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Abstract

An agent-based artificial financial market (AFM) is used to study mar-
ket efficiency and learning in the context of the Neo-Austrian economic
paradigm. Efficiency is defined in terms of the “excess” profits associ-
ated with different trading strategies, where excess is defined relative to
a dynamic buy and hold benchmark in order to make a clean separation
between trading gains and market gains. We define an Inefficiency matrix
that takes into account the difference in excess profits of one trading strat-
egy versus another (“signal”) relative to the standard error of those profits
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(“noise”) and use this statistical measure to gauge the degree of market
efficiency. A one-parameter family of trading strategies is considered, the
value of the parameter measuring the relative “informational” advantage
of one strategy versus another. Efficiency is then investigated in terms
of the composition of the market defined in terms of the relative pro-
portions of traders using a particular strategy and the parameter values
associated with the strategies. We show that markets are more efficient
when informational advantages are small (small signal) and when there
are many coexisting signals. Learning is introduced by considering “copy-
cat” traders that learn the relative values of the different strategies in the
market and copy the most successful one. We show how such learning
leads to a more informationally efficient market but can also lead to a less
efficient market as measured in terms of excess profits. It is also shown
how the presence of exogeneous information shocks that change trader
expectations increases efficiency and complicates the inference problem of
copycats.
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1 Introduction

In recent years it has become ever more popular to consider financial markets

from other than a neoclassical rational expectations point of view. The latter

considers financial markets to be in continuous equilibrium with informationally

efficient prices. Empiricists have questioned the validity of this model, pointing

to evidence of inefficiencies. Alternative views have been presented to better
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match the empirical evidence. One with a distinguished history, that will be

the focus of this paper, is the Neo-Austrian theory of financial markets.

Based on a recent rereading of the ideas of Friedrich Hayek and the Neo-

Austrian theory of market processes (see, e.g., Hayek (1937), (1945), (1948) and

(1978), Littlechild (1982), Rizzo (1990), Kirzner (1992) and (1997)), Benink

and Bossaerts (2001) presented the first formal application of Neo-Austrian

theory to financial markets. In the Neo-Austrian interpretation financial mar-

kets are continuously evolving from one inefficiency to another, never attaining

the perfect, efficient equilibrium, yet strongly attracted towards it. Creative

investors track and exploit profit opportunities generated by continuous shocks

in a never-ending cycle. The result would be a stable process with pronounced

regularities. According to Neo-Austrian theory, a competitive market provides

a systematic set of forces, put in motion by entrepreneurial alertness (i.e. ea-

gerness to make money), which tend to reduce the extent of ignorance among

market participants.

The resulting knowledge is not perfect; neither is ignorance necessarily invin-

cible. Equilibrium - read: market efficiency - is never attained, yet the market

does exhibit powerful tendencies towards it. The fact that equilibrium is never

attained is attributed to an erratically changing world where traders realize that

their knowledge is imperfect. At the same time, the changes are never so extreme

as to frustrate the emergence of powerful and pervasive economic regularities.

Although traders can exhibit fully rational behaviour, in the sense that they try

to optimize their financial position and wealth, the market process is not gen-

erating a rational expectations equilibrium (REE) and informationally efficient

prices. Rational behaviour does not necessarily imply rational expectations.
1

Imperfect knowledge is a key characteristic of Neo-Austrian thinking. Ac-

cording to Hayek, the problem of economic choice and ultimately the analysis of

economic behavior in neoclassical theory is oversimplified, because it has been

reduced to optimal behavior under constraints that agents are supposed to be

very familiar with. These constraints concern: (1) preferences, (2) production

and market technology, and (3) resources. In contrast, the Neo-Austrian view

stresses that fundamental uncertainty and ignorance exist regarding these con-

straints. This uncertainty and ignorance is claimed to lead to disequilibrium,

and disequilibrium itself generates further uncertainty and ignorance regarding

the constraints. Disequilibrium thereby becomes self-enforcing and permanent.

However, alert participants in the market process, whom the Neo-Austrians

define as entrepreneurs, try to get a - necessarily incomplete - picture of the na-

ture of the disequilibrium in the marketplace, because disequilibrium generates

profit opportunities. The actions of these entrepreneurs produce the very signals

that are needed to reduce disequilibrium. What renders the market process a

systematic process of coordination is the circumstance that each gap in market

coordination expresses itself as a pure profit opportunity. The profit-grasping

1Note that in the Neo-Austrian view the failure of markets to reach the informationally
efficient equilibrium ought not to be attributed to costs of any nature (adjustment costs,
information costs, trading costs, etc). As mentioned, the non-convergence has its origin in
limitations of knowledge.
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actions of successful entrepreneurs dispel the ignorance which was responsible

for the profit opportunities, and thus generate a tendency towards coordination

among market decisions. However, due to continuous change in the constraints,

equilibrium is never reached.

In their paper Benink and Bossaerts (2001) construct an example of an econ-

omy with a continuously inefficient financial market. They adjust the memory

of investors’ trading rules in order to generate a market process that can be

characterized as stable, cycling from one inefficiency to another. Despite the

stability (stationarity), rational, risk-averse investors are unable to exploit all

inefficiencies because they cannot make reliable inferences about them. This

would be the case, for instance, if the memory of the return process is suf-

ficiently long for statistics not to display their usual distributional properties

needed to construct confidence intervals. Based on an analysis of average price

changes, an investor will with high likelihood reject efficiency, yet the sign of the

average is unreliable in predicting the sign in independent future replication. As

a consequence, classical statistics cannot reliably assess the inefficiencies.

In contrast to Benink and Bossaerts, this paper places more emphasis on,

and studies in detail, the learning processes and dynamics of a Neo-Austrian

inefficient financial market. As mentioned above, the neoclassical rational ex-

pectations point of view considers financial markets to be in continuous equilib-

rium with informationally efficient prices. Pesaran (1989) notes that the idea

of a REE involves much more than the familiar concept of the equilibrium of

demand and supply. A REE can be characterized by three main features: (1)

all markets clear at equilibrium prices, (2) every agent knows the relationship

between equilibrium prices and private information of all other agents, and (3)

the information contained in equilibrium prices is fully exploited by all agents in

making inferences about the private information about others. Thus, in a REE

prices perform a dual role - apart from clearing the markets they also reveal to

every agent the private information of all the other agents. In effect, the concept

of the REE requires that everybody knows (in a probabilistic sense) everything

about the way the market economy functions. But as Hayek (1937) puts it:

“The statement that, if people know everything, they are in equilibrium

is true simply because that is how we define equilibrium. The assumption of

a perfect market in that sense is just another way of saying that equilibrium

exists, but does not get us any nearer an explanation of when and how such a

state will come about. It is clear that if we want to make the assertion that

under certain conditions people will approach that state we must explain by

what process they will acquire the necessary knowledge”.

The preceding implies that, for the REE to have any operational meaning, it

is necessary that the processes by means of which people learn from experience

and acquire the common knowledge necessary for the achievement of the REE,

are specified fully and explicitly.

In this paper we use an agent-based artificial financial market (AFM) to

generate simulations of inefficiencies and learning and investigate to what extent

a Neo-Austrian interpretation of the resulting market dynamics is the most
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natural
2
. Agent-based models are intermediate between empirical and analytic

studies; the former offering grave problems in terms of inference, while the latter,

perforce, come armed with a large number of model assumptions. Moreover, the

complexity of the AFM can be tuned, so as to offer a more transparent model

versus a more realistic one.

The most well known AFM is the Santa Fe model (see, e.g., Palmer, Arthur,

Holland, Lebaron and Tayler (1994), Arthur, Holland, LeBaron, Palmer and P.

Tayler (1997), Lebaron (1999, 2000 and 2001)). In this paper we use an alterna-

tive model - the so-called Neural Networks Chaos and Prediction Model (NNCP)

(Gordillo and Stephens (2001a, 2001b and 2003)) - whose design was motivated

by the desire to study relatively neglected elements, such as the effect of or-

ganizational structure on market dynamics and the role of market makers and

information, all of which are important in the formation of market microstruc-

ture (see, for example O’Hara (1997)). Although capable of simulating more

“realistic” dynamical scenarios, in this paper we use the NNCP in the context

of a more transparent model, in which traders are associated with strategies cho-

sen from a single one-parameter family, the parameter representing a trading

bias linked to the informational advantage of the trader, zero bias represent-

ing noise traders. The resulting AFM, presented in section 2, can effectively

be parametrized by three principle degrees of freedom: (1) the proportion of

traders of a given type, (2) the number of different trader groups or strategies,

and (3) the similarity between different trader groups - measured by distance

in bias between two agents or groups. Learning is introduced in section 2.3 via

the notion of “copycat” agents that observe the market, infer what is the most

succesful strategy and then copy it.

We use this AFM to investigate notions of efficiency and learning and exam-

ine to what extent the results are more naturally interpretable in a Neo-Austrian

rather than a neo-classical framework. AFMs have been used, for example, by

Chen and Yeh (2002), to consider efficiency as an emergent phenomenon. There

however, efficiency was judged purely from the statistical properties of the re-

turns series. However, as will be further discussed in section 3, predictability of

the time series is not necessarily inconsistent with market efficiency. We there-

fore consider efficiency from the empirical point of view of whether or not traders

can make excess returns systematically, defining a notion of excess profit that

distinguishes between market gains and trading gains. To further distinguish

between intelligent trading and “luck” we consider relative excess returns, Iij ,

between trading strategies i and j, measured relative to the variance of these

excess returns. In section 3, we introduce an Inefficiency Matrix, with matrix

elements Iij , which summarizes statistically the relevant relative inefficiencies

in the market.

With these tools in hand, in sections 4.1 and 4.2, we investigate both effi-

cient and inefficient markets in the absence of learning, showing in particular,

in section 4.2.1, under what conditions a market may be inefficient, yet still

2The results of AFMs in the past have mainly been analysed using an “evolutionary” as
opposed to neoclassical view of markets (see, for instance, Farmer and Lo (1999) and Farmer
(1998)).
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be observed to be efficient. This possibility is due to the statistical inference

problem that traders face in the light of noisy market data. In section 4.3 we

show, paradoxically, that learning can lead to a more inefficient market in terms

of excess profits, even though informationally the market was more efficient;

and then, in section 4.4, we study how the arrival of new information affects

inefficiency and learning. We then discuss the results in the framework of the

Neo-Austrian paradigm and draw some final conclusions.

2 Description of the Model

For the purposes of the present investigation we consider a simplified form of

the NNCP where a simulation is carried out for a prescribed number of ticks
on a single risky asset. An agent can divide his/her wealth between this risky

asset and a riskless asset (“cash”). At each tick an agent takes a position

(buy/sell/neutral). Shares are bought in fixed size lots of one share.

Resources are finite and hence traders have portfolio limits associated with

either zero cash or zero stock. Short selling is not permitted. Although the

NNCP can consider different market clearing mechanisms, here we will consider

only a double auction market. After each tick price is updated exogenously via

a supply/demand type law as in (1)
3
.

p(t + 1) = p(t)[1 + η(B(t) − O(t))] (1)

In this equation, which is common to many AFMs, p(t) is price at tick t and

B(t) and O(t) are the demand and supply at t, while η is a tuning parameter.

Large values of η lead to large price oscillations while small values lead to slow

price adjustments. Note that D(t) = (B(t) − O(t)) depends not only on the

positions taken by the agents but also on the mechanism used to match their

trades, e.g. at what price two contrary trades will be matched.

The wealth of an agent i at time t is given by Wi(t) = (Ei(t) + Hi(t)p(t)),
where Ei(t) and Hi(t) are the amount of cash and number of shares that the

agent possesses at time t.

2.1 Double Auction

The market clearing mechanism we use for the present simulations is a simple

double auction, where at every tick each trader takes a position with an asso-

ciated volume and at a given price, each trader being able to value the asset

independently but with prices that are not too different. In this model price

changes are induced only via the disequilibrium between supply and demand as

measured by equation (1). Specifically:

1. At time t one lists all the positions taken by the agents and the associated

volume and price. The agents’ bids and offers are obtained at time t via

a Gaussian distribution with mean p̄ = p(t − 1).

3Price can also be updated endogenously as in the case of a market with market makers

(see Gordillo and Stephens (2001a and 2001b) or Gordillo and Stephens (2003)).
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2. A bid and an offer are matched only if they overlap, i.e. pb(t) > po(t). To

realize a transaction we used: “best bid/offer”, where the highest bid and

the lowest offer are matched at their midpoint successively until there are

no overlapping bids and offers.

3. Price is updated via (1) using only those bids and offers that are not

matched and that have overlap, i.e. pb > p(t) and po < p(t).

2.2 Trading Strategies

Although the NNCP market can accommodate many different strategy types we

will illustrate our results in the context of a market with relatively few types of

traders, as all that we wish to demonstrate can be observed in a simple setting.

Essentially, we will consider a one-parameter family of traders described by a

“bias”, d (d ∈ [0, 1]), where the position probabilities are:

P (c) =
2d

3
, P (n) =

1

3
, P (v) =

2(1 − d)

3
(2)

where c represents Buy, v Sell and n Hold. For example, when d = 1/2 then the

corresponding probabilities are 1/3, 1/3, 1/3. This limit corresponds to that of

a liquidity or noise trader. An alternative, or complementary, interpretation is

that it corresponds to a trader or investor that believes (correctly or incorrectly)

that the market is efficient, having no statistical bias in favour of one position

versus another. In contrast, a trader with d = 1 has probabilities 2/3, 1/3, 0 and

corresponds to a trader with a strong belief that the market will rise. Similarly,

a trader with d = 0 has a strong preponderance to sell, corresponding to a trader

with a strong belief that the market will fall. We will denote a trading strategy

from the above one-parameter family by the pair (100d, 100(1 − d)). Thus, an

uninformed, or liquidity, trader is denoted by (50, 50) and a maximally biased

one, on the long side, by (100, 0).

One could also imagine a biased trader to have a superior understanding of

the underlying market dynamics - knowing that all else being equal a prepon-

derance to buy/sell will lead to excess demand/supply, which in its turn will

lead to a price increase/decrease, which will lead to a higher valued portfolio.

In this sense we can think of these traders as being informed relative to their

noise trading counterparts. It is important to realize that such considerations,

such as the rationality of a trader, or what led a trader to adopt a particular

strategy (e.g. risk preferences, utility function, information set etc.), are extra-

neous to our discussion in this paper, as our model is completely specified by the

traders’ strategies and a market clearing mechanism. The presence of traders

with a bias may create an excess demand (supply in the case of a sell bias).

This excess demand thus drives the price via the price evolution equation (1).

The actual excess demand depends on the actual composition of the population

and the distribution of biases. Additionally, in the presence of learning it may

also depend on the efficiency of the learning and how easily information may be

inferred from the market.
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2.3 Learning Mechanism

In order to introduce the concept of learning we consider “copycat” traders

Gordillo and Stephens (2001a, 2001b). Copycats observe the success of differ-

ent strategies in the market and copy the most successful one, updating their

expectations periodically in the presence of new information. The copying pro-

cess may be deterministic or probabilistic and the definition of success varied.

For example, a copycat might copy that trader that has the portfolio with high-

est observed Sharp ratio, or the trader with highest daily returns over a certain

period. Obviously, as we shall see, copycats face a difficult inference problem,

having to distinguish between the best strategy and the best observed strategy.

We will assume that there are no costs incurred in acquiring information for the

copycats or, for that matter, any other trader.

We will consider a probabilistic copying mechanism whereby a copycat copies

a strategy i with probability
4

Pi(t) = µi(t)/
∑

i

µi(t) (3)

where µi(t) is a measure of the success of strategy i at time t. Note that µ may

well depend on other parameters or timescales. An interesting one is the period

of time over which success is measured. For instance, one copycat might look

at the portfolio returns over the last 50 ticks, whereas another might consider

returns over the last 50 days. Given that the copying process is stochastic it

may be that the copycat does not copy the most successful strategy. The more

successful a strategy is relative to others however, the more likely it is that this

is the strategy copied. The stochastic nature of the copying process is used to

reflect the inefficiencies inherent in the learning process. None of our results are

qualitatively changed if a deterministic learning mechanism is used instead. This

probabilistic selection process is carried out periodically, for example, every 100

ticks, thus permitting the copycats to incorporate new information into their

analysis.

Copycats naturally try to copy informed traders to find the optimal strategy.

This activates a learning process. However, complete learning is by no means

guaranteed in the sense that they do not necessarily identify the best strategy.

The quality of the learning depends on the signal to noise ratio, which in its

turn depends on the trading parameters, such as trader biases, and the number

of traders with a particular strategy.

Note that the learning might be incomplete even in the case where there is

only one other strategy to learn if the learning is inefficient (if the update fre-

quency for learning is high however the learning will tend to be more complete).

We do not require the arrival of new exogeneous information - “external shocks”

- to observe incomplete learning and the permanence of inefficiencies. As we will

see, this will occur, for instance, when we have a wide variety of strategies that

are quite similar with agents spread uniformly among them. It is important to

4In the Evolutionary Computation literature this is known as “roulette wheel selection”.
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emphasize here the diversity that these different types of informed trader bring

to the market. Even though they all (potentially) receive the same information

their response to it, as in a real market, can be markedly different.

3 Measures of Efficiency and Inefficiency

The efficient markets hypothesis is strongly linked to the idea that security

prices fully reflect (publicly) available information. In this manifestation its

confirmation or negation has been highly controversial due to the existence of

the joint-hypothesis problem, formulated by Fama in his seminal 1970 and 1991

overview papers on efficient capital markets, wherein efficiency is determined

only within the context of a particular asset-pricing model. A common corol-

lary of the efficient markets hypothesis (that by some has been taken to be its

definition) is that in an efficient market it is impossible to make excess prof-

its in a systematic fashion, or that excess returns are unpredictable. However,

Pesaran and Timmerman (1995) note that predictability of excess returns does

not imply stock market inefficiency, and can be interpreted only in conjunction

with, and in relation to, an intertemporal equilibrium model of the economy.

Inevitably, all theoretical attempts at interpretation of excess return predictabil-

ity will be model-dependent, and hence inconclusive. Fama (1991) states that

it is only possible to test whether information is properly reflected in prices in

the context of a pricing model that defines the meaning of “properly”. As a

result, when anomalous evidence is found on the behaviour of returns, the way

it should be split between market inefficiency or a bad model of market equilib-

rium is ambiguous. Furthermore, as Balvers, Cosimano and McDonald (1990)

have pointed out it is possible to formulate an equilibrium model that leads to

predictable returns.

A way to avoid the pitfalls of the joint-hypothesis problem is to take a com-

pletely empirical approach; defining inefficiency with respect to some measure

that is not dependent on the existence of some underlying model, such as an

asset-pricing model. Thus, one evaluates the economic significance of stock

market predictability by seeing if the associated information could have been

exploited successfully in investment strategies, thus leading to systematic excess

returns. Of course, this begs the question of how do we define systematic and

excess? - excess relative to what? In the literature it is common to measure

excess relative to some ‘fixed’ benchmark such as the riskfree interest rate or

to an index portfolio (the logical extreme of that being the market portfolio).

One of the chief drawbacks of such measures is that they permit the possibility

that uninformed traders acquire excess profits even when the market is efficient.

For instance, a market composed of only uninformed (50, 50) traders is a purely

random process. However, a given realization of this process over a fixed time

interval can lead to a large net price difference relative to the initial price
5
. In

this case noise traders who, on average, do not change their portfolio holdings,

5Obviously, averaged over sufficient time, or over a large number of different realizations
(difficult to do in a real market), the expected final price is the same as the initial price

8



may have excess profits relative to a fixed benchmark simply because, by chance,

the price rose. Thus, as emphasized by Bagehot (1971), it is important to dis-

tinguish between trading gains and market gains. Additionally, in reference to

fixed benchmarks the discussion of systematic does not naturally arise.

In order to eliminate these defects we choose as benchmark a “moving target”

where excess profit during timestep t is related to the increase in the market

value of an active trading portfolio in the timestep t, relative to the increase in

the market value of a buy and hold portfolio in the same timestep. In this way

an excess profit or loss for a given trader over the timestep t can only arise when

there has been a net change in the trader’s portfolio holdings in the asset and
a net change in the asset’s price. This choice of benchmark always refers the

market dynamics to a zero sum game. More concretely, we define the “excess”

profit of a trader j using a trading strategy i in the time interval t−1 to t to be

eij(t, t − 1) = (δVactive(i, j, t) − δVBH (i, j, t)) (4)

where δVactive(i, j, t) is the increase in portfolio value between t and t − 1 for

trader j by trading using a trading strategy i, while δVBH (i, j, t) is the same

quantity but using as trading strategy Buy and Hold. eij(t, t − 1) can also be

written as eij(t, t − 1) = δnij(t)δp(t), where δnij(t) is the change in portfolio

holdings over the timestep δt = t − (t − 1) of the trader using strategy i and

δp(t) is the change in asset price over this timestep.

The excess profit earned between times t′ and t is

Eij(t, t
′
) =

n=t
∑

n=t′+1

eij(n, n − 1) (5)

One may also consider the excess profit per unit time over the interval t′ to t,
defined as (1/(t− t′))Eij (t, t

′
). One may enquire as to the average excess profits

associated with a particular trading strategy, Ei(t, t
′
), by summing over all those

traders utilizing the strategy and dividing by the number of such traders

Ei(t, t
′
) =

1

Ni

∑

j

Eij(t, t
′
) (6)

In this case Ei(t, t
′
) represents the excess profits earned between t and t′ by

a “representative” trader of the class i, i.e. it is the average excess profit per

trader with the strategy i.
The timestep in the above may, of course, be chosen arbitrarily. In the

simulations in this paper we will consider it to be the most fine-grained possible

- a “tick”. In this case the maximum possible excess profit over a time interval,

t′ to t, for a fixed, constant transaction volume V per trade, is that associated

with “perfect foresight”, given by

Eij(t, t
′
) = V

n=t
∑

n=t′

|δp(n)| (7)
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The chief advantage of having excess profits measured at such high frequency

is that, as we will see, statistical inference about excess profits is enhanced

due to the greater sampling. For example, one would expect to be able to

better judge the utility of a trader’s proprietary strategy if it has been used

1000 times as opposed to 10. Of course, this presumes that the traders trade

frequently. For traders with longer time horizons more time is necessary in

order to reach a given confidence level. In principle, our definition of excess

profits could be implemented using real, high-frequency trading data where it

could be used to evaluate the ability of traders to exploit short-term profit

making opportunities. For example, to measure excess profits over the next 10

ticks to examine to what extent a trader was correctly predicting short-term

market movements. Of course, it would not be sensible to use this criteria to

judge between different fund managers. For example, a manager might increase

his/her portfolio holding in a given stock to 2.6% from 2.1% in January as a

result of expecting an appreciation in the price of the stock over a six month

interval. It would be unfair to judge this investment over the first 10 ticks after

the purchase! Similarly, it would be inappropriate to consider the performance

of a day trader using a time horizon of a year, i.e. to consider the net change in

the portfolio weighting over the year weighted by the net change in price over

the year.

As excess profit is a stochastic variable there is always a non-zero probability

that, over a given time interval, a trader makes a profit just by chance. Hence, it

is natural to refer the magnitude of any excess profits (“signal”) to the degree of

variance (“noise”) in the profits, measured, for example, in units of the standard

deviation. Additionally, it is natural to compare the excess profits of one trader,

or group of traders, to those of another group. In other words “relative” excess

profits are the most important.
6
. To take into account both these factors we

introduce the following “signal-to-noise” measure

Definition: The Relative Inefficiency, Iij , between two strategies or trader

groups i and j evolving from time t to time t′ is

Iij(t, t
′
) =

(Ei(t, t
′
) − Ej(t, t

′
))

(

σ2
i
(t,t′)

Ni
+

σ2
j
(t,t′)

Nj

)

1
2

(8)

where σi(t, t
′
) is the variance in the excess profits of the representative agent

of the strategy i. Given that we have defined an inefficient market to be one

where traders can make excess profits we may define Iij(t, t
′
) as the “relative”

inefficiency between the trading strategies, or trader groups, i and j. (Ei(t, t
′
)−

Ej(t, t
′
)) measures the excess returns of trading strategy i relative to trading

strategy j. The division into trader groups should be a partition, i.e. it should

cover all traders and any trader should appear in one and only one trading group.

6In the context of entire markets it has been suggested by Lo and McKinley (1999) that
“relative” efficiency of markets is a more useful notion than that of absolute efficiency.
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Dividing by the standard error, σerr, means the resultant measure gives us a

measure of the statistical confidence we can have in the relative excess returns

of the two strategies. A reasonable criterion for concluding that two strategies

are relatively inefficient over a given time interval is that Iij(t, t
′
) > nσerr over

that time interval, where n is a measure of the confidence interval we require.

A reasonable value of n is n = 2 though, of course, we may require a stricter

criterion.

Finally, we may describe the inefficiency of the entire market by making the

following definition:

Definition: The Inefficiency Matrix, Im
, for a market m evolving from time t

to time t′ is the matrix with matrix elements Iij(t, t
′
) from equation (8).

We take the Inefficiency Matrix to give a complete description of the relative

inefficiencies that exist in a market. In the case of multiple assets we can

conceive of several possible Inefficiency Matrices, according to the way we group

traders, strategies and the existing types of assets. For example, we could

define an Inefficiency Matrix for each asset in the market which would indicate

the relative inefficiency associated to the trading of specific stocks. However, we

could also build the Inefficiency Matrix associated to groups of assets – clustered,

for instance, through some hierarchical criterion – which would in turn indicate

the relative inefficiency associated to the trading of particular types of stocks.

Other arrangements are also possible (such as building Inefficiency Matrices

through groups of agents characterized by a certain parameter), but they are, in

any case, variations of the previous definition. In all these cases, the Inefficiency

Matrices for different assets can differ in both their dimensionality (different

numbers of trading groups in different assets) as well as in the explicit nature

of their matrix elements (different types of trader groups). Due to the zero-sum

nature of our measures this matrix is antisymmetric, Iij(t, t
′
) = −Iji(t, t

′
), as,

if trader group i is making profits at the expense of trader group j, then trader

group j is making losses of exactly the same magnitude to trader group i.
We will define two trader groups or strategies, i and j, to be relatively

inefficient with respect to each other over the time interval t → t′ if and only if

Iij(t, t
′
) > n, ∀τ ∈ [t, t′], where the number n represents the degree of confidence

we require in order to state that there is an inefficiency. As stated, a typical

value would be n = 2.

An associated single inefficiency measure for the whole market is

Im

(t, t′) =
1

N ′
(
1

2
Tr(−(Im

)
2
))

1
2 (9)

where the trace is over all strategies or trader groups and the normalization

factor N ′
= N(N − 1)/2, where N is the number of strategies or trader groups

in the market. Note that this definition of inefficiency is totally endogeneous,

making no reference whatsoever to any external benchmark.
7

With this single

7It is also possible to define inefficiency exogeneously by considering Iex
i

(t, t′) =
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market measure we could in principle also consider the relative inefficiency of

one market versus another.

It is important to emphasize that in a real financial market the question of

whether a market is efficient or not is really an empirical one, as we do not have

a valid underlying theory that can demonstrably prove a market to be efficient

or not. Moreover, it is one that can only be answered statistically given that the

evolution of a market is stochastic. In that sense the empirical question boils

down to one of: can one infer that a financial market is efficient from a set of

data. The luxury of an artificial market is that we can create an efficient or

inefficient market and then vary the parameters of the market in order to study

when, and under what conditions, it is possible or not to infer efficiency from

observing the market. Additionally, in distinction to a real financial market we

may obtain better statistics by “repeating history”, by rerunning the market

over again.

4 Principal Results

4.1 What Does an Efficient Market Look Like?

Before presenting simulations of inefficiencies in the Neo-Austrian context we

wish to first present some simulations of what represents an efficient market

to use as a benchmark for comparing other results. Also, in the Neo-Austrian

paradigm there are strong tendencies directing the market towards efficiency,

even if it in reality never reaches such a state. We do not at this point consider a

general form of efficiency but rather restrict ourselves to some simple, intuitive

examples, in particular examining efficiency in the context of an homogeneous

market.

In Figures 1 and 2 we see the distribution of excess profits for a group of 100

traders after 3001 auctions. In Figure 2 the traders use a (50, 50) strategy, i.e.

they are liquidity traders, whereas in Figure 1 they are informed (90, 10) traders.

In both cases the original distribution at t = 0 was a single peak of 100 traders

at the origin. The efficient market dynamics here is such that the initial peaked

distribution spreads uniformly and symmetrically on average. Note that due to

our choice of benchmark the losses of the traders to the left of the origin and the

profits of the traders to the right sum to zero at all times. The variance of the

distribution increases with time as σ2
(t) = A(n)t, where A(n) is a constant that

measures the market liquidity - the less liquid the market the more volatile, and

therefore the greater the dispersion. The dependence on the liquidity can be

seen in Figures 1 and 2, where after 3001 auctions we see that the dispersion for

100 (90, 10) agents is substantially greater than that of 100 (50, 50) agents. Of

(Ei(t,t
′)−Eben

j
(t,t′))

(

σ2
i
(t,t′)

Ni
+

σben
j

2
(t,t′)

Nben
j

) 1
2

, where Eben
j

(t, t′) is the excess profit earned by a strategy j in

some benchmark market. The most natural benchmark is an efficient market composed of
purely uninformed liquidity traders, i.e. (50, 50) traders.

12
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Figure 1: Histogram of excess profits for 100 (90, 10) traders
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Figure 2: Histogram of excess profits for 100 (50, 50) traders

course, the price behaviour in both cases is very different. In the first case, due

to the large excess demand, price increases very rapidly, whereas in the latter

it is a random walk around the initial price. Both markets however are efficient

according to our excess profit criterion, in that no trader or group of traders is

making systematic excess profits at the expense of any other group. This, in

fact, can be further confirmed by considering the behaviour of any particular

trader or group of traders and observing that the evolution of their excess profits

is a random walk of mean zero.

Thus, we see that the hallmark of an efficient market is that no subgroup

of traders make systematic excess profits at the expense of any other. This is

manifest in the present graphs by the fact that the distribution is unimodal

and symmetrical. In terms of the Inefficiency Matrix we can check that any

chosen group of traders is not making systematic excess profits by considering

the matrix element Iij , where i refers to the group of traders of interest and j

13
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Figure 3: Graph of Iij(t, 0) for a fixed subgroup of 50 (50,50) traders in an

homogeneous market

refers to the rest.

In Figure 3 note that the scale of Iij(t, 0) for a market of 100 (50, 50) traders

is about the order of two or less. In fact, taking an average over 10 different

experiments leads to a resultant curve that leads to consistency of the null

hypothesis that the market is efficient. We can also see that the volatility of

the curve diminishes as a function of time. This is a direct consequence of

our definition of the Inefficiency Matrix. For an efficient market the numerator

gives zero on average, while the denominator increases linearly with time. The

interpretation of this fact is simply that as time passes Iij , being a statistical

measure, allows us to infer with a higher degree of confidence that the market

is efficient. This also allows us to see that even if we decided that excess profits

(or in this case losses) were being made, say over the first 1500 ticks, we may

conclude that they are not systematic in that after this time there are no excess

profits (or losses).

It is worth emphasizing again here why we are using a dynamic Buy and

Hold benchmark. In a market of (90, 10) traders all agents will make large

profits relative to a static benchmark, such as a risk free interest rate. In

this sense the market is very inefficient as in this scenario there is no mean

reversion of the price so the market can continuously go up. However, no trader

in the market is making systematic excess profits relative to any other. This

aspect is made manifest by using a dynamic Buy and Hold benchmark and

hence the market is seen to be efficient. However, in distinction to the case

of a market with (50, 50) traders the (90, 10) market does not correspond to

a rational expectations equilibium in that there is a strong, continuous excess

demand. In both cases however traders may be acting perfectly rationally with

respect to optimizing their own utilities.

14



0

5

10

15

20

25

30

-60 -40 -20 0 20 40 60

# 
ag

en
ts

Wealth

after 101 auctions

Figure 4: Histogram of excess profits for 50 (50, 50) and 50 (90, 10) traders after

101 ticks.

4.2 What Does an Inefficient Market Look Like?

Before discussing dynamical inefficiencies and, in particular, how inefficiencies

begin and end, we consider the case where a time period exists such that the

inefficiency persists across the entire time period. Specifically, we consider a

market consisting of equal numbers of noise traders and informed traders with

a (90, 10) bias.

In Figures 4 and 5 we see the histogram of excess profits for a group of 50

(50, 50) and a group of 50 (90, 10) traders. In Figure 4 we see the distribution

after 101 ticks, and in Figure 5 after 3001 ticks. In the former we see how

the distribution of excess profits begins to show a multi-modal structure. This

is due to the fact that the (90, 10) traders are now making excess profits at

the expense of the (50, 50) traders. The appearance of a multi-modal structure

is symptomatic of a market inefficiency, the mean excess profit of the (90, 10)

traders being positive while that of the (50, 50) traders is negative. This be-

haviour is fully confirmed in Figure 5, where we see that the distributions for

the two types of traders are now fully decoupled.

In the context of the Inefficiency Matrix we show in Figure 6 the behaviour

of I(100−x,x)(50,50) for x = 5, 10, 15, 20, 25, 30, 35, 40 and 45 for a market

consisting of 50 traders of type (100− x, x) and 50 (50, 50) liquidity traders. In

this graph we can clearly see that the market is unambiguously inefficient, i.e.

I(100−x,x)(50,50) > 2 for all markets that include informed traders, and that the

inefficiency increases monotonically with time due to the monotonic increase in

excess profits of the informed at the expense of the uninformed. Additionally,

we see that the degree of inefficiency strongly depends on the degree of bias

of the informed agents. The higher the bias the higher the excess demand

and therefore the higher the average price increase between auctions. This in

turn leads to higher excess profits for those traders that have a bias to buy. For

larger biases the inefficiency increases approximately as t1/2
. This can simply be
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Figure 5: Histogram of excess profits for 50 (50, 50) and 50 (90, 10) traders after

3001 ticks

deduced from the fact that for a completely biased agent excess profit increases

as t while the volatility in excess profits also increases as t.
Eventually the curves in Figure 6 begin to flatten out. This is a simple

consequence of the existence of portfolio limits. As cash is used up exponentially

by the informed as a function of time (due to the exponential increase in the price

of the stock when both informed and uninformed agents are present), whereas

the stock of the informed is used up only linearly (only one unit of stock can

change hands every auction) the informed are the first ones to decouple from

the market and for that reason the rate of increase of the inefficiency goes to

zero and the inefficiency itself becomes constant. The stronger the bias of the

informed the quicker they decouple.

4.2.1 How Does Strategy Diversity Affect Market Efficiency?

Previously we introduced efficiency in the context of an homogeneous market

while subsequently introducing the idea of inefficiency in the context of a market

with only two types of strategy. In this sense one may think of the resultant

market as being only minimally inhomogeneous (though, as we will see, this is

erroneous) and naturally ask what happens in a more heterogeneous market.

Hence, in this section we consider markets with more strategy diversity. Of

course, there are different metrics for measuring diversity available to us. In the

simplified one-parameter model under consideration, for N strategies, a detailed

analysis of inefficiency naturally takes place in X1 = [−1, 1] by considering the

distribution of the N biases in this space, i.e. the distribution of points on

this interval. Of course, simpler summary measures, such as just counting the

number of strategies irrespective of their associated biases, can be useful. For

instance, the average bias for a given set and the associated variance would be

useful summary measures.

Intuitively, there are three basic degrees of freedom associated with the bias
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Figure 6: Graph of Iij(t, 0) for 50 j = (50, 50) and 50 i = (100 − x, x) traders.

distributions: i) the proportion of traders associated with a given bias; ii) the

number of different groups of traders; iii) the similarity between the strategies

of different trader groups - measured in the present context by “distance” in

bias between two agents or groups. It is thus of interest to ask how easy or

difficult is it to infer inefficiency as a function of these components.

First, we examine inefficiency as a function of the proportion of traders. In

Figures 7a and 7b we see the market inefficiency at a given fixed time as a

function of the proportion of informed traders in a binary market consisting

of 100 traders, where the curves represent averages over 10 experiments. The

different curves correspond to different biases for the informed agents. The

associated biases for the curves are 0 (i.e. (50, 50) traders) on the bottom curve

to 49 (i.e. (99, 1) traders), on the top. Interestingly, we see that there always

exists a maximum in the curve that corresponds to the proportion of informed

to uninformed that yields maximum inefficiency for a given bias. We can see

how the location of the maximum depends on the trader bias in Figure 7b,

where the curve has the form Y = 59.7 + 20.17 exp((55.0 − X)/6.07).

There are two distinct effects at play in determining the maximum of the

curve. One is that an inefficiency can arise only if an informed trader has an

uninformed trader to profit from. This naively would lead one to believe that

a market of equal numbers of informed and uninformed would be the most

inefficient, as in this case for every informed there is an uninformed to exploit.

However, one must also take into account that the inefficiency depends on the

magnitude of the profits made by the informed. This in turn depends on how

rapidly the asset price changes. The more informed there are, the more buy-

sell disequilibrium there is, and the faster the price rises. So one effect favours

equal proportions and the other an all informed market. The above graphs are

a compromise between these two effects. In Figure 7b we see that the lower
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the bias of the informed the larger the proportion of informed at maximum

inefficiency.

We now consider how inefficiency depends on the number of and distance

between trader groups, in the present circumstances measured by the difference

in bias between the two groups. We consider a market of 50 liquidity traders

and 50 informed traders of type (50+x, 50−x), where x = 0, 1, 2, 3, 4 and 5. In

other words, we are considering the case of relatively weak biases, which can be

interpreted as meaning that trader expectations are similar. In Figure 8 we see

a comparison of the inefficiency in these 6 markets as a function of time. Note

that using our efficiency criterion of Iij > 2 the markets with x = 1, 2 and 3 are

indistinguishable from an efficient market over the timescale considered of 8000

ticks. For x = 4 the market would not be considered inefficient until after about

4000 ticks and the x = 5 market until after 2000 ticks. The important point to

emphasize here is that all these markets are theoretically inefficient in the sense

that they are composed of inhomogeneous trader groups one having a more ad-

vantageous strategy than the other. This advantage is an intrinsic element of

the market. However, as we have remarked, observationally, inefficiency is an

inference problem. Here we see that these markets are observationally indistin-

guishable from efficient markets over certain time scales due to the fact that the

informed strategies are not sufficiently superior to the uninformed strategy to

lead to any observable inefficiency over the relevant timescale.

In Figure 9 we see a graph of inefficiency as a function of liquidity (average

number of operations per tick) and average distance between strategies. The

graph is an average over the results of ten experiments, where each experiment

consisted of 100 traders divided into ten groups of ten, where their biases were

selected at random from the interval d ∈ [0.5, 1]. In this case, liquidity is a

proxy for the average bias, a higher average bias being associated with a higher

probability to buy, and therefore less liquidity due to the low probability to

find sellers. Similarly, the average distance is a measure of the variance and

hence acts as a proxy for the number of different strategies as the strategies are

chosen probabilistically, i.e. the more strategies we have the smaller the average

distance between them is likely to be. Clearly, we can see that inefficiency

decreases as the average distance between strategies decreases. In other words

the more distinguishable the strategies are the more inefficient is the market. We

also see that inefficiency decreases as a function of liquidity - the more liquidity

the more efficient is the market for a given informational “imbalance”.

4.3 Inefficiency and Learning: A Neo-austrian Interpre-

tation

4.3.1 The Neo-Austrian Paradigm

At the beginning of this paper we discussed the Neo-Austrian interpretation of

financial markets which implies that financial markets are continuously evolv-

ing from one inefficiency to another, never attaining the perfect, efficient equi-

librium, yet strongly attracted towards it. Creative investors track and ex-
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ploit profit opportunities generated by continuous shocks in a never-ending cy-

cle. These alert participants in the market process, who are defined as “en-

trepreneurs” by the Neo-Austrians and as “informed traders” and “copycats”

in our AFM, try to get a - necessarily incomplete - picture of the nature of

the disequilibrium in the marketplace, because disequilibrium generates profit

opportunities. The actions of these entrepreneurs produce the very signals that

are needed to reduce disequilibrium. What renders the market process a sys-

tematic process of coordination is the circumstance that each gap in market

coordination expresses itself as a pure profit opportunity. The profit-grasping

actions of successful entrepreneurs dispel the ignorance which was responsible

for the profit opportunities, and thus generate a tendency towards coordination

among market decisions. However, due to continuous change in the constraints

of the underlying economy, equilibrium is never reached.

In the following section we will study learning processes in an inefficient

financial market from a Neo-Austrian point of view. At this point, we do not

yet include changes in the constraints so that we can analyze learning processes

that are uninterrupted. However, in section 4.4 we will study learning processes

that are interrupted by exogeneous information shocks.

4.3.2 Distribution of Excess Profits in the Presence of Learning

If we introduce learning via copycat agents then we may investigate how learning

affects the existence and evolution of inefficiencies. In Figures 10-12 we see the

evolution of the excess profits associated with a group of 35 (50, 50), 60 (90, 10)

agents and 5 copycat agents. The initial strategy of the 5 copycats is (50, 50), so

they begin as liquidity traders. They observe the market for 700 ticks then copy

a strategy via roulette wheel selection. After 101 ticks, in Figure 10, we already

see a decoupling between the (90, 10) agents and the rest. At this moment

the copycats have not updated their expectations and hence make excess losses

just the same as the (50, 50) traders. In Figure 11 we see the situation after

801 ticks, seeing the 5 copycat traders begin to decouple from the group of

liquidity traders. The alert copycats have detected the existence of traders with

systematic excess profits and are now copying them, whereupon they begin to

reduce their excess losses at the expense of the liquidity traders. In Figure

12, after 1101 ticks we see that the copycats are about to start making excess

profits.

The natural Neo-Austrian interpretation here is that the informed are en-

trepreneurs that are exploiting a profit making opportunity. The copycats are

other alert entrepreneurs that respond to the signal of the original informed

traders. This signal identification is prone to error due to the uncertainty as-

sociated with statistically inferring what is the optimal strategy to use, i.e. en-

trepreneurs can make mistakes. The alert copycat entrepreneurs through their

profit seeking behaviour increase market coordination by increasing the number

of informed traders. If the market consisted only of informed and copycats (who

were initially uninformed) then, depending on the completeness of the learning

process, in principle, complete market coordination could take place, though
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Figure 12: Histogram of excess profits for 35 (50, 50), 60 (90, 10) agents and 5

copycat agents after 1101 ticks

the resulting “equilibrium” does not necessarily have to be associated with an

equilibrium price, i.e. the market does not necessarily have to clear.

4.3.3 Inefficiency in the Presence of Learning

We now consider in Figures 13 and 14 the Inefficiency Matrix for informed agents

with bias d, uninformed agents and copycats. There are 3 matrix elements and

therefore 3 curves. In these experiments learning events take place every 1600

ticks. We show first in Figure 13 the results for d = 0.9. From this graph we

can see that the copycats after the first learning event also make excess profits

at the expense of the uninformed. We may ask why they do not earn as much

as the informed given that they learn so quickly? The answer to this question

is that they do, but the reason why the relative inefficiency between informed

and copycats decreases after learning is that the variance associated with the

excess profits of the copycats is much higher.

It is interesting to note the reason for this: learning is imperfect, hence after

the learning event some copycats have determined correctly the optimal strategy

while others have not and remain uninformed. This result is consistent with the

Neo-Austrian insight of imperfect knowledge where entrepreneurs (“copycats”)

try to get a “necessarily incomplete” picture of the nature of the disequilibrium

in the marketplace.

Thus, within one group of traders we have a situation, such as seen in Figures

??, where the distribution is multimodal. The variance associated with such a

distribution is obviously very large compared to a unimodal distribution and will

keep increasing until learning is sufficiently complete. Intuitively, the decrease in

inefficiency is due to the fact that it is now harder to infer if or not the copycats

have a strategy which leads to excess profits, as at any given time some have

learned the optimal strategy and others not.

In Figure 14 we see the same 3 matrix elements as in the previous figure but
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low-low low-medium low-high

uninformed 150 70 30

informed 30 30 30

copycats 20 100 140

Table 1: Initial numbers of different trader types for different experiments.
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Figure 15: Total market inefficiency in experiments where the proportion of

informed agents changes due to copycat learning. Bias of informed agents is 75.

now for a much smaller bias, d = 0.55. Notice now that the inefficiency of the

informed relative to the copycats is less than that between the informed and

uninformed after the first learning event, showing that some of the copycats have

learned the optimal distribution. However, unlike the case with bias d = 0.9 the

curve does not drop suddenly. The reason for this is that: as the bias is so weak,

even though some copycats learn the optimal strategy they do not have that

much more excess profit. Hence, the distribution associated with the copycats,

although multimodal, remains much more compact than in the case of a large

bias. Hence, the variance is much smaller.

We may also investigate how the addition of copycats leads to more or less

efficiency for the entire market. We have seen in Figure 7, in the case of different

proportions of informed and uninformed agents, that increasing the number of

informed agents can lead to a more or less efficient market depending on the

net number of informed after the increase. With this in mind we consider three

different regimes involving copycat learning in markets with 200 agents. The

proportions of informed, uninformed and copycat traders in each regime are

shown in Table 1. The proportions have been chosen so that for the “low-

low” regime, even in the presence of perfect learning the proportion of informed

25



0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

T
ot

al
 M

ar
ke

t I
ne

ffi
ci

en
cy

Time

BIAS=90

low-medium
low-high
low-low

Figure 16: Total market inefficiency in experiments where the proportion of

informed agents changes due to copycat learning. Bias of informed agents is 90.

would be to the left of the maximum in Figure 7a. Similarly, once again for

perfect learning, the “low-high” regime is such that the proportion of informed

after learning is to the right of the maximum in Figure 7a. Finally, the regime

“low-medium” is such that after perfect learning the proportion of informed

corresponds to the regime of maximum inefficiency in Figure 7a. In Figures 15

and 16 we see the total market inefficiency for these markets. For bias d = 0.9 we

see the characteristic decrease in inefficiency after the first learning event seen

in Figure 13 due to the high variance of the associated multimodal distribution.

This decrease is much less notable for the “low-low” market as the rate at which

the two peaks of the distribution separate is much smaller in this case. Note

that, as expected, asymptotically at least, the “low-medium” market is the most

inefficient, followed by the “low-high” with the “low-low” market being the most

efficient.

4.3.4 Inference and Copycats

In this section we will further explore the difficulties that copycats face in trying

to infer from the market which are the most useful strategies to copy. However,

before presenting the experiments with their results, we will discuss some aspects

of the copycat’s adaptation process. As it has been mentioned previously, in

order to adapt their strategies to the market’s conditions, copycats must “play”

a roulette formed from, say, the profits of each strategy in the market (Eq. 3).

It is useful to recognize the stochastic effects of this game, in particular those

produced by the composition of the market. We can illustrate this by thinking of

a market where the copycats copy via roulette wheel selection the most popular
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strategy. In this case the probability to copy a strategy i is

Pi(t) = si(t)/

m
∑

j=1

sj(t) ; (10)

where si is the number of agents with strategy i. One question we can answer

is the expected number of copycats that will adopt strategy i at time t. Let C
be the number of copycat agents, I the initial number of agents with strategy i
and N the total number of agents (i.e. N =

∑m
j=1 sj(t)). When t = 1 (the first

adaptation) it follows that

Xi(1) = CPi(1) = IC/N ; (11)

where Xi(t) is the average number of copycats that adopt strategy i at time t.
Now, when t = 2, the number of agents with strategy i is I + Xi(1), and in

general, after K learning events, one has

Xi(K) = CPi(K−1) = IC/N + IC2/N2
+ . . .+ ICn/Nn

= I

K
∑

j=1

Cj/N j
(12)

Therefore

Xi(K)K→∞ = IC/(N − C) . (13)

which is the expected maximum number of copycats that will copy the most

popular strategy. In Figures 17 and 18 we show the result of the first 20 adap-

tations in markets with different values of I , C and N , where copycats adapt

every tick and the most popular strategy is associated with informed (51, 49)

agents. The graphs are a result of averaging over 10 different runs.

In Figures 17 and 18 we see how the number of correct copycats asymptotes

to a value close to that given by (13). There is a slight difference in that the

graphs are for copycats that copy the most profitable strategy. However, for

weak bias we see that (13) gives a good approximation. More generally, it gives

a lower bound for the number of correct copycats.

Returning to the problem of learning: The objective of a copycat is to acquire

the optimal strategy (i.e. the strategy that maximizes profits constrained to

existing market conditions); conversely, the objective of the biased traders is to

create an excess demand. This excess demand thus drives the price via the price

evolution equation (1) along with the profits of informed agents. Additionally,

both the excess demand and the profits of the informed traders depend on the

composition of the entire population as well as on the distribution of biases. In

this scenario, copycats try to copy informed traders to find the optimal strategy.

This activates the learning process. However, complete learning is by no means

guaranteed in the sense that they do not necessarily identify the best strategy.

The quality of the learning depends on the signal to noise ratio (i.e. the size

of the different regions in the roulette), which in its turn depends on the agent

biases and the market composition. Note that learning might be incomplete

even in the case where there is only one other strategy to learn.
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Figure 17: Number of copycats that learn strategy i in simulations with I = 300,

C = 150 and N = 600.
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Figure 18: Number of copycats that learn strategy i in simulations with I = 200,

C = 200 and N = 600.
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Informed Bias=75 Informed bias=90

exp 1 2 3 4 5 exp 1 2 3 4 5

low-low 50 49 62 55 55 low-low 50 50 55 80 75

low-medium 40 70 82 84 85 low-medium 59 83 83 90 93

low-high 39 61 75 76 75 low-high 44 74 78 77 78

Table 2: Percentage of copycats that have learned the optimal strategy after

each learning event (“exp”).

Informed Bias=75

exp 1 2 3 4 5

low-low 40/160 40/160 42/158 41/159 41/159

low-medium 70/130 100/100 111/89 112/88 116/84

low-high 84/116 116/84 135/65 137/63 135/65

Informed Bias=90

exp 1 2 3 4 5

low-low 40/160 40/160 41/159 46/154 45/155

low-medium 89/111 113/87 114/88 121/79 123/77

low-high 92/108 134/66 140/60 137/63 138/62

Table 3: Ratio of informed to uninformed after each learning event (“exp”).

This can be amply illustrated by returning to the experiments associated

with Table 1. Table 2 gives results for the quality of learning by showing after

each learning event (denoted by “exp”) the percentage of copycats that have

correctly learned the optimal (i.e. informed) strategy. Finally, Table 3 shows

after each learning event the relative numbers of informed to uninformed traders.

Table 2 clearly show that, for a given regime type, learning is more efficient

the stronger the informed bias. For example, for “low-low” markets after 5

learning events the percentage of informed copycats is 75% for bias d = 0.9 and

55% for bias d = 0.75. This is, of course, intuitively interpretable in that in the

former there is a stronger information signal than in the latter. Interpreting

the results from the point of view of the different regimes, we see that for “low-

low” markets, for a bias of 0.75 the number of copycats that learn the informed

strategy is barely more than it would be had they picked randomly between the

two strategies. This plainly shows the inference problems the copycats face -

and this is in the case of a large bias and where 15% of the market started off

informed! Interestingly, the highest learning percentages are associated with the

“low-medium” regime as in this case the large number of copycats is such that

even if the initial learning is random, 50% of the copycats will learn the optimal

strategy and they in turn will provide a good information signal for the other

copycats to follow in subsequent learning events. Notice that both the “low-

medium” and “low-high” regimes lead to very large increases in the percentage
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Figure 19: Incompleteness of learning: number of copycats that learn the opti-

mal strategy in experiments with different market compositions and daily learn-

ing.

of informed copycats after the second learning event due to the aforementioned

effect of copycats who have chosen the optimal informed strategy, by chance or

by learning, providing a further signal for other copycats to detect. However,

in the case of “low-high”, the asymptotic percentage is smaller than for “low-

medium”, due to the fact that the smaller number of uninformed means that

the excess profits of the informed are less, as there is less opportunity to exploit

the uninformed.

As a further illustration of the incompleteness of learning consider Figures 19

and 20, where we show the number of copycats that learn the correct strategy

in three different experiments. In the first case (Experiment A), the market

is composed of 20 agents of each of the following strategies: (50, 50), (60, 40),

(70, 30), (80, 20), (90, 10), 100 (99, 01) agents, and 100 copycats. In Experiment

B the market is formed by 100 uninformed agents (i.e. with a (50, 50) strategy),

100 (60, 40) agents and 100 copycats. Finally, Experiment C was composed of

100 (50, 50) agents, 100 (99, 01) agents and 100 copycats. The roulette at time

t was built using Ei(t, 0), that is, the profits calculated since the beginning of

the experiment. We show two sets of results - one where the copycats update

their learning every day, and another where they update every 50 days.

In Experiment A, the optimal strategy is (99, 01). However, the presence of

other strategies with lesser yields confuses the copycats in such a way that only

about 70% of them present successful learning, i.e. that identify the optimal

strategy, (the average due purely to the composition of the market is 50% in all

cases; this can be derived through simple probabilistic arguments with the use

of the roulette). In Experiment B we can observe that the interaction of the
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Figure 20: Incompleteness of learning: number of copycats that learn the op-

timal strategy in experiments with different market compositions and learning

every 50 days.

(50, 50) and (60, 40) strategies generates only a relatively small signal, hence

explaining why the number of copycats that learn the best strategy is only

slightly bigger than the average that would arise purely due to the market’s

composition. Experiment C shows the imperfection of the learning process,

even in a market with a very large difference in biases, i.e. that due to the

stochastic nature of the roulette wheel complete learning cannot take place. We

see in general then that the efficiency of learning depends on the market biases

and the diversity of strategies in the market, as well as the stochastic nature of

the roulette wheel selection.

4.4 Efficiency and Learning in the Presence of Exogeneous

Information shocks

An important element in both neoclassical and Neo-Austrian thinking is the

arrival of new information. In the neoclassical paradigm this new information is

random and alters trader expectations accordingly. Here we model the arrival

of new information via an information “shock” wherein the perceptions and ex-

pectations of some, or all, of the market participants are changed. Specifically,

we consider markets with uninformed traders, two types of informed trader

with strategies (90, 10) or (55, 45) and copycats. In the following experiments

the traders change their perception of the market after an information shock.

The uninformed remain uninformed. However, the informed, due to the shock,

change their perceptions by, after a shock, choosing randomly with probability

1/2 one of the two informed strategies. Despite the shocks the optimal strat-
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Figure 21: Learning in markets with exogeneous information shocks: copycats

with long-term memory.

egy throughout is to choose the informed strategy with maximum bias. What

changes are the perceptions of the informed as to what trading bias they should

implement. However, given that it is probability 1/2 for the informed to change

bias the market statistically remains homogeneous in that, on average, after any

given shock, there are the same number of informed with bias (90, 10) as with

(55, 45).

Taking this into account, after a shock, a copycat must re-learn the correct

strategy under the new market conditions. An interesting problem is deter-

mining how much endogeneous information a copycat needs to learn the best

strategy, given the dynamic conditions of the market. In the examples presented

earlier on learning, each copycat used all the history of the traders’ profits to

make a decision, i.e. each agent had “long-term” memory. We may pose the

question: Will the same information be as useful in a system with changing

perceptions? In Figures 21 and 22 we show the results of two experiments that

shed some light on this question. In Experiment D the copycats try to copy a

strategy using only the information generated by the market after each shock.

Thus, they have only “short-term” memory as they do not keep in their memory

any information prior to the shock. In contrast, Experiment E depicts the case

in which copycats have long-term memory, preserving the entire information

of the market’s history without distinguishing data obtained before and after

shocks. In Figures 21 and 22 are the results associated with 100 uninformed,

100 (90, 10), 100 (55, 45) and 100 copycats.

We can see in this figure that the learning process where traders only use as

their learning information set market information from the last shock until the

present moment is more efficient, as after each shock the number of copycats
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Figure 22: Learning in markets with exogeneous information shocks: copycats

with short-term memory.

that have learned correctly increases to the same value. In contrast for copycats

with long term memory the learning process deteriorates due to the fact that

after a shock the copycats may keep copying those informed who were most

successful before the shock, i.e. those with bias (90, 10), but who after the

shock are sub-optimal, with bias (55, 45).

5 A Neo-Austrian Analysis of the Results

Although the results of our simulations stand on their own, independent of

interpretational frameworks, as our chief goal was to examine the Neo-Austrian

paradigm using an AFM, and as all the relevant elements are now in place, it

behooves us to re-examine what we have found in that light.

In the simulations we have bit by bit built up the key ingredients of Neo-

Austrian theory. Of course, they are also key elements in real markets. In section

4.4, we see, in a simplified setting, all the key elements of the Neo-Austrian point

of view in play. The market contains entrepreneurs (informed traders) who, in

the absence of uncertainties associated with exogeneous information, are mak-

ing excess returns by exploiting their uninformed counterparts. The resulting

market is inefficient. The market also contains other entrepreneurs (copycats),

alert to the existence of any possible profit making opportunity (inefficiency).

The key problem for these entrepreneurs is to identify the right opportunity by

being able to infer correctly the right strategy to copy, i.e. to avoid mistakes and

identify the correct “signal”. This in turn depends on the “signal to noise ratio”

characteristic of the inefficiency which, in its turn, depends, in this model, on

the trader biases and the composition of the market, as well as the adaptation
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frequency of the copycats, i.e. how frequently they revise their expectations.

Copycat learning leads to more coordination between copycat entrepreneurs

and informed entrepreneurs. However, as we showed previously, in distinction

to a strict Neo-Austrian interpretation, this coordination may lead to a more in-

efficient market, depending on the relative proportions of uninformed, informed

and copycats. In this sense our simulations, although generally in accord with

the Neo-Austrian point of view, offers a richer interpretation of the learning

process experienced by entrepreneurs. If all market participants, besides the

informed, are potential entrepreneurs then learning can lead inexorably towards

“equilibrium” - meaning an efficient (in our simple model - homogeneous, in that

all traders have the same (informed) expectations) market but not necessarily

with an equilibrium price. How close this state can be approached depends

on the quality and completeness of the learning process. Generically, complete

learning will not be achieved.

So, alert entrepreneurs (informed) can exploit, or even create, inefficien-

cies (“disequilibrium”), which creates signals (profit making opportunities) that

other entrepreneurs (copycats) identify and try to exploit, potentially leading to

a situation of more market coordination and less disequilibrium. Arrival of new

(unanticipated) information leads to a change in expectations and this change

has a degree of uncertainty associated with it. The relative success of different

informed entrepreneurs can change due to changed expectations even though

the optimal strategy (the strategy with maximum bias available) does not. In

this new environment other alert (copycat) entrepreneurs are faced with the

task of identifying anew the optimal strategy to copy. Now, the potential to

make mistakes depends crucially on the information set that the copycats use

for their decision making. This is an important new source of potential error.

In between information shocks the market is inefficient, as there is always

a set of informed traders exploiting the uninformed. However, averaging over

shocks the market becomes more and more efficient, as traders that were mak-

ing excess profits during one period can be making excess losses in another.

Copycats who base their decisions on time periods that include shocks face the

prospect of misidentifying the optimal strategy by copying the strategy of an in-

formed trader who was optimal before the shock but suboptimal afterwards. On

the contrary, copycats who base their decisions on short timescales run the risk

of not having sufficient data to statistically identify with sufficient confidence

the optimal strategy. The optimal dataset for a copycat to use is that from

the last information shock to the present time. If shocks arrive too frequently

however, there is not enough time for a copycat entrepreneur to gather enough

information to reliably infer what is the optimal strategy in that period or, even

if a correct identification is made, there is not enough time to exploit the infor-

mation. Thus, tendencies towards efficiency can be quite complex, depending

on many factors, even in our simple model.
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6 Conclusions

The main goal of this paper was to study Neo-Austrian ideas about market

efficiency and learning, usually expressed in qualitative language, in the formal

setting of an agent-based AFM market - the NNCP. Unlike a real market, the

luxury of an AFM is that we can create an efficient or inefficient market and

then vary the parameters of the market in order to study when, and under what

conditions, it is possible to infer efficiency from observing the market.

To avoid the joint-hypothesis problem we defined a purely empirical quanti-

tative measure of efficiency, defining an inefficient market in terms of whether

or not there exist traders making systematic, excess profits. To distinguish be-

tween trading gains and market gains excess was defined relative to a dynamic

buy and hold benchmark. As excess profit is a stochastic variable it is most

naturally measured in units of the standard deviation of the excess profits. In

this way one can not only distinguish between traders profiting from an active

trading strategy as opposed to those profiting purely from market gains, but one

can also distinguish between those traders who have a “lucky” trading strategy

versus an “intelligent one. We introduced the concept of an Inefficiency Ma-

trix which summarizes the relative inefficiencies between the different trading

strategies in the market.

Using the Inefficiency Matrix as the principle measure, we performed a se-

ries of simulations in the context of a transparent model where the traders used

trading strategies taken from a one-parameter family associated with a trad-

ing “bias”, zero bias corresponding to noise or liquidity traders. Learning was

introduced using the concept of a copycat trader who observes the market, sta-

tistically estimates which is the most successful strategy and then copies it. It

is important to emphasize that all these elements have been used in previous

studies, in Gordillo and Stephens (2001a and 2001b) and (2003), without any

reference to the Neo-Austrian paradigm. In other words, our model was not

designed with the Neo-Austrian viewpoint in mind. Rather, our motivation

was to use a previously designed model to see to what extent its results were

most naturally interpreted in the Neo-Austrian as opposed to the neoclassical

framework.

The results of this paper are in general consistent with the Neo-Austrian

interpretation of markets as opposed to the neoclassical rational expectations

point of view that considers financial markets to be in continuous equilibrium

with informationally efficient prices. The results, in fact, lend substantial insight

into and enrich many of the key elements of Neo-Austrian theory which, as

mentioned, is a predominantly qualitative theory. For instance, we saw that

the existence of alert entrepreneurs (copycats) could even lead to an increase in

inefficiency rather than a decrease, depending on the proportion of informed to

uninformed agents in the market.

In the Neo-Austrian interpretation of financial markets, financial markets

are continuously evolving from one inefficiency to another, never attaining the

perfect, efficient equilibrium, yet strongly attracted towards it. Creative in-

vestors track and exploit profit opportunities generated by continuous shocks
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in a never-ending cycle. The result would be a stable process with pronounced

regularities. According to Neo-Austrian theory, a competitive market provides

a systematic set of forces, put in motion by entrepreneurial alertness (i.e. ea-

gerness to make money), which tend to reduce the extent of ignorance among

market participants. Interestingly, and contrary to other alternative theories

explaining inefficient financial markets, in the Neo-Austrian view the failure of

markets to reach the informationally efficient equilibrium ought not to be at-

tributed to costs of any nature (adjustment costs, information costs, trading

costs, etc). This description fits very well the results of the simulations of sec-

tion 4.4, where “creative investors” (informed traders and copycats) track and

exploit profit opportunities generated by exogeneous information shocks.

With their emphasis on imperfect knowledge the Neo-Austrians put them-

selves at the heart of the famous debate on risk and uncertainty (see, e.g., Knight

(1921)). Neoclassical financial economists believe that uncertainty can be re-

duced to “objective” risk, depending on knowledge of the objective probability

distribution implied by the true model of the economy that economic agents

know or are capable of learning. However, Neo-Austrians tend to emphasize

that economic agents have to cope with imperfect knowledge and fundamen-

tal uncertainty. Just as post-keynesian economists, they claim that neoclassical

theory fails to specify how agents will be able to overcome fully this uncertainty,

i.e. that it can be reduced to the “objective” probability distribution implying

rational expectations and efficient markets. Contrary to post-keynenians, how-

ever, Neo-Austrians claim that alert market participants have powerful incen-

tives to learn about the true nature of uncertainty and related disequilibrium,

because disequilibrium generates profit opportunities. Thus, the market process

is viewed as a stabilizing process with a powerful tendency towards equilibrium

and efficiency. With their trust in the market process Neo-Austrian economists

are intellectually close to their neoclassical colleagues, although they arrive at

this result from a rather different perspective on the underlying economic reality.

We believe that our results on learning and inference for copycat entrepreneurs

perfectly illustrate this point of view.

Due to their flexibility and adjustable complexity, we believe that AFMs are

an ideal vehicle for addressing some of the deepest and most difficult questions

about efficiency and rational expectations. Further, by using a purely empirical

measure of inefficiency, as we have done here, complications due to the joint-

hypothesis problem can be avoided. We believe that combining the two gives a

powerful framework within which other fruitiful studies may be carried out.
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