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1 Introduction

Entrepreneurs play an important role in fostering innovation and economic growth

(Schumpeter (1934)). It is often suggested that an “entrepreneur” is someone who

combines upfront business investments with entrepreneurial skill to obtain the chance

of earning cash flows. This notion ranges from inventors who create new products or

even new industries to local business people starting restaurants and retail stores.1

A common feature of entrepreneurs is that their business investments, consumption-

saving, and portfolio selection decisions are interdependent. The aim of this paper is

to provide a dynamic model to analyze this interdependence.

We model an entrepreneur’s business investment decision as a real options prob-

lem. Since the seminal work of Brennan and Schwartz (1985) and McDonald and

Siegel (1986), the real options approach to investment under uncertainty has become

an essential part of modern economics and finance. The key insights that waiting

has positive value and that the opportunity to invest in a project is analogous to an

American call option on the investment opportunity have been generally accepted.

This is reflected by the fact that many corporate finance textbooks devote at least a

chapter to the real options approach (e.g. Brealey and Myers (2002)). Furthermore,

related research has been actively published in academic journals.

Although the real options approach to investment has been developed substan-

tially,2 most papers in this literature either assume that markets are complete or

decision makers are risk neutral. While either assumption serves as a natural starting

point in order for researchers to single out and focus on the option value of waiting,

1See Gentry and Hubbard (2004) for this definition.
2The standard real options approach to investment has been excellently summarized in Dixit

and Pindyck (1994). Recent developments include agency (Grenadier and Wang (2004), Grenadier,
Miao and Wang (2004)), ambiguity (Miao and Wang (2004)), macroeconomic conditions (Guo, Miao,
and Morellec (2004)), industry equilibrium (Grenadier (2002), Miao (2004)), strategic interaction
(Grenadier (1996), Miltersen and Schwartz (2002)), and imperfect information (Grenadier (1999),
Lambrecht and Perraudin (2003) , Berk, Green, and Naik (2004)).
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both assumptions are strong and made primarily for tractability reasons. For exam-

ple, under complete markets, the physical investment opportunity must be spanned

by existing assets in the economy which requires that it be either freely traded or

replicated by other assets or portfolios. Under this assumption, one can apply the

contingent claims analysis (Black and Scholes (1973) and Merton (1973)) to determine

the option value and investment timing. Although assuming risk neutrality and ap-

plying dynamic programming can deal with incomplete markets, it is not particularly

relevant to the vast risk averse investors in reality.

In reality, it is often the case that risk averse entrepreneurs own investment

projects and make investment decisions.3 These projects may not be freely traded or

their payoffs may not be spanned by existing assets because of liquidity restrictions or

the lack of liquid markets. These capital market imperfections may be due to moral

hazard, adverse selection, transactions costs, or contractual restrictions. As examples,

liquid markets for projects to develop new products or R&D ventures often do not

exist. Moreover, the results of these projects may be hard to predict so that the associ-

ated future cash flows may be unrelated to the risk of the existing assets. Thus these

investment opportunities may have substantial idiosyncratic risks. Owning them

exposes entrepreneurs to these un-diversifiable risks.4 Consequently, entrepreneurs’

lifetime well beings naturally heavily depend on the outcome of their investments

subject to un-diversifiable idiosyncratic risks. Moreover, entrepreneurs’ attitudes to-

wards risk should play an important role in determining their consumption-saving,

portfolio selection, and investment decisions.

3For example, data from the 1993 National Survey of Small Business Finances shows that the
average ownership of the entrepreneur is 81% for businesses with fewer than 500 employees. Ac-
cording to the estimates of the Office of Advocacy of the U.S. Small Business Administration, there
were approximately 23.7 million small businesses in the United States in 2003. Here we do not
focus on investment decisions for managers in corporate firms. This is because the issues of man-
agerial compensation contracts, capital structure, and the conflict of interest between managers and
shareholders may significantly complicate our analysis.

4See Gentry and Hubbard (2004) for empirical evidence.
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This paper provides a utility-based framework to analyze a risk averse entrepreneur’s

investment decision under uncertainty and incomplete markets. Extending McDonald

and Siegel (1986), we build a model in which the entrepreneur maximizes expected

utility from consumption streams when he has a nontraded investment opportunity.

We first consider a baseline model where the entrepreneur can only trade a risk-free

asset to smooth consumption. We then study the case where the entrepreneur can

also trade a risky asset, which can be used to hedge against the cash flow risk. This

paper contributes to the literature on the real options approach to investment by pro-

viding an analysis on how risk aversion and market incompleteness affect investment

timing. This paper also adds to the literature on hedging by analyzing the impact of

hedging on investment timing and welfare in an incomplete-markets environment.

According to the standard real options approach under complete markets or risk

neutrality, risk aversion does not play any role in real investement timing decision.

By contrast, we show that risk aversion delays investment in our incomplete markets

setting. The mechanism of the impact of risk aversion is manifested through the con-

sumption smoothing (precautionary saving) effect.5 Specifically, investment generates

a stream of stochastic income and thus exposes the entrepreneur to the uninsurable

cash flow risk. An increase in the degree of risk aversion raises precautionary savings,

thereby reducing consumption both before and after investment. Consequently, it

lowers both the project value and the option value to invest.6 We further show that

the project value is reduced more than the option value, implying that investment is

delayed.

We also show that investment timing and welfare may not be monotonic with the

5An agent is said to be precautionary, if his marginal utility is convex. Leland (1968) provides
an early contribution to precautionary saving. See Kimball (1990) for an axiomatic treatment of
precautionary saving.

6These values are interpreted as subjective values, but not market values. They are defined
using the “certainty equivalent” approach in the literature on the pricing of nontraded assets (e.g.,
Svensson and Werner (1993), Hall and Murphy (2000), Kahl et al. (2003), and references therein).
See Section 2.2 for further discussions.
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extent of hedging or the correlation between the project risk and the market. This is in

sharp contrast to the conventional view that hedging reduces cash flow risk, and hence

it should speed up investment and raise welfare. The reason is that in addition to

the preceding risk reduction effect, for the budget constrained entrepreneur, hedging

may result in losses of returns from the hedging asset, thereby reducing wealth and

the net gains from investment. Depending on the degree of risk aversion, riskiness of

projects, and Sharpe ratios of hedging assets, either one of the effects may dominate.

This happens when the project risk is positively correlated with the market since

the entrepreneur holds a short position on the hedging asset. By contrast, if the

correlation is negative, then the return effect is always positive since the entrepreneur

holds a long position on the hedging asset. In this case, an increase in the extent of

hedging accelerates investment and raises welfare.

Our paper relates to the voluminous consumption-saving literature, pioneered by

Friedman (1957). Consumption-saving models study how an individual smooths his

consumption over time when he is endowed with an exogenously specified stochastic

uninsurable income process. This paper is also related to the portfolio choice liter-

ature. Duffie et al. (1997) study hedging strategies when an investor is endowed

with nontraded stochastic income and maximizes expected utility from consumption

streams. Unlike these two strands of literature, in our model the stochastic income

process is endogenously determined by the entrepreneur’s investment timing decision.

The paper closest to ours is Hugonnier and Morellec (2004). In contrast to our

result, Hugonnier and Morellec (2004) show that risk aversion decreases the option

value to invest, thereby speeding up investment. There are three major differences

between their paper and ours. First, they assume that an investor/manager maxi-

mizes expected utility from wealth at the random time of investment. They do not

consider intermediate consumption and the consumption after investment. There-

fore, they neglect the impact of risk aversion on the utility and consumption after

investment, or on the value of the project. Second, they do not study the impact
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of hedging on investment timing and welfare. Finally, they consider the role of the

market for corporate control in constraining management, while we abstract from this

consideration.

The remainder of the paper proceeds as follows. Section 2 analyzes a baseline

model in which there is no risky asset available for hedging. Section 3 analyzes a model

with hedging. Section 4 concludes. Technical details are relegated to appendices.

2 A Baseline Model

This section provides a model that allows us to develop intuition on how the en-

trepreneur’s risk aversion affects his investment decision when markets are incom-

plete. In order to achieve this objective in a simplest possible setting, we integrate a

canonical incomplete-markets consumption-saving model with a version of irreversible

investment model à la McDonald and Siegel (1986).

2.1 Setup

Time is continuous and horizon is infinite. Uncertainty is represented by a probability

space
(
Ω,F , {Ft}t≥0 ,P)

, on which all stochastic processes are defined. Here {Ft}t≥0

is the augmented filtration generated by the standard Brownian motion (Zt)t≥0 .

There is a single perishable consumption good (the numeraire). Let C be the space

of progressively measurable consumption processes C such that
∫ t

0
|Cs| ds < ∞ for

any t ≥ 0. The entrepreneur derives utility from a consumption process (Ct)t≥0 ∈ C
according to the utility function

E

[∫ ∞

0

e−βtU (Ct) dt

]
, (1)

where β > 0 is the discount rate and U is an increasing and concave vNM index.

We consider the CARA specification U (c) = −e−γc/γ, c ∈ R, where γ > 0 is the

absolution risk aversion parameter. We choose this utility specification primarily for
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its technical tractability. It is well known that this utility function rules out wealth

effect and hence facilitates closed form solutions.7

The entrepreneur has an investment project, which can be undertaken irreversibly,

at a time τ chosen by him. Investment costs I > 0 paid at the exercising time τ .

This cost is financed from the entrepreneur’s own wealth. If there is shortage, it is

financed from borrowing at the constant risk-free rate r > 0. Upon investment, the

project generates continuous cash flows (Yt)t≥τ into the future. Assume that (Yt)t≥0

is governed by an arithmetic Brownian motion process

dYt = α dt + σ dZt, Y0 given, (2)

where α and σ are positive constants and Z is a standard Brownian motion. This

process implies that cash flows may take negative values. We interpret negative cash

flows as losses.8

The standard real options approach to investment tackles this type of optimization

problem via one of the following two methods. One method is to assume that markets

are complete in the sense that the project cash flow can be freely traded or there is

another traded asset that can replicate the cash flows. Then one can appeal to the

contingent claims analysis to determine the option value of investment and the option

exercise time. Alternatively, it is assumed that the entrepreneur is risk neutral and

thus maximizes the discounted value of cash flows. A dynamic programming approach

is often used under such a setting.

Unlike the standard real options settings summarized above, the entrepreneur

in our model is neither risk neutral nor faces complete markets. Instead, the en-

7The CARA utility has been widely adopted in the literature on consumption (Caballero (1991),
Wang (2004)), asset pricing (Wang (1993)), and portfolio choice (Merton (1969), Svensson and
Werner (1993), Liu (2004)).

8Unlike the usual geometric Brownian motion process, the specification in (2) proves more conve-
nient within the present model. This is essentially due to the results for a class of exponential-affine
models. See Duffie (2001) on introductory treatment on affine models and Wang (2004) on affine
consumption models.
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trepreneur only has access to one financial asset. Specifically, he may borrow or lend

at a constant risk-free rate r > 0. In other words, saving is the only financial invest-

ment that the entrepreneur may use to smooth his consumption over time. Given

that the cash flows of the investment project is stochastic, markets are naturally

incomplete.

Let τ be the stopping time of investment and T be the set of {Ft}t≥0-stopping

times. Let (Wt)t≥0 be the wealth process. Then the entrepreneur’s decision problem

is to choose (τ, C) ∈ T × C so as to maximize (1) subject to the wealth dynamics

dWt = (rWt − Ct) dt, 0 ≤ t < τ, W0 given, (3)

dWt = (rWt − Ct + Yt) dt, τ ≤ t, Wτ = Wτ− − I, (4)

and a transversality condition specified later. The first wealth dynamics (3) states

that wealth is accumulated from saving assuming the entrepreneur has no other in-

come during the period before investment t ≤ τ . The second wealth dynamics (4) de-

scribes the wealth accumulation after investment. At the instant of investment time τ,

the entrepreneur pays investment cost I and hence wealth is lowered to Wτ = Wτ−−I.

After investment t ≥ τ , the entrepreneur receives income from the investment cash

flows Yt. As usual, we interpret negative wealth as borrowing. In order to focus on

the effect of market incompleteness in a simplest possible setting, we do not consider

borrowing constraints or costly external financing.

2.2 Model Solution

We solve the entrepreneur’s problem backward by dynamic programming. We first

consider the problem after investment has been taken place. Let J (w, y) be the

corresponding value function. By a standard argument, J (w, y) satisfies the following

standard Hamilton-Jacobi-Bellman (HJB) equation:

βJ(w, y) = max
c∈R

U(c) + (rw − c + y) Jw(w, y) + αJy(w, y) +
σ2

2
Jyy(w, y) . (5)
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The transversality condition must also be satisfied limT→∞ E
[
e−rT J (WT , YT )

]
= 0.

We next consider the case before investment. Let V (w, y) denote the correspond-

ing value function. Similarly, V (w, y) satisfies the HJB equation

βV (w, y) = max
c∈R

U(c) + (rw − c) Vw(w, y) + αVy(w, y) +
σ2

2
Vyy(w, y) . (6)

We now specify boundary conditions. First, the following no-bubble condition

must be satisfied

lim
y→−∞

V (w, y) < ∞. (7)

This condition states that when the investment cash flow goes to negative infinity,

the entrepreneur will never exercise the option and his value function must be finite.

Next, as is standard in the optimal stopping problems, at the instant of investment,

the following value matching condition must hold

V (w, y) = J(w − I, y). (8)

This equation implicitly determines an investment boundary y = y (w) . Finally, be-

cause this boundary is chosen optimally, the following smooth-pasting condition must

be satisfied9

∂V (w, y)

∂w

∣∣∣∣
y=y(w)

=
∂J (w − I, y)

∂w

∣∣∣∣
y=y(w)

, (9)

∂V (w, y)

∂y

∣∣∣∣
y=y(w)

=
∂J (w − I, y)

∂y

∣∣∣∣
y=y(w)

. (10)

Notice that the above problem is a mixed control and stopping problem, which is

generally difficult to solve. Since our objective is to highlight the intuition on how risk

aversion affects investment decision, we have intentionally chosen the CARA utility

specification, because CARA utility has no wealth effect and permits a closed form

solution to the value functions. The functional form of value functions implies that

9See, for example, Krylov (1980), Dumas (1991) and Dixit and Pindyck (1994).
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wealth can be cancelled out on the two sides of equations (8)-(10). As a result, the

investment boundary is flat, in that y (w) is independent of wealth w. This allows us

to simplify the above optimization problem substantially from a two-dimensional free

boundary problem to a one-dimensional one. We are then able to derive closed form

solutions to the consumption and investment policies up to an ODE. The following

proposition summarizes the solution.

Proposition 1 Let (g, ȳ) be the solution to the free boundary problem

rg(y) = αg′(y) +
σ2

2
g′′(y)− γrσ2

2
g′(y)2, (11)

subject to the boundary conditions

lim
y→−∞

g (y) < ∞, (12)

g(ȳ) = f(ȳ)− I, (13)

g′(ȳ) =
1

r
, (14)

where f (y) is given by

f(y) =

(
1

r
y +

α

r2

)
− γσ2

2r2
. (15)

If g (y) > f (y)−I for y < ȳ, then the threshold value ȳ partitions the state space into

an investment region {(w, y) ∈ R2 : y ≥ ȳ} and a waiting region {(w, y) ∈ R2 : y < ȳ}.
In the waiting region, the value function V (w, y) and the optimal consumption policy

c (w, y) are given by

V (w, y) = − 1

γr
exp

[
−γr

(
w +

β − r

γr2
+ g(y)

)]
, (16)

c (w, y) = r

(
w +

β − r

γr2
+ g (y)

)
. (17)

In the investment region, the value function J (w, y) and the optimal consumption
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policy c (w, y) are given by

J(w, y) = − 1

γr
exp

[
−γr

(
w +

β − r

γr2
+ f(y)

)]
, (18)

c (w, y) = r

(
w +

β − r

γr2
+ f (y)

)
. (19)

Finally, the entrepreneur invests in the project the first time the process (Yt)t≥0 hits

the threshold ȳ.

We first observe that equations (11)-(14) are similar to those obtained in the stan-

dard real options problems (e.g. McDonald and Siegel (1986) and Dixit and Pindyck

(1994)). Specifically, one can interpret f (y) as the (subjective) value of the project

and g (y) as the (subjective) value of the option to invest. Although under incomplete

markets there is no well defined market value for the nontraded investment project,

our interpretation can be justified by adopting the certainty equivalent approach in

the literature on the pricing of nontraded assets. Specifically, define the (option)

value of the project as the price at which the entrepreneur is indifferent between the

situation where he pays this price and obtains the investment (option) cash flows and

the situation where he has no investment project. It is straightforward to calculate

the value function under the latter situation.10 Thus, comparing this function with

(18) and (16) delivers our preceding claim. Figure 1 plots the functions f and g,

which have similar shapes to those in the standard real options model.

[Insert Figure 1 Here]

The biggest difference between our model and the standard real options model

is that both the project value f and the option value g depend on not only the

parameters describing the asset value such as the riskless rate r, drift α and volatility

10Specifically, the value function is given by − 1
γr exp

[
−γr

(
w + β−r

γr2

)]
.

10



σ, but also the entrepreneur’s risk aversion coefficient γ. This observation is important

for understanding the analysis below.

The dependence of the project value f and the option value g on risk aversion

captures precisely the fact that the entrepreneur’s risk aversion matters not only for

consumption decisions, but also for investment decisions when markets are incom-

plete. We now analyze the intuition in detail. Consider first the consumption rule

after investment is made. We are able to derive an explicit solution given in (19)-(15),

to a large extent due to the CARA utility specification.11 To understand this rule, we

define human wealth h as the present discounted value of all investment cash flows

following Friedman (1957) and Hall (1978). For our arithmetic Brownian motion

income process, this gives

h ≡ E

(∫ ∞

0

e−rtYtdt

∣∣∣∣Y0 = y

)
=

y

r
+

α

r2
. (20)

Using the definition of human wealth, we may rewrite the consumption rule given in

(19) and (15) as follows:

c(w, y) = r (w + h) +
β − r

γr
− γσ2

2r
. (21)

The first term in (21) is the annuity value of the sum of financial wealth w and human

wealth h. If this were the only term in the consumption rule, then the consumption

rule would correspond to Friedman’s seminal permanent-income hypothesis and the

implied consumption is a martingale (Hall (1978)). This is the core of consumption

smoothing if the agent does not have any precautionary motive and if his subjective

discount rate is equal to the riskless rate. The second term in (21) incorporates the

agent’s preference for intertemporal consumption arising solely from the differential

between his subjective discount rate and the interest rate.

Most importantly, the third term in (21) captures the precautionary saving motive,

which is induced by the cash flow risk after investment is made. It is increasing in

11This consumption rule is obtained in discrete time by Caballero (1991) and extended to more
general income processes allowing for conditional heteroskedasticity of income by Wang (2004).
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risk aversion γ and volatility σ of the cash flow.12 The precautionary saving lowers

the consumption after investment, and hence lowers the project value f.

Turn to the consumption rule before investment given in (17). It admits a similar

interpretation. However, we do not have a closed form solution for g because of

the presence of the last nonlinear term in (11). Intuitively, this term reflects the

precautionary saving effect. It also lowers the option value g. If the entrepreneur

obtained a cash stock at the instant of investment and did not obtain any cash flows

in the future, then the decreased option value g would speed up investment. This is

actually the main reason leading to the result in Hugonnier and Morellec (2004).

Observe that the entrepreneur’s consumption is influenced by the cash flow y,

even though he does not actually receive any cash flows before investment. This is

because the entrepreneur is a forward-looking agent. Although he does not receive

any income from y before investment, he rationally anticipates that the evolution

of the future cash flow attainable upon his investing is relevant for his consumption

decision making even before investment. This idea is at the core of permanent-income

hypothesis. Alternatively, we may view that the agent uses saving to partially hedge

against changes in his investment opportunity set, the “future” cash flow process in

our setting. This interpretation leads us to link to the enormous portfolio choice

literature pioneered by Merton (1969).

Finally, notice that the investment threshold ȳ is independent of the discount rate

β. This is because it has no impact on the project value f and the option value g

12More precisely, it is the third derivative of utility function that matters for our analysis. That
is, the convex marginal utility gives rise to precautionary saving motive (Kimball (1990)) and
thus affects investment timing decisions. For CARA utility, the coefficient of absolute prudence
−u′′′/u′′, which measures the precautionary motive, is equal to the coefficient of absolute risk aver-
sion −u′′/u′ = γ. For CRRA utility, precautionary saving is also positively related to the constant
risk aversion coefficient. The classic example that differentiates risk aversion from precautionary
saving is quadratic utility. An agent with quadratic utility is risk averse, but has no precautionary
motive (the marginal utility is linear, not strictly convex.) The investment timing decision for an
entrepreneur with quadratic utility will thus not be affected by his risk aversion. Quadratic utility
is viewed by economists as an implausible utility specification because it implies increasing absolute
risk aversion, inconsistent with empirical evidence.
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given our CARA specification. Consequently, in our simulations below, we always set

β = r.

Before delving into the details on the effect of risk aversion on investment timing,

we first sketch out a simple case in which there is no cash flow risk. We define the

value maximizing investment policy as the solution to the following problem

max
τ

∫ ∞

τ

e−rtYtdt− e−rτI. (22)

The following proposition summarizes the relation between the utility-maximizing

investment policy and the value-maximizing investment policy when cash flow is de-

terministic.

Proposition 2 Suppose that the investment cash flow process (Yt)t≥0 is deterministic

and that the entrepreneur can only trade a riskless asset, then the entrepreneur invests

when the cash flow reaches a trigger value ȳ0 = rI, which is the same as the value-

maximizing policy. Furthermore, this result holds true for any strictly increasing

utility function U .

This result is intuitive since risk aversion should not matter in the absence of

uncertainty. The entrepreneur’s utility maximization can be decomposed into two

stages: (i) choose the investment policy to maximize the net present value of invest-

ment (22); and then (ii) finance consumption out of the maximum attainable total

wealth, the sum of initial wealth and the net present value of investment.

When there is cash flow risk, the above result does not hold true generally. Under

incomplete markets, the value maximizing policy is not well defined because there are

multiple stochastic discount factors (state prices) and the computation of the market

value of cash flows depend on a particular state price. When markets are complete,

there is a unique state price. In this case, Proposition 4 below provides a similar

result to Proposition 2. The intuition is also similar.
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2.3 Risk Aversion and Investment Timing

When there is cash flow risk and markets are incomplete, risk aversion plays an

important role in determining investment timing. Because there is no analytical

solution to the free boundary problem (11)-(14), we resort to numerical simulations.

To this end, baseline parameter values must be assigned. We set the risk-free rate

r = 2% and the discount rate β = r = 2%. We consider a project with I = 10, Y0 = 0,

α = 0.1, and σ = 0.1. We leave the coefficient of absolute risk aversion γ as a free

parameter since its consensus estimate is not available in the literature.

Figure 2 plots the investment threshold as a function of the volatility σ and risk

aversion parameter γ. As is well known in the real options models of investment, the

investment threshold increases with the cash flow volatility. However, here the mech-

anism is different from the standard one, which states that the increased volatility

raises the option value of waiting. Within the present model, there is an important

consumption smoothing (precautionary saving) effect. Specifically, an increase in the

cash flow volatility raises the precautionary saving motive, thereby reducing the value

of the project f (as seen from the last term in (15)). Moreover, it lowers the option

value of waiting g (as seen from the last term in (11)), thereby mitigating the positive

option effect. Simulations reveal that the former effect dominates. This is illustrated

in Figure 3, which plots the changes of the functions f and g when volatility σ is

increased from 5% to 30%. This figure also reveals that the negative precautionary

saving effect dominates the option effect so that g shifts down.

Figure 2 also shows that the impact of volatility becomes larger for higher values

of the risk aversion parameter. For example, for γ = 0.1, when σ is increased from

5% to 30%, the investment threshold increases from 0.2125 to 0.6472, which implies

that investment is delayed by 4.3 years on average.13 This also implies that the

investment probability within 5 years is lowered by 39%. By contrast, for γ = 1,

13The average hitting time for the process (Yt)t≥0 between two points y and z is given by |y−z|/α.
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when σ is increased from 5% to 30%, the investment threshold increases from 0.2128

to 1.1655, which implies that investment is delayed by 9.5 years on average and the

investment probability within 5 years is lowered by 74%.

[Insert Figures 2-3]

Turn to the impact of changes in the degree of risk aversion. Importantly, Figure 2

reveals that the investment threshold increases with the degree of risk aversion. That

is, risk aversion delays investment. The intuition behind the impact of risk aversion

is related to the discussion following Proposition 1. Recall that we interpret f as the

value of the project and g as the option value to invest. Figure 4 plots the changes

of the functions f and g when risk aversion γ is increased from 0.1 to 1. When γ

is increased, the precautionary saving rises. This lowers consumption and hence the

project value f. In the mean time, due to precautionary saving, consumption before

investment also decreases and hence the option value g falls. Simulation results reveal

that the former effect dominates the latter so that the entrepreneur delays investment.

This dominance is intuitive since the entrepreneur does not bear directly cash flow

risk before investment is actually taken place. Therefore, the precautionary saving

effect before investment is not as strong as that after investment.

[Insert Figure 4]

However, for low volatilities, the response of the investment threshold is quite

small. This is intuitive since when risk is low, risk aversion should not play a sig-

nificant role. By contrast, when volatility is high, the investment threshold varies

significantly with the degree of risk aversion. For example, for σ = 10%, when γ is

The investment probability within T years is given by

P

(
max

0≤t≤T
Yt ≥ ȳ

)
= Φ

(−ȳ + αT

σ
√

T

)
+ e2αȳ/σ2

Φ
(−ȳ − αT

σ
√

T

)
,

where Φ( · ) is the cumulative standard normal distribution function.
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increased from 0.1 to 1, the investment threshold increases from 0.2500 to 0.2548,

which implies that investment is delayed by only 18 days (0.05 years) and the invest-

ment probability within 5 years is lowered by 0.4%. By contrast, for σ = 30%, when

γ is increased from 0.1 to 1, the investment threshold increases from 0.6472 to 1.1655,

which implies that investment is delayed by 5.2 years and the investment probability

within 5 years is lowered by 35%.

3 Hedging and Investment

So far, we have assumed that the entrepreneur can trade a riskless asset only to

smooth consumption and diversify cash flow risk. This is clearly unrealistic since in

reality entrepreneurs can trade financial assets to hedge against cash flow risk. In

this section, we study the implications of hedging.

3.1 Setup

Assume that the entrepreneur can trade a risky asset to hedge against the cash flow

risk, in addition to the risk-free asset. One can think of this asset as a futures contract

or a market portfolio. Let Pt denote the risky asset’s price at date t. Let its returns

be governed by the process

dPt/Pt = µedt + σedBt, (23)

where µe and σe are positive constants, and B is a standard Brownian motion corre-

lated with the Brownian motion Z and defined on the probability space
(
Ω,F , {Ft}t≥0 ,P)

.

Let ρ ∈ [−1, 1] be the correlation coefficient. Here the filtration {Ft}t≥0 is generated

by the Brownian motions Z and B.

One can alternatively rewrite (2), the cash flow generated from investment as

dYt = αdt + ρdBt +
√

1− ρ2dB1
t , (24)
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where B and B1 are two independent standard Brownian motions. One can think

of B as the Brownian motion describing the market risk and B1 as the Brownian

motion describing the idiosyncratic project risk. The market risk can be diversified

away, while the idiosyncratic risk may be not. The correlation ρ describes the extent

to which the riskiness of the project is correlated with the market.

Let πt be the dollar amount invested in the risky asset at time t. A trading strategy

(πt)t≥0 is admissible if it is progressively measurable and satisfies E
[∫ T

0
π2

t dt
]

< ∞
for any T > 0. Denote by A the set of all admissible trading strategies.

The entrepreneur’s problem is to choose consumption, portfolio and investment

timing (C, π, τ) ∈ C × A× T so as to maximize (1) subject to the wealth dynamics:

dWt = [rWt + πt (µe − r)− Ct] dt + πtσedBt, 0 ≤ t < τ, W0 given, (25)

dWt = [rWt + πt (µe − r) + Yt − Ct] dt + πtσedBt, τ ≤ t, Wτ = Wτ− − I. (26)

The wealth dynamics (25)-(26) admit an interpretation similar to that for (3)-(4).

The difference is that here the entrepreneur can invest πt dollars in the risky hedging

asset, and thus affects the drift and volatility of wealth accordingly.

3.2 Model Solution

Similar to our solution methodology in Section 2.2, we solve the entrepreneur’s prob-

lem backward by dynamic programming. The following proposition characterizes the

solution.

Proposition 3 Define the Sharpe ratio η = (µe − r)/σe. Let (g, y∗) be the solution

to the free boundary problem

rg(y) = (α− ρησ) g′(y) +
σ2

2
g′′(y)− γrσ2

2
g′(y)2

(
1− ρ2

)
, (27)
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subject to the boundary conditions

lim
y→−∞

g (y) < ∞, (28)

g(y∗) = f(y∗)− I, (29)

g′(y∗) =
1

r
, (30)

where f (y) is given by

f(y) =

(
1

r
y +

α

r2
− ησρ

r2

)
− γσ2

2r2

(
1− ρ2

)
. (31)

If g (y) > f (y)−I for y < ȳ, then the threshold value y∗ partitions the state space into

an investment region {(w, y) ∈ R2 : y ≥ y∗} and a waiting region {(w, y) ∈ R2 : y < y∗}.
In the waiting region, the optimal consumption and portfolio rules are given by

c∗ (w, y) = r

(
w +

β − r + η2/2

γr2
+ g (y)

)
, (32)

π∗ (w, y) =
η

γσe

1

r
− σρ

σe

g′(y). (33)

In the investment region, the optimal consumption and portfolio rules are given by

c∗ (w, y) = r

(
w +

β − r + η2/2

γr2
+ f (y)

)
, (34)

π∗ (w, y) =
η

γσe

1

r
− σρ

σer
. (35)

Finally, the entrepreneur invests in the project the first time the process (Yt)t≥0 hits

the threshold y∗.

Much intuition behind this proposition is similar to that described in Section 2.

Specifically, one can think of the investment problem as an option exercise problem

where the underlying project value is given by f (y) and the option value is given

by g (y) . Both f and g depend on model parameters related to asset value and

preferences. Unlike the model in Section 2, f and g also depend on the hedging
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asset’s Sharpe ratio η and the correlation coefficient ρ. Note that the investment

threshold y∗ is independent of the discount rate β, same as in Section 2. In addition,

comparing the free boundary problem (27)-(30) with (11)-(14), one can see that the

investment threshold y∗ when ρ = 0 is the same as y. The intuition is as follows.

While the new risky asset allows the agent to take advantage of the expected excess

returns, it does not offer any hedging benefits. While the entrepreneur enjoys the

same gains in expected excess returns before and after investment, his cash flow risk

remains the same with or without the risky asset (whose correlation is zero with cash

flow Y . As a result, the investment timing strategy remains the same as the one

studied in Section 2.

The key new element of the model in this section is that the entrepreneur can also

invest in a risky hedging asset to diversify cash flow risk. The demand for this asset

is given in (33) and (35). The first term in these expressions represents the standard

mean-variance efficient rule (Merton (1969)). The second term represents the hedging

demand. In order to minimize the variation of consumption, the entrepreneur holds

a short position on the risky asset if ρ > 0, and a long position if ρ < 0.

The conventional wisdom is that hedging can reduce investment risk. In our

model, this effect is manifested in the consumption rules before and after investment.

Consider first the consumption rule after investment, particularly the last term in

(31). After investment, cash flows bring income fluctuations. This induces a precau-

tionary saving term γσ2 (1− ρ2) / (2r2). Compared to the model without hedging,

the precautionary saving term is lowered by ρ2γσ2/ (2r2) . When markets are com-

plete (ρ = 1), investment risk can be perfectly diversified and hence the precautionary

saving term disappears.

On the other hand, there is another important return effect of hedging. Since the

entrepreneur holds a short position on the risky asset when ρ > 0, the entrepreneur

loses returns from the hedging asset and hence wealth. This causes consumption to

decrease by an amount of ησρ/r2 in (31). Depending on parameter values, hedging
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may increase or decrease consumption and utility after investment. By contrast, when

ρ < 0, the entrepreneur holds a long position on the risky asset. The return effect is

always positive, thereby enhancing wealth and consumption.

Hedging has a similar effect on the consumption rule before investment. In par-

ticular, one can interpret the last term in (27) as a consumption smoothing (pre-

cautionary saving) effect. One can also interpret the term −ρησg′ (y) as the return

effect.

Because of the presence of hedging opportunities, the extent of hedging measured

by ρ and the risk characteristic of the hedging asset measured by η are important

determinants of investment timing. Before turning to the detailed analysis of hedging

effect on investment timing, we first briefly sketch out the investment timing decision

under complete markets.

When markets are complete (ρ = ±1), we can derive an explicit solution to the

free boundary problem (27)-(30). Here, we present the solution for ρ = 1 only.14

We shall compare it with the value-maximizing policy defined as the solution to the

following problem

F (y) = max
τ

E

[∫ ∞

τ

ξtYtdt− ξτI

∣∣∣∣Y0 = y

]
, (36)

where (ξt)t≥0 is the unique state price density process (ξt)t≥0 satisfying −dξt/ξt =

rdt + ηdZt, ξ0 = 1. We summarize the relation in the following proposition.

Proposition 4 Let ρ = 1. Then the investment threshold y∗, the option value to

invest g, and the hedging demand before investment Π (w, y) are respectively given by

y∗ = rI − α− ησ

r
+

1

λ
, (37)

g(y) = F (y) =
1

rλ
eλ(y−y∗), (38)

14When the project cash flow is perfectly negatively correlated with the hedging asset (ρ = −1),
a similar analysis applies.
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where λ = − (α− ησ) /σ2 +
√

(α− ησ)2 + 2σ2r/σ2 > 0. This utility maximizing

policy is the same as the value-maximizing policy for any strictly increasing utility U.

This proposition demonstrates that when markets are complete, the subjective

option value to invest g (y) is identical to the market option value F (y) . In addition,

the investment threshold given in (37) is independent of preference parameters. This

is consistent with the general principle that the option value and exercise trigger are

independent of preferences if markets are complete (e.g., Dixit and Pindyck (1994)).

Indeed, since markets are complete, we can apply the martingale method to rewrite

the dynamic budget constraint as a static one, using the unique state price density.15

The entrepreneur’s decision problem can then be formulated as a two-stage problem

as in the deterministic case described in Section 2.2: (i) choose an investment policy

to maximize the option value (36) so that total wealth is maximized; (ii) choose

optimal consumption given this total wealth.

3.3 Implications for Investment Timing

We now turn to the general case where markets are incomplete. We analyze the

important question of how investment timing is affected by uncertainty, risk aversion

and hedging opportunities. We use parameter values in Section 2.3 as baseline values.

In addition, we set the Sharpe ratio η = 0.3. For example, this corresponds to a risk

premium of 6% and a volatility of 20%. Finally, we treat the risk aversion parameter

γ and correlation ρ as free parameters.

Cash Flow Risk Consider first the impact of changes in the cash flow volatility σ.

Figures 5b, d, f plot the investment threshold as a function of σ for the case of positive

correlation ρ > 0 and for various values of the risk aversion parameter γ,correlation

15See Cox and Huang (1989), and Karatzas, Lehoczky, and Shreve (1987) on martingale methods.
Duffie (2001) provides a textbook treatment.
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ρ, and Sharpe ratio η. Figures 6b, d, f plot the same function for the case of negative

correlation ρ < 0. These figures reveals that the investment threshold increases with

volatility σ, as in standard models. Importantly, the impact of volatility is sensitive

to the values of γ, ρ, and η. As in the model in Section 2, it is intuitive that, under

incomplete markets, the impact of volatility should be larger for more risk averse

entrepreneurs. Surprisingly, we also find that the impact of volatility is quite different

for ρ > 0 than for ρ < 0. Specifically, Figure 6b reveals that when the project cash

flows are negatively correlated to the hedging asset, the impact of the project risk

is smaller if the extent of hedging is higher (i.e., |ρ| is bigger). By contrast, Figure

5b indicates an opposite result, implying that hedging destabilizes investment timing

when the project cash flows are positively correlated with the hedging asset.

The above sensitivity is in sharp contrast to the standard result under complete

markets or risk neutrality, which is explicitly stated in Dixit and Pindyck (1994,

p.153):

“Investment is highly sensitive to volatility in project values, irrespec-

tive of entrepreneurs’ or managers’ risk preferences, and irrespective of the

extent to which the riskiness of V [the project value] is correlated with

the market.”

The intuition behind this difference is similar to that described in Section 2.3.

Specifically, under incomplete markets, an increase in σ has the precautionary saving

and option effects. In addition, there is an extra return effect. The return effect is

positive for ρ < 0 and negative for ρ > 0. These effects influence both the project

value f and the option value to invest g. Furthermore, the magnitude of changes of

f and g depends on the values of parameters γ, ρ, and η.

[Insert Figures 5-6]
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Risk Aversion Consider next the impact of changes in the coefficient of absolute

risk aversion γ. Figures 5c-e and Figures 6c-e plot the investment threshold as a func-

tion of risk aversion γ for various levels of volatility σ, correlation ρ, and Sharpe ratio

η. These figures reveal that, when markets are incomplete, the investment threshold

increases with the degree of risk aversion. The intuition behind this result is similar

to that in Section 2. When the entrepreneur is more averse to the cash flow risk, to

smooth consumption over time, he saves more for precautionary motive. This lowers

consumption, thereby reducing the project value f and the option value g. Simula-

tion results reveal that the former effect dominates. Consequently, the entrepreneur

prefers to delay investment. The preceding figures also reveal that the impact of risk

aversion is quite large for high values of σ and low values of |ρ|. This is intuitive since

risk aversion should not matter much if risk is low or if the financial markets are close

to be complete.

Correlation Turn to the impact of changes in the correlation coefficient ρ. The

correlation between the hedging asset and the investment cash flow provides a measure

of the extent of hedging, or the extent to which the project risk is correlated with

the market. When ρ = ±1, the cash flow risk is hedged perfectly. This corresponds

to the case of complete markets. When ρ = 0, the cash flow risk cannot be hedged.

This corresponds to the model in Section 2.

The impact of changes in correlation depends on whether the correlation takes

positive or negative values. Figures 5a-c plot the investment threshold as a function

of ρ ≥ 0 for various values of volatility σ, risk aversion γ, and Sharpe ratio η. These

figures reveal that the investment threshold increases with ρ for low risk aversion γ,

low volatility σ, and high Sharpe ratio η. This result is in contrast to the conventional

view that hedging should speed up investment because of reduced risk exposure.

Surprisingly, these figures also indicate that the investment threshold first increases

and then decreases with ρ > 0 for high risk aversion γ, high volatility σ and low Sharpe
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ratio η. In particular, investment timing is not monotonic with the incompleteness

of markets. The top panel of Figure 7 illustrates the impact of the increase of ρ from

0.3 to 1. It reveals that the negative return effect dominates so that investment is

delayed.

[Insert Figure 7 Here]

The intuition behind the above result is related to the discussion following Propo-

sition 3. Specifically, on the one hand, an increase in ρ > 0 reduces the entrepreneur’s

exposure to the cash flow risk. The reduced risk exposure lowers the precautionary

saving and raises consumption, thereby raising the project value f and the option

value to invest g. On the other hand, an increase in ρ > 0 raises the short position on

the hedging asset (see (35) and (33)). The increased short position results in losses of

returns from the hedging asset and reduces wealth, thereby lowering the project value

f and the option value to invest g. The overall effect of the impact of an increase

in ρ > 0 depends on these two opposite effects and the magnitude of changes in f

and g. Consequently, investment timing is not monotonic with the degree of hedging

when the hedging asset and the project cash flows are positively correlated.

We now turn to the case where the hedging asset and the cash flows are negatively

correlated, ρ < 0. Figures 6a-c plot the impact of correlation for this case. These

figures reveal that, in contrast to the positive correlation case, the investment thresh-

old decreases with the extent of hedging (i.e., |ρ|). This is because the entrepreneur

holds a long position on the hedging asset and hence hedging has a positive return ef-

fect. Consequently, as |ρ| increases, the entrepreneur benefits more from investment,

thereby preferring to invest earlier. This is illustrated in the bottom panel of Figure

7.

Sharpe Ratio We finally analyze the impact of changes in the Sharpe ratio η,

which measures the market price of risk of the hedging asset. Panels a, e and f in
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Figures 5-6 plot the investment threshold for various values of σ, γ, and ρ. These

figures reveal that the impact of Sharpe ratio depends crucially on the sign of ρ. In

particular, when ρ > 0, the investment threshold increases with the Sharpe ratio η,

implying that using hedging assets with a high market price of risk delays investment.

By contrast, when ρ < 0, an opposite result follows.

Again, the intuition behind the above result is related to the discussion following

Proposition 3. When ρ > 0, hedging has a negative return effect. In particular, an

increase in η results in losses of returns from the hedging asset and reduces wealth,

thereby reducing the project value f and the option value to invest g. Simulation

results show that f decreases more than g, and hence investment is delayed. By

contrast, when ρ < 0, hedging has a positive return effect and hence leads to the

opposite result.

3.4 Welfare Implications of Hedging

It is clear that with an additional hedging asset available for trade, the entrepreneur

is always better off compared with the case where the risk-free asset is the only

financial investment opportunity. Consequently, to examine the welfare implications

of hedging, we assume that the entrepreneur always has the opportunity to invest

in a risk-free asset and in a risky asset as well. A risky asset is characterized by its

Sharpe ratio and the extent to which it is correlated with the cash flow risk. We

ask the following question: What kind of risky asset should the entrepreneur choose

to hedge against the cash flow risk? The common intuition is that the entrepreneur

should invest in a risky asset which is highly correlated with the cash flow risk. We

will show below that this intuition is not the whole story.

In order to address this issue, we compute the additional amount of wealth the

entrepreneur can be gained when he invests in a risky asset correlated with the cash

flow risk, compared with the case where he invests in a risky asset with the same
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Sharpe ratio, but uncorrelated with the cash flow risk. Specifically, let V (w, y; ρ) be

the value function before investment for the model with hedging when the correlation

coefficient is ρ. Then the welfare gain x is the solution to equation: V (w, y; ρ) =

V (w + x, y; 0) . By Propositions 3, one can show that x = g (y; ρ)−g (y; 0) . We assume

initially y = 0, which implies that the investment project has not been undertaken in

our simulations.

The welfare gains from hedging after investment can be defined similarly. It follows

from Proposition 3 that these welfare gains are given by

x = f (y; ρ)− f (y; 0) =
γσ2ρ2

2r2
− ησρ

r2
. (39)

This expression illustrates explicitly the two effects of hedging discussed earlier.

On the one hand, hedging reduces cash flow risk, thereby increasing wealth by

γσ2ρ2/ (2r2) . On the other hand, hedging has a return effect. If the hedging asset is

negatively correlated with the cash flows (ρ < 0), then hedging increases wealth by

ησ |ρ| /r2. Thus, hedging is always welfare improving if ρ < 0. Moreover, the welfare

gains increase with the cash flow risk, Sharpe ratio and degree of risk aversion.

By contrast, if the hedging asset is positively correlated with the cash flows (ρ >

0), then hedging results in losses of returns from the hedging asset, thereby reducing

wealth by ησρ/r2. The overall effect depends on parameter values. In particular, if

and only if ρ > η/ (γσ) , the welfare gains increases with the extent of hedging ρ.

Moreover, the gains are larger for more risk averse entrepreneurs, riskier cash flows,

and lower Sharpe ratios of hedging assets. Surprisingly, hedging may incur welfare

losses if ρ > 0. This happens for less risk averse entrepreneurs, safer cash flows, and

higher Sharpe ratios of hedging assets.

Hedging has similar implications for the welfare before investment. This is con-

firmed in Figure 8, which plots the welfare gains before investment for various pa-

rameter values.

[Insert Figure 8 Here]
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4 Conclusion

The standard real options approach to investment under uncertainty typically adopts

one of the two assumptions: complete markets and risk neutrality. Motivated by many

real-world problems such as entrepreneurial investment decisions, we relax these two

assumptions and consider how market incompleteness and risk aversion affect a risk

averse entrepreneur’s real investment decision. We show that risk aversion delays

investment. Furthermore, the impact of risk aversion is quite large if the cash flow

risk is high or if the extent of hedging is small. We also show that the impact of the

cash flow risk on investment is sensitive to the degree of risk aversion, Sharpe ratios

of the hedging assets, and the extent of hedging. Finally, we show that investment

timing and welfare may be not monotonic with the extent of hedging opportunity.

These results are in sharp contrast to the standard real options models under

complete markets. They have a number of empirical implications.16 For example,

when conducting empirical analysis using cross sectional data, entrepreneurial risk

aversion should be an important factor to consider. One of the most tested predic-

tions of real options theory is the investment-uncertainty relationship. Our analysis

suggests that entrepreneurial risk aversion, the extent of hedging, and Sharpe ratios

of hedging assets are important factors influencing this relationship. Moreover, the

characteristics of hedging assets such as Sharpe ratios and the correlation with the

cash flow risk are important determinants of investment decisions. Finally, our anal-

ysis suggests that to maximize welfare, entrepreneurs should use a hedging strategy

to long assets negatively correlated with the project cash flow risk. Shorting assets

positively correlated with the project cash flow risk may lower welfare.

16See Quigg (1993), Berger et al. (1996), and Moel and Tufano (1998) for empirical testing of real
options theory.
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Appendices

A Proofs

Proof of Proposition 1: The value function after investment is defined as

J (w, y) = max
C∈C

E

[∫ ∞

t

e−βtU (Ct) dt

∣∣∣∣ (Wt, Yt) = (w, y)

]
(A.1)

subject to dWs = (rWs − Cs + Ys) ds, s ≥ t. We conjecture that J takes the form

given in (18), where f(y) is a function to be determined. To solve for this function,

we use the first-order condition U ′ (c) = Jw (w, y) to derive the optimal consumption

rule given in (19). Substitute it back into the HJB equation (5) to derive the ODE

0 = (y − rf (y)) + αf ′ (y) +
σ2

2

[
f ′′(y)− γrf ′(y)2

]
. (A.2)

It can be verified that its solution is given by (15). Moreover, it is such that the value

function satisfies the transversality condition.

We now consider the case before investment. By the principle of optimality, the

value function V (w, y) satisfies

V (w, y) = max
(τ,C)∈T ×C

E

[∫ τ

0

e−βtU (Ct) dt + J (Wτ − I, Yτ )

∣∣∣∣ (W0, Y0) = (w, y)

]
(A.3)

subject to dWt = (rWt − Ct) dt, t ≥ 0. We conjecture that V takes the form in (16),

where g(y) is a function to be determined. From the first-order condition U ′(c) =

Vw (w, y) , we can derive the consumption policy before investment given in (17).

Substituting it into the HJB equation (6), we can show that g (y) satisfies the ODE

(11). Given the functional forms of the value functions, one can show that the no-

bubble condition, the value matching and smooth pasting conditions become (12)-

(14). Finally, by (18), (16) and assumption, the set

{
(w, y) ∈ R2 : V (w, y) > J (w, y)

}
=

{
(w, y) ∈ R2 : y < ȳ

}
.

is the waiting region. Q.E.D.
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Proof of Proposition 2: When σ = 0, the free-boundary problem can be easily

solved. One can derive that the solution is

g (y) =
α

r2
e

r
α

(y−ȳ0), and ȳ0 = rI. (A.4)

It is easy to show that the value maximizing investment threshold is also given by rI.

Finally, we can equivalently rewrite the wealth dynamics (3)-(4) as

∫ ∞

0

e−rtCtdt = W0 +

∫ ∞

τ

e−rtYtdt− e−rτI, (A.5)

where we have imposed a no-Ponzi game assumption, limT→∞ e−rT WT = 0. Now

it is clear that for any strictly increasing utility function U, the utility maximizing

investment policy must maximize the net present value (22). Q.E.D.

Proof of Proposition 3: The value function after investment is defined as

J (w, y) = max
(C,π)∈C×A

E

[∫ ∞

t

e−βtU (Ct) dt

∣∣∣∣ (Wt, Yt) = (w, y)

]
(A.6)

subject to

dWs = [rWs + πs (µe − r) + Ys − Cs] ds + πsσedBs, s ≥ t. (A.7)

By a standard argument, J (w, y) satisfies the HJB equation

βJ (w, y) = max
(c,π)∈R2

U (c) + [rw + π (µe − r) + y − c] Jw (w, y) (A.8)

+αJy (w, y) +
σ2

2
Jyy (w, y) +

(πσe)
2

2
Jww (w, y) + πσeσρJwy (w, y) .

The transversality condition limT→∞ E
[
e−rT J (WT , YT )

]
= 0 must also be satisfied.

We conjecture that J (w, y) takes the form

J(w, y) = − 1

γr
exp

[
−γr

(
w +

β − r + η2/2

γr2
+ f(y)

)]
, (A.9)
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where the function f is to be determined. By the first order conditions

U ′ (c) = Jw (w, y) , π =
−Jw (w, y)

Jww (w, y)

µe − r

σ2
e

+
−Jwy (w, y)

Jww (w, y)

σeσ

σ2
e

, (A.10)

one can derive the optimal consumption and portfolio policies after investment given

in (32)-(33). Substituting them back into the HJB equation (A.8), one can derive

0 = (y − rf (y)) + αf ′ (y) +
σ2

2

[
f ′′(y)− γrf ′(y)2

]
+

1

2γr
(η − σγrρf ′ (y))

2
(A.11)

Solving yields (31). It can be verified that this solution satisfies the transversality

condition.

We now turn to the case before investment. By the principle of optimality, the

value function before investment V (w, y) satisfies

V (w, y) = max
(τ,C,π)∈T ×C×A

E

[∫ τ

0

e−βtU (Ct) dt + J (Wτ − I, Yτ )

∣∣∣∣ (W0, Y0) = (w, y)

]

(A.12)

subject to

dWt = [rWt + πt (µe − r)− Ct] dt + πtσedBt, t ≥ 0. (A.13)

Then V (w, y) satisfies the following HJB equation

βV (w, y) = max
(c,π)∈R2

U (c) + [rw + π (µe − r)− c] Vw (w, y) + αVy (w, y) (A.14)

+
σ2

2
Vyy (w, y) +

(πσe)
2

2
Vww (w, y) + πσeσρVwy (w, y) .

We conjecture that the value function V takes the form

V (w, y) = − 1

γr
exp

[
−γr

(
w +

β − r + η2/2

γr2
+ g(y)

)]
, (A.15)

where g(y) is a function to be determined. Using the first-order conditions,

U ′ (c) = Vw (w, y) , π =
−Vw (w, y)

Vww (w, y)

µe − r

σ2
e

+
−Vwy (w, y)

Vww (w, y)

σeσ

σ2
e

, (A.16)
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one can derive the optimal consumption and portfolio policies before investment given

in (34)-(35). Plugging these expressions into the HJB equation gives a differential

equation for g( · ).

rg(y) = αg′(y) +
σ2

2

[
g′′(y)− γrg′(y)2

]
+

1

2γr
(η − σγrρg′ (y))

2
. (A.17)

Re-arranging and simplifying gives (11). As in Section 2, the boundary conditions

are given by the no-bubble, value-matching, and smooth-pasting conditions similar

to (7)-(10). Using these boundary conditions, one can derive (28)-(30). Finally, by

(A.9), (A.15) and assumption, the set

{
(w, y) ∈ R2 : V (w, y) > J (w, y)

}
=

{
(w, y) ∈ R2 : y < ȳ

}
.

is the waiting region. Q.E.D.

Proof of Proposition 4: When ρ = 1, the solution to ODE (11) is given by

g (y) = A1e
λy + A2e

λ̃y, (A.18)

where A1 and A2 are constants to be determined, λ is given in the proposition, and

λ̃ = − (α− ησ) /σ2 −
√

(α− ησ)2 + 2σ2r/σ2 < 0. Use the no-bubble condition (28)

to deduce A2 = 0. Use the value-matching and smooth-pasting conditions to solve for

A1 and y∗. Simple algebra delivers (37)-(38).

By (36), F (y) satisfies ODE

rF (y) = (α− ησ) F ′ (y) +
1

2
σ2F ′′ (y) . (A.19)

The general solution is given by F (y) = Aeλy, where A is a constant to be deter-

mined. Notice that we have used the no-bubble condition limy→−∞ F (y) < ∞ to

rule out the exponential associated with the negative root. The constant A and the

value-maximizing investment threshold y∗∗ are determined by the value-matching and
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smooth-pasting conditions. To derive these conditions, observe that the market value

of cash flows is given by

E

[∫ ∞

0

ξtYtdt

∣∣∣∣ Y0 = y

]
=

y

r
+

α− ησ

r2
. (A.20)

Thus, the value-matching and smooth-pasting conditions are

F (y∗∗) =
y∗∗

r
+

α− ησ

r2
− I, and F ′ (y∗∗) =

1

r
. (A.21)

Simple algebra implies that y∗∗ = y∗ and F (y) = g (y) . Thus, under complete markets

the utility-maximizing investment policy is the same as the value-maximizing policy.

To show that this result holds for any strictly increasing utility function U, it suf-

fices to note that we can apply the martingale method to rewrite the wealth dynamics

(25)-(26) as the static budget constraint

E

[∫ ∞

0

ξtctdt

]
≤ W0 + E

[∫ ∞

τ

ξtYtdt− ξτI

]
, (A.22)

where we have imposed the no Ponzi game assumption limT→∞ E [ξT WT ] = 0. Q.E.D.

B Computation Method

We describe the solution method to the free boundary problem described in proposi-

tion 1. The problem described in Proposition 3 can be solved similarly. We use the

projection method implemented with collocation (Judd (1999)). We do not use the

traditional shooting method or finite difference method because these methods are

inefficient for our nonlinear problem and extensive simulations.

We first rewrite the second order ODE (11) as a system of first-order ODEs. Let

h (y) = g′ (y) . Then (11) can be rewritten as

g′ (y) = h (y) , (B.1)

h′ (y) =
2

σ2
(rg (y)− αh (y)) + γrh(y)2.
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The boundary conditions are

lim
y→−∞

g (y) = 0, (B.2)

g (y) = f (y)− I, (B.3)

h (y) = 1/r. (B.4)

where (B2) is derived by the fact that when y → −∞, the entrepreneur never under-

takes the investment project and hence his subjective option value equals zero.

The idea of the algorithm is to first ignore the smooth-pasting condition (B4) and

then solve for a two point boundary value problem with a guessed threshold value y0.

The true value of the threshold is found by adjusting y0 so that the smooth pasting

condition (B4) is satisfied. Since the boundary condition (B2) is open end, we pick

a very small negative number y and rewrite it as g
(
y
)

= 0. We then adjust y so that

the solution is not sensitive to this value. The algorithm is outlined as follows.

Step 1. Start with a guess y0 and a preset order n.

Step 2. Use Chebyshev polynomial to approximate g and h :

g (y; a) =
n∑

i=0

aiTi (y) , h (y; b) =
n∑

i=0

biTi (y) , (B.5)

where Ti (y) is the Chebyshev polynomial of order i, and a = (a0, a1, ..., an) and b =

(b0, b1, ..., bn) are 2n+2 constants to be determined. Substitute the above expressions

into the preceding system of ODEs and evaluate it at n roots of Tn (y) . Together with

the two boundary conditions, we then have 2n + 2 equations for 2n + 2 unknowns

a = (a0, a1, ..., an) and b = (b0, b1, ..., bn) . Let the solution be â and b̂.

Step 3. Search for y0 such that the smooth-pasting condition, h
(
y0; b̂

)
= 1/r, is

approximately satisfied.
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Figure 1: The project value f and the option value g. This figure plots the
functions f and g for the model in section 2. The parameter values are set as follows:
β = r = 2%, α = 0.1, σ = 10%, γ = 1, and I = 10.
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Figure 2: Investment threshold, risk aversion, and project volatility. This
figure plots the investment threshold at varying levels of risk aversion and project
volatility for the model in section 2. Other parameter values are set as β = r = 2%,
α = 0.1, and I = 10
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Figure 3: Impact of changes in volatility. This figure plots the impact on the
investment threshold and the functions f and g for the model in section 2 when the
risk aversion parameter σ is increased from 5% to 30%. Other parameter values are
set as β = r = 2%, γ = 1, α = 0.1, and I = 10.
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Figure 4: Impact of changes in risk aversion. This figure plots the impact
on the value function and investment threshold for the model in section 2 when the
risk aversion parameter γ increases from 1 to 2. Other parameter values are set as
β = r = 2%, α = 0.1, σ = 30%, and I = 10.
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Figure 5: Impact of parameters on investment threshold. These figures plot
the investment threshold as functions of various parameters for the model in section
3 when the correlation is positive. Baseline parameter values are set as β = r = 2%,
γ = 1, α = 0.1, σ = 10%, ρ = 0.8, η = 0.3, and I = 10.
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Figure 6: Impact of parameters on investment threshold. These figures plot
the investment threshold as functions of various parameters for the model in section
3 when the correlation is negative. Baseline parameter values are set as β = r = 2%,
γ = 1, α = 0.1, σ = 10%, η = 0.3, ρ = −0.8, and I = 10.
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Figure 7: Impact of changes in the correlation. These figures plot the changes
of functions f (y)−I and g (y) as ρ changes. Parameter values are set as β = r = 2%,
γ = 1, α = 0.1, σ = 20%, η = 0.3, and I = 10.
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Figure 8: Utility gains of hedging. These figures plot the utility gains of hedging
at varying levels of parameter values. The baseline parameter values are set as β =
r = 2%, γ = 1, α = 0.1, σ = 10%, η = 0.1, and I = 10.
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