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Correlation Dynamics in European Equity Markets 
 
 
 

Abstract 
 
We examine correlation dynamics using daily data from 1993 to 2002 on the 5 largest euro-
zone stock market indices. We also study, for comparison, the correlations of a sample of 
individual stocks. We employ both unconditional and conditional estimation methodologies, 
including estimation of the conditional correlations using the symmetric and asymmetric 
DCC-MVGARCH model, extended with the inclusion of a deterministic time trend. We 
confirm the presence of a structural break in market index correlations reported by previous 
researchers and, using an innovative likelihood-based search, we find that it occurred at the 
beginning the process of monetary integration in the Euro-zone. We find mixed evidence of 
asymmetric correlation reactions to news of the type modelled by conventional asymmetric 
DCC-MVGARCH specifications. 
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1.  Introduction 
International fund managers usually divide their equity portfolios into a number of 

regions and countries, and select stocks in each country with a view to 

outperforming an agreed market index by some percentage.  This provides asset 

diversity within each country together with international diversification across 

political frontiers.  Two interrelated features of this strategy have attracted the recent 

attention of financial researchers and practitioners.  The first relates to expected 

returns.  A growing body of empirical evidence on the performance of mutual and 

pension fund managers has questioned the extent to which they systematically 

outperform their benchmarks (Blake and Timmerman, 1998, Wermers, 2000, Baks, 

Metrick and Wachter, 2001, and Coval and Moskowitz, 2001).  To the extent that 

fund managers fail to add value when account is taken of their fees, the more passive 

strategy of buying and holding the market index for each country might yield an 

equally effective but more cost-efficient international diversification.  The second 

relates to risk.  It has been known for some time that equity return correlations do 

not remain constant over time, tending to decline in bull markets and to rise in bear 

markets (De Santis and Gerard, 1997, Ang and Bekaert, 1999, and Longin and 

Solnik, 2001).  Correlations also tend to rise with the degree of international equity 

market integration (Erb, Harvey and Viskanta (1994) and Longin and Solnik 

(1995)), which has gathered pace in Europe since the mid-1990s (Hardouvelis, 

Malliaropulos and Priestley, 2000, and Fratzschler, 2002). It is of considerable 

interest, therefore, to investigate the relative strengths of the trends in correlations in 

European equity markets, because the findings have relevance for the diversification 

properties of passive and active international investment strategies.   

 

We investigate the correlation trends and dynamics in the equity markets of the 

European Monetary Union (henceforth, Euro area). In particular, we study the 

correlation between Euro area national stock market indices over various sample 

periods. For comparison, we also study the correlation amongst a sample of 

individual Euro area stocks. We first model correlations in an unconditional setting 

and we test for the presence of either a stochastic or a deterministic time trend. We 
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then model them in a conditional setting. To this end we apply the DCC-MV 

GARCH model of Engle (2001), Engle and Sheppard (2002) and Engle (2002) and 

we extend it with the inclusion of a deterministic time trend. In so doing, we specify 

the model to facilitate testing for non-stationarity, structural breaks and asymmetric 

dynamics in the correlation processes. To identify the date of the structural break, 

we employ an innovative search that maximise the likelihood of the multivariate 

conditional correlation model. Finally and more innovatively, to test for residual 

asymmetry in the distribution of asset returns not captured by our model, we employ 

the Engle and Ng (1993) diagnostic test in a multivariate setting. 

 

We find significant persistence in all our conditional correlation estimates. We also 

provide weak evidence that index correlations tend to spike up after joint negative 

news, but contrary to the recent evidence of Cappiello, Engle and Sheppard (2003) 

and others, this phenomenon is not well captured by a linear specification. We 

confirm a significant rise in the correlations amongst national stock market indexes 

that can best be explained by a structural break shortly before the official adoption of 

the Euro. It follows that portfolio managers investing in the Euro-zone should not 

overestimate the benefits of pursuing passive international diversification strategies 

based on holding national stock market indexes. 

 

The remainder of our paper is structured as follows. In Section 2, we describe our 

data set and provide summary statistics. In Section 3 and 4, we perform a range of 

statistical tests to discern more formally the behaviour of unconditional and 

conditional correlations.  In the final Section, we summarise our main findings and 

draw together our conclusions. 

 

2.  Data 
Our equity return data is obtained from Bloomberg and consists of daily returns on 

the 5 national stock market indexes with the heaviest capitalisation in the euro-zone 

at the end of our sample period, ie, the DAX (Frankfurt Stock Exchange), the CAC40 

(Paris Stock Exchange), the MIB30 (Milan Stock Exchange), the AMX (Amsterdam 
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Stock Exchange) and the IBEX (Madrid Stock Exchange)1.  These series are 

expressed in euro and cover the sample period 1993-2002. We also use Datastream 

International Ltd 5-Year Government bond clean price indices for France, Germany, 

Italy, the Netherlands and Spain. Finally, we select the 42 stocks included in the 

Eurostoxx50 index2 with a continuous return history and we obtain their returns from 

Bloomberg for the same time period. The selected stocks are all traded in one of the 

5 stock markets included in the country level sample. Table 1 lists the stocks 

included in the Eurostoxx50 index after the September 2001 reshuffle3.  

 

Table 2 provides the usual set of summary statistics for the returns on the 5 market 

indices, the Eurostoxx50 index and the 42 individual stocks. In particular, we report 

the sample means, variances, skewness, kurtosis, the Jarque-Bera statistics and their 

associated significance levels. As expected, returns exhibit significant departure 

from the normal distribution in most cases. Noticeably, index returns always display 

negative skewness whereas the sign of the latter is not the same across returns on 

individual stocks.  

<< Table 1 and 2 here >> 

 

3.  Unconditional Correlation Estimates 
We first employ unconditional estimators of correlations that use the traditional, ad 

hoc representation of the second moments of asset returns based on sums (or 

averages) of return innovations squares and cross-products. Many researchers have 

used this approach because of its simplicity, see for example Merton (1980) and 

CLMX (2001). We first compute the cross products of the standardised daily log-

return Rit deviations from their monthly sample means and sum them to obtain 

monthly non-overlapping correlation estimates for each pair of indices and stocks i 

and j, 

 
                                                 
1 These series start on 31 December 1991 except for the MIB30, which starts a year later. 
2 The Eurostoxx50 is the leading European stock market index. It comprises 50 stocks from the 
companies with the heaviest capitalisation in the euro-zone countries. 
3 The excluded stocks are also listed in Table 1 and indicated by ‘*’s. 
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We then average correlations across market indices and stocks to compute a 

synthetic equally weighted index of their average correlation. 

 

 CORRt = ∑ ∑
= =

n
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n
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,,
11

      (2) 

 

Here, n is either the number of national market indices or of stocks. In Figure 1 we 

plot the monthly average correlation amongst the country indexes and the individual 

stocks. The former has been computed applying (1) and (2) to our country index data 

with n = 5. This series shows a strong tendency to rise over time. The average stock 

correlation series has been computed applying (1) and (2) to our stock data with n = 

42. This series does not show any strong tendency to rise over time but rather 

appears very noisy and persistent. It takes a substantial amount of time to revert to a 

fairly stable long run mean (in the region of 20 percent) around which it oscillates. 

 

<< Figure 1 >> 

Unit Root Tests 

To test for the presence of a stochastic time trend, we conduct Dickey-Fuller (DF) 

and augmented Dickey-Fuller (ADF) tests allowing for up to 12 lags. As pointed out 

by Pesaran (1997), however, there is a size-power trade-off depending on the order 

of augmentation, and we consequently rely on the results provided by the tests 

performed at the lower orders of augmentation.  As reported in Panel A of Table 3, 

the DF and ADF tests reject the null of a unit root at the 5 percent level of 

significance for average stock correlation. For the average correlation amongst the 5 

Euro area stock market indexes, we cannot reject the null of a unit-root in the ADF 

test with 2 orders of augmentation and no deterministic time trend. However, using 

an F-test and the appropriate non-standard asymptotic distribution (Hamilton 
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(1994)), we can reject at the 1 percent level the joint hypothesis that the 

deterministic time trend is equal to zero and that there is a unit root. We therefore 

conclude that both correlation series are stationary and, in particular, aggregate 

market index correlation is trend-stationary. 

 

Wald-Type Tests 

To check on the possible presence of a deterministic time-trend, we regress our 

constructed average correlations series on the latter. However, the residuals of a 

static model that includes among the regressors only a constant and a deterministic 

time-trend are auto-correlated, as suggested by the Durbin-Watson (DW) statistic. 

We therefore estimate a dynamic model that also includes the first lag of the 

dependent variable.  We then conduct Wald-type tests of the restriction that the 

deterministic time trend coefficient is zero using Newy-West adjusted variance-

covariance matrices to correct for heteroschedasticity and autocorrelation. Panel B 

of Table 4 presents the results. The time trend coefficient is large and significant 

only for average country index correlation. It explains an increase in the latter of 

about 2.5 percent per year.  However, the Durbin’s h4 statistic suggests that the 

residuals are not serially independent. Therefore, we treat this trend coefficient 

estimate with caution. 

<< Table 3 >> 

 

3.  Conditional Correlations 
Thus far we have applied an unconditional estimation methodology. This strategy 

has yielded useful insights but it has the main shortcomings that, while the average 

of squares and cross-products are consistent estimators of the second moments of the 

return distributions, they might be biased in small samples since they are ad hoc 

representations of the volatility and correlation processes. Moreover, the aggregation 

of daily data into lower frequency monthly data leads to a potential small sample 
                                                 
4 In the presence of lagged values of the dependent variables the DW test is biased toward acceptance 
of the null of no error auto-correlation.  We therefore test for serial correlation of the error terms 
using Durbin’s (1970) h-test.  We use the generalised version of this test, developed by Godfrey and 
Breusch, based on a general Lagrange Multiplier test.  Even though this procedure can detect higher 
order serial correlation, we only test the null of no first-order residual autocorrelation.  
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problem. It is therefore of considerable interest to apply the recently developed 

DCC-MVGARCH model of Engle (2001), Engle and Sheppard (2002) and Engle 

(2002). This provides a useful way to describe the evolution over time of the second 

moments of large systems. In particular, we use the specification of the asymmetric 

DCC-MVGARCH proposed by Cappiello, Engle and Sheppard (2003) and extend it 

to include a deterministic time trend:  

 

 Rt = const. + ut

       (3) ),0(~| 1 ttt Hu Φℑ −

 

Where,   

 

         (4) tttt DCDH ≡

 Dt
2 = )1(

2
BAD −−  + )( 11 −− ′tt uuA  +     (5) 2

1−tBD

Ct = )1( βα −−C  θS− trendIiit δ)( −′− + 11 −− ′tt εαε     

    + βCt-1+  +1−tSθ Trendδ t )( Iii −′      (6) 

 

Here, ut is an nx1 vector of zero mean innovations conditional on the information set 

available at time t-1 ( ). They follow a Ф distribution, not necessarily normal, 

with centred second moment matrix H

1−ℑt

t. Also, Dt is the diagonal matrix of 

conditional standard deviations and Ct is the conditional correlation matrix. Both Dt 

and Ct and, as a consequence, Ht are assumed to be positive definite. Also, D , A and 

B are nxn diagonal non-negative coefficient matrices, C and S  are positive definite 

coefficient matrices, θ, α, β and δTrend are scalar coefficients, i is a unit vector, I is a 

conformable identity matrix, t is a time trend, the elements of the nxn matrix St-1 are 

the outer-products of 2 vectors that contain only negative return innovations. To 

complete the notation, C  takes the value Q1 if t < τ and Q2 if t > τ, where τ 

represents a selected structural break date. Similarly, S takes the value N1 if t < τ and 
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the value N2 if t >τ, t  is the mid point of the sample period (the unconditional 

sample average of the values taken by the time trend variable).  

 

To see why the inclusion of the deterministic time trend requires this specification, 

consider for simplicity but without loss of generality the univariate case of a 

GARCH(1,1) with deterministic time trend, 

. Taking unconditional expectations and 

using the law of iterated expectations, the unconditional variance is: 

tEE trendttttt δεβαεγε +++= −−−− )()( 2
12

2
1

2
1

 

 tE

tEEE
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    (7) 

Therefore, 
βα

δγε
−−

+
=

1
)()( 2 tE trend

t and tE trendt δβαεγ −−−= )1)(( 2 . The specification 

in (6) is a generalization to the multivariate case of this result.  

 

The elements along the main diagonal of the matrix D  can be seen as the long-run, 

baseline levels to which conditional variances mean-revert. The matrices C and S  

can be seen as the long-run, baseline levels to which the conditional correlations of 

the return innovations and of the negative return innovations respectively mean-

revert5. To hasten the estimation procedure, D  and C  can be set equal to the 

unconditional variance and correlation matrix over the sample, Q1 and Q2 can be set 

equal to the sample average of 11 −− ′tt εε  before and after the date τ and N1 and N2 are 

the sample average of St-1 before and afterτ (in this case, the estimated conditional 

correlation matrix is not guaranteed to be positive-definite). When the coefficient θ 

is not constrained to be zero, the correlation process can be asymmetric. A 

symmetric DCC model gives higher tail dependence for both upper and lower tails 

of the multiperiod joint density. An asymmetric DCC gives higher tail dependence 

in the lower tail of the multi-period density. 

                                                 
5 I estimate this using the sample average of the negative return innovation cross-products. 
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Engle (2001), Engle and Sheppard (2002) and Engle (2002) propose maximising the 

log-likelihood function of (3) in two steps to overcome the well-known 

computational problems of MVGARCH models.  They first maximise the log-

likelihood with respect to the parameters that govern the process of Dt.  This can be 

done by estimating univariate models6 of the returns on each stock nested within a 

univariate GARCH model of their conditional variance. They then suggest 

maximising the second part of the likelihood function over the parameters of the 

process of Ct, conditional on the estimated Dt.  Preliminarily, this entails 

standardising ut by the estimated Dt to obtain the nx1 vector εt
7. Engle (2001), Engle 

and Sheppard (2002) and Engle (2002) show that this two-stage procedure yields 

consistent maximum likelihood parameter estimates, and that the inefficiency in the 

two-stage estimation process can be taken into account by modifying the asymptotic 

covariance of the correlation estimation parameters. 

 

Tables 4 presents our ADCC-MVGARCH model quasi-maximum likelihood 

estimates using daily data on the 5 market indices. We first estimate a simple 

restricted symmetric specification of (6) with a deterministic time trend but no 

structural break. We label this specification Model 1. The estimated deterministic 

time trend coefficient turns out to be statistically significant but very small. Since it 

is economically negligible, we drop it from all subsequent specifications. We 

therefore estimate Model 2, which imposes on Model 1 the restriction that the time 

trend coefficient is zero.  

<< Table 4 >> 

 

Considering the clear rise in average market index correlation visible in Figure 1, 

together with the lack of evidence of a significant deterministic time trend, we then 
                                                 
6 The presence of an intercept term ensures that the estimated residuals are zero-mean random 
variables. 
7 As noted by Cappiello, Engle and Sheppard (2003), standardising return innovations largely 
removes their departures from normality. This justifies the assumption that the standardised returns 
innovations εt are multivariate normal, even though the skewness, kurtosis and JB statistics reported 
in Table 2 imply a non-normal distribution of raw returns. 
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test for the presence of either a stochastic trend or a structural break. To check the 

stationarity of the correlation process, we test the restriction that the news and 

persistence parameters α and β sum to unity.  The relevant LR test statistic and the 

associated significance level are reported at the bottom of Table 4 (Model 2 against 

Model 3).  We reject the restriction that the parameters of the correlation process 

sum to unity and we conclude, therefore, that the correlation process is stationary.  

 

A structural break in the market index correlation process might, however, explain 

both the strong persistence of the series and its sharp increase over the sample 

period. In order to identify the structural break date, we seek guidance from 

Government bond yields8. The plot of the likelihood of an ADCC-GARCH model of 

the Government bond index returns as a function of 30 successive structural break 

dates, as reported in Figure 2, peaks at the beginning of 1998. We also experimented 

with various possible structural break dates directly in the correlations process of the 

stock market indices. The model with a structural break date in January 1998 

displays again the largest likelihood9. This hypothesis about the timing of the 

structural break occurrence is intuitively appealing since it is roughly 12 months 

before the official introduction of the Euro and thus it accounts for the likely 

possibility that financial markets started to discount it in the price formation 

mechanism somewhat in advance. 

 

<< Figure 2 >> 

 

Therefore, we finally settled on the beginning of January 1998, as this date 

maximise the likelihood of a ADCC-GARCH model of the bond index returns, it 

almost exactly splits our sample in half and allows for the possibility that stock 

                                                 
8 A necessary condition for the parity of expected real rates of returns is that bond yields differentials 
reflect inflation differentials. Under this perspective and neglecting differences in risk premia across 
countries, a structural break in Euro area interest rates correlations due to monetary policy 
convergence is a likely cause for a structural break in correlations at the stock market index level. 
This is also suggested, for example, by the study of Cappiello, Engle and Sheppard (2003) and of 
Hardouvelis, Malliaropulos and Priestley (2000). 
9 Results for the other models are not reported to save space (they are a long list of structural break 
dates and corresponding likelihood function values) but they are available upon request. 
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markets discount rates might have reflected the expectation of monetary policy 

convergence and increased financial integration prior to the introduction of the new 

currency. Using the usual LR test statistic, reported at the bottom of Table 5, we 

therefore tests Model 4 that allows for a structural break in 1998 against Model 2, 

the restricted model with no structural break. We can reject this restriction at the 

0.020 significance level.  Moreover, once we allow for the structural break, the 

restriction that the asymmetric component coefficient θ is equal to zero (Model 5 

against Model 4) cannot be rejected at the 5 percent level. The coefficient θ is only 

marginally significant. Its size however is non negligible from an economic point of 

view. In particular, its point estimate is 45 times as large as the news reaction 

parameter α. 

 

We therefore conclude that the aggregate correlation between the 5 Euro-zone stock 

market indices and the Eurostoxx50 index is best explained by a DCC-GARCH 

process with a structural break in its mean10 and, perhaps, an asymmetric reaction 

component. Figure 3 plots the market index average conditional correlation 

estimated with the symmetric Model 5, allowing for a structural break in 1998. 

 

<< Figure 3 >> 

 

Turning to the correlation patterns at a more disaggregated level, the estimation 

results for the 42 individual stocks are shown in Table 5. The estimated θ is very 

small and the restriction that it is equal to zero11 cannot be rejected at any 

conventional significance level. The time series of the estimated symmetric average 

conditional industry, sector and stock return correlation is plotted in Figure 4. The 

plot for the asymmetric case is almost identical. 

 

                                                 
10 We also estimated each model with the Eurostoxx50 index, and over the longer sample period 
1992-2002, excluding the MIB30 index (because its series starts a year later).  We obtained very 
similar results in all cases, and these are not reported here for brevity. 
11 We do not report estimates with a deterministic time trend because the estimation procedure did not 
converge.  
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<< Table 5 and Figure 4 >> 

 

As a specification check, we apply the Engle and Ng (1993) test in a multivariate 

setting to our country-level MV-ADCC and MV-DCC GARCH models. Originally, 

this test was designed as a diagnostic check for univariate volatility models and its 

aim is to examine whether there is residual predictability in squared standardised 

conditional errors using some variables observed in the past which are not included 

in the volatility model. Since multivariate variance-covariance models provide 

estimates of all the ingredients that are needed to compute the conditional portfolio 

volatility if asset weights are known, we can use our first and second step MV-

ADCC and MV-DCC GARCH conditional volatility and correlation estimates to 

compute the conditional volatility and the conditional residuals of an equally 

weighted portfolio. We can then apply the Engle and Ng (1993) test to returns on the 

latter. 

 

In particular, we apply a test that combines the Sign Bias test (that uses as regressors 

dummy variables I- that take value 1 or 0 depending on weather the lagged residual 

is negative or positive) and the Negative and Positive Size Bias test (that use, 

respectively, lagged negative and positive standardised residuals as regressors, zt-1
-

and zt-1
+). As reported in Table 6, we can reject the null of non-predictability of the 

squared standardised conditional residuals. Therefore, in spite of the mixed evidence 

provided by the LR tests of the ADCC-MVGARCH against the DCC-MVGARCH, 

distributional asymmetric are important. The latter are probably of a non-linear 

nature12 and we leave the difficult quest for a better specification for future research.  

                                                 
12 This, as far market indices are concerned, lies in partial contrast to those reported by Cappiello, 
Engle and Sheppard (2003). However, since we were able to replicate their results with their same set 
of market indices, frequency and data period (these results are not reported for brevity and because 
they exactly match results already published by Cappiello, Engle and Sheppard (2003) but they are 
available upon request.), we conclude that the difference between our and their results is due to 
whether non-Euro area market indices are included. Correlations amongst Euro area market indices, 
in particular, appear to display a substantial lower tendency to increase following joint past negative 
returns than those amongst markets outside the Euro area. Another likely but less important reason 
for why our results differ from those of Cappiello, Engle and Sheppard (2003) with respect to the 
importance of asymmetric correlation reactions to past returns innovations is the different data 
frequency – they use only weekly data whereas we use both daily and weekly data and for the former 
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<< Table 6 >> 

 

4. Summary and Conclusions 
The purpose of this paper is to contribute to the literature on the correlation 

dynamics in European equity markets. Our main focus has been on country-level 

market index correlations, but we also examined stock correlations for comparison 

purposes. We applied the symmetric and asymmetric version of the DCC-

MVGARCH model of Engle (2001), Engle and Sheppard (2002) and Engle (2002) 

to capture their behaviour over time.  

 

We find strong evidence of a structural break in the mean shortly before the 

introduction of the Euro. This explains both the strong persistence of the correlation 

time series and its significant rise over the sample period. This confirms the results 

reported by Cappiello, Engle and Sheppard (2003) and is consistent with the rise in 

volatility spillovers noticed by Baele (2002).  We also find evidence that, at the level 

of the national stock market indices, the conditional correlation response to past 

positive and negative news is asymmetrical. Stock correlations instead do not appear 

to follow an asymmetric correlation process.  These findings provide mixed support 

to a popular explanation, see for example Patton (2002), for why the skewness of 

market index returns is often negative whereas stock returns have either negative or 

positive skewness (similar findings are reported in Table 2). More importantly, 

applying a multivariate extension of the Engle and Ng (1993) test, we find that 

beyond asymmetric correlation reactions to past returns innovations there must be 

other, perhaps more important source of asymmetry in the distribution of asset 

returns. This issue represents an important and fruitful topic for future research. 

 

Overall, our results suggest that non-country factors drive the volatility of equity 

returns. In particular, because of the rise in correlations among the largest national 
                                                                                                                                          
the importance of the asymmetric correlation component is always lower. This suggests the 
importance of taking into account temporal aggregation issues when modelling asset returns second 
moments dynamics. 
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stock markets indices, the stochastic components of the latter can now be expected 

to behave almost identically (with conditional correlations being close to 100 

percent as reported in Figure 3). This suggests that there is little expected benefit 

from strategies that diversify across Euro-zone market indices, although 

diversification across stocks remains useful. This explains why, as reported by 

Eiling, Gerard and de Roon (2004), the outperformance of country-based 

diversification strategies relative to industry-based strategies has disappeared after 

the introduction of the Euro. As a consequence, fund managers should think through 

the full ramifications of seeking cost-effective diversification in the Euro area by 

adopting the passive strategy of investing in market indexes rather than a selection 

of stocks or industries from the whole supra-national market.  

 

More deeply, the dramatic increase in country level market index correlation rises 

the possibility of a ‘correlation puzzle’. The relevant question from the perspective 

of the informational efficiency of the market pricing mechanism is whether this 

increase in return correlation is justified by increased correlation in fundamentals 

and discount rates. Adjaountè and Danthine (2001) document a significant increase 

in correlations between Euro area country equity indices. However, they find the 

same increase after they adjust for currency effects, thus suggesting that the 

elimination of currency risk is not the main cause. De Santis, Gerard and Hillion 

(1999) show similar results. While Adjaountè and Danthine (2004) report 

preliminary evidence of convergence of economic fundamentals such as gross 

domestic product growth rates, little or no direct evidence is available on discount 

rates and on equity fundamentals such as dividend growth rates. Expanding this 

body of evidence is a fruitful area for future research. 
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Table 1 
Stocks Included in the Eurostoxx50 Index 

  Company Bloomberg Ticker Market Sector Weights (%) 
1 ABN AMRO                       AABA NA  BAK 1.59 
2 AEGON AGN NA  INN 1.55 
3 AHOLD                          AHLN NA  NCG 1.87 
4 AIR LIQUIDE                    AI FP  CHE 0.89 
5 ALCATEL                        CGE FP  THE 1.02 
6 ALLIANZ                        ALThe V GY  INN 2.49 
7 ASSICURAZIONI GENERALI         G IM  INN 2.15 
8 AVENTIS                        AVE FP  HCA 3.48 
9 AXA UAP                        N.A. INN 2.00 
10 BASF                           BAS GY  CHE 1.26 
11 BAYER                          BAY GY  CHE 1.40 
12 BAYERISCHE HYPO & VEREINSBANK  HVM GY  BAK 0.75 
13 BCO BILBAO VIZCAYA ARGENTARIA  BBVA SM  BAK 2.39 
14 BCO SANTANDER CENTRAL HISP     SAN SM  BAK 2.46 
15 BNP*                            BNP FP  BAK 2.37 
16 CARREFOUR SUPERMARCHE          CA FP  RET 1.97 
17 DAIMLERCHRYSLER*                DCX GY  ATO  1.86 
18 DEUTSCHE BANK R                DBK GY  BAK 2.13 
19 DEUTSCHE TELEKOM*               DTE GY  TEL  2.64 
20 E.ON                           EOA GY  UTS 2.39 
21 ENDESA                         ELE SM  UTS 1.14 
22 ENEL*                           ENEL IM  UTS  0.83 
23 ENI*                            ENI IM  ENG  2.22 
24 FORTIS B                       FORB BB  FSV 0.98 
25 FRANCE TELECOM*                 FTE FP  TEL  1.06 
26 GROUPE DANONE                  N.A. FOB 1.47 
27 ING GROEP INGA NA  FSV 2.95 
28 L'OREAL                        OR FP  NCG 1.52 
29 LVMH MOET HENNESSY             N.A. CGS 0.55 
30 MUENCHENER RUECKVER R*          MUV2 GY  INN  1.70 
31 NOKIA                          NOK1V FH  THE 5.63 
32 PHILIPS ELECTRONICS            PHIA NA  CGS 1.75 
33 PINAULT PRINTEMPS REDOUTE      PP FP  RET 0.49 
34 REPSOL YPF                     REP SM  ENG 1.02 
35 ROYAL DUTCH PETROLEUM          RDA NA  ENG 7.63 
36 RWE                            RWE GY  UTS 0.98 
37 SAINT GOBAIN                   SAN FP  CNS 0.81 
38 SAN PAOLO IMI                  SPI IM  BAK 0.70 
39 SANOFI SYNTHELABO              N.A. HCA 1.81 
40 SIEMENS                        SIE GY  THE 2.34 
41 SOC GENERALE A                 SGO FP  BAK 1.46 
42 SUEZ                           SZE FP  UTS 2.39 
43 TELECOM ITALIA                 TI IM  TEL 1.19 
44 TELEFONICA                     TEF SM  TEL 3.24 
45 TIM*                            TIM IM  TEL  1.22 
46 TOTAL FINA ELF                 FP FP  ENG 7.31 
47 UNICREDITO ITALIANO            UC IM  BAK 0.84 
48 UNILEVER NV                    UNA NA  FOB 2.49 
49 VIVENDI UNIVERSAL              N.A. MDI 3.07 
50 VOLKSWAGEN                     VOW GY  ATO 0.54 

 
Note.  This table reports the stocks included in the Eurostoxx50 as of 23 November 2001 and the 
weights as of the date of the 19 September 2001 reshuffle. Asterisks indicate that the series has been 
dropped from the sample.  Descriptors for the market sectors are as follows (Stoxx’s Industry 
Codes): BAK (Banks), ATO (Auto), INN (Insurance), TEL (Telecom), NCG ((Non-Cyclical Goods 
and Services), UTS (Utilities), CHE (Chemical), ENG (Energy), THE (Technology), FSV 
(Financials), HCA (Health Care), FOB (Food & Beverages), RET (Retailer), CGS (Cyclical Goods 
and Services), CNS (Construction),  MDI (Media). 

 
 

 

 

 17



Table 2 
Summary Statistics for Stock and Market Index Returns 

 
  Mean      Std. Dev. Skew  Sig. Kurt.               JB 

 Panel A: Market Indices  
DAX  12.33 34.10 -0.44 0.000 3.72        1564 
CAC40  10.37 19.75 -0.15 0.001 1.88        389 
MIB30  13.66 23.56 -0.07 0.188 2.08        417 
AEX  13.84 18.10 -0.39 0.000 4.38        2121 
IBEX  12.23 20.43 -0.28 0.000 2.82        881 
EUROSTOXX50  13.23 18.03 -0.29 0.000 3.65        1462 
 Panel B: Individual Stocks 
ABN AMRO                        19.10 27.57 -0.17 0.001 4.47        2104 
AEGON  32.39 28.33  0.20 0.001 4.19        1848 
AHOLD                           22.72 25.84  0.26 0.000 2.83        865 
AIR LIQUIDE                     13.28 27.75  0.24 0.000 2.14        485 
ALCATEL                          7.68 44.33 -0.97 0.000 17.27       30517 
ALLIANZ                         16.46 30.45   0.13 0.009 6.76        4398 
AVENTIS                         21.74 32.79    0.47 0.000 4.56        1957 
N.A.  19.58 31.34 -0.12 0.013 3.04        938 
BCO BILBAO VIZ. ARGENTARIA   26.41 30.21  0.10 0.040 6.88        4696 
BASF                            17.87 27.39  0.36 0.000 4.37        1885 
BAYER                           15.36 26.79 -0.28 0.000 7.21        5031 
BAYER. HYPO & VEREINSBANK  12.25 33.02  0.35 0.000 5.31        2755 
BNP                             10.83 35.28  0.33 0.000 3.21        889 
BCO SANTANDER CENTRAL HISP     20.74 32.21 -0.46 0.000 7.29        5346 
CARREFOUR SUPERMARCHE          20.93 29.28  0.02 0.623 2.98        896 
DAIMLERCHRYSLER                 -7.40 34.46 -0.01 0.868 1.74        96 
N.A.   6.93 26.12  0.06 0.205 3.38        1153 
DEUTSCHE BANK R                 12.36 30.98  0.20 0.000 6.62        4228 
DEUTSCHE TELEKOM                12.67 46.80  0.30 0.000 1.43        125 
E.ON                            15.66 26.46  0.22 0.000 3.28        1051 
ENDESA                          19.88 25.79  0.07 0.141 2.36        553 
ENEL                            -6.00 28.02 -0.10 0.335 2.15        101 
ENI                             19.59 28.55  0.13 0.039 1.33        113 
FORTIS B                        22.06 26.22  0.10 0.038 3.64        1343 
FRANCE TELECOM                  19.12 52.42  0.63 0.000 3.33        537 
ASSICURAZIONI GENERALI        14.11 26.36  0.17 0.001 2.11        462 
ING GROEP  27.16 28.55 -0.48 0.000 8.22        7153 
L'OREAL                         26.45 32.67  0.10 0.054 1.85        350 
N.A.  11.31 33.50  0.40 0.000 4.11        1771 
MUENCHENER RUECKVER R        29.12 40.74 -1.72 0.000 31.38        59805 
NOKIA                           92.62 49.62 -0.08 0.105 5.12        2624 
PHILIPS ELECTRONICS             36.53 42.34 -0.18 0.000 3.92        1615 
PINAULT PRINTEMPS REDOUTE      25.22 31.22  0.04 0.456 3.03        923 
REPSOL YPF                      16.54 24.85  0.63 0.000 6.29        4088 
ROYAL DUTCH PETROLEUM       16.09 23.35  0.09 0.075 2.79        815 
RWE                             12.60 27.43  0.48 0.000 5.17        2659 
SAINT GOBAIN                    30.13 32.67  0.18 0.000 1.95        397 
SAN PAOLO IMI                   12.53 33.73  0.34 0.000 2.21        524 
SIEMENS                         16.96 32.02  0.27 0.000 6.54        4407 
N.A.  16.00 32.75  0.07 0.152 3.12        983 
SOC GENERALE A                  13.94 30.62  0.08 0.127 2.30        539 
SUEZ                            12.31 26.83  0.37 0.000 2.86        855 
TELECOM ITALIA                  30.41 35.53 -0.26 0.000 5.23        2791 
TELEFONICA                      26.81 31.70  0.08 0.091 1.77        314 
TIM                             33.65 37.28  0.23 0.000 0.76        51 
TOTAL FINA ELF                  17.61 30.21 -0.03 0.527 1.59        256 
UNICREDITO ITALIANO             17.85 37.28  0.76 0.000 4.33        2121 
UNILEVER NV                     15.45 23.98  0.31 0.000 6.45        4382 
N.A.  10.23 30.21  0.18 0.000 2.74        770 
VOLKSWAGEN                      15.34 31.90  0.07 0.161 3.86        1532 
 
Notes.  The table reports summary statistics for the five largest Euro area stock market indices, 
for the Eurostoxx50 and for the stocks included in the latter on 23 November 2001. The sample 
period is 1993-2002. Mean and standard deviations are on a 1-year basis.  JB denotes the Jarque-
Bera statistics.  The Kurtosis and the JB statistics are different from zero at the 0.1 percent level 
for all stocks in the sample. 
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Figure 1 
Average Market Index and Stock Correlations 
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Note.  This figure plots the unconditional estimates of the average
correlation between the 5 largest stock market indices in the Euro area
and the average correlation between 42 stocks included in the
Eurostoxx50 Index over the sample period. 
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Table 3 

Unit Root, Specification and Wald-Type Tests 
 
 

Panel A 
(Unit Root Tests on Aggregate Correlations)  

 CV DF ADF1 ADF2 F-Test 
Country Indexes 

Intercept, no trend 
Intercept and linear trend 

-2.89 
-3.45 

-4.95 
-7.62 

-4.10 
-7.46 

-2.67 
-5.57 

620.01 
(.000) 

Individual Stocks 
Intercept, no trend 
Intercept and linear trend 

-2.89 
-3.45 

-5.68 
-5.65 

-4.07 
-4.04 

-3.30 
-3.28 

 

      
Panel B 

(Specification and Wald-Type Tests) 
Static 
Model 

Dynamic 
Model 

    

DW-stat.   α (%) 
(t-stat.)  

 δ (%) 
(t-stat.) 

    β 
(t-stat.) 

h-stat. 
(sign.) 

Wald-stat. 
(sign.) 

Country Indexes 
1.41 38.40 

(7.09) 
 .1937 
 (5.24) 

  .29 
(3.04) 

 5.08 
(0.02) 

27.40 
(0.00) 

Individual Stocks 
.96 16.66 

(4.07) 
-.0076 
 (0.22) 

  .51 
(5.95) 

 2.60 
(0.10) 

  .05 
(0.82) 

      

 

Notes. Panel A of this Tables reports Dickey-Fuller (DF) tests and augmented Dickey-
Fuller (ADF1 and ADF2, the numbers denoting the order of augmentation) tests for the 
presence of unit roots in the average country and stock unconditional correlations 
series. CV denotes the critical value at the 5 percent level. All variables are defined in 
the text. F-test denotes critical value and significance level (in brackets) of the test 
statistic under the null that the trend coefficient is zero and the series contains a unit 
root. Panel B reports estimates of the parameters of the model of the average country 
and stock correlations series with a deterministic time trend. DW denotes the Durbin-
Watson statistics of the static model. All other columns report estimated coefficient 
and t-statistics for the dynamic model. The rightmost columns report the Durbin’s h-
statistic of the null that the dynamic model residuals are not first-order autocorrelated 
and the Wald statistic (in both cases with the associated significance levels) of the 
restriction that δ is equal to zero. All the Wald-Test statistics, standard errors and 
significance levels have been computed using a Newy-West adjusted variance–
covariance matrix with Parzen weights to correct for heteroscedasticity and 
autocorrelation. All variables are defined in the text. 
 

Static Model: 
yt = α +δt + ut ut ~ i.i.d. N(0, σ 2) 

Dynamic Model: 
yt = α + β yt-1 + δt + ut  ut ~ i.i.d. N(0, σ 2) 
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Table 4 
ADCC-MVGARCH Country Correlation 

 
Panel A 

Model Restriction Coefficient Coefficient estimate T-Ratio p-value 
      
1 Q1 = Q2 Q1/2  .799   
 θ = 0 α  .010 4.50 .000 
  β  .982 180.97 .000 
  δTrend  .000 2.03 .041 
      
2 Q1 = Q2 Q1/2  .799   
 θ = 0 α  .010 4.55 .000 
 δTrend = 0 β  .985 223.82 .000 
      
3 Q1 = Q2 Q1/2  .799   
 θ = 0 α  .007 12.72 .000 
 δTrend = 0 β  .993 1807.09 .000 
 α + β = 1     
      
4 θ = 0 Q1  .611   
 δTrend = 0  Q2  .908   
  α  .002 8.30 .000 
   β  .970 589.68 .000 
      
5 δTrend = 0 Q1  .611   
  Q2  .908   
   α  .002 3.90 .000 
   β  .590 74.31 .000 
  θ  .090 7.69 .000 
      

 
Panel B 

Unrestricted 
Model 

ln(|ΣUR|) Restricted 
Model 

ln(|ΣR|) LR Statistic Significance 
Level 

Restriction 
Rejection 

2 -5.0689 3 -5.0798 33.19 .000 Yes 
4 -5.0665 2 -5.0689 25.15 .020 Yes 
5 -5.0654 4 -5.0665 2.53 .112 No 

LR = T [ln(|ΣUR|)-ln(|ΣR|)] ∼ χ2(1) 
T = number of observations (2,297) 

ΣUR = covariance matrix of the residuals of the unrestricted model 
ΣR = covariance matrix of the residuals of the restricted model 
χ2(1) = Chi-Squared distributions with 1 degree of freedom 

 

Notes. Panel A of this Table reports coefficients, t-statistics and p-values for various
specifications of the ADCC-MVGARCH model of conditional correlations amongst the 5
largest Euro-zone market indexes. Panel B reports Likelihood Ratio (LR) test statistics and
their significance level. 
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Figure 2 
Euro area Government Bond Yields 

Log-Likelihoods and LR Statistics with Rolling Structural Break Dates 
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 Note. Panel A plots the likelihood of an ADCC-GARCH model of the bond index
returns as a function of 30 successive structural break dates. Panel B reports the Chi-
Squared statistic of the corresponding LR test. This statistic is significant at the 5%
level for structural break dates from 1994 to 2000.The restricted model in the LR test
is the model with no structural break date.  
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Figure 3 
DCC-MVGARCH Country Correlation  
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Notes. This figure plots the daily average conditional correlation amongst
the 5 euro-zone market, estimated with the symmetric DCC-
MVGARCH(1,1) model with a structural break at the beginning of 1998.   
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Table 5 
ADCC-MVGARCH 42 Eurostoxx50 Stocks 

 
 

Panel A 

Model Restriction Coefficient Coefficient estimate T-Ratio p-value 
 

1 Q1 = Q2 α  .002     16.51 .000 
 δTrend = 0 β  .989 1222.29 .000 
 θ = 0     
      
2 Q1 = Q2 α  .002     15.06 .000 
 δTrend = 0 β  .989 1214.20 .000 
  θ  .001       1.55 .121 
      

 

Panel B 

Unrestricted 
Model 

ln(|ΣUR|) Restricted 
Model 

ln(|ΣR|) LR 
Statistic 

Significance 
Level 

Restriction 
Rejection 

       
2 -13.6466 1 -13.6474 1.7486 .186 No 
       

LR = T ln(|ΣUR|)-ln(|ΣR|) ∼ χ2(q) 
T = number of observations (2,289) 

ΣUR = covariance matrix of the residuals of the unrestricted model 
ΣR = covariance matrix of the residuals of the restricted model 
χ2(q) = Chi-Squared distributions with q degrees of freedom 

q = number of restrictions (q = 1) 
 

 
 
 

Notes. Panel A of this Table reports the coefficients, t-statistics and p-values for the
ADCC-MVGARCH model of conditional correlations amongst 42 stocks (k = 42)
included in the Eurostoxx50 index. The data frequency is daily. Variables and their
coefficients are defined in the text. Panel B reports Likelihood Ratio (LR) test statistics
and their significance level. 
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Figure 4 

DCC-MVGARCH Stock Correlations 
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Notes. This figure plots the daily average conditional correlation amongst
42 individual stocks included in the Eurostoxx50 index, estimated with the
symmetric DCC-MVGARCH(1,1). 
 

 

 

 

Table 6 

Diagnostic Tests 

 
 S- 

[sig.] 
u- 

[sig.] 
u+ 

[sig.] 
Chi-

squared(3) 
[sig.] 

    
Country Indices - Daily 

.068 
[.394] 

-.123 
[.039] 

-.142 
[.058] 

29.64 
[.000] 

    

is Table reports the coefficients and p-values for a multivariate application of the Engle
993) test. Variables and their coefficients are defined in the text.  
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