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Abstract. The twin brothers Libor Market and Gaussian HJM models are investigated. A

simple exotic option, floor on composition, is studied. The same explicit approach is used for both
models. Using an approximation the LLM price is obtained without Monte Carlo simulation.

The results of the approximation are very good, with an error well below the uncertainty due

to the simulation. The appendices proves the existence of the (modified) normal and shifted
log-normal LLM used in the pricing. The link of the latter with the Ho and Lee continuous time

model is described.

1. Introduction

Even if they are twin brothers (see [4]), the Libor Market Models (LLM) and Gaussian HJM
models usually lead to very different numerical implementations techniques. Monte Carlo simu-
lations is the main tool for the former while explicit formulas or trees are the standard for the
later.

One simple case where the LLM are not used with Monte Carlo simulations is the pricing of
vanilla caps and floors. There the explicit Black formula is used. This is probably the only case
where the almost-always-working-but-heavy simulation approach is not used.

The instrument studied here is an option on the composition (described below). It is not a
plain vanilla instrument but a relatively simple exotic one. It involves several Libor rates fixed at
different dates but only one payment date.

In the simple one-factor Gaussian HJM, an explicit formula can be obtained for many instru-
ments and in particular for that one (Section 3). Formulas for similar instruments, including
overnight-indexed swaps, can be found in [6].

The LLM used is based on rates following an arithmetic Brownian motion (by opposition to a
geometric Brownian motion in the BGM1 model [1]) The reason for the choice is that the normal
models on rates seems to represent better the dynamic of interest rate products, at least for
the moment in USD. A comparison between models that leads to this conclusion in the case of
swaptions is proposed in [8]. For the normal LLM an approximation of the drift and volatility
terms are used to obtain an explicit formula in Section 4. The quality of the approximation is
analysed through examples in Section 5. The volatility part is analysed through caplets. The drift
an volatility approximations is applied to the options on composition.

The model used is not exactly based on a pure arithmetic Brownian motion. Appendix A proves
that such equations for the forward Libor rates can not be embedded into a HJM framework. The
equations are modified far away from any realistic rate to ensure the theoretical foundation of the
model but with no impact on any practical computations.

Appendix C is dedicated to the theoretical analysis of the approximation used in Section 4
pricing formula. The approximated formula can also be considered as an exact formula for a LLM
based on shifted log-normal dynamic for the forward rate. In its simplest version the same shifted
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LLM is equivalent to the continuous time version of the Ho and Lee model [9]. The equivalence
is explained in the same appendix. The shifted log-normal and normal LLM have been used in
other places (in particular [13, Chapter 11] and [3]) but the conditions for their existence were not
discussed.

The compounded instrument pays a floating rate (typically the Libor) compounded on several
consecutive periods. The period dates are 0 ≤ t1 < t2 < · · · < tn. The rates are fixed at the
dates si ≤ ti (0 = s0 ≤ s1 < · · · < sn−1). The accrual factors for the periods ti–ti+1 are δi. The
composition is

(1)
n−1∏
i=1

1 + δiL(si, ti)

The payment is subject to a floor (or a cap). Without the floor the value of the instrument would
simply be 1 in t1, like a floating rate note. What is special here is that the floor is on the total
composition, not on each individual fixing. For a floor with an amount K, the payment at maturity
is

max

(
n−1∏
i=1

1 + δiL(si, ti),K

)
.

2. Model and hypothesis

The two instances of the HJM framework used in this article are described in this section. They
are a one-factor Gaussian version (deterministic volatility) and a multi-factors LLM version with
normal Libor as base equations.

In general, the HJM framework describes the behavior of P (t, u), the price in t of the zero-
coupon bond paying 1 in u (0 ≤ t, u ≤ T ). When the discount curve P (t, .) is absolutely continuous,
which is something that is always the case in practice as the curve is constructed by some kind of
interpolation, there exists f(t, u) such that

(2) P (t, u) = exp
(
−
∫ u

t

f(t, s)ds

)
.

The idea of Heath-Jarrow-Morton [5] was to exploit this property by modeling f with a stochastic
differential equation

df(t, u) = µ(t, u)dt + σ(t, u).dWt

for some suitable (stochastic) µ and σ and deducing the behavior of P from there. To ensure
the arbitrage-free property of the model, a relationship between the drift and the volatility is
required. The volatility and the Brownian motion are m-dimensional while the drift and the rate
are 1-dimensional. The model technical details can be found in the original paper or in the chapter
Dynamical term structure model of [10].

The probability space is (Ω, {Ft},F , P). The filtration Ft is the (augmented) filtration of a
m-dimensional standard Brownian motion (Wt)0≤t≤T . To simplify the writing in the rest of the
paper, we will use the notation

ν(t, u) =
∫ u

t

σ(t, s)ds.

Let Nt = exp(
∫ t

0
rsds) be the cash-account numeraire with (rs)0≤s≤T the short rate given by

rt = f(t, t). The equations of the model in the numeraire measure associated to Nt are

df(t, u) = σ(t, u)ν(t, u)dt + σ(t, u).dWt

or
dPN (t, u) = −PN (t, u)ν(t, u).dWt

The notation PN (t, s) designates the numeraire rebased value of P , i.e. PN (t, s) = N−1
t P (t, s).

The two following technical lemmas were presented in [7] for the Gaussian one-factor HJM.
Similar formulas can be found in [2, (3.3),(3.4)] in the framework of coherent interest-rate models.
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Lemma 1. Let 0 ≤ t ≤ u ≤ v. In HJM framework the price of the zero coupon bond is

P (u, v) =
P (t, v)
P (t, u)

exp
(
−
∫ u

t

(ν(s, v)− ν(s, u)) .dWs −
1
2

∫ u

t

(
|ν(s, v)|2 − |ν(s, u)|2

)
ds

)
.

Lemma 2. Let 0 ≤ u ≤ v. In the HJM framework

NuN−1
v = exp

(
−
∫ v

u

rsds

)
= P (u, v) exp

(
−
∫ v

u

ν(s, v)dWs −
1
2

∫ v

u

ν2(s, v)ds

)
.

2.1. Gaussian HJM. The first version of the model used is the HJM model with m = 1 and a
deterministic volatility function (σ : [0, T ]2 → R+). The simplicity of the model allows explicit
formulas for many products. Section 3 describes the formulas for the option on composition.

In one example of Section 5 caplet are used. Let θ ≤ ti < ti+1 be the expiry, start and end
dates of the caplet. The strike rate is K. The value of the caplet at 0 is

−(1 + δiK)P (0, ti+1)N(−κ− αi+1) + P (0, ti)N(−κ− αi)

with

α2
i =

∫ θ

0

(ν(s, ti)− ν(s, θ))2ds

and

κ =
1

αi+1 − αi
ln
(

P (0, ti+1)(1 + δiK)
P (0, ti)

− 1
2
(α2

i+1 − α2
i )
)

.

2.2. Libor Market Model. The idea behind the Libor Market model is to embed different Black-
like equation for the forward (Libor) rate between standard dates (0 ≤ t1 < t2 < · · · < tn) into a
unique HJM model. The Libor rates L(t, tj) are defined by

1 + δiL(s, ti) =
P (s, ti)

P (s, ti+1)
.

The equations underlying the normal, Gaussian, or Bachelier Libor market model are

(3) dL(t, tj) = γj(L(t, tj), t).dW j+1
t

in the probability space with numeraire P (t, tj+1). The γj (0 ≤ j ≤ n − 1) are m-dimensional
functions. To merit the full qualification of Bachelier model, γj should be purely deterministic
(not involving L). For fundamental reasons explained in Appendix A such a model would be
ill-defined. In this section γ is used with its most general form. Section 4 will consider it in its
simple deterministic form. It can be considered also as an affine function leading to a displaced
log-normal dynamic as described in Appendix C.

The Brownian motion change between the Nt and the P (t, tj+1) numeraires is given by

dW j+1
t = dWt + ν(t, tj+1)dt.

The difference ν(t, tj)− ν(t, tj+1) can be written as

ν(t, tj)− ν(t, tj+1) =
1

L(t, tj) + 1
δj

γj(L(t, tj), t)

Recursively the change of numeraire gives

dW j+1
t = −

n−1∑
i=j+1

1
L(t, ti) + 1

δi

γi(L(t, tj), t)dt + dWn
t .

All the rates can be written with respect to the same (last) numeraire

dL(t, tj) = −

 n−1∑
i=j+1

1
L(t, ti) + 1

δi

γi(L(t, tj), t).γj(L(t, tj), t)

 dt + γj(L(t, tj), t).dWn
t .
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When δi is small the rate dependency of drift almost disappear. Let δi ∼ 1/n (one year final
rate). If the rates are bounded by L− ≤ |Li| ≤ L+ we obtain for the drift term

γj

n−1∑
i=j+1

γi
1

L− + n
≤ drift ≤ γj

n−1∑
i=j+1

γi
1

L+ + n

If all the γi are equal and constant, both bounds are converging to γ2. In all cases the ratio between
the lower bound and upper bound is

L− + n

L+ + n

which is rapidly close to 1 when n growths. So for most of the rates, the drift is close to its initial
value. This property of little dependency of the drift will be used later.

In the pure Bachelier model on rate L(., tj) the caplet price is given by ([12, Section 3.3.1])

P (0, ti+1)δi

(
(L(0, ti)−K)N(κ) + |γi|

√
θn(κ)

)
with

κ =
L(0, ti)−K

|γi|
√

θ
.

3. Gaussian one-factor HJM approach to option on composition

Theorem 1. Let 0 ≤ t1 < t2 < · · · < tn, 0 = s0 ≤ t ≤ s1 < s2 < · · · < sn−1 with si ≤ ti and
K > 0. In the a HJM one factor model, the price of an instrument paying in tn the maximum of a
fixed amount K and of a principal gross-up by the discrete compounding of interest rates over the
periods [ti, ti+1] fixed in si (i.e. Q

∏n−1
i=1 P (si, ti)/P (si, ti+1)) is given in 0 by

F0 = P (0, t1)N(κ + σ) + KP (0, tn)N(−κ)

where

σ2 =
n−1∑
i=1

n−1∑
j=1

∫ min(si,sj)

0

(ν(s, ti+1)− ν(s, ti))(ν(s, tj+1)− ν(s, tj))ds.

and

κ =
1
σ

(
ln
(

P (0, t1)
KP (0, tn)

)
− 1

2
σ2

)
.

The price of an instrument paying in tn the minimum of a fixed amount K and of a principal
gross-up by the discrete compounding of interest rates over the periods [ti, ti+1] fixed in si is given
in 0 by

C0 = P (0, t1)N(−κ− σ) + KP (0, tn)N(κ)

Proof. The price of the instrument is

F0 = N0 EN

(
max

{
n−1∏
i=1

P (si, ti)
P (si, ti+1)

,K

}
N−1

tn

)
.

Using Lemma 1, we have
n−1∏
i=1

P (si, ti)
P (si, ti+1)

=
P (0, t1)
P (0, tn)

exp

(
1
2

n−1∑
i=1

∫ si

0

ν2(s, ti+1)− ν2(s, ti)ds +
n−1∑
i=1

∫ si

0

ν(s, ti+1)− ν(s, ti)dWs

)
By Lemma 2,

N−1
tn

= P (0, tn) exp
(
−
∫ tn

0

ν(s, tn)dWs −
1
2

∫ tn

0

ν2(s, tn)ds

)
.

We denote this last exponential by Ltn . Let W#
s = Ws +

∫ s

0
ν(τ, tn)dτ . By the Girsanov’s theorem

([11, Section 4.2.2, p. 72]), W#
t is a standard Brownian motion with respect to the probability

P# of density Ltn with respect to N. This is the tn maturity bond numeraire. Note that the



LLM & HJM 5

probability P# is not the same as the probability Pn used in the LLM as the models are not the
same, but the idea is the same.

The sum of the integrals in the exponential can be written as
n−1∑
i=1

∫ si

0

ν(s, ti+1)− ν(s, ti)dWs +
1
2

n−1∑
i=1

∫ si

0

ν2(s, ti+1)− ν2(s, ti)ds

=
n−1∑
i=1

∫ si

0

ν(s, ti+1)− ν(s, ti)dW#
s

−1
2

n−1∑
i=1

∫ si

0

(ν(s, ti+1)− ν(s, ti))(2ν(s, tn)− ν(s, ti+1)− ν(s, ti))ds

Using the identity ν(s, tn) − ν(s, ti) =
∑n−1

j=i (ν(s, tj+1) − ν(s, tj)) and rearranging the terms the
last sum can be written as

n−1∑
i=1

n−1∑
j=1

∫ min(si,sj)

0

(ν(s, ti+1)− ν(s, ti))(ν(s, tj+1)− ν(s, tj))ds.

The value of the instrument can now be written as

F0 = E#

(
P (0, tn) max

(
P (t, t1)
P (t, tn)

exp
(
−1

2
σ2 − σX#

)
,K

))
where X# is a random variable with a standard normal distribution with respect to P#. The first
term of the maximum operator is the actual maximum when X# < κ. So we obtain

F0 = P (0, t1) E#

(
exp

(
−σX# − 1

2
σ2

)
11(X# < κ)

)
+ KP (0, tn)P#

(
X# ≥ κ

)
which by standard manipulation on the expectation and on the normal distribution lead to the
result.

The price of the capped instrument can be obtained by put-call parity. �

4. Libor Market model approach to option on composition

Theorem 2. Let 0 ≤ t1 < t2 < · · · < tn, 0 = s0 ≤ t ≤ s1 < s2 < · · · < sn−1 with si ≤ ti and
K > 0. In the LLM, the price in 0 of an instrument paying in tn the maximum of a fixed amount K
and of a principal gross-up by the discrete compounding of interest rates over the periods [ti, ti+1]
fixed in si (i.e.

∏n−1
i=1 P (si, ti)/P (si, ti+1)) is (approximately)

F0 = P (0, t1)N(κ + σ) + KP (0, tn)N(−κ)

where T = (τi,j) (1 ≤ i, j ≤ n− 1) with

τi,j =
∫ min(si,sj)

0

γi(s).γj(s)ds,

λi =
1

L(0, ti) + 1
δi

σ2 = λT Tλ

and

κ =
1
σ

(
ln
(

P (0, t1)
KP (0, tn)

)
− 1

2
σ2

)
.

The price in 0 of an instrument paying in tn the minimum of a fixed amount K and of a
principal gross-up by the discrete compounding of interest rates over the periods [ti, ti+1] fixed in
si is (approximately)

C0 = P (0, t1)N(−κ− σ) + KP (0, tn)N(κ)
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Proof. The price of the instrument using P (0, tn) as numeraire is

F0 = P (0, tn) En

(
max

{
n−1∏
i=1

P (si, ti)
P (si, ti+1)

,K

})
.

In a similar way to the previous theorem, the integrals appearing in the expected value can be
written in the LLM model as

n−1∑
i=1

∫ si

0

(ν(s, ti+1)− ν(s, ti)).dWs +
1
2

∫ si

0

(|ν(s, ti+1)|2 − |ν(s, ti)|2)ds

=
n−1∑
i=1

∫ si

0

(ν(s, ti+1)− ν(s, ti)).dWn
s

= −1
2

n−1∑
i=1

n−1∑
j=1

∫ min(si,sj)

0

(ν(s, ti+1)− ν(s, ti))(ν(s, tj+1)− ν(s, tj))ds

The stochastic integrals
∫ si

0
γi(s)dWn

s are normally distributed with mean 0 and covariance T .
The (stochastic) value of the Libor rate is approximated in the formula by L(s, ti) = L(0, ti)2.

As noted in Section 2, the impact of the rate level is only through the ratio 1/L+ 1
δi

and is relatively
limited. The initial ratio is λi. The integrals can be written as

−
n−1∑
i=1

λiXi −
1
2

n−1∑
i=1

n−1∑
j=1

λiλjτi,j .

The composition becomes
n−1∏
i=1

P (si, ti)
P (si, ti+1)

=
P (0, t1)
P (0, tn)

exp

(
−

n−1∑
i=1

λiXi −
1
2
λT Tλ

)
.

With the approximation the large sum in the exponential is only a constant, denoted α. The sum
of the random variables λiXi is a normally distributed variable with mean 0 and variance matrix
λT Tλ.

The maximum is the composition when X < κ. The price can now be written as

Ft = P (0, t1) En

(
exp(−σX − 1

2
σ)11(X < κ)

)
+ KP (0, tn)Pn(X ≥ κ).

The result follows easily.
The price of the capped instrument can be found by put-call parity. �
The price of a caplet can be deduced from the above formula with n = 2.

5. Examples

In the first example a vanilla caplet is priced using different models. The goal of this example
is to assess the quality of the approximation used to obtain the explicit solution in the LLM.

The price is computed with the exact and approximated formulas for the normal LLM, the
Hull-White model, and the log-normal Black model. All the results are represented in Figure 1.
The numbers are in term of normal implied volatility.

The figures used for the example are a (simplified) curve (with spot equal to today) which
schematically represents the USD curve at the time of writing (Table 1). The (normal) volatility
is constant for all rates and is 1%.

The caplet studied has one year to expiry and the underlying rate is the three months rate.
The Hull-White and Black model are calibrated to the at-the-money caplet. The Hull-White

mean reversion parameter is 2%.

2The relation between this approximation and the shifted log-normal model is described in Appendix C.
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Figure 1. Implied volatility for the four models studied.

O/N 1m 3m 6m 1y 2y
4.00 4.25 4.25 4.50 4.75 4.75

Table 1. Yield curve.

The price of the caplet is computed for the four models and the implied volatility for the normal
model is computed from them. In the price graph all the curves are undistinguishable; the implied
volatility display the differences better. The two horizontal dotted lines represent a typical bid-offer
spread.

The main part of the comparison is between the approximated and the exact solution for the
normal LLM. The difference is small. At its maximum it is approximately one tenth of the bid-offer.

The Hull-White curve is almost equal to the approximated normal one. From Appendix C
equivalence this is not surprising. The Ho and Lee model is equivalent to the Hull-White with a
0 mean reversion. For standard caplets, the correlation structure and multi-factor features of the
normal LLM is not used.

The Black curve, that was included only as a reference point, is very different. The similarity
between the results for the three first model is not due to the fact that all possible models gives
similar results but due to the fact that the three models studied are them-self very close for
instruments for which no correlation is used.

The second example is related to the option on composition. The same curve and volatilities
are used. For the option on composition the full structure of γ is used, not only its norm. Two
different structures are used to see its impact. The first is a one-factor one for which no more
details are required. The second one is a two factor model. The structure used is one suggested in
[13, Section 7.3.1] with

γi = |γi|(sin(θi), cos(θi)).

The five θi are chosen equally spaced between 0 and π/2.
The the price for a five (three month) periods composition is presented in Figure 2. The first

graph is the intrinsic value (F0 − max(P (0, tn)K, 1)). In the second graph, to emphasize the
differences, the figures are relative to the Hull-White price.
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(a) Intrinsic value
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(b) Value relative to the HJM value

Figure 2. Price using the five different approaches

The prices are computed for a set of strikes rates between 2.5% and 7%. The prices are computed
five times for each strike. Once with the Hull-White (Gaussian HJM) approach and four times with
the LLM one. There are two instances of the LLM, one with one factor and the second with two
factors. For both of them the price is computed with a Monte Carlo simulation approach and the
explicit approximated formula. The Monte Carlo simulations are done using the predictor-corrector
[13, Section 5.3.1] long-jump technique and 200,000 simulations. As the number of factors is not
the same it was not possible to use the same seed for the two simulations. In term of speed the
explicit approximated formula is obviously a lot more efficient.

The non-convergence to the same level for low strike is due to the imprecision inherent to the
Monte Carlo simulation. The difference between the approximation and the exact figure is smaller
than the error coming from the simulation.

Figure 3(a) reports those errors. The 100,000 simulations were run 20 times. The graph reports
the difference to the mean of the simulations. The approximated result is represented by the dotted
line very close to 0. As can be seen the typical simulation error is well above the approximation
error. The error is higher for low strikes. One could ask why this systematic error pattern appears3.
For lower strikes more simulated rates and less strikes are used in the expected value; the rates are
subject to simulation errors while the fixed strikes are not. The (rescaled positively and negatively)
exercise probability is also indicated on the graph to corroborate the interpretation.

This suggest it is possible to use the put-call parity to improve the precision in Monte Carlo
simulations. In our case the parity is

F0 = P (0, tn)K + P (0, t1)− C0.

The floor on composition are repriced by Monte Carlo simulations in Figure 3(b) using the initial
approach and the put-call parity (only ten simulations are shown to simplify the graph). The
graphs shows the floor and the cap approaches in dotted lines. The results are relative to the
approximated formula. The errors are symmetrical between the two approaches, large on low
strikes for the floor and large on high strikes for the cap approach. The a priori best approach is to
take the cap approach for low strikes and floor approach for high strikes. The cut-off between the
two approaches can be done at the forward rate. In the example it is around 4.75%. The combine
approach is given in solid lines. The vertical lines at 4.75% indicate the two possible choices at the

3The question was actually asked to the author by Luis Bengoechea while discussing the paper first draft.
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(a) Monte Carlo simulations reported to their av-
erage compared to the approximated formula.
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(b) Put-call parity improvements

Figure 3. Monte Carlo simulations

cut-off strike. From the picture it is clear that most of the worst performing cases are removed.
The standard deviation of error (10 simulations and 51 strikes) was 0.12 bps for the floors, 0.11
bps for the caps and 0.05 bps for the combined approach.

6. Conclusion

The normal version of the Libor market model is used to price simple exotic options. The (non-
)existence of such a model and its link to the Ho and Lee model is described. The pricing is done
through an approximated explicit formula. The result of the approximation on both the standard
caplets and floor on composition is found to be very good. This approach combine the flexibility
of the LLM in term of number of factors and correlation with the explicit results usually available
only in the less flexible model like the Gaussian one-factor HJM.

Appendix A. Non-arbitrage free normal LLM

This appendix is devoted to analysing if the arithmetic Brownian equations for the forward
rates (3) can be embedded in a HJM framework for γ deterministic. Unfortunately the answer is
no and this can be seen easily.

In the HJM framework, the bond prices are given by Equation (2) and are always positive.
On the other side the link between forward rate and prices is

1 + δiL(s, ti) =
P (s, ti)

P (s, ti+1)
.

If L is modelled by a pure arithmetic Brownian motion, it can become very negative (with a
positive probability). When L(s, ti) < −1/δi, the ratio of the prices is negative. A contradiction
with the previous assertion.

The dynamic of the forward rate has to be modified (artificially) to ensure that the model can
be embedded in an well behaved HJM framework. Conditions sufficient to ensure the existence of
such a framework are presented in Appendix B.

The impact of the function modification far away from the current rate level is very small. For a
three months rate starting in one year, a current rate of 5% and a volatility of 1%, the probability
to have a negative rate is N(−L0/σ

√
θ) = N(−5) = 3.10−7.
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Appendix B. Existence results

The first part is an existence result. Let γi(L, t) = pi(L)γi(t). The functions pi are globally
Lipschitz, pi(L(0, ti)) > 04 and pi have zeros zi with −1/δi ≤ zi < L(0, ti). Like in With those
conditions it is possible to prove the existence of a HJM model that contains the Equations 3. The
argument is the same as in [10, Section 18.2.2] with. The first steps is to prove the existence of the
solution of (3). This follows from the global Lipschitz condition with Itô’s theorem [10, Theorem
6.27]. Note that because of the condition on the zero of pi and the Lipschitz property, the solutions
have a lower non-attainable barrier at zi ≥ δi.

The second main step is to prove that the P (., tn) numeraire rebased assets are martingales.
For this it is useful to prove that the integrals∫ t

0

δjpj(L(s, tj))
1 + δjL(s, tj)

γj(s).dW j
s

are of bounded quadratic variation. Or by the identity between the quadratic variation of an Itô
integral and a Lebesgue integral [10, Theorem 4.18] it is sufficient to prove that∫ t

0

(
δjpj(L(s, tj))
1 + δjL(s, tj)

)2

|γj(s)|2ds

is bounded. The boundedness result comes from the global Lipschitz condition (in particular at zi

and at infinity), the lower barrier on the solution L in zi and the fact that zi ≥ −1/δi.
LMM with displaced log-normal or normal rates have been described in other places, in partic-

ular in [13, Chapter 11], but the question of existence of such a model was not discussed and the
condition on the displacement not mentioned.

The first set of functions pi to which the result is applied in this note is pi(L) = 1 modified close
to L = −1/δi. The modification is done by keeping p continuous, setting pi(L) = 0 for L < −1/δi,
pi(L) affine between −1/δi and 1/δi + ε and leaving pi(L) = 1 unchanged for L > −1δ + ε.

Appendix C. Shifted log-normal Libor market model

The second set of functions is
pi(L) =

1 + δiL

1 + δiL(0, ti)
.

With that choice, the volatility differences simplify to

ν(t, tj)− ν(t, tj+1) =
δj

1 + δjL(0, tj)
γj(t).

This is exactly the value that was used as an approximation in Theorem 2.
The same framework can be linked to the continuous version of the Ho and Lee model [9]. For

this take the simplified version of the shifted log-normal model were all volatilities are constant
and such that γj(t)(1 + δjL(0, tj)) = σ̄ for a certain σ̄ ∈ R+.

Then the bond volatility function is given by

ν(t, tj)− ν(t, tj+1) = δj σ̄ = σ̄(tj+1 − tj)

which is exactly the Ho and Lee volatility structure with short rate volatility σ̄.
The (old fashioned) Ho and Lee model can now be renamed with the more fashionable name

of one-factor shifted log-normal Libor market model. This emphasize once more the brotherhood
between LLM and HJM models quoted in the first sentence of this note, a designation borrowed
from Ga̧tarek [4].

Disclaimer: The views expressed here are those of the author and not necessarily those of the
Bank for International Settlements.

4The choice of pi being positive at the current level of rate is arbitrary and without loss of generality. If
pi(L(0, ti)) < 0, by changing the Brownian motion to −W j , the condition is satisfied. The standardization to a

positive volatility is more a tradition than a mathematical constraint.
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