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Abstract

Virtually all existing continuous-time, single-factor term structure
models are based on a short rate process that has a linear drift func-
tion. However, there is no strong a priori argument in favor of linearity,
and Stanton (1997) and Ait-Sahalia (1996) employ nonparametric esti-
mation techniques to conclude that the drift function of the short rate
contains important nonlinearities. Comparatively little is known about
the finite-sample properties of these estimators, particularly when they
are applied to frequent sampling of a very persistent process, like short
term interest rates. In this paper, we apply these estimators to sim-
ulated sample paths of a square-root diffusion. Although the drift
function is linear, both estimators suggest nonlinearities of the type
and magnitude reported in by Stanton (1997) and Ait-Sahalia (1996).
These results, along with the results of a simple GMM estimation pro-
cedure applied to the Stanton and Ait-Sahalia data sets, imply that
nonlinearity of the short rate drift is not a robust stylized fact.
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1 Introduction

A common approach in modeling the term structure of interest rates and
pricing interest rate derivatives is to express interest rates in terms of one
or more state variables, which follow continuous-time Markov processes.
In time-homogeneous “one-factor” models there is only one state variable,
which is usually taken to be the “short” or “instantaneous” rate of interest.
This is the case, for example, in Vasicek (1977), Cox, Ingersoll, and Ross
(1985) (hereafter, CIR), the translated CIR model discussed in Pearson and
Sun (1994), Brennan and Schwartz (1979), Courtadon (1982), in the time-
homogenous continuous-time versions of the Black, Derman, and Toy (1990)
(hereafter, BDT) and Black and Karisinski (1991) (hereafter, BK) models,
and in the empirical models considered by Chan, Karolyi, Longstaff, and
Sanders (1992) (hereafter, CKLS). In these and similar models, the prop-
erties of the interest rate process are determined entirely by the drift and
diffusion functions (defined below). Thus, the problem of selecting among
the models above, or determining that none of them are appropriate and
that an alternative model is needed, comes down to choosing or estimating
the drift and diffusion functions.

Unfortunately, theory provides little guidance about these choices. The
appropriate specification of the drift and diffusion remains, for the most part,
an unanswered question. At least partly for these reasons, Stanton (1997)
and Ait-Sahalia (1996) have recently proposed nonparametric estimators of
the drift and diffusion functions. A key finding in these papers is that the
estimated drift function is highly non-linear, especially for large values of
the interest rate process. Stanton (1997) finds that the estimated drift drops
sharply as the interest rate increases beyond about 14 percent, while Aft-
Sahalia (1996) rejects all of the parametric models he considers, and finds
that “[t|he linearity of the drift imposed in the literature appears to be the
main source of misspecification” [Ait-Sahalia (1996), page 387].

These results are inconsistent with all of the models cited above. In
Vasicek, CIR, Pearson and Sun, Brennan and Schwartz, Courtadon, and
in the empirical models considered by CKLS, the drift is linear, while in
continuous-time versions of the BDT and BK models, the drift of the nat-
ural log of the interest rate is linear (in the natural log). Other than the
flexible parametric specification introduced by Ait-Sahalia (1996), we are
not aware of any parametric model which is consistent with the drift and



diffusion functions estimated by Stanton (1997) and Afit-Sahalia (1996), and
it is tempting to conclude that the existing set of interest rate models is in-
adequate. On the other hand, these new results may, in part, be artifacts of
the estimation procedure, rather than fundamental features of the data.

We perform a Monte Carlo study of the finite sample properties of the
nonparametric estimators of Stanton (1997) and Aft-Sahalia (1996) by re-
peatedly simulating the sample paths of the CIR square-root process. We
consider three different parameterizations, all of which have the same sta-
tionary density but different levels of persistence. The most persistent pa-
rameterization is consistent with the time series properties of short-term
US Treasury yields. The second parameterization has persistence equal to
that of the one week Eurodollar yield used in Ait-Sahalia (1996), and the
final parameterization provides a lower bound case with an implied monthly
first-order autocorrelation coefficient of 0.867. In addition to variation in
persistence of the process, we also consider three different simulation lengths
corresponding to 7,500, 15,000, and 30, 000 daily observations.

We apply the nonparametric estimators to each of the simulated sam-
ple paths, and thereby construct many estimates of the drift and diffusion
functions. Applying the exact procedure in Stanton (1997), we find that
the typical estimated drift function displays non-linearities at high interest
rates of exactly the sort found in Stanton, even though the simulated sample
paths were generated by a process with a linear drift. The explanation for
the poor performance of the nonparametric estimators is a truncation of the
distribution that occurs in finite samples but is eliminated asymptotically.
This result is particularly severe for data generated by a very persistent
underlying process.

As we explain below, this issue is distinct from the well-known increase
in the bias of the kernel regression estimators within a bandwidth of the
boundary of the support of the data. In particular, in order to account
for this “boundary effect,” we repeat the Monte Carlo experiment using the
jackknife kernel proposed in Rice (1984). This estimator offers (at best) only
a modest reduction in the spurious nonlinearity. In fact, we are unable to
find a variant of the kernel regression estimator and bandwidth choice that
enables accurate estimation of both the drift and the diffusion functions.

A consistent result for Stanton’s estimator (including the jackknife ver-
sion of the kernel regression estimator) is that the performance improves
with decreases in persistence and increases in sample size. The estimates
are accurate over the entire range of the data only for implausibly large sam-
ple sizes and for persistence levels that are implausibly low for short-term
interest rate data. It should be noted, however, that our findings regard-



ing the finite-sample performance of the kernel regression estimator is not
entirely negative. Except at very low levels of the process, the diffusion es-
timator is generally quite accurate. The accuracy of the diffusion estimator
is perhaps not surprising, for it has been widely known at least since Mer-
ton (1980) that high frequency data permits very precise estimation of the
diffusion coefficient.

The estimator in Ait-Sahalia (1996) also suggests that the drift function
contains important nonlinearities. In order to understand its finite-sample
properties, we applied a simplified version of this estimator to the simulated
square-root sample paths. Specifically, we assumed that the exact form
of the diffusion function was known, and we attempted to estimate the
parameters of the drift, starting the nonlinear optimization problem from
the true parameter values. The results of this exercise demonstrate that
there is substantial uncertainty associated with the drift parameter that
determines the nonlinearity at high levels of the square-root process. In
particular, the standard deviation of the estimated value of this parameter
across the one hundred simulations is an order of magnitude larger than
the uncertainty associated with any of the other drift parameters. The
point estimate of this parameter is also extremely sensitive to the manner in
which the nonparametric density estimator is constructed, and it can easily
suggest important nonlinearities where none exist in the data.

In a related paper, Pritsker (1997) studies the finite-sample properties
of Gaussian kernel estimators of the steady-state density, when the data are
generated by an Ornstein-Uhlenbeck process. Since this process is Gaussian,
he is able to compute the exact mean integrated squared error, optimal
kernel density bandwidth parameter, and other properties of the density
estimator. His results focus on the finite-sample biases in density estimators
of Markov processes with very weak mean reversion (so-called “near unit
root” behavior). His principle conclusion is that, in order to achieve finite-
sample results that are consistent with asymptotic theory, more frequent
sampling (i.e., daily versus monthly) is less important than a long span of
data. He also examines the optimal choice of the bandwidth parameter in
this context and finds that it differs substantially from the rules generated
for i¢d processes. However, he does not examine kernel regression estimators
of the type used in Stanton (1997); nor does he address any issues of the
finite-sample bias in the nonparametric drift and diffusion estimators in
Aft-Sahalia (1996) or Stanton (1997) and their relation to the biases in the
estimation of the steady-state density.

A reasonable conclusion to draw from the Monte Carlo evidence is that
it is difficult to use the nonparametric estimators in Stanton (1997) and Ait-



Sahalia (1996) to produce reliable inferences about the question asked in the
title of this paper. In order to provide additional evidence on the nature
of the short rate drift, we apply a generalized method of moments (GMM)
estimator, of the form introduced in CKLS, to the data from both Stan-
ton (1997) and Ait-Sahalia (1996). The evidence from this estimator is not
consistent with the results of the nonparametric estimators. When GMM is
applied to Stanton’s Treasury bill data, there is no statistically significant
evidence of nonlinearity, and when GMM is applied to Ait-Sahalia’s Eu-
rodollar data, the implied nonlinearity in the drift is marginally significant
but of the opposite sign from the nonparametric estimates. An alternative
would be to apply more sophisticated moment-based estimators to answer
the question. However, there is (as yet) no finite sample evidence, that
we are aware of, to support an alternate estimator as clearly superior in
practice.

The balance of the paper is organized as follows: Section 2 introduces
notation, some basic concepts from the kernel density estimation and kernel
regression literature, and the estimator introduced in Stanton (1997). The
Monte Carlo simulation of Stanton’s estimator — including an explanation
for the finite-sample nonlinearity — is contained in Section 3, and Section
4 presents the results for the jackknife kernel regression estimator. Section
5 examines a simplified version of the estimator in Ait-Sahalia (1996), and
Section 6 presents a simple discretized GMM estimation applied to the data
in Stanton (1997). The conclusions and implications for future work contains
in Section 7.

2 Kernel Estimates of the Drift and the Diffusion
Functions

2.1 Basic Definitions

Let {x;;t > 0} be defined as the unique, time-homogeneous Markov process
that solves a stochastic differential equation (SDE) of the form

dxy = p(zy) dt + o (24) dBy, (1)

where {B;;t > 0} is a scalar Brownian motion, p : R — R is the drift
function, and o : R — Ry is the diffusion function. Equation (1) is a
short-hand notation for the stochastic integral equation

xt::Uo+/Ot,u(:vs)d8+/0ta(xs)st, @)

5



where the first integral in (2) is an ordinary Riemann integral and the second
integral is an Ito6 stochastic integral. In the context of this paper, xz; is
interpreted as the “instantaneous” or “short” rate.

Under technical conditions on the transition function, z; is a diffusion
process.t This implies that

Elzpn — x| o] = p(e) A+o(A) (3)

and
E |(wpa —a)? | 2] = 0" (2) A +0(4), (4)

where A is a discrete (but arbitrarily small) time step in a sequence of
observations of the process x; and o(A) is the asymptotic order symbol
used to denote a function ¢ such that lima|o ¢ (A) /A =0.

Finally, as Arnold (1974) states, the dynamics of the Markov process @
are completely described by its associated infinitesimal generator

Ef (@) |z — f(20)

Alf (z)] = IAIIL% A
= () f () + =0 () " () (5)

2

where f : R — R is a bounded measurable function, f’ denotes the first
derivative of f with respect to its single argument, and f” is the second
derivative of f.2 This operator will turn out to be very useful in charac-
terizing alternate approaches to the estimation of the drift and diffusion
functions.

2.2 A Brief Review of Alternative Estimators

As (3), (4), and (5) suggest, estimation of the drift and diffusion functions
is central to understanding both the long-run properties and the short-run
dynamics of x;. One natural approach to estimating p and ¢ is to posit
specific functional forms that are consistent with a process whose transi-
tion density is known in closed-form. For example, if p(z) = k(6 — x) and
o (x) = oy/z, then Cox, Ingersoll, and Ross (1985) demonstrate that the

'See Arnold (1974), Section 2.5.
’In defining the infinitesimal generator, (5) imposes the assumption of time-
homogeneity implied by the form of (1). For the infinitesimal generator of a more general

non time-homogeneous Markov process, see Equations (2.4.1), (2.4.5), and page 42 in
Arnold (1974).



stationary density of the unique solution to the SDE defined by these func-
tions is a gamma distribution, and the transition density of the process is a
noncentral chi-squared density.

Lo (1988) describes how to estimate the parameters of z; using the
method of maximum likelihood, where the likelihood function is constructed
from the known form of the transition density.® This approach is elegant
and the associated estimator possesses all of the desirable properties of a
maximum likelihood estimator. Unfortunately, it is usually only practi-
cal with the small set of diffusions whose transition densities are known in
closed-form.*

When likelihood-based estimation is impractical, a variety of moment-
based estimators are available. The simplest approach is to discretize (1)
using a simple Euler approximation and apply the generalized method of
moments introduced in Hansen (1982). CKLS do this in the case where
the drift is of the form p(x) = o + Bz and the (local) variance is of the
form 0% (x) = 02227, Of course, some of the moments constructed are only
approximately correct.

Hansen and Scheinkman (1995) describe a method for constructing ex-
act method-of-moment estimators based on the infinitesimal generator of
the continuous-time process.” Duffie and Glynn (1996) develope an alter-
nate exact moment-based estimator by sampling at random, as opposed to
deterministic, intervals. Finally, Duffie and Singleton (1993) describe simu-
lated moment estimators.

2.3 The Nonparametric Estimator in Stanton (1997)

A nonparametric density estimator is constructed in a standard way, follow-
ing Silverman (1986), for example.® Let {xtA}Z;l be a sample of size T' from

3See Pearson and Sun (1994) for an application of this approach.

*Santa-Clara (1995) uses simulation methods to extend the likelihood-based estimation
approach to cases where the partial differential equation defining the transition density
(the Kolmogorov backward or forward equation) cannot be solved explicitly. The drawback
to this approach is that it is computationally intensive.

Specifically, for the case of time-homogeneous scalar diffusions, Hansen and
Scheinkman (1995) propose two classes of moment conditions: (i) E (A[¢ (z¢)]) = 0 and
(@) E(¢p(xe) Alp (ver1)] — @ (xe41) Alp (2¢)]) = 0, where ¢ is any “test” function in a
dense subset of the set of (almost-surely) square-integrable functions.

fSince — thanks in large part to the work of Ait-Sahalia (1996), Boudoukh, Whitelaw,
Richardson, and Stanton (1997), and Stanton (1997) — kernel estimation is familiar to
financial economists, the treatment given in this section will be brief, and it is designed
primarily to introduce required notation. For more detail, see Silverman (1986) or Hérdle
(1990).



the continuous-time process x¢, observed at the discrete interval A. Further-
more, let {zz}f\; 1 be a set of N points defining an equally spaced partition of
a subset of the support of the stationary density.” If the stationary density
of z; is denoted 7 (x), a kernel estimator is of the form

T A
~ 1 o — Xy
Rz ok (A5 ©®
t=1
fori=1,2,...,N, where K is a kernel function satisfying the condition:

/::K(y)dy =1.

The kernel function provides a method of weighting “nearby” observations
in order to construct a smoothed histogram, which is the density estimator
(6). Stanton (1997) uses a Gaussian kernel:

K (u) = # exp <—%u2) ; u € (—o0,+00) . (7)
The parameter h is called the smoothing parameter or the bandwidth of the
density estimator, and h determines the width of the kernel function around
any partition point z;. It specifies how (and how many) “neighboring” points
of svtA are to be considered in constructing the density estimator at z;.

The nonparametric density estimator is completely defined by the pair
(K, h). Unfortunately, the choice of the bandwidth parameter in a time
series context in which the data are highly autocorrelated is problematic.
Most of the results on bandwidth choice in the kernel estimation literature
apply only to data which are independent draws from a given (although
unknown) density, i.e., “iid observations.” Pritsker (1997) evaluates the
impact of persistence in the process on the choice of optimal bandwidth in
the context of a Gaussian process.

His results can be summarized as follows: (1) The bandwidth that min-
imizes the mean integrated squared error relative to the true density is very
sensitive to the autocorrelation in the data, and it is much larger than the
optimal choice in the case of iid data; (2) The optimal bandwidth is very
insensitive to the frequency with which the data is sampled, which means
that there is only a small change in the optimal bandwidth for monthly ver-
sus daily observations; and (3) The optimal bandwidth is decreasing in the

"In many applications, the support of the stationary density is (0,00). In practice, the
partition points {zy}i\]:l are chosen to capture virtually all of the probability mass of the
stationary density.



span of the data. However, it does not decline dramatically with realistic
increases in the sample size. For example, for parameter values consistent
with the data used in Afit-Sahalia (1996), Pritsker (1997) computes the de-
crease in the optimal bandwidth in moving from ten years of daily data to
twenty years of daily data is only about twenty percent.

In the Monte Carlo simulations examined in the next section, two choices
of the bandwidth parameter are used for each parameter combination. The
first choice is the optimal bandwidth for the iid case: h = 6T /5, where &
is the sample standard deviation of the data and T is the sample size. This
choice has three advantages in the current analysis. (7) These bandwidths
are the ones used in Stanton (1997), and this choice is, therefore, helpful in
understanding the finite-sample properties of his estimator. (i) It is much
smaller than the bandwidths suggested in Pritsker (1997). Finally, (¢i¢) the
iid bandwidth procedure produces bandwidth values that are close to those
chosen by other common data-dependent bandwidth selection procedures
such as “plug-in” and “solve the equation” methods.® The second bandwidth
choice is the one implied by the simulation results in Pritsker (1997).Y Even
though they are explicitly optimal only for the Gaussian case, they are the
only choices available that explicitly vary with the degree of persistence of
the sampled process.

The estimators in Stanton (1997) are based directly on (3) and (4),
above.!’ In particular, “inverting” these equations yields:

() = ~Blrepn — a0 | o] + 22 )
and
7 @) =\ [(rrs - a? ] 5+ L2 )

The essence of Stanton’s approach is to apply the Nadaraya-Watson (N-
W) kernel regression estimator to construct nonparametric estimates of the

SWhether or not they are close to the bandwidths that would be chosen by cross-
validation methods is an open question, since cross-validation is too computationally ex-
pensive in the current context.

9The parameter choices used in examining the square-root diffusion are deliberately
chosen to be consistent with the unconditional moments of the parameterizations examined
in Pritsker (1997). Two points should be emphasized strongly: (1) The bandwidth choices
in Pritsker (1997) were constructed in the context of density estimators and not kernel
regression estimators, and (2) they were developed for Gaussian processes while the square-
root process has a noncentral chi-squared conditional distribution function.

10Stanton (1997) justifies his estimators using Taylor series expansions involving the
infinitesimal generator, but for the simple approximations examined here, the estimators
are an immediate consequence of the definition of a diffusion process.



conditional expectations in (8) and (9):

T-1 s—zf
| X (e - o) K (25

1 (z) A 1 g (ﬂﬁ) ; (10)
t=1 h
and
o | et R (5 "
o LiK () A
fort=1,...,N, where {th}Z;l is a sample of size T from the continuous-

time process x, {zl}f\; 1 is a set of IV points defining an equally spaced
partition of a subset of the support of the stationary density, K is the
Gaussian kernel defined by (7), and h is chosen in the manner described
earlier.

An examination of (10) and (11) suggests that a potential problem with
the N-W estimators occurs in the tails of the empirical estimate of the den-
sity. The term Y7 'K (%) is Th - 7 (z;) and when the estimate of
the density is small, the estimator may become numerically unstable. In-
tuitively, even though there may be a large number of observations of x,
there are (by definition) very few observations in the extremes of the tails.
Since the kernel regression estimator (in effect) only uses “local” data in es-
timating the conditional moments, they may be measured with a substantial
amount of error.

3 A Monte Carlo Analysis of the Estimator in
Stanton (1997)
3.1 Simulating a Square-Root Diffusion

In order to evaluate the finite-sample performance of Stanton’s estimator,
the SDE in (1) is assumed to have the form of a square-root diffusion process,
introduced into the term structure literature in CIR:

d$t =K (0 — $t> dt -+ O'\/.CU_tdBt (12)

where 6 defines the long-run mean of x;, k determines the speed at which the
process returns to the long-run mean, and ¢ helps to define the instantaneous

10



variance of the process. By construction, the drift of this process is linear,
and (as noted earlier), its (true) steady-state density is
W v—1

7 (x) = I‘(y)m “exp (—wz), (13)

where w = 2k/02, v = 2k0/0?, and T is the Gamma function.
The transition density for the square-root diffusion between any two
dates s and ¢ (s > t) is:

v

p(xs,s | xt,t) = cexp (—u —v) (Z) " I, (2v/uv) (14)

where
2K

o2l —exp(—k(s—1))]

u=crrexp(—k(s—1)),

Cc =

v = cxs,
g=v —1,

and I, is the modified Bessel function of the first kind of order ¢q. This
is the noncentral chi-square density with 2g + 2 degrees of freedom and
noncentrality parameter 2u. The form of (14) is given in CIR and in Feller
(1951). The unconditional moments of the square-root process are

Elz] =96, (15)
Var [z] = 92%, (16)

and
Corr [Ti4-n, 7] = exp (—KA) . (17)

The choice of k, the parameter that determines the persistence of the pro-
cess, is particularly important.

For any given set of parameter values, a simulated sample path for the
square-root diffusion can be constructed in two steps: (1) Draw an initial
value from the Gamma density (13); and (2) Using this initial value, simulate
successive observations by drawing from the noncentral chi-squared density
(14).1! The simulated sample paths of (12) are constructed assuming that

'In the simulations reported below, this is accomplished using the noncentral chi-
squared random number generator (implemented using the nex2rnd function) in Matlab,
Version 5.0.

11



the length of time between observations of the diffusion is A = 1/250, corre-
sponding to daily observations. The length of the simulated series, Ty, is
chosen from the set {7500, 15000, 30000}, in order to understand the impact
of increasing sample size on the properties of the estimators.

k is chosen from the set {0.21459,0.85837,1.71624}. The first value
implies a (monthly) autocorrelation of the short rate of 0.982, which is con-
sistent with the upper end of the estimates of this parameter based on US
interest rate data. The second choice of k implies a first-order (monthly)
autocorrelation coefficient that is equal to that of the Eurodollar data used
in Ait-Sahalia (1996), and the third choice for  is a lower bound case of a
first-order autocorrelation coefficient equal to 0.867.12 The choice of # is not
particularly important for the Monte Carlo study, and it is set at 0.085711
in order to be consistent with the Ait-Sahalia (1996) data set.!* Given a
(0, k) pair, the value of o is chosen in order to set (16) equal to the sample
variance in the Aftt-Sahalia (1996) data set. This implies a set of values for
o equal to {0.07830,0.15660,0.22143}, where the ordering is consistent with
the ordering of the x values.

3.2 The Results

The results of applying the nonparametric density estimator in (6) to the
simulated sample paths associated with each model parameterization, sim-
ulation length, and bandwidth choice are shown in Figures 1 through 3.
These figures all have the same structure: The left column of graphs re-
ports the density estimates for the é¢d bandwidth, and the right column
reports the same results for the Pritsker bandwidth. Table 1 reports the
bandwidth parameter values used for all simulation length and parameter
combinations. As required by the theory of kernel estimation, both sets of
bandwidths decrease as the sample size increases. The Pritsker bandwidths
are substantially larger than the corresponding iid bandwidths.

Each row of each figure reports the results for simulations of a given

12 As noted earlier, these parameter values are also chosen to be consistent with the

analysis in Pritsker (1997) of the optimal bandwidth choice in the presence of extremely
persistent data.

13This choice of 0 is not exactly equal to the value of 0.08912 in Ait-Sahalia’s data,
but it is close. There is no evidence to suggest that a change in the long-run mean
of the simulated data will have an important effect on the analysis of the estimators
conducted below. The slight difference was necessary to ensure the integer degrees of
freedom necessary for the noncentral chi-squared random number generator in Matlab.

""We would like to thank Matt Pritsker for generously providing the bandwidths that
correspond to the sample sizes used in the simulations reported here.

12



sample size, with the sample size increasing toward the bottom of the figure.
Figure 1 reports the results for the simulation with the greatest level of
persistence. Figure 2 is the intermediate persistence parameterization, and
Figure 3 reports the results for the least persistent version of the square-
root process. Each graph also has a common structure. It consists of three
lines. The dashed line is the pointwise average at each gridpoint in the
support of the stationary density across the one hundred simulations. The
two dotted lines are the 25" and 75" percentile points for the density (again,
for each gridpoint). Notice that the true densities are the same in every
graph in each figure. This is a direct result of the choices of x and o in
each parameterization. All of the estimated densities are closer to the true
density as Ty, increases, exactly as expected. It is also the case that the
estimates are more accurate as k increases; i.e., as persistence in the data
decreases. This is also perfectly reasonable, since lower persistence implies
— in a heuristic sense — more data.

The results from applying the kernel regression estimators from Stanton
(1997) to the simulated square-root data are shown in Figures 4 through
9. Figures 4 through 6 examine the pointwise average and 25-th and 75-
th percentile points of the drift estimates for the three parameterizations
varying both the bandwidth and the number of simulated observations.

The results for the éid bandwidth choice are striking. The kernel regres-
sion estimates can exhibit substantial nonlinearity. First, consider the top
left graph in Figure 4. This corresponds to the sample size and bandwidth
choice used in Stanton (1997). The average drift estimator is only close to
the true drift for a small interval in the heart of the stationary density. It
diverges rapidly from the true linear drift at both the extreme lower and
upper ends of the support of the stationary density. Equally important, the
25" and 75" percentile bands indicate that there is substantial variation
in individual estimates of the drift function and that these estimates are
particularly inaccurate in the right tail of the density. It would be easy
on the basis of a picture like this and the asymptotic theory to conclude
that the drift of the underlying process is highly nonlinear. However, this
nonlinearity is entirely spurious.

The drift estimates, based on the iid bandwidth choice, for other choices
of persistence and other sample sizes are consistent with the results for the
r = 0.21459 and Tsim = 7,500 case. The remaining graphs in Figure 4 in-
dicate that the estimator becomes more accurate and the dispersion in the
estimates across the 100 simulated sample paths becomes smaller for larger
sample sizes. For the case of Tg;y, = 30,000, the iid-based drift estimator
is accurate for a wide range of values in the heart of the support of the

13



stationary density, although it still exhibits some spurious nonlinearity for
levels of the process in excess of sixteen percent. Figures 5 and 6 confirm
the pattern observed in Figure 4. The nonparametric estimators do become
more accurate as the persistence in the data decreases (as k increases). In-
tuitively, this effect is similar to an increase in the sample size. In summary,
the accuracy of the éid drift estimator improves as T, increases and as k
increases, but the spurious nonlinearity in the drift estimator only becomes
negligible for unrealistic parameter values and sample sizes.

The kernel regression estimators of the drift based on the bandwidth rec-
ommendations in Pritsker (1997) are generally accurate, although they are
slightly nonlinear.!® This is true for all parameterizations and for all sample
sizes examined in Figures 4 through 6. If drift estimation is the sole objec-
tive of the analysis, the prediction from these simulations is clear: Choose
a large bandwidth that oversmooths the stationary density. Of course, this
prescription is only appropriate if the true drift is linear, because what is
really going on in these figures (as is apparent from the diffusion results pre-
sented below) is that the oversmoothed nonparametric estimator has simply
obliterated all of the detail in the estimated function. Even if the true
drift had been nonlinear, the oversmoothed estimator would have suggested
linearity.

A partial explanation for the poor performance of the 7id drift estimator
at high levels of x is that the kernel regression estimator only uses local
data in defining the regression function around a point z; in the partition of
the support of the stationary density. This means that, even though there
may be, for example, 7500 observation in total, there are (by construction)
very few observations in the long right tail of the density. In effect, there is
a “small sample” problem in constructing the nonparametric estimator at
high levels of z. This explains why the estimator is imprecise where there
are few observations (and it explains why the oversmoothed estimator does
not exhibit this problem), but it does not explain the direction of the bias,
which is discussed in the next section.

Figures 7 through 9 show the results of applying the kernel regression
estimators of the diffusion function to the simulated data sets. Generally
speaking, they are the exact opposite of the drift estimation case. The éid
estimator does a good job of providing an accurate estimate of the diffu-
sion function, for all but the most extreme combinations of persistence and
sample size, and the estimates based on the larger Pritsker bandwidths are
less accurate because they oversmooth the diffusion function. However, the

'5This is most readily apparent in Figure 6.
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Pritsker estimates improve with both increases in sample size and decreases
in persistence. The primary failing of the diffusion estimator is its inability
to capture the nonlinearity of the true diffusion at low levels of z;. How-
ever, Stanton (1997) shows how to modify the estimator to constrain it to
go through zero.

3.3 Why Is the Estimated Drift Nonlinear?

From equation (3), it follows that estimation of the drift function is equiv-
alent (up to o(A)) to estimation of the conditional mean function. Thus,
understanding the biases in the estimation of the drift amounts to under-
standing the biases in the estimation of the conditional mean. Asymptotic
theory (for example, Robinson (1983, 1986)) establishes the pointwise con-
sistency of kernel regression estimators in a time series context. Therefore,
the spurious non-linearity documented in the previous section must be a
finite sample property of the estimators. Figure 10, which is based on a sin-
gle sample path from the parameterization x = 0.85837, ¢ = 0.15660, and
# = 0.085711 using 7500 observations, illustrates the source of the problem.
The figure shows the interest rate, and the subsequent change in the inter-
est rate, in the right-hand tail of the distribution. Specifically, it shows the
ordered pairs (z¢, x4 A — 2¢) for which z; > 0.14. This is approximately the
point at which the average estimated drift function in the top left plot of
Figure 5 starts to diverge from the true drift.

The relation between the expected change in the interest rate and its
level implied by the true square-root process is

E[:Et+A — .’L’t’.’Et] = ¥ (1 - e_”A) + (Q_KA — 1) Tt

= 0.00029 — 0.00343z;

where the second equality uses the parameter values and A = 1/250 (one
day) used to simulate the process. This line is plotted in Figure 10, along
with the estimated OLS regression line using only the tail observations.
Notably, the northeast corner of the figure is empty, and the estimated
regression has a slope of —0.17, which is clearly more steeply sloped than
the true relation between rate levels and subsequent changes.

The relation between x4 A —x; and ¢ is negatively sloped not by chance,
but because of the truncation of the realized distribution of interest rates
at 0.1583, the largest realization in the sample. The interest rate change
that follows the realization of x; = 0.1583 must be non-positive, simply
because 0.1583 is the largest interest rate in the sample. More generally,
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maxX _ xy, where ™%

in any sample it must be the case that xy.a — 2 <
is the largest realization. Thus, the northeast corner of Figure 10 is empty
by necessity, not chance, and the negative relation between x4 A — x; and
x¢ is not just an artifact of this sample path. As discussed above, the
N-W estimator used by Stanton uses only local information in estimating
the regression function, and therefore accommodates the negative relation
between z; A — x; and z; in the tail of the distribution. The truncation
that is the source of the problem fails to occur only in the limiting case of
an infinite sample, because then x™?*

In order to understand the effect of the truncation of the distribution
of realized interest rates, we consider how our beliefs about the distribution
of the realizations of a square root process, and particularly the conditional
mean of our beliefs, are affected by the knowledge that the realizations lie
in a range [z™" 2™%%], Recall that the transition density of the square-
root process is given in (14). Over such a short time interval the density
is approximately symmetric, and the conditional mean and (approximate)
drift are

= Q.

Elzyala] = 0+ e 3 (x — 6)

and
pla)) = [Elecaled — 2] /A +0(A) /A

~ [0(1—e ")+ (e —1)ay] /A

Using the parameter vector above, when x; = 0.16 the conditional mean
and drift are 0.1598 and approximately —0.06, respectively.

Next, suppose that we condition on the knowledge that Zmin < Tran <
2™, Conditional on both this inequality and xy, it is straightforward to
show that our beliefs about z;y A are given by the density
. % if zpoa € [w0i, 2]
g ($t+A|3’)t and T4 A € [xm1n7xmax]> = ’

0 otherwise.

Figure 11 illustrates this density when z; = 0.16, 2™ = 0.0132, and 2™ =
0.1618. Since a; is close to 2™ the truncation at 2™ has little effect on
the conditional density and the truncation at x™* has the effect of skewing
the distribution to the left. It is clear that, when x; is close to z™2*, the
truncation at ™ reduces the conditional mean of x;.A. We can calculate
the conditional mean and the (approximate) drift from
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[j::x uf(ulzy)du
mmax

Join S (u|a)du

E [zesalee and zpyp € [0, 27| = -

and '
() ~ (E [xt+A|:ct and xy A € [mmm,xma"]] — J:t) JA.

Using the same parameter vector as above, when z; = 0.16 these are 0.15977
and —0.0567, respectively. As expected, the conditional mean is smaller, and
the absolute value of the drift is larger, than when we did not condition on
the fact that ™" < a3, A < ™2,

This calculation, while intuitive, actually understates the bias. The ex-
pected value of the next observation is not

K [xt—l-A ‘ Lt and Ti+A € [xmax’xmin“ ’ (18>

but rather the expected value conditional on all of the other observations
being in the interval [a;max,xmi“]. For x; near x™2*, this is smaller than
(18), while for 2; near ™", it is larger. Due to the dimensionality of the
integral, we cannot present an explicit calculation of this expectation. How-
ever, our Monte Carlo analysis of the kernel regression estimator provides
an approximation of this integral.

It is important to note that this bias is distinct from the well-known
boundary value bias problem associated with kernel regression estimators.
The boundary value bias occurs at points for which the kernel overlaps the
boundary of the data, while the bias demonstrated above will occur even
when this does not occur. For example, the iid bandwidths reported in Ta-
ble 1 are all approximately 0.005. Aslong as z is a distance of approximately
0.015 from the boundary, a Gaussian kernel using these bandwidths will as-
sign a trivial weight to the boundary points, so that the boundary value bias
will not be material. Comparing the ¢id panels of Figures 1 through 6, one
can see that the bias occurs well within the interior of the distribution of the
data, more than 0.015 from the boundary. In addition, in the next section,
we demonstrate that the (boundary) bias-corrected jackknife estimator of
Rice (1984) does not eliminate the problem.

To summarize this discussion, Figures 10 and 11 illustrate that, when
2t is near ™ x4 A is more likely to be less than x; than the true drift
implies. Similarly, when x; is near ™", x;, A is more likely to be greater
than x; than the true drift implies. This is the source of the bias in the
N-W kernel regression estimator in (10) that is used by Stanton (1997).
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Intuitively, at each point z in some subset of the support of xy, it estimates
the drift by taking the realizations of the process that are near x, and seeing
what typically is the realization of the process at the next time step. When
x is near ™" (or 2™*) the realization at the next time step is more likely
to be high (or low) than the true drift implies, biasing the estimation of the
drift.

4 The Jackknife Kernel Estimator

4.1 Defining the Estimator

As noted earlier, it is well-known in the kernel regression literature that these
estimators can exhibit increased bias within a bandwidth of the upper and
lower boundaries of the support of the sample observations.!6 Rice (1984)
proposes the jackknife kernel estimator as a solution to this “boundary ef-
fect.”1” The essence of this correction is to use Richardson extrapolation to
modify the shape of the kernel when the grid point being evaluated is within
one bandwidth of either the upper or lower boundary of the approximate
support of the density.

Let the support of the density be the closed interval [Q,ﬂ and assume
that the kernel function is defined over the closed interval [—1,1].1% Re-
call that the simple N-W kernel estimator with bandwidth parameter h,
described earlier, has the general form

T-1 A A a:fa:f
t=1 (xt+1_wt )K< 7 )

my, () = T g (I_,ftA)

(19)

t=1

Let any gridpoint = € [Q,ﬂ be written in the form x = ph, where p is a new
parameter whose role is to express the position of x relative to the boundary
and the bandwidth. Define the following terms

wic (0, p) = /b " K (2)dz (20)

and
wic (1,p) = /b 2K (2) dz. (21)

'Formally, the bias is O (h®) in the middle of the density, but only O (h) near the
boundaries.

'"This estimator is also discussed in Section 4.4 of Hirdle (1990).

'8 Obviously, this analysis precludes the case of the Gaussian kernel used earlier.
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Note, by the definition of the kernel function, if p > 1, then the basic
properties of K imply that wg (0,p) =1 and wk (1,p) = 0.
For p < 1, the jackknife kernel estimator is defined as

mj, (2) = (1+ ¢)my (x) — dmen () , (22)

which is a weighted average of two kernel estimators with bandwidths h and
&h. ¢ is the weighting parameter which is optimally (from the criterion of
bias elimination) set equal to

— WK (17:0) /wK (07:0)
= Con ()0 Jorc (0,0 —wr (L) Jor Op) 2

Rice (1984) advocates the use of £ =2 — p.

The jackknife kernel estimator will be implemented using a quartic kernel

Kq(z) = % (1-2%)7, (24)

for |z| < 1. This kernel is defined on the compact interval [—1,1], and it
permits an explicit computation of (20) and (21)

3 5. 15 1

wg, (0,p) = —16p5 — §p3 + 1Pt 5
5 15 , 15 5
wic, (Lp) = =p° = 2o + 20" — =

32 16 16 32

The use of the quartic rather than the Gaussian kernel means that the
data-dependent #id bandwidth choices used in the previous section need to
be modified. We are unaware of any simple heuristic rule for this kernel,
but following the analysis in Chapter 5 of Hérdle (1990), the data dependent
bandwidth was set at three times the corresponding Gaussian i¢d bandwidth.
The next section considers whether the boundary correction in the jackknife
kernel estimator result in substantially improved inference about the non-
linearity of the drift function.

4.2 A Monte Carlo Evaluation of the Jackknife Estimator

We apply the same Monte Carlo analysis to this estimator as was applied
to the original Stanton (1997) estimator. Figures 12 through 17 reproduce
Figures 4 through 6 using the jackknife kernel. For ease of comparison, the
scales on the axes are identical across the two sets of pictures. First, con-
sider the i¢d bandwidth case in Figure 12. The jackknife kernel results in
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a noticeable improvement relative to the standard N-W estimator in Figure
4, but correcting the boundary effect does not eliminate the spurious non-
linearity in the kernel regression estimator. This is true for all three sample
sizes. Of course, the overall performance of the estimator improves with the
length of the simulated series. The results in Figures 13 and 14 are similar
to those in Figure 12. As in the case of the standard N-W kernel regression
estimator, the estimates improve with decreases in the persistence of the
process.

The jackknife kernel results based on the larger bandwidths consistent
with Pritsker (1997) are quite interesting. As in the earlier analysis, these
bandwidths are not optimal because the process is not Gaussian. In the case
of the jackknife kernel, these bandwidths are also incorrect because we are
no longer using a Gaussian kernel. Nonetheless, this case demonstrates the
impact of a large bandwidth on jackknife estimator. The estimates of the
drift function are substantially worse than the (oversmoothed) regular N-W
estimates. They exhibit the kind of spurious nonlinearity that is common
with the ¢id bandwidth setting. This is true across all levels of autocorre-
lation and sample size, although the usual effects apply here as well. These
results are interesting because they are evidence of one case in which the
choice of the kernel seems to be important in determining the performance
of the estimator.

The effects of the boundary correction on the diffusion estimators are
shown in Figures 15 through 17. As in Figures 7 through 9, the estimators
based on the #¢d bandwidth choice are quite accurate. The boundary cor-
rection has a strong positive impact on the diffusion estimator based on the
(larger) Pritsker bandwidths. In particular, these estimates are now quite ac-
curate and virtually indistinguishable from the éid bandwidth results. There
appears to be a trade-off in the wider bandwidth choices between an accu-
rate estimation of the drift or the diffusion function. In summary, the overall
effect of the boundary correction in the jackknife estimator is to reduce the
spurious nonlinearity in the data, but it does not eliminate it. This implies
that the spurious nonlinearity documented using the N-W kernel regression
algorithm is not simply a result of the boundary effect, but rather it follows
from the truncation argument in the last section and the extreme persistence
of interest rate data.
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5 The Estimator in Ait-Sahalia (1996)

As noted in the introduction, Ait-Sahalia (1996) also concludes that there
are statistically and economically significant nonlinearities in the drift of
the short-rate. Since his estimation approach is semi-nonparametric, we
will now consider some Monte Carlo evidence on its performance.

5.1 The Definition

The general form of the drift and diffusion estimators proposed in Aft-
Sahalia (1996) are based on the stationary (or invariant) distribution of x.*
Given a sample of T (discrete-time) observations of x, they are constructed
in four steps: (¢) estimate the stationary density using a fully nonparametric
estimator; (i7) develop an explicit connection between the drift and diffu-
sion functions and the stationary density using the stationary form of the
Kolmogorov forward equation; (#ii) choose flexible parametric forms for the
drift and diffusion functions; and (iv) choose the parameters of the drift and
diffusion to make the stationary density implied by the drift and diffusion
function in (i77) as “close” as possible (in a specific sense) to the nonpara-
metric estimate in (7). These steps are now described in more detail.

The first step is implemented using a standard Gaussian kernel and (6),
as described above. The second step in the estimation of the drift and
diffusion functions is to use results in Karlin and Taylor (1981) to relate the
stationary density 7 (z) to the drift and diffusion functions.?? In particular,
if pu(x;4) and o (z;1) are specific functional forms for the drift and diffusion
functions, using parameter vector ¢, then

7 (w30) = %exp{/m %d@a} (25)

where the lower limit of integration is arbitrary and £ () is a constant
that ensures that 7 (x;1)) integrates to one.?! The heart of the estimation
procedure developed in Ait-Sahalia (1996) is the observation that, if p (x; )
and o (x;1)) are adequate representation of the drift and diffusion functions

' Ait-Sahalia (1996) also develops drift and diffusion estimators based on the transition
densities, using the forward and backward Kolmogorov equations, but we do not evaluate
them here.

20See, in particular, Karlin and Taylor (1981) Chapter 15, Section 5 (pages 220-221)
and Section 6 (pages 241-242) for the connection, through the stationary form of the
Kolmogorov forward equation, between the drift and diffusion functions and the stationary
density.

*IThe notation in (25) generally follows Ait-Sahalia (1996).
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in (1), then — for some parameter choice ¥* — the parameterized density
7 (z;9*) should be close to the nonparametric density estimated from the
data.

The third step in the estimation of the drift and diffusion functions is
to choose flexible functional forms that are capable of nesting a variety of
possible shapes. Ait-Sahalia (1996) selects

p(w;) = ag + a1z + asz? + azzr L (26)

and
o? (z31h) = By + B + By, (27)

so that 1 = (ap, a1, a2, as, By, 81, B2, 33) . Of course, there are a number of
restrictions on the elements of ¢ that are necessary to ensure that u and o
actually imply that (1) has a unique solution and that the implied stationary
density exists.??

The fourth — and final — step in the estimation process is to state the
precise sense in which 7 (z;9) and 7 (x) should be “close,” and how this idea
can be used to select the parameter vector ¥* from the parameter space .
Ait-Sahalia (1996) proposes a minimum mean square distance measure. In
particular, he chooses

¢* = argmin E | (7 (z39) — 7 (2))?], (28)
PYewr

where the expectation is taken with respect to the true stationary density
7 (x). Estimation is actually performed using

~x 1
1 = argmin —
bev i—1

(7w (w3 00) = 7 (20)), (29)

M=

which is effectively a “nonlinear regression” problem in which the dependent
variable is the nonparametric density evaluated at a data point (7 (z¢)) and
the fitted nonlinear function is given by (25).

5.2 Some Monte Carlo Evidence

The general form of the estimator as described in Section 5.1 cannot be
applied directly to the case of the square-root diffusion (12) since, as Ait-
Sahalia (1996) notes, (27) is not identified under the null hypothesis. Since

*?See Ait-Sahalia (1996), Equation (24).
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our focus is on the estimate of the drift function, we will make the strong
assumption that the true diffusion function is known precisely, including the
value of ¢. In this case,

20 (u; o 2cv 20, , - 203 (1 1
/m %du: J—Qo(lnx—lng)—l—;_—J (2! — ) ——23 (— —:) )
where again the lower bound of integration, zx, is arbitrary.

Finding good starting values for the parameter estimation is a nontriv-
ial issue. One approach is to follow Ait-Sahalia (1996) and use a feasible
generalized least squares (FGLS) algorithm based on the Euler approxima-
tion to the SDE implied by the drift and variance functions (26) and (27),
respectively. Instead, in the results reported below, we started the opti-

mization problem at the true parameter vector; i.e., oz8 = k0, a(lj = —k, and

ay = ag = (0.0. While this is admittedly unrealistic in a practical context,
if anything, it will bias the results in favor of the estimator.?3

Tables 2 through 7 examine the finite-sample performance of the Ait-
Sahalia (1996) estimator across the 100 sample paths for each simulation
length and parameter combination. Tables 2 and 3 examine the case of
k = 0.21459, Tables 4 and 5 are for k = 0.85837, and Tables 6 and 7
examine k = 1.71624. There are a few common results across these three
pairs of tables. First, the accuracy of the estimators — as measured by the
mean of the distribution across the one hundred simulations — is increasing
in the length of the simulated series. Second, the standard deviation of
the estimates is also decreasing in the simulation length. Third, the cross-
sectional standard deviation of all parameter estimates is increasing in o.
Finally, the standard deviations of the estimators are uniformly lower for
the (larger) Pritsker bandwidths, when compared with the results for the
corresponding iid bandwidths.

There are also striking differences across the tables. First, the results for
the ¢id bandwidth cases show that the point estimate of the drift parameters
g, a1, and ag are reasonably accurate, but the coefficient on the quadratic

?3The numerical calculations for minimizing the sum of squared errors in (29) for each
of the 100 simulated sample paths was conducted using the “minerr” function in Math-
cad7 (Professional). The sum of squared errors is minimized using a modification of the
Levenberg-Marquardt method (LM algorithm). The actual code is based on the MIN-
PACK algorithms developed by the Argonne National Laboratory with an additional
random perturbation step added at the end of the first convergence, in order to reduce the
chance that the algorithm stops at a local minimum. For details on the LM algorithm,
see the MathCad 6.0 Manual or Moré (1977).
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term in the drift, as, is consistently negative and skewed to the left for
the two parameterizations that are consistent with the data used in prior
studies. This negative sign is reversed in Table 6 for the case of K = 1.71624
with Tgm equal to 15,000 or 30,000. In all cases, however, the standard
deviation across simulations for as is substantially larger than the cross-
sectional standard deviation on any of the other drift parameters. This is
consistent with the idea that it is very difficult to measure with accuracy
the nonlinearity in the drift for large levels of the square-root process. The
concavity of the drift at high levels of the short rate, documented in earlier
studies, may be partly a reflection of this bias in this parameter estimate.

The Pritsker bandwidth results — shown in Tables 3, 5, and 7 — also
produce reasonably accurate estimates of «q, a1, and as, but the point
estimates of ap are now positive and the sample distribution is skewed to
the right! The sample standard deviation of the estimates of this parameter
are, again, large. The point estimates decrease as Ts;m increases, but (as
noted above) they increase substantially with increases in o. Apparently, the
data dependent bandwidth selection procedure for the Pritsker bandwidths
does not decrease at a fast enough rate.

One possible response to comparing the results for the ¢id versus Pritsker
bandwidths might be termed the “Goldilocks effect;” i.e., small bandwidth
choices result in downward biased estimates and large bandwidth choices
result in upward biased estimates, so a choice in the middle will be “just
right.”?* Tt may well be the case that a gridsearch over possible bandwidth
choices will result in an estimator that is unbiased in finite-samples for real-
istic persistence parameters and sample sizes for the underlying square-root
diffusion, but that choice will undoubtedly be dependent on the choice of
the true underlying process. More importantly, this parameter that governs
nonlinearity in the fitted drift for large levels of the process is inherently
measured with a great deal of uncertainty. The standard deviation across
the one hundred simulations is consistently an order of magnitude larger
than the standard deviations for any other parameter.

This result is consistent, heuristically, with the arguments made in the
previous section to explain the biases in the estimator in Stanton (1997).
The term aszz ! and has relatively little impact on the drift function for
moderate and large values of x, while the term apz? has relatively little

*In fact, the actual bandwidth choice used in Ait-Sahalia (1996) lies roughly in the
middle of the range spanned by the iid and Pritsker bandwidth choices. Results not
reported in the paper show that this choice produces a (slightly) upward biased estimate
of the quadratic parameter, with a standard deviation across simulations that is virtually
identical to Panel A of Table 4. These results are available upon request.
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impact for moderate and small values of x. Thus, the estimates of as and
a3 place a great deal of weight on the realizations near ™" and ™2,
respectively. We have already seen that when x; is near min, TirA I8 more
likely to be greater than z; than the true drift implies, and when x; is near
x™2X - xi 1 A is more likely to be less than x; than the true drift implies. The
spurious non-linearity produced by the estimator is due to the fact that it
accommodates this by letting co and ag be non-zero, even though the true
drift is linear with agy = ag = 0.

6 So, Is the Drift Actually Nonlinear?

The primary conclusions of the Monte Carlo analyses presented above are
as follows. First, there is a truncation bias in any finite sample which com-
plicates inference about the conditional mean of the short rate away from
the center of the support of the density, and kernel regression estimators
are particularly sensitive to this bias since they use local data more inten-
sively than conventional parametric estimators. In fact, if one “corrects”
the results in Stanton (1997) for the bias we have documented, the drift ap-
pears to be nearly linear. Second, the performance of the kernel regression
estimators are sensitive to the choice of the bandwidth parameter, which
is difficult to specify a priori in the absence of a specific underlying null
hypotheses for the regression functions. Third, both the Stanton (1997)
and Ait-Sahalia (1996) estimators are not very efficient in the tails of the
density, which makes precise inference about linearity or nonlinearity of the
true drift function difficult. Owverall, the Monte Carlo results indicate that
Stanton (1997) and Ait-Sahalia (1996)do not provide convincing evidence
of non-linearity.

To confirm this, we consider an alternate estimation approach to address
the question of the linearity or nonlinearity of the short rate drift. The
simplest alternative is to consider a GMM approach applied to a discretized
version of a generalized short rate process. In particular, using a simple
extension of the estimator in CKLS, we estimate

2 —1
Ti41l — X = Qg + Q1T + QaXy + Q3T + €441, (31)

where
E(e1) =0 and  E(e},,) = 0%y, (32)

Since GMM estimation is now standard in the macroeconomics and fi-
nance literature, there is no need to describe the general approach. The
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precise application to the problem at hand is explained in detail in CKLS.
Two additional moment conditions are added, in this case, in order to ex-
actly identify the model’s six parameters. The vector of moment conditions
are
_ - :
Et4+1T¢
€t+1$%
41y ’

2 2.2
i1 — 0T

2 2,.2
(5t+1 -0 mtv) L

fe(@) (33)

where ¢ = (ao,al,ag,ag,JQ,y),. The moment weighting matrix used in
the estimation and in calculating the (asymptotic) covariance matrix is cal-
culated using a Bartlett kernel with 60 lags.?®:26

The data used in the GMM estimation are the daily observations on the
three-month Treasury bill from January 1965 to July 1995 used in Stanton
(1997) and the daily observations on the seven day Eurodollar rate used in
Ait-Sahalia (1996).27 The results of the simple, discretized GMM estimation
are presented in Table 8. There is little evidence against linearity in the
drift of the three-month Treasury bill yield, but the point estimate of the
quadratic term in the drift using the Eurodollar rate is significantly greater
than zero. This is in marked contrast to the nonparametric estimators,
which suggest a negative coefficient. The point estimates for the Treasury
bill data suggests that there is extremely strong persistence in the data.

The parameter estimates in Table 8 are consistent with “volatility in-
duced stationarity” of the interest rate process, as described in Conley,
Hansen, Luttmer, and Scheinkman (CHLS).?® The evidence in favor of lin-

2’ The estimates were also constructed using the pre-whitened covariance matrix esti-
mator with automatic lag truncation selection as described in Newey and West (1994).
This resulted in no material differences in the point estimates of the parameters or in the
estimates of the parameter standard deviations.

26The lag truncation parameter is also referred to in the literature as the bandwidth
parameter. It defines how many autocovariances are used in constructing the heteroskedas-
ticity and autocorrelation consistent covariance matrix estimator. It is analogous to the
bandwidth parameter in the kernel regression literature in the sense that it is both diffi-
cult to specify a priori and its choice has a significant impact on the performance of the
covariance estimator.

*"We would like to thank both Yacine Ait-Sahalia and Richard Stanton for generously
providing their data sets.

28 «One special case of volatility-induced stationarity is when the drift is constant and
positive and the variance elasticity exceeds one. Another is when the drift is linear . . .
(in ) . . . and the variance elasticity exceeds two.” [CHLS, page 534]
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earity in the drift of the three-month Treasury bill yield is not entirely
inconsistent with the Federal funds rate data analyzed in CHLS. There, for
a pre-specified variance elasticity of three (which is close to the 2 x v =
2 x 1.623 = 3.246 point estimate in Table 6), specification tests based on
the stationary density produced mixed results.?”

It is well-known that the simple GMM estimator used to produce Table 8
induces a discretization bias that comes from the first-order approximation
used in (31) and (32). Some of the evidence in Stanton (1997) on the effect
of higher-order approximations on estimates based on daily data suggests
that this bias may not be too large, but it remains an open question, and an
application of the techniques introduced in CHLS — once their finite-sample
properties are better understood — would provide important additional in-
formation on the issues addressed in this section.

7 Conclusions

There is no definitive answer to the question posed in the title of this paper.
The Monte Carlo evidence developed and presented above demonstrates that
there are quantitatively significant biases in kernel regression estimators of
the drift advocated in Stanton (1997). These biases produce precisely the
kind of nonlinearity at high levels of the process reported in Stanton (1997).
Furthermore, the finite-sample performance of these estimators is dependent
on the choice of the bandwidth parameter. Oversmoothed estimates always
tend to suggest linearity in the drift, while undersmoothed estimates are
particularly susceptible to the biases documented above. Surprisingly these
bandwidth issues also carry over into the semi-nonparametric estimator of
Aft-Sahalia (1996). In addition, a major conclusion from a Monte Carlo
analysis of this drift estimator is that the standard errors on the quadratic
term are so large as to make useful inference problematic at best.

The overall conclusion that we draw from the Monte Carlo evidence is
that the nonparametric and semi-nonparametric estimators examined in the
paper simply cannot produce reliable evidence of nonlinearity in the drift
when applied to short-term interest rate data. Therefore, in order to assess
this question, GMM estimation based on a simple first-order discretization
of the data, as in CKLS, is examined. The evidence from this estimator is
mixed. The Treasury bill data does not produce any statistically reliable

298pecifically, tests using the Fed funds data and six “test functions” failed to reject the
linear model at a conventional ten percent significance level, but estimates based on eight
test functions did clearly reject the model.
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evidence of nonlinearity. The Eurodollar data suggests a positive coefficient
on the quadratic term in the drift, which is inconsistent with the evidence
presented in Stanton (1997) and Ait-Sahalia (1996). It is possible that
this question can be resolved by the application of the more sophisticated
moment-based estimation techniques of CHLS or Duffie and Glynn (1996).
However, until the finite-sample performance of these estimators is under-
stood, the nonlinearity or linearity of the short rate drift will have to remain
an open question.
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Figure 1: The Stationary Density of the Square-Root Process. xk = (0.21459,
f = 0.085711, and o = 0.07830. The solid line is the true gamma density.
The dashed line is the pointwise average across the 100 simulations, and the
dotted lines are the pointwise 25-th and 75-th percentiles.
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Figure 2: The Stationary Density of the Square-Root Process. k = (0.85837,
f = 0.085711, and o = 0.15660. The solid line is the true gamma density.
The dashed line is the pointwise average across the 100 simulations, and the
dotted lines are the pointwise 25-th and 75-th percentiles.
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Figure 3: The Stationary Density of the Square-Root Process. k = 1.71624,
f = 0.085711, and o = 0.22143. The solid line is the true gamma density.
The dashed line is the pointwise average across the 100 simulations, and the
dotted lines are the pointwise 25-th and 75-th percentiles.
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Figure 4: The Drift Function Using the Estimator in Stanton (1997). k =
0.21459, 8 = 0.085711, and o = 0.07830. The solid line is the true drift.
The dashed line is the pointwise average across the 100 simulations, and the
dotted lines are the pointwise 25-th and 75-th percentiles.

32



11D Bandwidth Pritsker Bandwidth

0% 005 01 015 02
T=7,500
0.1

"0 0.05 0.1 0.15 0.2 "0 0.05 0.1 0.15 0.2
T = 15,000 T = 15,000

0.05 0.1 0.15 0.2 "0 0.05 0.1 0.15 0.2
T =30,000 T =30,000

Figure 5: The Drift Function Using the Estimator in Stanton (1997). k =
0.85837, 8 = 0.085711, and o = 0.15660. The solid line is the true drift.
The dashed line is the pointwise average across the 100 simulations, and the
dotted lines are the pointwise 25-th and 75-th percentiles.
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Figure 6: The Drift Function Using the Estimator in Stanton (1997). k =
1.71624, # = 0.085711, and ¢ = 0.22143. The solid line is the true drift.
The dashed line is the pointwise average across the 100 simulations, and the
dotted lines are the pointwise 25-th and 75-th percentiles.
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Figure 7: The Diffusion Function Using the Estimator in Stanton (1997).
k = 0.21459, 8 = 0.085711, and o = 0.07830. The solid line is the true dif-
fusion. The dashed line is the pointwise average across the 100 simulations,
and the dotted lines are the pointwise 25-th and 75-th percentiles.

35



11D Bandwidth Pritsker Bandwidth
0.1, 0.1,

0.08
0.06

0.04

0.02

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
T=7,500 T=7,500

0.1, 0.1

0.08

0.06

0.04

0.02

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
T = 15,000 T = 15,000

0.1 0.1

0.08

0.06

0.04

0.02

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
T =30,000 T =30,000

Figure 8: The Diffusion Function Using the Estimator in Stanton (1997).
k = 0.85837, 8 = 0.085711, and o = 0.15660. The solid line is the true dif-
fusion. The dashed line is the pointwise average across the 100 simulations,
and the dotted lines are the pointwise 25-th and 75-th percentiles.
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Figure 9: The Diffusion Function Using the Estimator in Stanton (1997).
k= 1.71624, 8 = 0.085711, and o = 0.22143. The solid line is the true dif-
fusion. The dashed line is the pointwise average across the 100 simulations,
and the dotted lines are the pointwise 25-th and 75-th percentiles.
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Figure 10: A Plot of [x;ya — @] versus z; in the tail of a sample path. The
parameter values are: k = 0.85837, 8 = 0.085711, o = 0.15660, A = 1/250,
and Tym = 7,500. The dashed line is the true regression function and the
solid line is the OLS regression through the data points.
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Figure 12: The Drift Function Using the Jackknife Estimator. x = 0.21459,
0 = 0.085711, and o = 0.07830. The solid line is the true drift. The dashed
line is the pointwise average across the 100 simulations, and the dotted lines
are the pointwise 25-th and 75-th percentiles.

40



11D Bandwidth Pritsker Bandwidth

"0 0.05 0.1 0.15 0.2 "0 0.05 0.1 0.15 0.2
T = 15,000 T = 15,000

0.05 0.1 0.15 0.2 "0 0.05 0.1 0.15 0.2
T =30,000 T =30,000

Figure 13: The Drift Function Using the Jackknife Estimator. x = 0.85837,
0 = 0.085711, and o = 0.15660. The solid line is the true drift. The dashed
line is the pointwise average across the 100 simulations, and the dotted lines
are the pointwise 25-th and 75-th percentiles.
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Figure 14: The Drift Function Using the Jackknife Estimator. x = 1.71624,
0 = 0.085711, and o = 0.22143. The solid line is the true drift. The dashed
line is the pointwise average across the 100 simulations, and the dotted lines
are the pointwise 25-th and 75-th percentiles.
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Figure 15: The Diffusion Function Using the Jackknife Estimator. x =
0.21459, 8 = 0.085711, and o = 0.07830. The solid line is the true diffusion.
The dashed line is the pointwise average across the 100 simulations, and the
dotted lines are the pointwise 25-th and 75-th percentiles.
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Figure 16: The Diffusion Function Using the Jackknife Estimator. x =
0.85837, 8 = 0.085711, and o = 0.15660. The solid line is the true diffusion.
The dashed line is the pointwise average across the 100 simulations, and the
dotted lines are the pointwise 25-th and 75-th percentiles.
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Figure 17: The Diffusion Function Using the Jackknife Estimator. x =
1.71624, 8 = 0.085711, and o = 0.22143. The solid line is the true diffusion.
The dashed line is the pointwise average across the 100 simulations, and the
dotted lines are the pointwise 25-th and 75-th percentiles.
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Table 1: Bandwidth Parameter Choices
Panel A: k = 0.21459 and o = 0.07830.

Simulation Length TID Bandwidth Pritsker Bandwidth

7,500 0.0048 0.0299
15,000 0.0047 0.0245
30,000 0.0043 0.0198

Panel B: ¥ = 0.85837 and ¢ = 0.15660.

Simulation Length I1ID Bandwidth Pritsker Bandwidth

7,500 0.0056 0.0198
15,000 0.0051 0.0159
30,000 0.0045 0.0128

Panel C: k =1.71624 and o = 0.22143.

Simulation Length TID Bandwidth Pritsker Bandwidth

7,500 0.0057 0.0159
15,000 0.0051 0.0128
30,000 0.0045 0.0102

For all three panels, # = 0.085711. The “IID Bandwidth” is the average
bandwidth across all 100 simulations, for a given simulation length and
combination of parameters, of the data-dependent selection rule h = 7~1/5,
where 7 is the sample average standard deviation for the simulated data set.
The “Pritsker Bandwidth” are comparable (for the sample sizes reported
above) to those Table 2 of Pritsker (1997) as the bandwidth that minimizes
the mean integrated squared error of the estimated stationary density (for
the case of a Gaussian process) with parameter values and the number of
observations. They were generously provided by Matt Pritsker.
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Table 2: The Distribution of the Ait-Sahalia (1996) Parameter
Estimates: « = 0.21459, 0 = 0.07830, and 11D Bandwidth.

Panel A: T, = 7,500.

Percentiles
Mean  Std. Dev. 250 50" 75th True Value
Qg 0.0184 0.0029 0.0166 0.0183 0.0192 0.0184
o —0.2402 0.0470 —0.2661 —0.2252 —0.2117 —0.2146
oy —0.4410 0.6647 —0.8009 —0.2291 —0.0001 0.0000
Qs 0.0003 0.0004 —0.0000 0.0002 0.0005 0.0000
Panel B: Ty, = 15, 000.
Percentiles
Mean  Std. Dev. 2510 50" 75 True Value
Qg 0.0180 0.0013 0.0175 0.0181 0.0185 0.0184
o —0.2266 0.0251 —0.2386 —0.2196 —0.2109 —0.2146
oy —0.1590 0.3410 —0.3886 —0.0954 0.0643 0.0000
Qs 0.0001 0.0002 —0.0000 0.0001 0.0003 0.0000
Panel C: Ty, = 30, 000.
Percentiles
Mean Std. Dev. 250 50" 75th True Value
Qg 0.0183 0.0008 0.0181 0.0183 0.0187 0.0184
o —0.2209 0.0172 —0.2273 —-0.2159 —0.2117 —0.2146
oy —0.1011 0.2474 —0.2399 —0.0597 0.0498 0.0000
Qs 0.0001 0.0002 —0.0000 0.0000 0.0001 0.0000

The form of the estimated drift function is:

0(x) = ap+ a1z + aox® + gz !

while the true drift function is p (z) = & (0 — ). Estimation for each sample
path is started at the true parameter values. All statistics are computed
using the 100 simulated sample paths of a square root diffusion.
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Table 3: The Distribution of the Ait-Sahalia (1996) Parameter
Estimates: « = 0.21459, 0 = 0.07830, and Pritsker
Bandwidth.

Panel A: Ty, = 7, 500.

Percentiles
Mean Std. Dev. 25t 50" 75t True Value
g 0.0189 0.0013 0.0184 0.0188 0.0192 0.0184
o —0.2035 0.0101 —-0.2113 —-0.2044 -0.1971 —0.2146
Qo 0.1677 0.1260 0.0829 0.1416 0.2412 0.0000
az  —0.0001 0.0002 —0.0002 —0.0002 —0.0000 0.0000
Panel B: T, = 15,000.
Percentiles
Mean Std. Dev. 25t 50" 75t True Value
o 0.0188 0.0010 0.0183 0.0187 0.0193 0.0184
a1 —0.2045 0.0108 —0.2121 -0.2046 —0.1975 —0.2146
Qo 0.1472 0.1140 0.0662 0.1340 0.2164 0.0000
az  —0.0001 0.0002 —0.0002 —0.0001 —0.0000 0.0000
Panel C: Ty, = 30, 000.
Percentiles
Mean Std. Dev. 25t 50" 75t True Value
o 0.0188 0.0008 0.0184 0.0187 0.0190 0.0184
ap  —0.2057 0.0095 —0.2128 —0.2059 —0.2018 —0.2146
Qo 0.0989 0.0966 0.0533 0.1047 0.1611 0.0000
az  —0.0001 0.0001 —0.0001 —0.0001 —0.0000 0.0000

The form of the estimated drift function is:

i(x)=ao+ a1x+ asr? + agz™!

while the true drift function is p (x) = k (0 — ). Estimation for each sample
path is started at the true parameter values. All statistics are computed
using the 100 simulated sample paths of a square root diffusion.
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Table 4: The Distribution of the Ait-Sahalia (1996) Parameter
Estimates: « = 0.85837, 0 = 0.15660, and 11D Bandwidth.

Panel A: T, = 7,500.

Percentiles
Mean Std. Dev. 250 50" 75th True Value
Qg 0.0733 0.0034 0.0717 0.0734 0.0749 0.0736
o —0.8782 0.0632 —0.9164 —0.8659 —0.8425 —0.8584
oy —0.3749 0.8634 —0.9324 —0.3391 0.3266 0.0000
Qs 0.0003 0.0008 —0.0003 0.0001 0.0007 0.0000
Panel B: Ty, = 15, 000.
Percentiles
Mean  Std. Dev. 2510 50" 75 True Value
Qg 0.0735 0.0026 0.0724 0.0735 0.0749 0.0736
a;  —0.8605 0.0450 —0.8798 —0.8569 —0.8323 —0.8584
oy —0.0909 0.6843 —0.4903 —0.0011 0.4053 0.0000
Qs 0.0000 0.0004 —0.0003 —0.0000 0.0002 0.0000
Panel C: Ty, = 30, 000.
Percentiles
Mean  Std. Dev. 250 50" 75th True Value
Qg 0.0736 0.0011 0.0732 0.0737 0.0742 0.0736
ap  —0.8577 0.0268 —0.8718 —0.8576 —0.8431 —0.8584
oy —0.0385 0.4179 —0.3281 —0.0155 0.2478 0.0000
az —0.0000 0.0003 —0.0002 —0.0001 0.0001 0.0000

The form of the estimated drift function is:

0(x) = ap+ a1z + aox® + gz !

while the true drift function is p (z) = & (0 — ). Estimation for each sample
path is started at the true parameter values. All statistics are computed
using the 100 simulated sample paths of a square root diffusion.
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Table 5: The Distribution of the Ait-Sahalia (1996) Parameter
Estimates: « = 0.85837, 0 = 0.15660, and Pritsker
Bandwidth.

Panel A: Ty, = 7, 500.

Percentiles
Mean Std. Dev. 25t 50" 75t True Value
g 0.0745 0.0022 0.0733 0.0740 0.0766 0.0736
ap  —0.8308 0.0300 —0.8555 —0.8342 —0.8096 —0.8584
Qo 0.4023 0.4265 0.1247 0.3644 0.7115 0.0000
az  —0.0002 0.0005 —0.0005 —0.0004 —0.0000 0.0000
Panel B: T, = 15,000.
Percentiles
Mean Std. Dev. 25t 50" 75t True Value
o 0.0746 0.0022 0.0735 0.0745 0.0761 0.0736
ap  —0.8316 0.0287 —0.8556 —0.8327 —0.8082 —0.8584
Qo 0.3348 0.3754 0.1427 0.3784 0.6189 0.0000
az  —0.0003 0.0004 —0.0005 —0.0003 —0.0001 0.0000
Panel C: Ty, = 30, 000.
Percentiles
Mean Std. Dev. 25t 50" 75t True Value
o 0.0742 0.0018 0.0733 0.0740 0.0748 0.0736
ap  —0.8366 0.0219 —0.8544 —0.8378 —0.8216 —0.8584
Qo 0.2313 0.2809 0.0823 0.2469 0.4169 0.0000
az  —0.0002 0.0002 —0.0004 —0.0002 —0.0001 0.0000

The form of the estimated drift function is:

i(x)=ao+ a1x+ asr? + agz™!

while the true drift function is p (x) = k (0 — ). Estimation for each sample
path is started at the true parameter values. All statistics are computed
using the 100 simulated sample paths of a square root diffusion.
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Table 6: The Distribution of the Ait-Sahalia (1996) Parameter
Estimates: « = 1.71624, 0 = 0.22143, and 11D Bandwidth.

Panel A: T, = 7,500.

Percentiles
Mean  Std. Dev. 250 50" 75th True Value
Qg 0.1473 0.0052 0.1455 0.1470 0.1483 0.1471
o —1.7252 0.0855 —1.7763 —1.7160 —1.6843 —1.7162
oy —0.2051 1.2058 —0.8552 —0.0081 0.5295 0.0000
Qs 0.0001 0.0010 —0.0005 —0.0000 0.0006 0.0000
Panel B: Ty, = 15, 000.
Percentiles
Mean  Std. Dev. 2510 50" 75 True Value
Qg 0.1468 0.0031 0.1450 0.1470 0.1482 0.1471
o1 —1.7100 0.0584 —1.7383 —1.7075 —1.6715 —1.7162
) 0.1041 0.8522 —0.4080 0.3000 0.7522 0.0000
as  —0.0001 0.0006 —0.0005 —0.0001 0.0003 0.0000
Panel C: Ty, = 30, 000.
Percentiles
Mean  Std. Dev. 250 50" 75th True Value
Qg 0.1470 0.0027 0.1463 0.1472 0.1479 0.1471
o1 —1.7100 0.0408 —1.7275 —1.7130 —1.6858 —1.7162
Q9 0.0977 0.5919 —0.2842 0.1157 0.5170 0.0000
as  —0.0001 0.0004 —0.0004 —0.0001 0.0001 0.0000

The form of the estimated drift function is:

0(x) = ap+ a1z + aox® + gz !

while the true drift function is p (z) = & (0 — ). Estimation for each sample
path is started at the true parameter values. All statistics are computed
using the 100 simulated sample paths of a square root diffusion.
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Table 7: The Distribution of the Ait-Sahalia (1996) Parameter
Estimates: « = 1.71624, 0 = 0.22143, and Pritsker
Bandwidth.

Panel A: Ty, = 7, 500.

Percentiles
Mean Std. Dev. 25t 50" 75t True Value
g 0.1486 0.0049 0.1466 0.1480 0.1509 0.1471
o —1.6624 0.0630 —1.7110 —1.6635 —1.6185 —1.7162
Qo 0.6496 0.7654 0.2405 0.7211 1.1033 0.0000
az  —0.0005 0.0008 —0.0010 —0.0006 —0.0001 0.0000
Panel B: T, = 15,000.
Percentiles
Mean Std. Dev. 25t 50" 75t True Value
o 0.1493 0.0035 0.1470 0.1484 0.1513 0.1471
ap —1.6713 0.0469 —1.7063 —1.6650 —1.6330 —1.7162
Qo 0.5209 0.6306 0.1543 0.6056 0.9284 0.0000
az  —0.0005 0.0006 —0.0009 —0.0005 —0.0001 0.0000
Panel C: Ty, = 30, 000.
Percentiles
Mean Std. Dev. 25t 50" 75t True Value
o 0.1475 0.0029 0.1463 0.1473 0.1487 0.1471
o —1.6841 0.0379 —1.7152 —1.6870 —1.6628 —1.7162
Qo 0.3987 0.4341 0.1679 0.4163 0.6847 0.0000
az  —0.0003 0.0004 —0.0006 —0.0004 —0.0001 0.0000

The form of the estimated drift function is:

i(x)=ao+ a1x+ asr? + agz™!

while the true drift function is p (x) = k (0 — ). Estimation for each sample
path is started at the true parameter values. All statistics are computed
using the 100 simulated sample paths of a square root diffusion.
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Table 8 GMM Estimates of the Nonlinear Drift Model

Stanton (1997) Art-Sahalia (1996)

Parameters T-Bill Data Eurodollar Data
ap 0.0011 0.0039
(0.0007) (0.0025)
o —0.0164 —0.0588
(0.0097) (0.0319)
a9 0.0746 0.2596
(0.0395) (0.1094)
asg —0.0000 —0.0001
(0.0000) (0.0001)
o? 0.0054 0.0142
(0.0024) (0.0117)
~y 1.6234 1.4550
(0.1024) (0.1925)

Sample Size: Jan 1965 — July 1995 June 1973 — Feb 1995
T =7975 T = 5505

The parameters are estimated from
2 -1
Tii1 — T = Qg + Q1T + Qoxy + 3T~ + €441

and
E(e41)=0 and E (5t2+1) = o2a)"

using a weighting matrix based on a Bartlett kernel with 60 time lags. Stan-
dard errors are reported in parentheses.
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