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Abstract 

This paper is a contribution to the vast literature on the inefficiency in the index options markets.  

Previous research has found that trading based on implied volatility forecasts do not generate 

positive profits for the S&P 500 index options but GARCH volatility forecasts do. Trading based 

on implied volatility forecasts for the S&P 100 index options also fail to generate profits in 

excess of transaction costs. This paper shows that trading based on GARCH volatility forecast 

generates profits in excess of transaction costs for the S&P 100 index options hence there is 

systematic mispricing in the S&P index options markets. GARCH models fair well due to their 

flexibility to incorporate asymmetric and nonlinear volatility effects. Improved pricing models 

should work as well or better.  
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I. Introduction 

 

Option prices are a function of the current price, the strike price, time to expiration, volatility of 

the asset price, the risk-free interest rate and the dividends expected during the life of the option. 

For a non-dividend paying asset, the only nonobservable parameter is the volatility of the asset 

price. Observed option prices then imply the volatility of the asset as perceived by the market. If 

an investor differs in his estimate of the volatility of the return of the underlying asset hence the 

valuation of the option, then, in the absence of transaction costs, he can make positive profits 

based by trading based on his volatility estimates. This in turn constitutes a test for the efficiency 

of markets if, given transaction costs, positive profits are possible. 

 

Researchers have reported evidence of mispricing  in  index call and put options1 markets.  (See 

Evnine and Rudd (1985), Chance (1986), (1987)), Ackert and Tian (1998), Kamara and Miller 

(1995)). Mispricing, as a general rule, should be considered as evidence of market inefficiency, 

since investors who are able to price options correctly should be able to generate positive profits 

until market efficiency is restored. However, in a market with constraints, inefficiency may 

persist if investors are not able to take advantage of the profit opportunities. Ackert and Tian 

(2001) argue that this is the case in the S&P 500 options markets, that there is mispricing in the 

call and put options which cannot be eliminated by arbitrage.  They also argue that mispricing 

                                                 
1 An option on a financial asset gives the owner either the right to buy (call option) or the right to sell (put option) the 

asset at a prespecified price (strike price) on or before a prespecified date (expiration date).  An option that can only 
be exercised on the day of expiration is a European option, an option that can be exercised any time before  it expires 
is an American option. 
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should not be considered as an indication of the inefficiency of the market if constraints do not 

enable arbitrageurs from profiting from the mispriced assets2.  

 

Noh, Engle and Kane (1993) test the efficiency of the S&P 500 index option market based on the 

performance of two volatility forecast models. They find that the GARCH volatility forecast 

model generates significantly positive profits after transaction costs with near-the-money straddle 

trading whereas the implied volatility regression model fails to do so. Harvey and Whaley (1992) 

test the efficiency of the S&P 100 option index market using implied volatility methods to 

forecast future volatility and find that excess   returns are not possible. Would GARCH volatility 

forecast models be able to generate positive profits in the S&P 100 index options as well? The 

aim of this paper is to test the efficiency of the S&P 100 index option market using a GARCH 

forecasting model and see if near-the-money straddle trading can generate positive profits after 

transaction costs in S&P 100 index options. The specification Noh, Engle and Kane have adopted 

for the S&P 500 index serves as a starting point but is modified to allow for changes in volatility 

around the option expiration dates. We find that GARCH volatility forecast models indeed 

generate profits in excess of transaction costs for the S&P 100 index options and indicate a 

systematic mispricing of S&P index options. 

 

The paper is organized as follows. The next section provides a summary of the existing literature 

on the inefficiency in the index option markets and methods used to forecast volatility. Literature 

utilizing GARCH specifications are discussed in greater detail. Section 3 introduces the GARCH 

specifications that we use and discusses the estimated results. Sections 4 and 5 describe the data 

                                                 
2 A similar analysis on the Hang Seng index options is given by Duan and Zhang (2001).  
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and the trading experiment based on the GARCH forecasting models. The last section provides a 

summary of the major findings.  

 

II. Literature Review 

 

There is a vast literature on the inefficiency of index option markets. Noh, Engle and Kane 

(1993,1994) find evidence for the inefficiency in the S&P 500 index option markets, and Ackert 

and Tian (1998), Duan and Zhang (2001),  Kamara and Miller (1998) report evidence of  

mispricing in index call and put options. Ackert and Tian (2001) report violations in option 

pricing relationships for the S&P 500 index options based on methods that are independent of the 

option pricing models used. 

 

Existing literature on forecasting the volatility of financial assets, for the most part favors two 

methodologies. Perhaps the more popular of the two, makes use of the autoregressive conditional 

heteroskedasticity (ARCH) model proposed by Engle (1982) and generalized by Bollerslev 

(1986) in its various forms. ARCH models allow conditional variance to change over time and 

have been used extensively to model stock market volatility which is time-varying in nature. 

French, Schwert and Stambough (1987), Chou (1988), Pagan and Schwert (1989), Engle and 

Gonzales-Rivera (1989) and Nelson (1991) have used ARCH models to forecast volatility of 

stock returns.  Option pricing models with stochastic volatility have been developed and applied 

to several index options.  Engle, Kane and Noh (1997) are one of the first to use stochastic 

volatility models for S&P 500 index options. Lin, Strong and Xu (2001) analyze options on the 

FTSE 100 index, Duan and Zhang (2001) on the Hang Seng index based on stochastic volatility 

models. 
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The most popular alternative to ARCH models, is to use option implied volatility as an estimate 

of conditional variance. Latane and Rendleman (1976) show that volatility implied by option 

prices  is a better predictor of future volatility than alternatives based on historical price data.  

Schmalensee and Trippi (1978)  use implied volatility as an estimate of conditional voaltility and 

construct a weighted-average volatility estimate for the asset from implied volatilities of 

individual options.  Day and Lewis (1988) study the changes in volatility around expiration dates 

and find that the behavior of the implied volatilities for options spanning the expiration dates is 

consistent with an unexpected increase in market volatility around expiration dates.  Schwert 

(1990) analyzes the behavior of volatility around the stock market crash of 1987 using implied 

volatility. Stein (1989) finds that longer term options overreact to changes in the implied 

volatility of short term options. Harvey and Whaley (1991) investigate the effect of infrequent 

trading on the implied volatility estimates and suggest modifications to improve valuation of the 

options. 

 

Profits from trading based on volatility forecasts have been used to test the efficiency of markets. 

Engle, Hong, Kane and Noh (1993) compare returns from trading in NYSE index options based 

on different variance forecasts. They find that ARCH models show the highest profits and lowest 

standard deviations and thus are superior to alternatives. Noh, Engle and Kane (1993) test the 

efficiency of the S&P 500 index option market and find that GARCH forecasting method 

generates positive profits. Harvey and Whaley (1992) forecast the volatility implied in the S&P 

100 and although they test and reject that volatility changes are unpredictable, they find that 

abnormal returns are not possible. 
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III. GARCH Specifications  

 

Options expire on the third Friday of the expiration month. There is evidence that markets are 

more active and volatile around these dates. Stoll and Whaley (1987) document that the volume 

of trading in the stocks listed on the New York Stock Exchange (NYSE) during the last hour of 

trading on Fridays when futures contracts expire3 is twice as much as other Fridays.  They also 

show that the S&P 100 index is more volatile during the last hour of trading on the days that 

options expire. Day and Lewis (1988) find evidence that the market anticipates higher volatility 

around expiration dates. 

 

Different GARCH specifications are used to forecast volatility of the S&P 100 returns. All 

models allow for changes in volatility of daily returns on “special days”.  There are three kinds of  

“special days”; Mondays, Tuesdays and monthly expiration dates. Noh, Engle and Kane (1993) 

estimate the annualized standard deviation of the S&P 500 index returns to be 23.35 % for the 

period 1986 through 1991, compared to 33.64 % on Mondays and 19.74 % on Tuesdays. In Table 

1, we provide different measures of volatility around expiration dates. All the figures in the table 

are based on daily prices. Rather than a significant increase in volatility, we note an increase in 

daily returns around expiration. The findings of researchers such as Stoll & Whaley (1987) and 

Day & Lewis (1988) are based on intraday data, and we fail to find striking rises in volatility 

based on daily data. However, our findings indicate that expiration dates are indeed special and 

deserve treatment as such.  

 
 

Table 1 
                                                 
3 Futures contracts expire quarterly. 
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Volatility of S&P 100 Index, Jan 1987 - Jan 1993 * 
(Standard Deviations are in Parenthesis) 

 
 Daily Returns High - Low (High-Low)/Close 

Overall 0.00056 
(0.0101) 

3.8736 
(2.1) 

0.0125 
(0.0075) 

Expiration day 0.00323 
(0.012) 

4.2685 
(2.383) 

0.0142 
(0.0079) 

The last two days before 
expiration 

0.0019 
(0.0129) 

4.234 
(2.35) 

0.0142 
(0.0083) 

Week of expiration 0.0021 
(0.011) 

4.0725 
(2.2845) 

0.0137 
(0.008) 

* October 1987 is excluded. 

 

Noh, Engle and Kane (1993) suggest the following specification for the volatility of the S&P 500 

return series, which we adopt as our starting point to forecast the volatility of the S&P 100 return 

series: 

  r a
t t

= +
0

ε , ε
t t

N h~ ( , )0       (1) 

 

  ( ){ }h d b d b b h
t t t t t

= + +
−

−

− −

δ δ ε
0 1 1 1

2

2 1
       (2) 

 
 
where r

t
is the daily return of the asset at time t and d

t
denotes the number of days since the last 

trading day.  If date t is a Monday, h
t−1

is increased and if date t is a Tuesday h
t−1

is decreased. 

There is evidence that variance is smaller when the market is closed4, that is variance in the 

middle of the week is greater when compared to variance around the weekend, and the above 

specification is an attempt to capture this phenomenon.    

 

                                                 
4 For example see French & Roll (1986). 
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To account for the possibility of increased variance around expiration dates5, (2) can be modified 

to incorporate this effect to allow for higher volatility around expiration dates. 

       ( ){ }h d b c k d b b h
t t t t t t

= + + +
−

−

− −

δ δ ε
0 1 1 1 1

2

2 1
log      (3) 

 

where k
t
 is number of days to the next expiration date. Evidence on intraday data is to the effect 

that volatility is higher during the week of expiration, and even more so just before the expiration. 

We use the natural logarithm of  k
t
 rather than including dummy variables.  This model does not 

treat the effect of  k
t
 on Monday and Tuesday symmetrically. We provide a symmetric alternative 

given by equation (4).   

 

  ( ){ }h d b d c k b b h
t t t t t t

= + + +
−

−

− −

δ δ ε
0 1 1 1 1

2

2 1
log       (4) 

 
 

Equation (5) is a linear version of the above models. We estimate this model to investigate 

whether the nonlinearity in the specification preferred  by Noh, Engle and Kane (1993) is 

justified.   

 

  h b c k c d c d b b h
t t t t t t

= + + + + +
− − −0 1 2 3 1 1 1

2

2 1
log ε                (5) 

 

A natural way to model the significantly higher daily returns around expiration dates is by an 

ARCH-M version of the underlying model. The specification we employed is given by equations 

(6) and (7).   

  r a a h
t t t

= + +
0 1

ε                 (6) 

 

  ( ){ }h d b c k d b
t t t t t

= + +
−

−

−

δ δ ε
0 1 1 1 1

2log                 (7) 

                                                 
5 Day & Lewis (1988) find evidence in support of this claim. 
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The models are estimated by maximum likelihood. The results are presented in Table 2. Columns 

1 and 2 compare the basic Noh, Engle and Kane (1993)  model with and without  time to 

expiration  The inclusion of  this effect  improves the results significantly.6 The negative 

coefficient implies a rapidly increasing volatility effect close to the expiration dates. Columns 2 

and 3 show that treating Mondays and Tuesdays asymmetrically does not affect the results. 

Column 4 provides the coefficient estimates for the linear model. This model achieves a function 

value as good as the other models and also captures the volatility effects of  “special days”. The 

coefficient on the Tuesday dummy is negative7 and significant, implying lower volatility on 

Tuesdays. Volatility on  Mondays  is higher, although the coefficient estimate is not significant.  

The ARCH-M model does not perform well.  Including the time to expiration in the return series 

also does not change  the results very much. Likelihood ratio tests for equation (8) versus 

equation (1) for volatilities given by (3), (4) and (5) do not reject the null that equation (8) 

provides significant improvement over equation (1).  

 

  r a a k
t t t

= + +
0 1

log ε                 (8) 

 

The models are also estimated for the S&P 500 index. The results are provided in Table 3. Once 

again including the time to expiration in the regression significantly improves the results and the 

                                                 
6 Likelihood ratio test rejects the hypothesis that the model given by equations (1) & (3) does not provide a 
significant improvement over the model given by (1) & (2). 
7 Tuesday dummy is the Monday dummy forwarded one period. 
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linear specification works just as well as the nonlinear models. The coefficients have the same 

signs as for the S&P 100 index.     
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Table 2 
S & P 100 Index 

(Standard errors are in parenthesis) 

 (1) & (2) (1) & (3) (1) & (4) (1) & (5) (6) & (3)  

a
0
 0.000868 

(0.00029) 
0.00098 
(0.0003) 

0.00098 
(0.0003) 

0.00102 
(0.00029) 

0.0005 
(0.00053) 

 

a
1
     -0.5173 

(3.862) 
 

b
0
 0.000012 

(0.000002) 
0.000036 

(0.000004) 
0.0000345 
(0.000004) 

0.000053 
(0.000005) 

0.000129 
(0.000009) 

 

b
1
 0.1263 

(0.01296) 
0.1298 

(0.0124) 
0.1309 

(0.0122) 
0.1398 

(0.0076) 
0.2299 

(0.0197) 
 

b
2
 0.7816 

(0.02387) 
0.7639 

(0.0211) 
0.7625 

(0.0204) 
0.7720 

(0.0194) 
  

δ  0.2856 
(0.0594) 

0.2825 
(0.0529) 

0.2602 
(0.0528) 

 0.4830 
(0.04834) 

 

c
1
  -0.0000095 

(0.0000015) 
-0.0000092 
(0.0000016) 

-0.0000081 
(0.0000017) 

-0.00001 
(0.000003) 

 

c
2
    0.00000349 

(0.000004) 
  

c
3
    -0.000018 

(0.0000038) 
  

# observations 1261 1261 1261 1261 1261  
Function Value 5067.17 5078.92 5077.17 5078.95 5013.48  
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Table 3 
S & P 500 Index 

(Standard errors are in parenthesis) 

 (1) &(2) (1) & (3) (1) & (4) (1) & (5) 

a
0
 0.00091 

(0.00027) 
0.00104 

(0.00028) 
0.00103 

(0.00029) 
0.00106 

(0.00028) 
b

0
 0.00001 

(0.000001) 
0.00003 

(0.000004) 
0.000028 

(0.000004) 
0.00004 

(0.000004) 
b

1
 0.13661 

(0.01357) 
0.1421 

(0.0137) 
0.1432 

(0.0135) 
0.1512 

(0.0079) 
b

2
 0.76206 

(0.02446) 
0.7462 

(0.0233) 
0.7445 

(0.0227) 
0.7583 

(0.0205) 
δ  0.30665 

(0.05904) 
0.2975 

(0.0553) 
0.2812 

(0.0550) 
 

c
1
  -0.000007 

(0.000001) 
-0.000007 
(0.000001) 

-0.000005 
(0.0000015) 

c
2
    0.0000027 

(0.000004) 
c

3
    -0.000016 

(0.0000035) 
# observations 1261 1261 1261 1261 
Function Value 5149.40 5157.09 5155.55 5156.52 
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IV. Trading Experiment 

 

The model given by equations (1) & (5) is estimated using the past 600 rolling 

observations of the S&P 100 index returns to update the parameter estimates. These 

estimates are used to forecast volatility through the life of the option as follows; 

 

h t b c k c d c d b b h
t t t t t t+ + +

= + + + + +
1 0 1 1 2 1 3 1

2

2
| log ε  

h t b c k c d c d b E t b h t
t i t i t i t i t i t i+ + + + − + − + −

= + + + + +| log ( | ) |
0 1 2 3 1 1 1

2

2 1
ε  

h t b c k c d c d b b h t
t i t i t i t i t i+ + + + − + −

= + + + + +| log ( ) |
0 1 2 3 1 1 2 1

  i = 2 3, ,....,τ  

 

where h t
t i+

|  and ε
t i

t
+

|  denote predictions at time t. Call and put option prices can then be 

calculated using the Black-Scholes model. 

 

C I N d Ee N d
t t t

r
t

+ + +

−
= −

1 1 1 2,
( ) ( )

τ
τ

 

 

P I N d Ee N d
t t t

r
t

+ + +

−
= − + −

1 1 1 2
1 1

,
( ( ) ) ( ( ))

τ
τ

 

 

d
I E r

t t t t

t t

1

1 1

2

1 1

1 2
=

+ +
+ + +

+ + +

ln( / ) ( / )
,

,

σ
τ

τ

σ
τ

τ
 

 

d d
t t2 1 1 1

= −
+ + +

σ
τ

τ
,

 

 

σ
τ

τ
τ

t t t ii
h t

+ + + +=

+
= ∑

1 1 2

1
1

,
( / ) |  
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where C P
t t t t+ + + + + +1 1 1 1, ,

,
τ τ

 denote Black-Scholes call and put option price forecasts 

respectively, I
t
 is the closing price, E is the exercise price, r

t
  is the risk-free interest 

rate,  σ
τt t+ + +1 1,

is the volatility prediction for the life of the option, N x( ) is the cumulative 

probability distribution for a standardized normal variable and τ  is the time to expiration.  

 

A more sophisticated option pricing model, in particular one which can explicitly take 

into account stochastic variance should be applied to produce more realistic should-be 

option prices.  However, the standard Black-Scholes which incorporates forecasts of 

volatility based on GARCH models suffices to produce evidence of market inefficiency 

by showing that excess profits are possible. We acknowledge the need to use improved 

option-pricing models to generate “correct” option prices.8  

    

V. Data 

 

S&P 100 and S&P 500 index option data as provided by the Chicago Board of Options 

Exchange for the period January 1989 through December 1991 are used in the analysis. 

Data for the underlying are  available from January 1987 through December 1991. The 

Treasury bill rate from  Citibase is used for the risk-free interest rate. 

 

If the investor believes that volatility is going to be higher than what is perceived by the 

market, he can buy a call option and a put option with the same strike price and expiration 

date. This is called a straddle. To make profits using this information he would buy a 

straddle at the current price (at-the-money) since they are the most sensitive instruments 

to changes in volatility. If indeed volatility is higher then the price of both options 

                                                 
8 Several methodologies exist. For a review of option pricing with stochastic volatility see Lin, Strong and 
Xu (2001). 
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increases because of the change in volatility, and if most of the price change is in one 

direction  then one option becomes significantly more valuable since the strike price is 

now  quite different from the current price.  

 

Trading is done on nearest term at-the-money call and put options.  We compare the call 

and put prices generated by our model and if the price is sufficiently higher (to cover 

transaction costs), we buy the straddle, otherwise we don’t trade. We only hold a position 

for a day. We buy at the close and sell at the next day’s close if we haven’t exited the 

market before that. We exit the market when we make the threshold level of profit on the 

call or on the put or at the end of the day. We assume there is no slippage. Daily trading 

volume in the nearest term option is on average about 80 %. During the last week it goes 

up to 90 %. Given the liquidity in the market, our assumption about slippage is well 

justified.  

 

Tables 4-9 provide average annualized rates of return from straddle trading near-the-

money options for different levels of transaction costs and exit thresholds.  Two different 

sets of trading strategies are employed. Tables 4-6 are based on straddle trading where a 

call for every put is bought. Tables 7-9 bet the same amount of money on calls and puts. 

For each strategy, we buy the at-the-money straddle, the nearest in-the-money straddle 

and the nearest out-the-money straddle.  The results indicate that excess profits are 

possible and the right exit strategy can improve the results dramatically.  
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As an example, the at-the-money straddle trading combined with an exit strategy that 

quits the market when the 30% profit threshold is reached generates average annualized 

rates of return of 221% when transaction costs are $3 per contract. This is a conservative 

level of transaction costs for the period of the trading experiment and excess profits are 

possible. Over the 660 days this experiment was done, 228 trades were made. This 

amounts to about one trade for every three trading days, which is quite frequent. The 

average daily return over the 660 days is 0.6 % after transaction costs. 

 

As a final note, straddle trading based on the GARCH forecasting model does better than 

the simple trading strategy of trading every day and exiting the market at the end of each 

day. Exit strategies improve the results for this trading strategy as well. These results are 

not presented here but are available upon request. 

 

VI. Conclusion 

 

This paper is a contribution to the vast literature on the inefficiency in the index options 

markets.  Previous research has found that trading based on implied volatility forecasts do 

not generate positive profits for the S&P 500 index options but GARCH volatility 

forecasts do. Trading based on implied volatility forecasts for the S&P 100 index options 

also fail to generate profits in excess of transaction costs. This paper shows that trading 

based on GARCH volatility forecast generates profits in excess of transaction costs for 

the S&P 100 index options hence there is systematic mispricing in the S&P index options 

markets.  
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We have estimated various GARCH models for the S&P 100 and S&P 500 index returns. 

We find that the number of days to expiration is an important factor in predicting future 

volatility. We have traded straddles based on our forecasting methodology and were able 

to make positive profits. To the extent that this constitutes a test for efficient markets, we 

conclude that the S&P 100 index options market is inefficient and there is potential for 

speculative profits.  

 

There are more sophisticated methods of pricing options with stochastic volatility than 

the one we use to price options in this paper, hence we do not argue that we correctly 

price the options when the market does not.  
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Table 4 

Average annualized rates of return from trading with at-the-money options 

Equal numbers of calls and puts 

 

Exit  
Strategy 

Transaction costs  
($ per contract) 

 0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 

0 1617% 1544% 1471% 1398% 1325% 1252% 1179% 1105% 1032% 959% 886%

10% 510% 436% 363% 290% 217% 144% 71% -2% -76% -149% -222%

20% 106% 33% -40% -114% -187% -260% -333% -406% -479% -552% -626%

30% 440% 367% 294% 221% 148% 75% 1% -72% -145% -218% -291%

40% 205% 132% 59% -14% -87% -160% -234% -307% -380% -453% -526%

50% 106% 32% -41% -114% -187% -260% -333% -406% -480% -553% -626%

60% 58% -15% -89% -162% -235% -308% -381% -454% -527% -601% -674%

70% 82% 9% -65% -138% -211% -284% -357% -430% -503% -577% -650%

80% 97% 24% -50% -123% -196% -269% -342% -415% -488% -561% -635%

90% 63% -10% -83% -156% -230% -303% -376% -449% -522% -595% -668%

100% 51% -23% -96% -169% -242% -315% -388% -461% -535% -608% -681%
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Table 5 

Average annualized rates of return from trading the nearest in-the-money option 

 Equal numbers of calls and puts 

 

Exit  
Strategy 
 

Transaction costs  
($ per contract) 

 0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 

0 1498% 1418% 1337% 1257% 1176% 1096% 1015% 935% 855% 774% 694%

10% 438% 358% 278% 197% 117% 36% -44% -124% -205% -285% -366%

20% -18% -98% -179% -259% -340% -420% -500% -581% -661% -742% -822%

30% 219% 139% 58% -22% -103% -183% -263% -344% -424% -505% -585%

40% -85% -165% -246% -326% -406% -487% -567% -648% -728% -808% -889%

50% -163% -243% -324% -404% -484% -565% -645% -726% -806% -886% -967%

60% -210% -291% -371% -452% -532% -612% -693% -773% -854% -934% -1014%

70% -244% -325% -405% -486% -566% -646% -727% -807% -888% -968% -1049%

80% -216% -297% -377% -458% -538% -618% -699% -779% -860% -940% -1020%

90% -261% -341% -422% -502% -582% -663% -743% -824% -904% -984% -1065%

100% -272% -352% -432% -513% -593% -674% -754% -834% -915% -995% -1076%
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Table 6 

Average annualized rates of return from trading the nearest out-the-money option 

Equal numbers of calls and puts 

 

Exit 
strategy 

Transaction costs  
($ per contract) 

0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 

0 1610% 1516% 1423% 1329% 1235% 1141% 1047% 953% 859% 766% 672%

10% 532% 438% 345% 251% 157% 63% -31% -125% -219% -312% -406%

20% 257% 163% 69% -25% -119% -212% -306% -400% -494% -588% -682%

30% 256% 162% 68% -26% -119% -213% -307% -401% -495% -589% -683%

40% 7% -86% -180% -274% -368% -462% -556% -650% -744% -837% -931%

50% -107% -200% -294% -388% -482% -576% -670% -764% -857% -951% -1045%

60% -171% -265% -359% -453% -546% -640% -734% -828% -922% -1016% -1110%

70% -204% -298% -392% -486% -580% -673% -767% -861% -955% -1049% -1143%

80% -218% -312% -406% -500% -594% -688% -781% -875% -969% -1063% -1157%

90% -240% -334% -427% -521% -615% -709% -803% -897% -991% -1084% -1178%

100% -251% -345% -438% -532% -626% -720% -814% -908% -1002% -1095% -1189%
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Table 7 

Average annualized rates of return from trading at-the-money options 

Equal $ bets on calls and puts 

 

Exit 
strategy 

Transaction costs  
($ per contract) 

0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 

0 1517% 1451% 1384% 1317% 1250% 1184% 1117% 1050% 983% 917% 850%

10% 416% 349% 282% 216% 149% 82% 15% -51% -118% -185% -252%

20% 24% -43% -109% -176% -243% -310% -376% -443% -510% -577% -643%

30% 156% 90% 23% -44% -111% -177% -244% -311% -378% -445% -511%

40% -52% -119% -185% -252% -319% -386% -452% -519% -586% -653% -720%

50% -134% -200% -267% -334% -401% -468% -534% -601% -668% -735% -801%

60% -150% -217% -284% -350% -417% -484% -551% -617% -684% -751% -818%

70% -173% -240% -307% -374% -440% -507% -574% -641% -708% -774% -841%

80% -136% -203% -269% -336% -403% -470% -537% -603% -670% -737% -804%

90% -160% -227% -294% -360% -427% -494% -561% -627% -694% -761% -828%

100% -174% -241% -308% -375% -442% -508% -575% -642% -709% -775% -842%
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Table 8 

Average annualized rates of return from trading in-the-money options 

Equal $ bets on calls and puts 

 

Exit 
strategy 

Transaction costs  
($ per contract) 

0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 

0 1386% 1324% 1263% 1202% 1141% 1079% 1018% 957% 895% 834% 773%

10% 502% 441% 380% 319% 257% 196% 135% 74% 12% -49% -110%

20% 157% 95% 34% -27% -89% -150% -211% -272% -334% -395% -456%

30% 265% 203% 142% 81% 20% -42% -103% -164% -225% -287% -348%

40% 17% -44% -105% -167% -228% -289% -350% -412% -473% -534% -596%

50% -15% -76% -138% -199% -260% -321% -383% -444% -505% -566% -628%

60% -33% -94% -156% -217% -278% -339% -401% -462% -523% -584% -646%

70% -48% -109% -170% -231% -293% -354% -415% -476% -538% -599% -660%

80% 11% -50% -112% -173% -234% -295% -357% -418% -479% -540% -602%

90% -11% -72% -133% -195% -256% -317% -378% -440% -501% -562% -624%

100% -26% -88% -149% -210% -271% -333% -394% -455% -516% -578% -639%
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Table 9 

Average annualized rates of return from trading out-the-money options 

Equal $ bets on calls and puts 

 

Exit 
strategy 

Transaction costs  
($ per contract) 

0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 

0 1410% 1345% 1280% 1215% 1151% 1086% 1021% 956% 891% 826% 761%

10% 388% 323% 258% 193% 128% 63% -2% -67% -132% -197% -262%

20% 131% 66% 1% -64% -129% -194% -259% -324% -388% -453% -518%

30% 39% -26% -91% -156% -221% -286% -351% -416% -481% -546% -611%

40% -221% -286% -351% -416% -481% -546% -610% -675% -740% -805% -870%

50% -338% -403% -468% -533% -598% -663% -728% -793% -858% -923% -988%

60% -341% -406% -471% -536% -601% -666% -731% -796% -861% -926% -991%

70% -413% -478% -543% -608% -673% -738% -803% -868% -933% -998% -1063%

80% -438% -503% -568% -633% -698% -763% -827% -892% -957% -1022% -1087%

90% -470% -535% -600% -665% -730% -795% -860% -925% -989% -1054% -1119%

100% -484% -549% -614% -679% -744% -809% -874% -939% -1004% -1069% -1134%
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