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Abstract 
 

We suggest that the ultraslow speed of convergence associated with truncated Lévy flights [1] may 
well be explained by autocorrelations in data.  We show how a particular type of autocorrelation generates 
power laws consistent with a truncated Lévy flight.  Stock exchanges have been suggested to be modeled by a 
truncated Lévy flight [2-4].  Here foreign exchange rate data are taken instead.  Scaling power laws in the 
“probability of return to the origin” are shown to emerge for most currencies.  A novel approach to measure 
how distant a process is from a Gaussian regime is presented. 
 
PACS:  05.40.+j;02.50.-r 
 
Keywords: Truncated Lévy Flights; Foreign Exchange Rates 
 
 
 
1.  Introduction 
 

Financial asset prices are likely to follow non-Gaussian random walks [5].  Such 
random walks generally show short range autocorrelation, and the autocorrelation usually 
has exponential decay with very short characteristic times, a reason why most studies often 
treat data as pairwise uncorrelated [6].  Also, the standard deviations of price changes 
(volatility) are time dependent. 

One benchmark study of financial markets is that of Mantegna and Stanley [2] for 
the Standard & Poor 500 index.  A truncated Lévy flight (TLF) [1] is suggested to model 
the data.  Such a result can also be extended to encompass emerging market indexes [3,4].  
Here we further extend these studies to consider other financial assets.  We employ the 
same method as that of the previous studies, but we reach the same results by employing a 
different approach.   We take data on daily foreign exchange rates for 30 countries against 
the US dollar.  Doing so, we are able to replicate some previous findings regarding the 
stock exchange indexes.  For instance, the “probability of return to the origin” of Mantegna 
and Stanley is analyzed and most distributions appear to have power laws that are 
consistent with the presence of a Lévy distribution for their modal region; they are thus 
likely to be modeled by a TLF. 
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A major theoretical contribution of this paper is, however, to put forward “physical” 
reasons to explain why a TLF emerges in that sort of data.  The autocorrelation of these 
processes is analyzed under the assumption that such time series cannot be considered as 
independent and identically distributed (IID) processes.  The presence of the 
autocorrelations is shown to be responsible for the scaling leading to the appearance of the 
TLF. 

TLFs are characterized by an ultraslow convergence to equilibrium [1].  We argue 
that, in spite of possessing a characteristic time, TLFs cannot be linked to either “short 
range” or “long range” autocorrelation.  We then develop a novel method to measure how 
two or more processes currently are distant from equilibrium; we also discuss which an 
expected time of “termalization” is.  Our approach seems to be universal in that it can be 
extended to encompass all sorts of autocorrelated processes, and not only those described 
by a TLF. 

We also suggest that a dynamic kurtosis can be usefully defined to measure the 
speed of convergence of a stochastic process to the Gaussian regime; this case is then 
illustrated with the currency data. 
 The structure of the paper is as follows.  Section 2 briefly describes the data sets of 
foreign exchange rates to be used throughout.  Section 3 analyzes the data and shows that a 
TLF may be consistent with the behavior of most currencies.  Section 4 shows that a 
necessary condition for the TLF to emerge is the presence of autocorrelations in data.  
Section 5 shows how a dynamic kurtosis curve can be used to measure the speed of 
convergence of a stochastic process to the Gaussian regime.  Section 6 illustrates the 
method presented in Section 5 with the exchange rate data.  Section 7 concludes. 
 
 
2.  Data 
 

The data sets employed were taken from the Federal Reserve website at 
http://www.federalreserve.gov/releases/H10/hist/.  They refer to a currency value in US 
dollar terms.  These foreign exchange rates were collected by the Federal Reserve Bank of 
New York from a sample of market participants.  They are noon buying rates in New York 
from cable transfers payable in foreign currencies.  As standard, here we ignore “holes” 
from weekends and holidays; analysis thus concentrates on trading days.  We take the 
historic values of 30 currencies.  Table 1 shows the currencies of the countries, historical 
time period, and number of datapoints. 

As usual, we take returns Z rather than raw data, i.e. 
)()()( tYttYtZ t −∆+=∆ , (1) 

where )(tY  is a rate at day t. 
 
 
3.  Truncated Lévy flights 
 
  This section discusses the finding of power laws in so-called “probabilities of return 
to the origin” P(Z = 0), a fact which is consistent with the TLF [2,6].  The usual approach 
to characterize functional forms of a probability density function (pdf) is to evaluate their 
tails.  The method of taking the probability of return to the origin is put forward by 



Mantegna and Stanley [2].  Such an alternative method is more useful for experiments (like 
theirs) of taking an increasing number of values for ∆t.  Since larger values for ∆t also 
mean a reduced number of datapoints, the method of investigating tails renders the 
determination of the parameters characterizing a pdf difficult.  Taking the probability of 
return to the origin, by contrast, allows one to study a point of every probability distribution 
that is least affected by the noise coming from the finiteness of the experimental set of data.  
It is unclear, however, that means are fixed at zero for all ∆t.  Actually, the means are likely 
to grow and to follow a power law [4].  Since the peak of a distribution is not exactly 
located at Z = 0 for all ∆t, the probability of return to the origin should be better represented 
by P(W = 0) = P(Z – ω(∆t)β = 0), where ω and β are parameters.  To experimentally find 
P(0), a small threshold value f should be defined such that P(0) ≈ P(–f ≤ W ≤ f ) [4]. 

To define a TLF we first consider a standard symmetric Lévy distribution, i.e. 
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for some threshold l and normalized constant c.  Distribution (2) reaches equilibrium for the 
aggregative variables ∑ ∆
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in accordance with the central limit theorem.  However, 
when 1→∆t  the process can be described by a Lévy stable pdf.  In short, 





>>∆
<<∆

≈
x

x

ntGauss
ntLévy

xP
,

,
)(  (4) 

where αAlnx ≈  is a crossover time, and A is a constant that depends on the value of γ . 
 A TLF distribution is not stable and converges sluggishly to the Gaussian regime [1] 
(a process which is dubbed “termalization”).  A presentation of other features of the TLF 
can be found elsewhere [6]. 

The probability of return to the origin in a Lévy process is given by [2,6] 
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In a plot of log P(0) versus log ∆t a straight line of slope α/1−  emerges within the time 
window for which the Lévy regime holds.  The slope then approaches –0.5, which is the 
value corresponding to the Gaussian asymptotic equilibrium.  The probability of return to 
the origin in a Gaussian equilibrium has the value predicted for a normal process, i.e. 
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Lévy stable pdfs are self-similar [6].  To usefully compare the distributions for 
increasing values of ∆t, scaled variables are taken, i.e. 
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Thus the data collapse onto the ∆t = 1 distribution, at least for the central region of the pdf.  
Indeed there are departures from the Lévy stable pdf as far as the tails are concerned. 
Datapoints are generally lower than the ones of a Lévy pdf, which means that second 
moments are finite.   For this very reason, the process is considered to have two regimes – a 
Lévy and a Gaussian – which are separated by the crossover time nx and governed by 
distinct statistical properties. 

As observed, the TLF is used to model the S&P 500 index [2,6] as well as emerging 
stock markets [3,4].  Such papers argue that the TLF describes the asymptotic price change 
distributions measured at distinct time horizons as well as their scaling properties.  
However, as also observed, financial price changes are unlikely to be stochastic process 
with IID increments.  For this reason, we make a case for the TLF to be present only in 
short range autocorrelated processes. 
 Here we extend such studies to consider the currencies presented in Section 2.  We 
employ the same method as that of the previous studies.  However, we reach the same 
results in Section 4 by employing a different approach. 

Fig. 1 displays the logarithm of the pdfs of currency returns for selected countries in 
Table 1, namely Australia, Britain, Canada, Belgium, India, Brazil, China, and South 
Africa.  Increases in time horizons range from ∆t = 1, 2, and 5 trading days (a week) to 240 
trading days (a year).  A spreading of the pdfs characteristic of any random walk is 
observed.  The pdfs are roughly symmetric for the currencies of developed countries, but 
there is marked skewness for the currencies of emerging markets. 

Fig. 2 shows a log-log plot of P(0) against ∆t.  Roughly, scaling power laws emerge 
for the currencies within the time window of 1 ≤ ∆t ≤ 100; and this is consistent with the 
presence of a TLF. 

By plugging the slope value of α/1−  we get γ from (2).  By using (5), the data are 
made to collapse onto the ∆t = 1 distributions of the currencies (Fig. 3). 

Table 2 presents parameters α and γ for the currencies in Table1.  Parameter α is 
greater than 2 for six countries, namely Canada, China, Malaysia, South Africa, Thailand, 
and Venezuela; the currencies of these countries may (or may not) be outside the Lévy 
stable regime.  For all the other currencies, a TLF may describe the data within a time 
window of (generally) 100 trading days (not shown). 

Thus a Lévy stable pdf with finite second moments may model the modal region of 
such processes within a finite time interval.  The presence of the TLF is arguably pervasive 
in daily time series of currency returns. 

Previous work on the presence of TLFs in financial series focuses analysis on the 
value of the crossover time nx and its dependence on α and γ, as well as on the volatility of 
α.  This is not our primary concern in here.  Rather, we are interested to know what the 
“physical” reasons (if any) for the appearance of the TLF are.  As seen, financial indexes 
cannot be modeled in terms of stochastic processes with IID increments, even if a process is 
short range autocorrelated [1].  How then is it possible for a stochastic process to fit, at least 
for a finite time, data which are not independent? 



Another concern of this paper is to investigate the property of the TLF of ultraslow 
convergence to the Gaussian regime.  Here we look for the reasons of such a “friction”.  
Does sluggish convergence emerge for distributions other than the TLF?  If the answer is 
yes, then how can we measure the expected time of termalization?  Next section deals with 
these questions. 
 
 
4.  The origins of the TLF 
 
  The TLF is a stochastic process defined for independent variables {x}.  However, 
real world data often present autocorrelation.  But for short range autocorrelated data (e.g. 
financial data), it is usual to treat them as independent after their “characteristic” time has 
elapsed.  The purpose of this section is to show how an autocorrelation function, even if it 
is at the noise level, can lead to scaling laws that are compatible with the presence of the 
TLF.  We also demonstrate how the correlation acts as a friction causing the ultraslow 
convergence to the Gaussian regime. 

For ∆t = 1, 2, 3,..., consider a sum variable S∆t, i.e. 
tt xxS ∆∆ ++= L1  (9) 

and a condition of identically (but not necessarily independent) distributed variables, i.e. 
 )()()( 21 txfxfxf ∆=== L  (10)  

Notice that the aggregative variable tS ∆  is equivalent to )()()( tYttYtZ t −∆+=∆ .  We now 
define a “central variable” as 

><−= ∆∆∆ ttt SSS '  (11)  
and a “reduced variable” as 
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Lévy [9] originally proved that the characteristic function ( )qϕ  of a process with finite 
variance obeys the following: 
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The characteristic function of our reduced variable (12) can then be written as 
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In turn, the characteristic function of our central variable (11) can be written as 
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We state the following. 
Definition 1.  A stable process occurs in the interval [∆t1, ∆t2] if 

21     ),()( tttqwqw t ∆≤∆≤∆∀=∆  (16)  
It is worth noticing that Definition 1 does not guarantee stability for the distributions f(xi).  
Actually the most interesting results are those with processes whose distributions are not 



stable.  However, Definition 1 does imply that the characteristic function is constant within 
the interval [∆t1, ∆t2], i.e. 

21 ∆∆∆    ),()( tttqqt ≤≤=∆ ϕϕ  (17)  
Put it another way, the reduced variables tS∆  have the same pdfs for ∆t within the interval 
[∆t1, ∆t2]; and this is equivalent to the scaling of statistical laws.  There is a difference, 
though.  Here the distribution laws f(xi) are not necessarily stable, i.e. they are not Lévy 
distributions with 2≤α .  For a process to be stable in the sense above and, at the same 
time, for the probabilistic laws f(x) to be unstable, autocorrelations between variables xi 
must be present.  Indeed, if a process is independent, the central limit theorem implies that 
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where ϕψ log= .  The central limit theorem follows [9] because 
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and w(0) = 0.  From equation (18) we can see that (16) is only satisfied if there is a friction 
preventing the convergence 0)( →∆ qw t  as ∞→∆t .  Such a friction is precisely the one 
found in autocorrelated processes. 
 An interesting property of a stable process is scaling in the probability  

)( >=< ∆∆ tt SSP  with standard deviation t∆σ .  Consider 
)0()( ' ==>=< ∆∆∆ ttt SPSSP   (20)  

From the definition of a characteristic function it follows that 
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Notice that equation (15) implies that 
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By performing the transformation qq t∆→ σ  we obtain 
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By taking (20) into account, we have 
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Since the process is stable, the integral above equals a constant A; thus 
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To summarize: the probability of return to the origin is governed by a power law within the 
interval of stability [∆t1, ∆t2], which is the inverse of the standard deviation t∆σ .  Moreover, 
if the standard deviation scales as a power law of the type 
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Notice that (27) is similar to equation (6) as long as we consider the identification 
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Let us now suppose that w∆t(q) varies very slowly within the interval [∆t1, ∆t2].  
Such a process can be dubbed “quasi-stable”.  Here a relation similar to (25) holds i.e. 
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where A∆t depends on the value of ∆t: 
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Since w∆t is almost constant in the interval [∆t1, ∆t2], A∆t varies very slowly.  If the standard 
deviation t∆σ  obeys the scaling law (26), we have 
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Since A∆t is almost constant, we can write A∆t ≈ A and obtain the functional relation 
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If 2≤α  then the probability of return to the origin follows a scaling which is similar to a 
stable distribution and is characterized by the characteristic function 

α

ϕ ||)( qkeq −=  (33)  
Therefore, the central region of the distribution follows a Lévy stable process, even if the 
distributions f(x) themselves are not either stable, independent, or generated by a Lévy 
stochastic process. 
 It is worth emphasizing the following. 

(1) That the standard deviation obeys (26) is not necessary.  Other relations beyond 
the power law might exist, in which cases a TLF will not appear. 
(2) Even if (26) holds, it is not necessary that 2≤α .  Indeed if 2>α  the central 
region of the distribution is not fitted by a Lévy stable pdf. 



(3) The presence of correlations is responsible for both the quasi-stability of a 
process and the scaling compatible with a TLF.  By no means the process itself is 
generated by a Lévy stochastic process, since it is not only autocorrelated but also 
the pdfs f(xi) are not stable. 
(4) In a quasi-stable process there exists a time horizon in which w∆t(q) reaches zero 
very slowly because the autocorrelation acts as a friction.  This is the reason why 
the ultraslow convergence associated with the TLF emerges.  However, as w∆t(q) ≅ 
0 the characteristic function is closer to the Gaussian function 
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in which case P(0) rescales as predicted for a normal distribution, i.e. 
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Thus, the fitting (31) does hold beyond some threshold nx where 2=α . 
(5) The convergence time of the process is given by (31). 
(6) None of the results above holds true if w∆t is not sluggish.  It is thus implied  that 
there exists particular types of autocorrelation associated with TLFs.  It is still 
unsettled, though, which kind of autocorrelation is compatible with a TLF. 
(7) For some types of autocorrelation the standard deviation of a process is not 
governed by power laws.  In such cases, a TLF does not emerge.  The TLF does not 
appear as well if the condition of quasi-stability is not  fulfilled. 

 
 
5.  Kurtosis and convergence 
 

We now show how a dynamic kurtosis curve can be usefully defined to evaluate the 
convergence toward the Gaussian regime regardless of the TLF.  Focusing analysis only on 
the kurtosis of a process has an advantage of not being necessary to have power laws in 
either P(0) or the variance.  Moreover, the method can be used to compare two or more 
processes. 

Thus let us first define R
tS∆  as the sum of ∆t variables taken randomly from a time series 

for )(11 tZS = and, secondly, let us define o
tS∆  as the sum of ∆t variables as usual, i.e. )1(o

tS∆  
is the sum of the first ∆t values of )(1 tZ , )2(o

tS∆  is the sum of next ∆t, and so on. 

 Variables R
tS∆  are defined such that we expect them to be pairwise independent.  We 

also expect o
tS∆  to be short range autocorrelated. 

Function w(q) as defined in (13) can be written as [9] 
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For the imaginary part of w(q) we similarly have 
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where we use the standard definition of skewness as 
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Since w(q) can be seen as a measure of how distant the characteristic function is from the 
equilibrium given by 2/2

)( qeq −=ϕ  (Gaussian regime), the leading term in w(q) (i.e. the 
kurtosis) gives a good measure of the distance from equilibrium. For aggregative variables, 
function w(q) reaches zero sluggishly.  The convergence speed is t∆/1  for independent 
processes; for autocorrelated processes it is much slower.  Then the dynamic behavior of 
w(S∆t) = w(Z∆t(t)) is a good candidate for a measure of the convergence speed, whatever the 
autocorrelation of a system. 
 
 
6.   An illustration with currency data 
 
 To illustrate our approach we take the British pound and the Indian rupee.  Fig. 4 
and Fig. 5 show the characteristic functions of R

tS∆  and o
tS∆  as a function of ∆t.  As expected 

for an independent process, R
tS∆  reaches the Gaussian regime (where 2/2

)( qeq −=ϕ ) for 
50≈∆t .  Fig. 5 displays the slow convergence of o

tS∆  to equilibrium.  Fig. 6 is a plot of the 
scaled second moment versus ∆t for both variables together with the curve of an IID 
process ( t

tS ∆=
∆

σσ ).  Process R
tS∆  exactly fits the curve of the IID process, whereas 

process o
tS∆  does not.  This means that there is an autocorrelation in the process which is 

responsible for such a behavior.  Indeed: 
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Fig. 7 presents the autocorrelation functions for the pound and rupee.  Regarding the 
pound, the autocorrelation starts out at 0.06 and continues to be very low throughout; 
however, it neither dies away nor experiences the exponential decay of short range 
autocorrelated processes.  There is no “characteristic time”. Nevertheless, the label “long 
range autocorrelated” is not appropriate either, since the autocorrelation is low from the 
start.  The autocorrelation seems to be always at the noise level, although it is still 



responsible for both the particular curve followed by o
tS∆  and the scaling laws leading to the 

TLF. 
The effect of the autocorrelation can be appreciated by an interesting property 

relating both the o
tS∆  and R

tS∆  processes as follows.  We first take points on the curve of R
tS∆  

(which follows the power law of an independent process).  We then add up ∑ ),( ji xxcorr  
to every point.  The “adjusted” autocorrelation curve R

S t∆
σ  precisely matches the curve of 

o
S t∆

σ  (Fig. 8). 
It is worthwhile noticing that the autocorrelation function for the pound can assume 

the familiar shape of a short range autocorrelated process for high frequency data.  Most 
financial variables are characterized by very short time memory (a few trading minutes in 
most cases); the correlations are thus expected to fall off to the noise level after just a 
trading day.  Autocorrelation at the noise level has usually made a number of researchers to 
treat data as pairwise independent.  However, we argue that such processes cannot be 
treated as stochastic as the “noise” correlation is itself responsible for many of the system 
properties, such as the typical power law scaling of the TLF as well as its sluggish speed of 
convergence. 
 Thus a process o

tS∆  cannot be treated as independent even though the autocorrelation 
function is always at the noise level.  Second moments are governed by scaling laws, a fact 
which is responsible for the particular power law in P(0) of the TLF. 

Fig. 9 shows the typical behavior of w(q) for both the pound and rupee.  As far as 
o

tS∆  is concerned, there is a clear “resistance” preventing the process to reach equilibrium at 
w = 0.  By contrast, variable R

tS∆  reaches w = 0 much faster.  The friction occurring in o
tS∆  is 

consistent with both a process with memory and the scaling in the probability of return to 
the origin.  The physical origins of such a friction are the low autocorrelation of a process 
which is always at the noise level.  Fig. 10 presents the same information in terms of 
kurtosis.  The curve 1/∆t of an IID process is displayed for comparison.  Notice that K∆t = 
K1/∆t for the IID process. 
 The presence of power laws in the second moment leads to the power law in the 
probability of return to the origin which is compatible with the TLF.  For instance, for the 
British pound we have 

821369682.15490373589.01

9770065445.0 5490373589.0o
S t

=⇒=

∆=
∆

α
α

σ t
  (39)  

where ∆t ranges from 1 to 50.  The scaling breaks down for values of ∆t greater than 50.  
As expected from our previous discussion, α  is in good agreement with that in Table 2.  
We checked for the scaling in the second moment for all currencies in Table 1 and found 
that results match those presented in Section 3. 
 It is worth emphasizing that the scaling in the second moment is not enough for a 
TLF to be present.  Indeed the Chinese yuan illustrates this.  The yuan does not seem to be 
described by a TLF (Fig. 3 and Table 2), despite the fact that there is scaling in the second 
moment for process o

tS∆  (Fig. 11). 



Fig. 12 shows the behavior of w(q) for the Chinese yuan.  Both o
tS∆  and R

tS∆  follow a 
stochastic process.  Therefore w(q) does not exhibit the quasi-stability necessary for the 
TLF to emerge. 
 Fig. 13 shows that the pound starts out at ∆t = 1 much closer to equilibrium (w = 0) 
than the rupee does.  However, the speed of convergence is greater for the rupee (Fig. 14); 
this possibly happens because function w decays faster for the rupee, as measured by the 
dynamic kurtosis curve.  Yet the process for the rupee is always more distant from 
equilibrium than that for the pound. 
 The standard interpretation sees kurtosis as a measure of the peak of a distribution.  
Here kurtosis receives the status of a dynamic variable measuring the distance from 
equilibrium every time.  Kurtosis is a measure of the speed of convergence. 

This section can be summarized as follows.  A comparison between o
tS∆  and R

tS∆  can 
determine several statistical properties of a system, such as the scaling power laws 
compatible with the TLF as well as the convergence speed toward the Gaussian regime.  
Autocorrelation functions seem to play an important role in the scaling laws governing 
foreign exchange rates.  The correlation of pairs that seems to be at the noise level cannot 
be discarded and, accordingly, a process cannot be treated as independent for that very 
reason.  There seems to exist physical reasons for the TLF to emerge; it is the result of a 
particular type of low autocorrelation which is present in a process. 
 
 
7.  Conclusion 
 

This paper argues that the ultraslow speed of convergence associated with truncated 
Lévy flights may be explained by autocorrelations in data.  Daily foreign exchange rate 
data for 30 currencies against the US dollar are taken to illustrate that.  Scaling power laws 
in the probability of return to the origin seem to be pervasive in currencies, a fact which is 
consistent with a Lévy stable stochastic process describing the modal region of their 
distributions. 

A major theoretical contribution of the paper is to suggest physical reasons to 
explain why a TLF generally emerges in financial series.  The autocorrelations of the 
exchange rate series are analyzed to show that such sort of time series cannot be considered 
as independent and identically distributed processes.  Also, the presence of the 
autocorrelations is shown to be responsible for the scaling leading to the emergence of the 
TLF. 

We argue too that, in spite of possessing a characteristic time, the TLF cannot be 
linked to either short range or long range autocorrelation.  We then present a novel method 
to compare two or more processes by taking into account how distant they currently are 
from the Gaussian regime; we also discuss which an expected time of termalization to the 
Gaussian equilibrium is.  Our method is supposed to be universal in that it can be extended 
to encompass all types of autocorrelated processes, and not only those described by the 
TLF. 

By using the data for currencies, we also suggest to dynamically reinterpret kurtosis 
as a measure for the speed of convergence of a stochastic process toward the Gaussian 
regime. 
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Country  Currency Time Period Datapoints 
Australia Australian Dollar 4Jan71 – 30Jun00 7392 
Austria Shilling 4Jan71 – 31Dec98 6999 
Belgium Belgian Franc 4Jan71 – 31Dec98 7013 
Brazil Real 2Jan95 – 31Dec01 1636 
Britain Pound 4Jan71 – 31Aug01 7695 
Canada Canadian Dollar 4Jan71 – 31Aug00 7445 
China Yuan 2Jan81 – 29Dec00 4963 
Denmark Krone 4Jan71 – 31Aug00 7442 
Finland Markka 4Jan71 – 31Dec98 6976 
France Franc 4Jan71 – 31Dec98 7021 
Germany Deutsche Mark 4Jan71 – 31Dec98 7021 
Ireland Pound 4Jan71 – 31Dec98 7021 
India Rupee 2Jan73 – 29Dec00 7018 
Italy Lira 4Jan71 – 31Dec98 7020 
Japan Yen 4Jan71 – 31Oct01 7729 
Malaysia Ringgit 4Jan71 – 31Oct01 7713 
Mexico Peso 8Nov93 – 31Oct01 2003 
Netherlands Guilder 4Jan71 – 31Dec98 7021 
New Zealand New Zealand Dollar 4Jan71 – 31Oct01 7719 
Portugal Escudo 2Jan73 – 31Dec98 6518 
Singapore Singapore Dollar 2Jan81 – 31Oct01 5234 
South Africa Rand 4Jan71 – 31Oct01 7708 
South Korea Won 13Apr81 – 31Oct01 5119 
Spain Peseta 2Jan73 – 31Dec98 6521 
Sri Lanka Rupee 2Jan73 – 31Oct01 6875 
Sweden Krona 4Jan71 – 31Oct01 7734 
Switzerland Swiss Franc 4Jan71 – 31Oct01 7735 
Taiwan Taiwan Dollar 30Oct83 – 31Aug01 4211 
Thailand Baht 2Jan81 – 31Jul01 5114 
Venezuela Bolivar 2Jan95 – 31Oct01 1716 
Table 1.  Description of Data Sets 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Country α γ 
Australia 1.41487 .004656830 
Austria 1.90185 .000010368 
Belgium 1.56042 .009849513 
Brazil .89059 .003707604 
Britain 1.76454 .000078676 
Canada 2.04822 .000005979 
China 4.19286 2.5306E-11 
Denmark 1.39021 .002288440 
Finland 1.75114 .00040350 
France 1.48668 .001021003 
Germany 1.54737 .000330146 
Ireland 1.61516 .000150068 
India 1.87979 .000018721 
Italy 1.27801 .014513000 
Japan 1.43542 .011937000 
Malaysia 2.78363 .000000169 
Mexico 1.60305 .000923330 
Netherlands 1.55999 .00034082 
New Zealand 1.87623 .000011118 
Portugal 1.33192 .00514115 
Singapore 1.81272 .000027149 
South Africa 3.46313 1.7417E-8 
South Korea .93298 .015343000 
Spain 1.28282 .01962400 
Sri Lanka 1.22370 .000898138 
Sweden 1.53611 .000880928 
Switzerland 1.68564 .000209469 
Taiwan 1.19228 .003356487 
Thailand 2.03006 .000033537 
Venezuela 4.13507 6.6404E-9 
 
Table 2.  Parameters α and γ for the Currencies in Table1. 



 

 

 

 
 
Fig. 1.  Probability density functions of the currency returns of Australia, Britain, Canada, Belgium, India, 
Brazil, China, and South Africa observed at time intervals ∆t, which range from 1 to 240 trading days.  As ∆t 
is increased, a spreading of the probability distribution characteristic of any random walk is observed. 



 

 

 

 
 
Fig 2.   Log-log plot of the probability of return to the origin P(0) against the time lag ∆t for the currency 
returns of Australia, Britain, Canada, Belgium, India, Brazil, China, and South Africa.  Power laws emerge 
within the time window of  1 ≤ ∆t ≤ 100.  This non-Gaussian scaling is consistent with the presence of a TLF. 



 
 
Fig. 3.   The same pdfs as in Fig. 2, but now plotted in scaled units P(Z).  Given the scaling index α for each 
currency, all the data is made to collapse onto a ∆t = 1 distribution. 



 
 

 
 

 
Fig. 4.  Real part of the characteristic function ϕR(q) as a function of q for the British pound and Indian rupee 
for variable R

tS ∆ .  The Gaussian function 2/2
)( qR eq −=ϕ is also displayed for the sake of comparison.



 
 

 
 
Fig. 5.   Real part of the characteristic function ϕR(q) as a function of q for the British pound and Indian rupee 
for variable o

tS ∆ .  The Gaussian function 2/2
)( qR eq −=ϕ  is shown for comparison.



 
 

 
Fig. 6.  Plot of the scaled second moment versus ∆t for R

tS ∆  (randomized process) and o
tS ∆  (original process).  

The curve of the IID process tt ∆=∆ σσ  is shown for comparison. 



 
 

 
 

 
Fig. 7.   Autocorrelation functions φh = corr[Z1(t), Z1(t + h)] for the British pound and Indian rupee. 



 
 

 
 
Fig. 8.  Effect of the autocorrelation for the British pound and Indian rupee. 



 
 

 
 
Fig. 9.   Real part of function w(q) for the British pound and Indian rupee.  As far as o

tS ∆  is concerned, there 

is a clear “resistance” preventing the process to reach equilibrium at q = 0.  By contrast, variable R
tS ∆  reaches 

q = 0 much faster. 



 
 

 
 
 

Fig. 10. Dynamic kurtosis curve of the British pound and Indian rupee.  



 
 

Fig. 11.  Scaling in standard deviation for the processes o
tS ∆  and R

tS ∆  of the Chinese yuan.  The fitting line of 

the original process o
tS ∆  is –3.093376 + 0.497597 log(∆t) and that of the randomized process R

tS ∆  is –
3.098142 + 0.50034 log(∆t). 
 



 
 

 
Fig. 12.  Behavior of function w(q) for the Chinese yuan.  Since both o

tS ∆  and R
tS ∆  follow a stochastic 

process, w(q) does not exhibit the quasi-stability necessary for the TLF to emerge. 



 
Fig. 13.  Equilibrium: comparison between the British pound and Indian rupee. 
 

 
Fig. 14.  Speed of convergence as measured by the kurtosis dynamic curve: comparison between the British 
pound and Indian rupee. 


