 0.5218 0.6761 0.6031 0.4319
( 0.0106 ) ( 0.0024 ) ( 0.0174 ) ( 0.0072 ) ( 0.0035 ) ( 0.0012 ) ( 0.0024 ) ( 0.0027 )

Φ12 −0.1725 0.0471 0.2095 −0.1931 −0.0468 0.0710 0.2406 −0.1359
( 0.0091 ) ( 0.0029 ) ( 0.0160 ) ( 0.0076 ) ( 0.0047 ) ( 0.0013 ) ( 0.0033 ) ( 0.0026 )

Φ21 −0.1386 −0.0583 −0.2693 −0.1523 −0.0897 −0.1594 −0.2104 −0.1358
( 0.0061 ) ( 0.0009 ) ( 0.0183 ) ( 0.0094 ) ( 0.0014 ) ( 0.0008 ) ( 0.0020 ) ( 0.0014 )

Φ22 0.8862 1.0040 1.1238 0.8079 0.9797 1.0390 1.1190 0.9730
( 0.0041 ) ( 0.0009 ) ( 0.0127 ) ( 0.0038 ) ( 0.0010 ) ( 0.0007 ) ( 0.0020 ) ( 0.0006 )

Γ11 0.0784 0.1820 0.0825 0.0227 0.0749 0.0942 0.0812 0.0288
( 0.0030 ) ( 0.0028 ) ( 0.0030 ) ( 0.0015 ) ( 0.0084 ) ( 0.0019 ) ( 0.0013 ) ( 0.0015 )

Γ12 0.4527 0.6226 0.3468 0.2495 0.5278 0.7779 0.6126 0.4768
( 0.0091 ) ( 0.0042 ) ( 0.0096 ) ( 0.0122 ) ( 0.0032 ) ( 0.0018 ) ( 0.0025 ) ( 0.0029 )

Γ21 0.0451 0.0585 0.0566 0.0254 0.0194 0.0511 0.0451 0.0092
( 0.0015 ) ( 0.0009 ) ( 0.0015 ) ( 0.0010 ) ( 0.0021 ) ( 0.0010 ) ( 0.0008 ) ( 0.0005 )

Γ22 0.3325 0.3230 0.2880 0.3503 0.1939 0.4986 0.4308 0.3343
( 0.0032 ) ( 0.0011 ) ( 0.0032 ) ( 0.0026 ) ( 0.0007 ) ( 0.0004 ) ( 0.0007 ) ( 0.0007 )

L(×105) 5.9190 64.0295 9.9590 12.5788 31.3359 98.6070 112.6333 74.7764
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Table III (continued)
Maximum Likelihood Estimates for Model B

Entries are maximum likelihood estimates of Model B:

lnψt = ω + Φg+(I −Φ)gt + Φ lnψt−1 + ΓM t ,

whereψt ≡ [αµt ,2εt ]> denotes the timet forecasts of the arrival rates of informed and uninformed
trades at timet +1 andM it ≡ Z it/ψi(t−1)−1 is a martingale difference formulated fromZ ≡ [|K|,TT−
|K|]>. In the parentheses are standard errors. The last row reports the log likelihood value.

Θ LUV AMR DOW C JPM WMT HD GE

δ 0.7215 0.2314 0.3422 0.5545 0.3508 0.3596 0.5635 0.3970
( 0.0156 ) ( 0.0129 ) ( 0.0121 ) ( 0.0140 ) ( 0.0136 ) ( 0.0109 ) ( 0.0165 ) ( 0.0132 )

α 0.1618 0.2811 0.4220 0.5225 0.5034 0.5807 0.3002 0.4369
( 0.0079 ) ( 0.0081 ) ( 0.0093 ) ( 0.0074 ) ( 0.0098 ) ( 0.0085 ) ( 0.0101 ) ( 0.0093 )

g1 0.1521 0.0294 0.0208 0.0012 0.1399 0.0707 0.1092 0.1014
( 0.0015 ) ( 0.0015 ) ( 0.0010 ) ( 0.0000 ) ( 0.0015 ) ( 0.0005 ) ( 0.0007 ) ( 0.0006 )

g2 0.1679 0.0130 0.0199 0.1277 0.1829 0.0743 0.1536 0.1379
( 0.0009 ) ( 0.0027 ) ( 0.0014 ) ( 0.0016 ) ( 0.0029 ) ( 0.0015 ) ( 0.0007 ) ( 0.0008 )

ω1 0.7282 0.0826 0.0673 0.3374 0.1494 0.8912 0.4953 1.0596
( 0.0124 ) ( 0.0258 ) ( 0.0312 ) ( 0.0050 ) ( 0.0128 ) ( 0.0091 ) ( 0.0069 ) ( 0.0100 )

ω2 0.3802 0.0689 0.0794 0.2884 0.0966 0.6926 0.3240 0.5735
( 0.0048 ) ( 0.0139 ) ( 0.0158 ) ( 0.0042 ) ( 0.0077 ) ( 0.0074 ) ( 0.0036 ) ( 0.0064 )

Φ11 0.9184 0.3790 0.5753 1.0698 0.7296 0.6643 0.8860 0.7703
( 0.0029 ) ( 0.0055 ) ( 0.0062 ) ( 0.0029 ) ( 0.0039 ) ( 0.0023 ) ( 0.0017 ) ( 0.0017 )

Φ12 −0.2519 0.3072 0.2339 −0.1306 0.1159 0.0425 −0.0654 −0.0747
( 0.0038 ) ( 0.0058 ) ( 0.0085 ) ( 0.0032 ) ( 0.0048 ) ( 0.0019 ) ( 0.0017 ) ( 0.0015 )

Φ21 −0.0186 −0.3331 −0.2120 0.0576 −0.1614 −0.2391 −0.0539 −0.1131
( 0.0013 ) ( 0.0056 ) ( 0.0049 ) ( 0.0025 ) ( 0.0038 ) ( 0.0023 ) ( 0.0010 ) ( 0.0014 )

Φ22 0.8697 1.1600 1.1084 0.8905 1.0673 1.0196 0.9468 0.9533
( 0.0016 ) ( 0.0042 ) ( 0.0050 ) ( 0.0028 ) ( 0.0033 ) ( 0.0014 ) ( 0.0009 ) ( 0.0008 )

Γ11 0.0525 0.0685 0.0958 0.0758 0.0742 0.1135 0.0556 0.0263
( 0.0026 ) ( 0.0021 ) ( 0.0023 ) ( 0.0012 ) ( 0.0017 ) ( 0.0017 ) ( 0.0019 ) ( 0.0006 )

Γ12 0.5637 0.4782 0.5315 0.4578 0.5558 0.4699 0.4362 0.5197
( 0.0053 ) ( 0.0033 ) ( 0.0052 ) ( 0.0024 ) ( 0.0057 ) ( 0.0021 ) ( 0.0021 ) ( 0.0054 )

Γ21 0.0253 0.0419 0.0517 0.0623 0.0475 0.0845 0.0328 0.0160
( 0.0013 ) ( 0.0013 ) ( 0.0012 ) ( 0.0010 ) ( 0.0010 ) ( 0.0013 ) ( 0.0011 ) ( 0.0004 )

Γ22 0.3235 0.3543 0.3676 0.4123 0.3730 0.4761 0.3145 0.3737
( 0.0012 ) ( 0.0010 ) ( 0.0013 ) ( 0.0009 ) ( 0.0011 ) ( 0.0009 ) ( 0.0006 ) ( 0.0008 )

L(×105) 12.9704 29.3073 38.1629 35.0781 30.5117 53.0567 38.1154 115.8491
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Table IV
Stationarity of the Dynamic Processes in Models A and B

Entries are the eigenvalues of the autocorrelation matrixΦ̂ = Φ+Γ in Model A andΦ in Model B. The
eigenvalues should be less than one for the processes to be stationary.

Ticker Model A Model B

ASH 0.6473 0.9950 0.591 0.802
XOM 0.7464 1.0013 0.696 0.613
DUK 0.6281 0.9958 0.513 0.711
ENE 0.6821 0.9974 0.735 0.400
AOL 0.7401 1.0014 0.967 0.333
MO 0.7080 0.9855 0.688 0.595
T 0.7347 0.9921 0.799 0.696
PFE 0.6901 0.9950 0.850 0.732
LUV 0.6996 0.9979 0.967 0.990
AMR 0.3310 0.9957 0.992 0.959
DOW 0.6936 0.9918 0.989 1.004
C 0.7259 1.0018 0.987 1.005
JPM 0.5672 0.9979 0.821 0.971
WMT 0.8115 0.9936 0.986 0.976
HD 0.6209 0.9956 0.997 0.988
GE 0.6437 0.9959 0.983 0.991
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Table V
Correlations Between Arrival Rate Forecasts and Price Volatility

Entries are the correlations between the arrival rates (detrended) of informed and uninformed trades
(ψ̃) and absolute returns on daily open-close (| ln(O/C)|) and high-low (ln(H/L)).

Ticker Model A Model B
| ln(O/C)| ln(H/L) | ln(O/C)| ln(H/L)

αµ̃ 2̃ε αµ̃ 2̃ε αµ̃ 2̃ε αµ̃ 2̃ε

ASH 0.0619 0.0225 0.1285 0.0535 0.1244 0.0826 0.2142 0.1586
XOM 0.1604 0.1471 0.2537 0.2329 0.0652 0.1268 0.1423 0.2757
DUK 0.1526 0.1279 0.2439 0.1961 0.1444 0.1284 0.2707 0.2507
ENE 0.0537 0.0355 0.1867 0.1614 0.0377 0.1123 -0.0038 0.2507
AOL 0.0712 0.0811 0.1657 0.1725 0.0649 0.0738 0.1568 0.1477
MO 0.1407 0.1544 0.2577 0.2795 0.1249 0.1137 0.1985 0.2181
T 0.1324 0.1345 0.1970 0.2513 0.1176 0.1252 0.2383 0.2720
PFE 0.1831 0.1998 0.3408 0.3479 0.0433 0.0799 0.0987 0.1893
LUV 0.1133 0.1081 0.2424 0.2220 0.0883 0.0662 0.1608 0.1847
AMR 0.1549 0.1629 0.3067 0.3161 0.1193 0.1596 0.2441 0.3109
DOW 0.1472 0.1678 0.2668 0.2865 0.1238 0.1556 0.2228 0.2560
C 0.1314 0.1255 0.2384 0.2273 0.0943 0.1240 0.1563 0.2336
JPM 0.1490 0.1436 0.2369 0.2268 0.0966 0.0727 0.1376 0.0886
WMT 0.1575 0.1569 0.2712 0.2768 0.1446 0.1594 0.2549 0.2819
HD -0.0003 -0.0368 0.0556 -0.0061 0.0565 0.0109 0.1228 0.0592
GE 0.1849 0.2237 0.3647 0.4132 0.0334 0.2189 0.0989 0.4106
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Table VI
Correlations Between Trade Composition Forecasts and Total Trades, Trade Imbalances, and

Price Volatilities

Entries are the correlation between the forecasted fraction of informed tradesβ:

βt ≡ αµt

αµt +2εt
,

and the total number of trades (TT), the ratio of trade imbalance to total trades (|K|/TT), and absolute
returns on daily open-close (| lnO/C|) and high-low (lnH/L).

Ticker Model A Model B

TT |K|
TT | ln O

C | ln H
L TT |K|

TT | ln O
C | ln H

L

ASH -0.6555 0.3063 0.0226 0.0685 -0.6225 0.2560 0.0270 0.0535
XOM -0.3327 0.5292 -0.0159 -0.0253 -0.3657 0.4794 -0.0389 -0.0763
DUK -0.7017 0.2982 -0.0663 -0.0823 -0.7541 0.3002 -0.0607 -0.0628
ENE -0.7511 0.3611 -0.0297 -0.1325 -0.7034 0.2938 -0.0599 -0.2027
AOL 0.0527 -0.0410 -0.0159 0.0608 -0.5577 -0.0401 0.0073 0.0136
MO -0.1555 0.2476 -0.0414 -0.0541 -0.3559 0.0929 -0.0723 -0.1430
T 0.1787 0.3190 0.0349 0.0619 -0.2218 0.3811 -0.0375 -0.0718
PFE -0.3987 -0.0006 -0.1537 -0.2317 -0.5366 0.0125 -0.1792 -0.2736
LUV -0.7212 0.2766 -0.0668 -0.1420 -0.4089 0.1771 0.0230 -0.0084
AMR -0.1129 0.0057 -0.0664 -0.1039 -0.4014 0.0326 -0.1382 -0.2597
DOW 0.0663 0.1936 -0.0255 -0.0127 -0.2244 0.2434 -0.0405 -0.0246
C -0.6319 0.2207 -0.0347 -0.0726 -0.6620 0.2104 -0.0634 -0.1293
JPM -0.4126 0.1484 -0.0134 -0.0145 -0.5045 0.1537 -0.0277 -0.0430
WMT -0.5137 0.4569 -0.0172 -0.0405 -0.6896 0.3921 -0.0621 -0.1172
HD -0.6102 0.2517 0.1141 0.1449 -0.6456 0.2604 0.1124 0.1473
GE -0.2605 0.2532 -0.0597 -0.0693 -0.6094 0.1910 -0.1821 -0.2971
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Table VII
Properties of the Half Life of Price Impacts

Entries report the mean half life (τ1/2) of price impacts and its correlations with the number of trades
(TT), the ratio of trade imbalance to total trades (|K|/TT) and absolute returns on daily open-close
(| lnO/C|) and high-low (lnH/L). The price impact ofN consecutive buy orders is defined as

γN
t =

δPrN−1
t (g)(ε +µ)− (1−δ)PrN−1

t (b)ε
PrN−1

t (g)µ+ ε
,

wherePrN−1
t (g) andPrN−1

t (b) are, respectively, the probabilities of the good news and bad news at date
t, conditional onN−1 consecutive buys, which is updated via Bayes rule. The half lifeτ1/2 is then
defined as the minimum number of consecutive buysN such thatγN

t > δ/2.

Ticker Model A Model B

Mean TT |K|
TT | ln O

C | ln H
L Mean TT |K|

TT | ln O
C | ln H

L

ASH 3.4242 0.6477 -0.3010 -0.0162 -0.0437 3.3910 0.6720 -0.2472 -0.0020 0.0060
XOM 5.9628 0.3770 -0.4816 0.0139 0.0232 5.1263 0.4831 -0.4263 0.0574 0.1034
DUK 3.4436 0.6562 -0.2650 0.0625 0.0905 3.2431 0.7598 -0.2376 0.0498 0.0745
ENE 3.5372 0.7787 -0.3524 0.0198 0.1197 6.9759 0.7473 -0.3038 0.0560 0.2031
AOL 4.2668 -0.1496 0.0529 0.0129 -0.0779 9.0777 0.7422 -0.0056 0.0666 0.0975
MO 3.7621 0.1476 -0.1987 0.0470 0.0578 4.4108 0.3434 -0.0660 0.0647 0.1302
T 4.8598 -0.1331 -0.2742 -0.0161 -0.0311 4.2812 0.2519 -0.2713 0.0308 0.0771
PFE 4.1724 0.4464 -0.0437 0.1308 0.1909 11.8016 0.7905 -0.0791 0.1979 0.2934
LUV 2.4784 0.7001 -0.2560 0.0503 0.1075 6.0131 0.5481 -0.2741 0.0203 0.0823
AMR 3.0041 0.0147 0.0001 0.0060 -0.0066 6.3631 0.4722 -0.0423 0.1489 0.2724
DOW 4.6692 -0.0154 -0.1406 0.0318 0.0224 3.8990 0.1728 -0.1847 0.0337 0.0197
C 3.1464 0.6713 -0.1675 0.0574 0.1041 4.2188 0.9017 -0.1309 0.1144 0.2111
JPM 3.8781 0.3217 -0.1282 0.0023 -0.0063 3.2632 0.4919 -0.1037 0.0384 0.0694
WMT 3.7766 0.5143 -0.4067 0.0292 0.0512 2.9543 0.7133 -0.3772 0.0769 0.1361
HD 3.8954 0.5473 -0.2489 -0.0909 -0.1262 3.9940 0.6434 -0.2800 -0.0882 -0.1053
GE 5.4387 0.2552 -0.1917 0.0451 0.0598 4.9054 0.7272 -0.2074 0.1716 0.2915
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Table VIII
Residual Analysis

Entries report the sample estimates of mean (Mean), standard deviation (St Dev), first order autocorrelation
(Auto), and cross-correlation coefficient (ρ) of the percentage forecasting residuals of the absolute trade imbal-
ance|K| and the balanced tradeTT−|K|:

eit =
Z it −Et−1 [Z it ]
Et−1 [Z it ]

, i = 1,2, with Zt = [|Kt |,TTt −|Kt |] .

The expected value on total trades is:Et−1 [TTt ] = αµt−1 + 2εt−1. The expected value of|K| is determined by
simulation. For each stock, the first row reports the properties of the first element and the second row reports that
of the second element of the residuale. The arrival rates are forecasted based on parameters reported in Tables
II and III.

Ticker Model A Model B
Mean St Dev Auto ρ Mean St Dev Auto ρ

ASH 0.373 1.159 -0.000 -0.118 0.455 1.253 0.036 -0.113
-0.076 0.371 0.028 — -0.081 0.369 0.010 —

XOM 0.318 1.055 0.189 -0.400 0.130 0.898 0.138 -0.394
-0.031 0.229 0.074 — -0.031 0.229 0.073 —

DUK 0.353 1.165 0.079 -0.296 0.341 1.152 0.080 -0.296
-0.065 0.310 -0.010 — -0.064 0.310 0.014 —

ENE 0.368 1.132 0.043 -0.204 1.986 2.651 0.116 -0.166
-0.063 0.331 0.028 — -0.143 0.306 0.046 —

AOL 0.303 0.971 -0.008 0.278 3.775 3.557 0.067 0.161
-0.015 0.340 0.108 — -0.124 0.321 0.253 —

MO 0.165 0.970 0.134 -0.039 0.247 1.076 0.233 -0.105
-0.029 0.263 0.043 — -0.094 0.251 0.020 —

T 0.342 1.104 0.274 -0.214 0.216 0.984 0.272 -0.211
-0.036 0.228 0.090 — -0.034 0.227 0.055 —

PFE 0.492 1.200 0.177 -0.046 4.519 4.809 0.225 -0.107
-0.038 0.268 0.058 — -0.093 0.261 0.100 —

LUV 0.130 0.948 0.078 -0.053 2.491 3.135 0.032 -0.041
-0.076 0.428 0.069 — -0.184 0.381 0.104 —

AMR -0.022 0.879 0.026 0.053 3.390 3.966 0.067 0.040
-0.030 0.339 0.018 — -0.123 0.307 0.022 —

DOW 0.299 1.092 0.138 -0.113 0.279 1.063 0.120 -0.113
-0.031 0.251 0.051 — -0.027 0.251 0.048 —

C 0.260 0.973 0.098 -0.143 0.752 1.751 0.360 -0.103
-0.053 0.332 0.074 — -0.137 0.311 0.016 —

JPM 0.179 0.947 0.076 -0.115 0.229 0.988 0.116 -0.102
-0.036 0.277 0.065 — -0.030 0.280 0.028 —

WMT 0.191 0.915 0.170 -0.221 0.118 0.881 0.243 -0.203
-0.043 0.292 0.067 — -0.050 0.288 -0.010 —

HD 0.717 1.419 0.262 -0.065 0.844 1.545 0.306 -0.019
-0.064 0.378 0.107 — -0.072 0.373 0.094 —

GE 0.363 1.148 0.105 -0.156 0.284 1.086 0.236 -0.145
-0.021 0.210 0.068 — -0.024 0.210 0.063 —


