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Scaling, phase distribution and phase correlation of financial time series are investigated based
on the Dow Jones Industry Average (DJIA) and NASDAQ 10-minute intraday data for a period
from Aug. 1 1997 to Dec. 31 2003. The returns of the two indices are shown to have nice scaling
behaviors and belong to stable distributions according to the criterion of Lévy’s α stable distribution
condition. A novel approach catching characteristic features of financial time series based on the
concept of instantaneous phase is further proposed to study phase distribution and correlation. The
analysis of phase distribution concludes return time series fall into a class which is different from
other non-stationary time series. The correlation between returns of the two indices probed by the
distribution of phase difference indicates there was a remarkable change of trading activities after
the event of 911 attack, and this change persisted in later trading activities.
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I. INTRODUCTION

Financial markets are complex systems consisting of
a large number of traders interact with one another in
the market and react to external informations to deter-
mine the best price for a given item. Previous studies of
financial systems usually base on fundamental statistics
on return of index, and tend to address issues on draw-
ing trading strategies for traders and investors. With
the power of new algorithms for statistical analysis, some
previous studies have provided rich informations for such
purposes. For example, many existing literatures disclose
that high frequency data of financial assets would show
heavy tail. B. Zhou indicated that the heavy tail of fi-
nancial time series is mostly caused by the heteroscedas-
ticity of the time series [1]. Furthermore, the estimates
of intraday volatility basically reveal a strong seasonal
pattern.

However, previous studies have also suffered by a limit
of scope provided by statistics of conventional derivatives
from returns. As a result, cross disciplinary studies on
financial systems have attracted much attention in re-
cent decades [2–7]. With the help of ideas from other
fields, there have been significant achievements on econ-
omy science. One of great achievements has been the ap-
plications of statistical mechanics to economic systems,
which has been later referred to econophysics [2]. Some
correspondences between quantities in economic systems
and physical systems were found, and suggest fundamen-
tal concepts behind. For example, it was found that
there is two-phase behavior of financial markets which
suggests there is a link between the dynamics of a hu-
man system with many interacting participants and the
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ubiquitous phenomenon of phase transitions that occur
in physical systems with many interacting units [8]. The
scaling analysis in statistical mechanics are shown to be
applicable in the studies of market systems [2, 3, 9].

There are also developments on the analysis of finan-
cial time series in methodology [4, 5, 10]. For example,
the method of random matrix theory has been developed
to study statistical structure of multivariate time series
[4–6], and given remarkable agreement between theoreti-
cal prediction and empirical data concerning the density
of eigenvalues associated with the time series of the dif-
ferent stocks of the S&P500 [4, 6]. Furthermore, the
wavelet transform modulus maxima approach has been
available in the last ten years [11], and has been applied
to study non-stationary time series such as physiologic
systems [12–15] and economic systems [10]. For exam-
ple, Ohashi et al.[10] used the analysis of asymmetrical
singularities to analyze human heartbeat and daily stock
price records, and claimed the method can enhance un-
derstanding of the mechanisms determining the systems’
dynamics [10]. However, the wavelet analysis has diffi-
culty of its non-adaptive nature, so that once the basic
wavelet is selected it is used to analyze all the data. In
addition, some wavelets are Fourier based, it suffers the
shortcoming of Fourier spectral analysis for only giving
a physical meaningful interpretation to linear phenom-
ena [16]. Nevertheless, financial time series is nonlinear,
the analyses by these approach may lose informations of
nonlinear properties.

In this paper, in light of the above situations, we in-
tend to develop a new approach to study financial time
series. Main issues to be addressed are scaling analysis
and phase distribution of financial time series and phase
correlation between them. We use Dow Jones Industrial
Average 30 (DJIA) and NASDAQ stock indices for the
study. The reason to choose these two indices stems from
the fact that the former represents the most established
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and renowned firms in the US market, while the latter
consists of high-tech and growth firms. These two in-
dices thus represent not only the core of the US econ-
omy, but also facilitate the menu for investor’s choice in
the mean-variance plan. A successful empirical investi-
gation emerging from this study is bound to provide a
solid foundation to advance our empirical analyses to a
broader spectrum of asset behavior.

We first analyze scaling behaviors of return time se-
ries to probe stability of their distributions. Following
the scheme proposed in Refs.[2, 9], scaling analyses are
performed on the returns of DJIA and NASDAQ with
various time sampling intervals. The stock returns of
both DJIA and NASDAQ are shown to have nice scaling
behaviors and belong to stable distributions according to
the criterion of Lévy’s α stable distribution condition [3].

We further suggest a new approach to examine prop-
erties of financial time series. The Hilbert-Huang time
signal analysis method [16] is used to define and evaluate
instantaneous phase of financial time series. This method
was first disclosed by N. E. Huang et al. for the studies
of non-stationary and nonlinear time series [16]. The key
part of the method is the empirical mode decomposition
(EMD) method with which, any complicated data set can
be decomposed into a finite and often small number of
intrinsic mode functions (IMFs) that admit well-behaved
Hilbert transforms [16]. Here, based on this method we
analyze the non-stationary time series of return to extract
characteristic structures of empirical data, and evaluate
phase distributions of certain IMFs. Then, the resultant
structures can be further analyzed. The results we thus
obtain indicate that the return time series fall into a class
which is different from other time series.

We also measure the correlation between DJIA and
NASDAQ indices by calculating the distribution of phase
difference in return time series. Our results impressively
show that there is a remarkable change of trading ac-
tivities implied by phase correlation after the event of
911 attack. For modern stock markets with informations
transmitted rapidly, our findings might be an useful ref-
erence for market investors and policy decision makers
[17].

This paper is organized as follows. In Sec. II, we briefly
illustrate the data source used in this paper. In Sec. III,
we give basic definition of quantities used in sequential
analyses, and explore general features presented by these
quantities. Then, we start to perform scaling analysis
of returns in Sec. IV. In Sec. V, we suggest the new
approach for catching characteristic features of financial
time series. The Hilbert-Huang method is used to de-
compose return time series, and calculate instantaneous
phases accordingly. Correlations between two financial
time series are investigated and discussed in Sec. VI.
Finally, we summarize our results in Sec. VII.

II. DATA

The empirical analyses are based on DJIA and NAS-
DAQ from Trade And Quotation (TAQ) database and
the Yahoo database [18]. The TAQ data files contain
continuously recorded information on the trades and quo-
tations for the securities listed on the NYSE, AMEX, and
NASDAQ. The DJIA stocks are the most actively traded
securities; the capital size of the firms in DJIA also helps
to ensure a high degree of liquidity. Alternatively, the
stocks listing in NASDAQ exchanges are characterizing
with high-tech growing firms, yet with more price volatil-
ity. On the basis of these two distinguished characteris-
tics of stock returns, we are able to derive some empirical
regularity on diverse portfolios.

The intraday 10-minute scale values for both DJIA and
NASDAQ spanning from August 1, 1997 through Decem-
ber 31, 2003 cover the whole six-and-half hours trading
starting from 9:30 to 15:50 EST. The overnight (or over-
weekend) period constitutes an unusual time period as
it involves a much longer time interval than 10 minutes.
Therefore, the value of index at very open price will be
distorted. Here, unlike Main and Adam [19], we do not
omit the very close-to-open returns. Rather, we keep
them in the data to conduct sensitivity analysis. After
elimination of the omitting days for which all the 10-
minute values of the index were not available, we obtain
a total of 1, 543 trading days with 60, 177 observations of
10-minute index values. Following the analyses by An-
dersen and Bollerslev [20], we constructed 10-minute re-
turns with the daily transaction records extending from
9:30 to 15:50 EST, a total of 39 10-minute returns for each
day. The 10-minute horizon is short enough that the ac-
curacy of the continuous records of realized returns and
volatility work well, and it is long enough that the con-
founding influences from market microstructure frictions
can be negligible.

Figures 1(a) and (b) are time series paths of the DJIA
and NASDAQ indices sampled with 10-minute.

III. TIME SERIES OF RETURNS

We first define basic quantities used in this paper, and
present general features revealed from the data. The in-
dex values are denoted by a time series Y (t) and the
time series of logarithmic returns of an asset priced at
Y (t) over a time scale τ is defined as

Rτ (t) = ln

[

Y (t)

Y (t − τ)

]

, (1)

where τ is a multiple of the primary time sampling unit
∆t(=10 minutes). Since the time scale τ (in unit of ∆t)
is a parameter used to sample time series of returns, we
can take different τ for Rτ (t) to explore behaviors of the
returns with intraday and interday frequencies. Because
there are 39 sampling data in each trading day, we take
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FIG. 1: (Color online) High frequency (a) DJIA and (b) NASDAQ index date sampled by 10 minutes from Aug. 1 1997 to
Dec. 31 2003.
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FIG. 2: (Color online) Time series of logarithmic returns Rτ (t) of (a) the intraday DJIA index sampled by 10, 30, 130, and
390 minutes, and (b) the interday DJIA index sampled by 1, 2, 3, and 4 days.

different τ -values being factors of 390 to avoid ambiguity
in time sampling intervals involving interday quantities.
Here we take τ = 10, 30, 130, 390 minutes to sample the
time series of Rτ (t) for the intraday data and τ = 1, 2, 3, 4
days for daily data, and the results for DJIA are shown in
Figs.2(a) and (b), respectively. These figures essentially
provide a picture that amplitudes of these time series are,
in general, proportional to sample time scales. Therefore,
based on Eq.(1), we define the normalized logarithmic

returns as [3]

rτ (t) =
Rτ (t) − 〈Rτ (t)〉

√

〈R2
τ (t)〉 − 〈Rτ (t)〉2

, (2)

where the expectation values denoted by 〈·〉 are taken
over the entire time period under consideration.

Be aware of the fact that the analysis based on the
assumption that tick-by-tick data is linear may lead to
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incorrect conclusions if the underlying process of financial
time series is multiplicative [21], we will use the returns
defined in Eq.(1) instead of the index changes, Y (t) −
Y (t − τ), used in Ref.[9], for the scaling analysis in the
next section.

We further define the probability distribution (or more
precisely, probability density function) P as the normal-
ized distribution of a measure ρ, which satisfies

∫

∞

−∞

P (ρ) dρ = 1, (3)

where the measure ρ can be Rτ , rτ , phase or phase dif-
ference defined in the later discussions.

The probability distributions of the normalized returns
rτ (t) with different time scale τ for DJIA are shown in
Fig.3. Here we have separated intraday data from inter-
day data in the analyses, and also compare the interday
data with annual periodicity.

In Fig.3(a), probability distributions of the normal-
ized returns for intraday data with different time sam-
pling intervals, τ = 10, 30, 130, 390 minutes, are shown.
Figure 3(b) is a comparison of the probability distribu-
tions of normalized returns for time sampling intervals
from 10 minutes to 1 week. Probability distributions of
the normalized returns with a time sampling interval of
10-minute over different periods of DJIA are shown in
Fig.3(c). Note that fluctuation strengthes of probability
distributions for different time scales are associated with
the number of data points, and here the longer the time
scale is, the fewer is the number of data points. From
these figures, it is clear that P (rτ ) is independent of time
sampling intervals and periods. In other words, with a
proper self-normalized factor, time series with different
time scales can be view as a single one. The same phe-
nomenon is applicable to rτ (t) for NASDAQ return and
we shall not repeat the discussion to save the space. The
existence of scaling behavior is then clear.

It was reported that probability distributions of the
normalized returns can be well described by the so-called
double-exponential law (also known as the Laplace dis-
tribution), P (rτ ) ∼ exp (−|rτ |/κ), where κ is a constant
[22, 23]. The double-exponential distribution of return at
not-too-long times t is a universal, ubiquitous feature of
financial time series, and was observed for different coun-
tries, stock-market indices and individual stocks [23]. Ac-
cording to Ref.[23], the central part of the curves shown
in Fig.3 can be fitted by the scaling form using a Bessel
function, where 99% of probability reside and statistics
is good, followed by power laws in the far tails, where
data statistics is often poor. These features are well
caught by the Heston stochastic process [24], and detailed
discussions on the exponential-to-Gaussian crossover see
Ref.[23].

IV. SCALING ANALYSIS

According to scaling ansatz, a scaling theory for a sys-
tem can be established provided that there is an extensive
quantity in the system. In Fig.3, time series with various
sample time scales can be rescaled by a self-normalized
factor implicitly depending on the corresponding time
scales. Therefore, for financial time series, the extensive
quantity is the time sampling interval, τ . An important
issue we should notice here is the problem of data treat-
ment in mixing intraday data and interday data. Since
there are ambiguities in this issue, we perform scaling
analysis both on intraday data [case (A)], and mixture of
intraday and interday data [case (B)].

For case (A), data with certain time scale τ are sam-
pled with fixed time sampling intervals of trading time
from intraday data. In case of the trading time is less
than 1, 950 minutes in a week, the time interval of 1, 950
minutes may spread more than one week. In this analy-
sis, there is no ambiguity in time sampling intervals, but
may has uncertainty in mixtures of interday data.

For case (B), time sampling intervals are 10, 30, and
130 minutes for intraday data, 1 day for daily data, and 1
week for weekly data. In this analysis, the time sampling
intervals of trading time is not fixed.

We first examine case (A). Figure 4(a) shows the prob-
ability distributions P (Rτ ) of the intraday frequency
variations of DJIA with Rτ (t) observed at 5 different time
intervals τ , ranging from 10 to 1, 950 minutes. In con-
trast with those for normalized returns shown in Fig.3,
probability density functions for returns Rτ (t) with dif-
ferent time sampling intervals do not coincide to a single
curve. However, according to Refs.[2, 9], it is possible to
make different P (Rτ ) coincide to a single curve by per-
forming scaling analysis. The simplest method is that we
first shift these curves to make their maxima overlap, and
then rescale time intervals if necessary. To achieve this,
we plot P (Rτ = 0) with respect to the time sampling
intervals τ in Fig.4(b). The distributions of P (Rτ = 0)
with respect to τ plotted in logarithmic scale is linear.
Accordingly, we take P (Rτ = 0) with respect to τ from
τ = 10 minutes to 780 minutes. The best fitting straight
line is also plotted in Fig.4(b) and it obeys

log10 P (Rτ = 0) = C −
1

α
log10 τ, (4)

where C is a constant. By measuring the slope of the
fitting straight line, we have α = 1.84 ± 0.03 which is
larger than 1.4 in Ref.[9], but is consistent with α ≤ 2,
the condition for stable Lévy distributions [3]. We then
rescale returns Rτ (t) and the probability density function
P (Rτ ) according to [9]

Rs,τ =
Rτ

τ1/α
, (5)

Ps(Rs,τ ) =
P (Rτ )

τ−1/α
, (6)
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FIG. 3: (Color online) Probability distributions P (rτ ) of normalized returns of DJIA, rτ (t), (a) for intraday data with time
sampling intervals of multiples of 10 minutes, (b) with a time sampling interval from 10 minutes to 1 week, and (c) with a time
sampling interval of 10 minutes for different periods ranged from 1997 to 2003.

Figure 4(c) shows a scaled plot of the probability distri-
butions with α = 1.84. Probability distributions of time
scales with properly scaled can coincide with each other
very well.

Next, we examine case (B). We perform the same anal-
ysis on the intraday data and interday data (daily and
weekly), and the results are shown in Fig.5. The value
of α is α = 1.82 ± 0.03, which is about 1.2% smaller
than that for intraday data. The small difference shall
be due to mixture and non-mixture of intraday and inter-
day data. A more rigorous examination of the difference
can be investigated by the introduction of an effective
overnight time lag such as the analysis done in Ref.[23].
According to our analyses herein, there is no significant
difference between cases (A) and (B). We will then focus
on the analysis of intraday data hereinafter.

For NASDAQ index data, we perform the same anal-
ysis of case (A) and the results are shown in Fig.6. The
value of α is α = 1.75±0.03, which is about 4.9% smaller
than that of intraday data of DJIA return, and is also
smaller than 2, which indicates return of NASDAQ index
belong to stable Lévy distributions as well. Furthermore,
the scaling behavior is also well described by α = 1.75 as
shown in Fig.6(c).

Here we note that if the index change, Y (t)−Y (t− τ),
is used for the scaling analysis, we get α = 1.71 ± 0.05
[case (A)] and 1.77 ± 0.08 [case (B)] for DJIA, and
α = 1.51 ± 0.04 for NASDAQ. The significant differ-
ence of the value α for NASDAQ is due to the fact that
during the considered period, changes of the NASDAQ
index changed significantly such that the assumption of
tick-by-tick data is linear is incorrect. This fact demon-
strates the conclusion of Ref.[21] that returns should
be used instead of index change for the scaling analy-
sis. Furthermore, Eqs.(5) and (6) can be summarized
as P (Rτ ) ∼ f(Rτ/τ b), where b = 1/α. According to
our analysis, b = 0.54 and 0.55 for DJIA, and b = 0.57
for NASDAQ, which are close to the value 0.5 found in
Ref.[23], in which the function f(Rτ/τ b) is considered
as the exponential function in short-time limit and the

Gaussian function in long-time limit.

V. PROBABILITY DISTRIBUTION OF

INSTANTANEOUS PHASE

The analysis of scaling in Sec. IV is for a survey of
statistical property of financial time series. In this sec-
tion, we intend to investigate other nature of financial
time series. However, as shown in Fig.1, time series of
index are in general nonlinear and non-stationary. Con-
ventional method for non-stationary time series analysis
based on Fourier transform, such as spectrum analysis,
wavelet analysis, ...etc., may suffer from the limitation of
linearity. This finding has been discussed elsewhere, and
further review on advantages, limits and shortcomings
on existing time series analysis methods can be found in
Ref.[16]. In view of these, here we suggest a new ap-
proach which is based on the concept of instantaneous
phase can catch the characteristic features of financial
time series. The idea is originated from the fact that
phases of a time series usually contain rich information
about the structures of the time series. The proposal will
be very useful if such information can be extracted faith-
fully in further analysis. Therefore, to achieve this, we
introduce the Hilbert-Huang time signal analysis method
[16], which is suitable for the analysis of non-stationary
time series, to define and calculate instantaneous phase.

The Hilbert-Huang method of time signal analysis
consists of the so-called empirical mode decomposition
(EMD) and the Hilbert spectral analysis. The EMD
method is developed from the assumption that any time
series consists of simple intrinsic modes of oscillation, and
the essence of the method is to identify the intrinsic os-
cillatory modes by their characteristic time scales in the
data empirically, and then decompose the data accord-
ingly [16]. This is achieved by sifting data to generate
IMFs. The IMFs introduced by EMD are a set of well-
behaved intrinsic modes, and these functions satisfy the
conditions that they are symmetric with respect to the
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FIG. 4: (Color online) (a) Probability distributions P (Rτ ) of the return variations of DJIA, Rτ (t), for interday data observed
at time intervals τ . (b) Probability of return variation P (Rτ (t) = 0) as a function of the time sampling intervals τ . The slope
of the best-fit straight line is −0.54 ± 0.01. (c) Scaled plot of the probability distributions shown in (a) with α = 1.84.
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FIG. 5: (Color online) (a) Probability distributions P (Rτ ) of the return variations of DJIA, Rτ (t), for interday and interday
data observed at time intervals τ . (b) Probability of return variation P (Rτ (t) = 0) as a function of the time sampling intervals
τ . The slope of the best-fit straight line is −0.55 ± 0.01. (c) Scaled plot of the probability distributions shown in (a) with
α = 1.82.

local zero mean and have the same numbers of zero cross-
ings and extremes. Therefore, the Hilbert transform can
be directly used to calculate the instantaneous phase af-
ter the decomposition processes.

The algorithm to create IMFs in EMD is rather ele-
gant, and it mainly consists of two steps. First, the local
extremes in the return time series data, Rτ (t), are iden-
tified. Then, all the local maxima are connected by a
cubic spline line U(t), which forms the upper envelope of
the time series. At the same time, the same procedure is
applied for the local minima to produce the lower enve-
lope, L(t). Both envelopes will cover all the original time
series. The mean of upper envelope and lower envelope,
m1 (t), given by:

m1 (t) =
U (t) + L (t)

2
, (7)

is a running mean. We then subtract the running mean
m1 (t), from the original time series Rτ (t), and get the
first component, h1 (t),

Rτ (t) − m1 (t) = h1 (t) . (8)

The resulting component, h1 (t), is an IMF if it satis-
fies the following conditions: (i) h1 (t) is free of riding
waves. (ii) It displays symmetry of the upper and lower
envelopes with respect to zero. (iii) The numbers of zero
crossing and extremes are the same, or only differ by
1. If h1 (t) is not an IMF, the sifting process has to be
repeated as many times as it is required to reduce the
extracted signal to an IMF. In the subsequent steps of
sifting process, h1 (t) is treated as the data,

h1 (t) − m11 (t) = h11 (t) . (9)

Again, if the function h11 (t) does not yet satisfy cri-
teria (i)-(iii), the first sifting process continues up to k
times until some acceptable tolerance is reached, and

h1(k−1) (t) − m1k (t) = h1k (t) . (10)

If the resulting time series is the first IMF, then it is
designated as c1 = h1k (t). The first IMF component
from the data contains the highest oscillatory frequency
found in the original data Rτ (t).

Subsequently, the first IMF is subtracted from the orig-
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FIG. 6: (Color online) (a) Probability distributions P (Rτ ) of the return variations of NASDAQ, Rτ (t), for interday data
observed at time intervals τ . (b) Probability of return variations P (Rτ (t) = 0) of as a function of the time sampling intervals
τ . The slope of the best-fit straight line is −0.57 ± 0.01. (c) Scaled plot of the probability distributions shown in (a) with
α = 1.75.

inal data, and the difference, r1, given by

Rτ (t) − c1 (t) = r1 (t) , (11)

is a residue. The residue, r1 (t), is taken as if it was the
original data, and we apply to it again the sifting pro-
cess. Following above procedures, the process of finding
more intrinsic modes, ci, continues until the last mode is
found. The final residue will be a constant or a mono-
tonic function which represents the general trend of the
time series data. Finally, we get

Rτ (t) =

n
∑

i=1

ci (t) + rn (t) , (12)

ri−1 (t) − ci (t) = ri (t) , (13)

where rn is a residue. In general, rn is a constant or a
monotonic function which represents the general trend of
the time series.

To perform the EMD method on a financial time series,
one may or may not impose an intermittency as an addi-
tional condition in the sifting process, depending on the
nature of the financial time series under consideration.
The intermittency can be considered as a window used
to eliminate the end effects and to facilitate computation.
However, a characteristic intermittency in trading time
of a stock market may be indefinite. In particular, for
a truly non-stationary process like index (return) time
series, there is no time scale to guide the choice of the
window size. Therefore, here we do not impose definite
intermittencies in the sifting process. Hence, in the sift-
ing process, the structures of the time series with primary
time sampling intervals are closely preserved in the first
mode.

We take intraday returns Rτ (t) with time sampling in-
terval of 10 minutes as the primary time series and then
perform EMD to decompose Rτ (t) into 14 IMFs. The re-
sults are shown in Fig.7(a), in which only the first 3 IMFs
are shown. The physical meanings of the decomposition
are clear from the features of IMFs. Let us first compare

time series Rτ (t) and IMFs c1 and c2 in Fig.7(a). Accord-
ing to Eqs.(12) and (13), Rτ (t) consists of 14 IMFs and
each IMF is independent from others. The term “inde-
pendent” here is in some sense equivalent with the term
“orthogonal” in the theory of finite-dimensional vector
space. In other words, each IMF can not be represented
by other IMFs decomposed from the same primary time
series. The main difference between IMFs c1 and c2 is
the intermittencies they own. IMF c1 is the first mode
separated from Rτ (t) after the sifting process, and it has
the highest frequency among 14 IMFs. Since no criterion
is imposed on the intermittency, there is no specified re-
lation between intermittencies of c1 and c2. Furthermore,
if one IMF dominantly catches characteristic features of
Rτ (t), then its contribution is distinguishable in an ob-
servation like Fig.7(a). It is obvious that c1 catches main
structures of Rτ (t) since the time series of Rτ (t) is mainly
characterized by its highest frequency component. How-
ever, we should note that this is case by case, and the
conclusion may not be applicable to other time series.

In our analysis, it is very important to note that IMF
c1 is not equal to time series Rτ (t). If we evaluate some
quantities specifically defined for Rτ (t) from cr’s, the
results may be quite different. Actually, it is not rea-
sonable to copy all the fundamental statistics primarily
performed on return Rτ (t) to IMFs.

After IMFs being obtained from the EMD method, one
can further calculate instantaneous phases of IMFs by
applying the Hilbert transform to each IMF component,
say the rth component. The procedures of the Hilbert
transform consist of calculation of the conjugate pair of
cr (t), i.e.,

yr (t) =
1

π
P

∫

∞

−∞

cr (t′)

t − t′
dt′, (14)

where P indicates the Cauchy principal value. With this
definition, the two functions cr (t) and yr (t) forming a
complex conjugate pair define an analytic signal zr (t):

zr (t) = cr (t) + iyr (t) , (15)
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FIG. 7: (Color online) (a) Intraday DJIA index and the corresponding return sampled by 10 minutes and the first 3 IMFs;
(b) Amplitude and phase variations of the IMFs in (a), in which the amplitude have been adjusted by multiplying 100; (c)
Probability distribution of phases.

which can also be expressed as:

zr (t) = Ar (t) eiφr(t), (16)

with amplitude Ar (t) and the phase φr (t) defined by

Ar (t) =
[

c2
r (t) + y2

r (t)
]1/2

, (17)

φr (t) = arctan

(

yr (t)

cr (t)

)

. (18)

Then, we can calculate the instantaneous phase accord-
ing to Eqs.(14) and (18). The amplitudes and phases of
the IMFs in Fig.7(a) calculated by the Hilbert transform
are shown in Fig.7(b). Note that the magnitude of am-
plitude is significantly smaller than phase. To show both
amplitude and phase in the same figure, here we have
adjusted the magnitude of amplitude by multiplying 100
to make it fit to the same scale for phase.

Similarly, we can perform EMD on the time series
with time sampling interval of 30, 130, and 390 min-
utes, and the phase distributions are shown in Figs.8(a),
(b), and (c), respectively. For the time series with time
sampling interval of 1 day and 1 week, similar patterns
can be obtained. We find that except for the first-IMFs
of these time series, the phases of other IMFs are ran-
domly distributed and have equal probabilities for all
possible phases, i.e., −π ≤ φ ≤ π. Note that for time
series with too low frequency such as weekly, the num-
ber of sampling data point are too few to exhibit this
feature explicitly. Figures 9(a) and (b) show the ampli-
tude and phase distributions of the first-IMFs of these
time series, respectively. The probability density func-
tions of amplitudes for the first-IMFs are general Boltz-
mann distributions. Among these, the phase distribution
is quite interesting. Most phases of the IMFs locate at
−0.5π ≤ φ ≤ 0.5π. For clarity, we locate the index with
instantaneous phase −0.5π ≤ φ ≤ 0.5π on the time series
of DJIA index with red spots, and the results are shown
in Fig.9(c). The patterns of red spots do not have partic-
ular rules and are nonuniform distributed. The clustered

distribution of phase is originated from abruptly change
behaviors of index time series, which is a nature of a
time series with intermittency closed to the sample time
scale τ . We find these behaviors exist in all sample time
scale (time sampling intervals of multiples of 10 minutes)
of intraday data, and are believed to persist in interday
time scales (daily, weekly, and even lower frequencies).
From another point of view, the behaviors of abruptly
change imply non-predictable and stochastic features of
index. These features may be understood by the stochas-
tic volatility model which is a log-Brownian model with
random diffusion coefficients [25, 26]. In particular, it
has been reported that essential features of stock price
dynamics can be well modelled by a number of stochas-
tic volatility models [27].

We further preform analysis on the NASDAQ Index
time series under the same framework, and the results
are shown in Fig.10. Both the probability distributions
of the first-IMFs of returns of DJIA and NASDAQ in-
dices are Boltzmann distributions, except for a differ-
ence in scale. It is remarkable that the distributions of
phases are the same, which implies it is a characteristic
behavior of this kind of time series. As mentioned above,
the behavior indicates non-predictable features of index
time series, and is very different from regular signals or
pseudo-regular signals. For instance, a typical time series
of respiratory cycles [28] is shown in Fig.11(a). In gen-
eral, respiratory cycle is not a regular time series but is
disturbed by body actions and noises. The third IMF, c3,
obtained by EMD catches main structures of this time se-
ries [29], and the corresponding probability distribution
of amplitudes is shown in Fig.11(b). We compare the
probability distributions of phases for returns of DJIA
and NASDAQ indices, foreign exchange [30], and respi-
ratory time series in Fig.11(c). From this figure, that
return time series and respiratory time series belong to
different classes is quite apparent. The same analysis can
also be performed on other time series, such as temper-
ature variation, population, ... etc. The investigations
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FIG. 8: (Color online) Probability distributions of phases of the first 3 IMFs for intraday returns of DJIA index sampled by
(a) 30 minutes, (b) 130 minutes, and (c) 390 minutes.
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FIG. 9: (Color online) Probability distributions of (a) amplitudes and (b) phases for the first-IMFs of the returns of DJIA
index sampled by 10, 30, 130, 390 minutes; (c) Intraday DJIA index sampled by 10 minutes and with red spots indicating
instantaneous phase −0.5π ≤ φ ≤ 0.5π.

will be reported elsewhere [31].

The different patterns of phase distributions for the
return time series and the respiratory time series can
be understood from the mechanisms and the sampling
rate of the processes. It is recognized that financial mar-
kets belong to the self-organized system [32], which shows
non-equilibrium steady state of an extended system with
a steady drive, but irregular burst-like relaxations [33].
The financial markets thus can be modelled by a random
process with stochastic volatility. There is no sinusoid-
like cyclic rhythm existing in the time scale catching char-
acteristic structures of high frequency time series and can
be used to define as a characteristic time scale. The def-
inition of return then makes the waveform of the corre-
sponding time series in a zigzag fashion. As a result, the
intermittency of return time series always have the order
of the sampling time intervals. In contrast to the finan-
cial time series, the respiratory time series is a measure-
ment of respiratory cycles which are controlled by neural
and physiological systems, and are also influenced by me-
chanical effects. The respiratory signals may represent
measures of the volume of expansion of ribcage, and can
be described by sinusoidal waveforms with time-varying
amplitude and frequency [29]. Since respiration always

complete a cycle in a definite time period, the character-
istic time scale can be defined in this system. For exam-
ple, each respiratory cycle takes 2− 6 seconds depending
on physiological situations and age, and a characteris-
tic time scale can then be defined accordingly. There-
fore, the time series of respiratory cycle can be sampled
by sufficient short time sampling intervals such that the
structures of waveform can be precisely caught. It follows
that the calculation of phase distribution for the wave-
form leads to a homogeneous pattern in a range from −π
to π.

VI. CORRELATION BETWEEN DJIA AND

NASDAQ INDICES

At the first glance of Fig.1, DJIA and NASDAQ indices
seem to have explicit correlations in several epoches. For
example, two indices decline in August and September
of 1998, and in March of 2001. Two indices abruptly
decline in September of 2001 due to the accident of 911
attack. These big changes are in-phase, and there are
also out-of-phase changes, such as those in the period
from February to March of 2000. In other periods, we
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FIG. 10: (Color online) Probability distributions of (a) amplitudes and (b) phases for the first-IMFs of the returns of NASDAQ
index sampled by 10, 30, 130, 390 minutes; (c) Intraday NASDAQ index sampled by 10 minutes and with red spots indicating
instantaneous phase −0.5π ≤ φ ≤ 0.5π.
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FIG. 11: (Color online) (a) Typical human respiratory time series [28] and the third IMF which catches main structures and
the corresponding amplitude and phase variations; (b) probability distribution of amplitudes; and (c) probability distributions
of phases for the first-IMFs of the returns for DJIA and NASDAQ indices sampled by 10 minutes, daily returns of foreign
exchange [30], and the third IMF of the respiratory time series in (a).

can also find similar behaviors in shorter time scales.
To investigate the correlative behaviors set forth, here

we also apply the Hilbert-Huang method to calculate in-
stantaneous phases of several epoches of the index and
return time series of DJIA and NASDAQ indices. To be
statistical meaningful, each epoch will have more than
3, 000 sampling points. Here we further define phase dif-
ferences of the first-IMFs for different indices. Taking
DJIA as a reference and define phase difference ∆φr as

∆φr = φr(NASDAQ) − φr(DJIA), (19)

and then calculate the probability distributions for var-
ious periods, in unit of year. The results are shown in
Figs.12(a) and (b), for index time series and return time
series, respectively. The skewness and kurtosis of the cor-
responding statistics are summarized in Table I. It is in-
terestingly that, in year 2003, both of Figs.12(a) and (b)
have sharp peaks around zero of phase difference compar-
ing with other periods, indicating the relation of phases
between two indices is closer to each other in year 2003.
This implies more correlative behaviors between two in-
dices in year 2003. Suppose this is a general trend, the

stronger correlative behaviors may in some sense provide
implications to market investors in buying and selling
trading strategy [17].

Furthermore, in spite of small differences between
the statistics based on index [Fig.12(a)] and return
[Fig.12(b)] in Table I, a general feature shall be the neg-
ative value of skewness for years 2001 and 2002 which
indicates the peaks of distributions are deviated from
zero and slightly shifted to negative domain. This im-
plies the phase of DJIA is ahead of NASDAQ in average
for years 2001 and 2002. In other words, trading activ-
ities in DJIA affect on NASDAQ more than NASDAQ
affect on DJIA. However, in other periods, trading ac-
tivities NASDAQ affect on DJIA more than DJIA affect
on NASDAQ. This seems to be natural, since DJIA is
more stable and mature than NASDAQ in composition,
and the stocks in NASDAQ are usually more active than
those in DJIA. Consequently, in years 2001 and 2002 in
which stock markets are influenced by the event of 911
attack, the performance of mutual stocks of DJIA af-
fected much on those of NASDAQ. In other periods such
as years 1998, 1999 and 2003, active stocks in NASDAQ
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TABLE I: Skewness and kurtosis of the phases differences be-
tween the first-IMFs of (a) DJIA and NASDAQ indices, and
(b), (c) returns of DJIA and NASDAQ indices, for certain
periods and events. The corresponding distributions are re-
spectively shown in Figs.12(a), (b) and (c).

1997 1998 1999 2000 2001 2002 2003

(a) skewness 0.006 0.072 0.101 0.067 -0.028 -0.034 0.042

kurtosis 0.888 0.653 0.567 0.669 1.274 0.738 1.834

1997 1998 1999 2000 2001 2002 2003

(b) skewness -0.004 0.079 0.069 0.115 -0.025 0.003 0.026

kurtosis 0.907 0.843 0.728 0.779 1.326 0.934 1.990

1998-2002 1999a 2000a 2001b 2002b 2003

(c) skewness 0.050 0.097 0.133 -0.050 -0.001 0.026

kurtosis 0.903 0.776 0.848 1.556 2.104 1.990

then affected the environment of the stocks in DJIA.
We further investigate distributions of phase differ-

ences for certain epoches and events. Figure 12(c) shows
the probability distributions of phase differences between
the first-IMFs of returns of two indices over year 1998-
2002 and the first half year of 1999 (indicated by 1999a),
the first half year of 2000 (indicated by 2000a), the last
half years of 2001 and 2002 (indicated by 2001b and
2002b respectively), and the whole year of 2003. We find
that there is a remarkable change in the behavior of trad-
ing activities both in DJIA and NASDAQ since the event
of 911 attack. More specifically, Fig.12(c) and kurtosis
statistics in Table I show that there were more correlative
activities after 911 such that the distribution functions
of 2001b and 2002b were quite different from those be-
fore 911. Note that there was a similar spectrum in year
2003, which implies the scenario persisted in later trading
activities. This may be interpreted by faster communi-
cations and stronger event dependence after 911 in stock
markets. In other words, the behaviors of two indices
became more correlative due to influences from common
factors, such as news reports and events, systemic risk,
macroeconomic announcement, and Fed policy. As a re-
sult, investors had similar trading strategies during the
anniversary of 911 in year 2002 under the influences.

VII. CONCLUSIONS

In conclusion, we have investigated scaling analysis,
phase distribution and phase correlation of DJIA and
NASDAQ indices based on high frequency intraday data.

Scaling analysis was performed both on DJIA and
NASDAQ returns. For DJIA index, the values of α are
1.84 and 1.82 for intraday and a mixture of intraday and
interday cases, respectively. The little difference is due to
a mixture and non-mixture of intraday and interday data
within weekly frequency. Therefore, there is no remark-

able difference between intraday and interday time sam-
pling schemes for those with sampling frequency higher
than weekly. For NASDAQ return, the value of α for
intraday data is 1.75, which is slightly smaller than that
for DJIA return. However, both of DJIA and NASDAQ
returns satisfy the stable Lévy distributions with α ≤ 2
[3]. The analysis of scaling also show two returns have
nice scaling behaviors with respect to various time scales
within truncated time scale, which are consistent with
existing literatures [9, 21, 23].

We further employed the Hilbert-Huang method of
time signal analysis to define instantaneous phase to
catch characteristic features of index and return time se-
ries. The EMD method was used to decompose return
time series into several IMFs, and the Hilbert transform
was used to calculate instantaneous phase of the first
three IMFs accordingly. We find that except for the first-
IMFs of these time series which have phases mainly dis-
tributed within a range of −0.5π ≤ φ ≤ 0.5π, the phases
of other IMFs are randomly distributed and have equal
probabilities for all possible phases. This behavior ex-
ists in all sample time scale (time sampling intervals of
multiples of 10 minutes) of intraday data and interday
data less than weekly frequency. We expect the same
behavior also exist in larger time scale. The phase distri-
butions corresponding to abruptly change behaviors in-
dicate non-predictable and stochastic features of index.
Furthermore, our results show explicitly the phase spec-
trum of return time series fall into a class different from
other signals, such as a time series of human respiration.

The investigations on correlations between DJIA and
NASDAQ indices by phase difference for various periods
and epoches show a remarkable picture on trading activi-
ties. We find that the phases of two index and return time
series became closer in year 2003 than in earlier years,
and the phase of return time series for DJIA index was
ahead of that for NASDAQ index in years 2001 and 2002
in average. In other words, trading activities in DJIA in-
fluenced on NASDAQ more than NASDAQ influenced on
DJIA in this period. This phenomena was explained by
the fact that DJIA is more stable and mature than NAS-
DAQ in composition, and the stocks in NASDAQ are
usually more active than those in DJIA. Consequently,
in years 2001 and 2002 in which stock markets are in-
fluenced by the event of 911 attack, the performance of
mutual stocks of DJIA affected much on those of NAS-
DAQ. In other periods such as years 1998, 1999 and 2003,
active stocks in NASDAQ then affected the environment
of the stocks in DJIA.

Further, the phase distribution between two indices
become closer after the event of 911. This implies an
explicit change in the behavior of trading activities of
DJIA and NASDAQ after September 2001. A similar
spectrum in last half year of 2002 and the whole year of
2003 [Fig.12(c)] further implies the scenario persisted in
later trading activities. This was interpreted by faster
information transmission and stronger event dependence
in stock markets after 911. In other words, two indices



12

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

 P

∆ϕ
1
(π)

 1997

 1998

 1999

 2000

 2001

 2002

 2003

(a)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

 P

∆ϕ
1
(π)

 1997

 1998

 1999

 2000

 2001

 2002

 2003

(b)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

 P

∆ϕ
1
(π)

 1998-2002

 1999a

 2000a

 2001b

 2002b

 2003

(c)

FIG. 12: (Color online) Probability distributions of phase differences between the first-IMFs of (a) DJIA and NASDAQ indices
and (b) returns of DJIA and NASDAQ indices for different periods ranged from 1997 to 2003, and (c) returns of DJIA and
NASDAQ indices for year 1998-2002 and for certain periods and events.

became more correlative due to influences from common
factors, such as news reports and events, systemic risk,
macroeconomic announcement, and Fed policy. Accord-
ingly, investors had similar trading strategies during the
anniversary of 911 in year 2002 under the influences of
anticipation.

It shall be heuristic to compare our method and
the random matrix method [4–6]. The random matrix
method is based on the concept of cross-correlation of
stocks and the spectrum from market data [4, 5] possesses
a bulk of continuously distributed eigenvalues, which is
similar to the random matrix theory [4, 34, 35]. The
method introduces a cross correlation matrix to measure
statistical overlap of the fluctuations in the returns be-
tween pairs of stocks [4, 5, 36, 37], and then solve the
eigenvalues of the random matrix. The effects of the cor-
relations [4, 5, 36, 37] manifest in the eigenvectors of
those eigenvalues and the corresponding patterns are re-
lated to the cooperative behavior in the fluctuations of
the stock prices [38–40]. Therefore, the random matrix
method is designated and suitable for the study of cor-
relative behaviors in a collective system. It can only be
applied to the analyses with more than two stocks. In
contrast to the random matrix method, in our method

there is no assumption of correlations in the primary
time series and the empirical decomposition of primary
time series into IMFs is intuitive and straightforward. As
shown in the analysis of this paper, our method can be
used for the investigation of correlation, and is also useful
for the study of intrinsic properties of an individual time
series.

Finally, according to the impressive implications dis-
closed by our studies based on the concepts of phase dis-
tribution and phase correlation, we expect our approach
is also useful for statistical analysis of other time series,
such as time series of physiological systems [29] and other
social models [31]. Furthermore, it would also be inter-
esting to test if our approach can be applied to the study
of memory effect in financial time series [41].
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