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Abstract

We propose a portfolio selection model based on a class of prefer-
ences that coincide with mean-variance preferences on their domain
of monotonicity, but differ where mean-variance preferences fail to be
monotone.

1 Introduction

Since Markowitz’s ([M]) seminal paper on portfolio selection, mean-variance
preferences have been extensively used to model the behavior of economic
∗The views expressed in the article are those of the author and do not involve the

responsibility of the bank.
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agents choosing among uncertain prospects. These preferences, denoted by
ºmv assign to an uncertain prospect f the following utility score:

Uθ (f) = E
P [f ]− θ

2
VarP [f ] ,

where P is a given probability measure and θ is an index of the agent’s
uncertainty aversion.
The success of such a specification of preferences is due to its analytical

tractability and clear intuitive meaning. Mean-variance preferences have,
however, a major theoretical drawback: they may fail to be monotone. It
may happen that an agent with mean-variance preferences strictly prefers
less to more, thus violating one of the most compelling principles of economic
rationality.
This is a well known problem, which can be illustrated with a simple

example. Consider a mean-variance agent with θ = 2. Suppose she has to
choose among the two following prospects f and g:

States of Nature s1 s2 s3 s4
Probabilities 0.25 0.25 0.25 0.25
Payoff to act f 1 2 3 4
Payoff to act g 1 2 3 5

Prospect g yields a strictly higher payoff than f in every state. Any rational
agent should prefer g to f . However, it turns out that our mean-variance
agent strictly prefers f to g. In fact:

U2 (f) = 1.25 > 0.5625 = U2 (g) .

The reason why monotonicity fails here is fairly intuitive. By choosing g
rather than f , the payoff in state s4 increases by one unit. This additional
unit increases the mean payoff, but it also makes the distribution of payoffs
more spread out, thus increasing the variance. The increase in the mean is
more than compensated by the increase in the variance, and this makes our
mean-variance agent worse off.

In this paper we propose an adjusted version of mean-variance preferences
that satisfies monotonicity, based on Maccheroni, Marinacci and Rustichini
[MMR-1] and [MMR-2]. As it will be detailed in the next section, they
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axiomatize a class of preferences, called variational preferences, that includes
as a special case the preferences ºmmv represented by the choice functional

Vθ (f) = min
Q

½
EQ [f ] +

1

2θ
C (Q||P )

¾
, ∀f ∈ L2 (P ) ,

where Q ranges over all probability measures with square-integrable density
with respect to P , and C (Q||P ) is the relative Gini concentration index, a
concentration index that enjoys properties similar to those of the relative
entropy (see the next section for details). Unlike mean-variance preferences,
the preferences ºmmv are monotone.
Consider the domain of monotonicity Gθ of mean-variance preferences,

that is, the set of prospects on which they are monotone. The set Gθ is
where mean-variance preferences are economically meaningful. [MMR-1] and
[MMR-2] show that the two choice functionals Uθ and Vθ coincide on Gθ, that
is,

EP [f ]− θ

2
VarP [f ] = min

Q

½
EQ [f ] +

1

2θ
C (Q||P )

¾
, ∀f ∈ Gθ.

Moreover, they show that Vθ is the minimal monotone choice functional that
extends the mean-variance functional Uθ outside the domain of monotonicity
G, and that Vθ pointwise dominates Uθ.
The preferences ºmmv have, therefore, the following key properties:

• They agree with mean-variance preferences where mean-variance pref-
erences are economically meaningful.

• Their choice functional Vθ is the minimal, and so the most cautious,
monotone functional that extends the mean-variance functional outside
its domain of monotonicity.

• The functional Vθ is also the best best possible monotone approximation
of Uθ: if V 0θ is any other monotone extension of Uθ outside Gθ, then

|Vθ (f)− Uθ (f)| ≤ |V 0θ (f)− Uθ (f)|

for each prospect f .
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These properties make the preferences ºmmv a natural adjusted version
of mean-variance preferences that satisfies monotonicity. For this reason we
call them monotone mean-variance preferences.

In view of all this, it is natural to wonder what happens in a portfolio
problem à la Markowitz if we use monotone mean-variance preferences in
place of standard mean-variance preferences. This is the main subject matter
of this paper. Markowitz’s well-known optimal allocation rule under mean-
variance preferences is:

α∗mv =
1

θ
VarP [X]−1 EP

h
X −~1R

i
,

where α∗mv is the optimal portfolio of risky assets, X is the vector of gross
returns on the risky assets, R is the gross return on the risk-free asset, and
~1 is a vector of 1s. Our main result, Theorem 3, shows that with monotone
mean-variance preferences the optimal allocation rule becomes:

α∗mmv =
1

θP (W ≤ κ)
VarP [X |W ≤ κ ]−1 EP

h
X −~1R |W ≤ κ

i
,

where W is future wealth and κ is a constant determined along with α∗mmv
by solving a suitable system of equations.
Except for a scaling factor, the difference between Markowitz’s optimal

portfolio α∗mv and the above portfolio α∗mmv is that in the latter conditional
moments of asset returns EQ [· |W ≤ κ ] and VarQ [· |W ≤ κ ] are used instead
of unconditional moments, so that the allocation α∗mmv ignores the part of
the distribution of X where wealth is higher than κ. As a result, a monotone
mean-variance agent does not take into account those high payoff states which
contribute to increase the mean return, but give an even greater contribution
to increase the variance. By doing so, this agent does not incur in violations
of monotonicity caused for mean-variance preferences by an exaggerate pe-
nalization of “positive deviations from the mean”.
This is a key feature of monotone mean-variance preferences, which we

illustrate in Section 5 by showing how it avoids some pathological situations
in which the more the payoff to an asset is increased in some states, the more
a mean-variance agent reduces the quantity of it in her portfolio, until in the
limit she ends up holding none.

The paper is organized as follows. Section 2 illustrates in detail monotone
mean-variance preferences. Sections 3 and 4 derive the optimal allocation
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rule under the proposed specification of preferences. Section 5 presents some
examples to illustrate the difference between the optimal allocation rule pro-
posed here and Markowitz’s. All proofs are collected in the Appendix.

2 Monotone Mean-Variance Preferences

We consider a measurable space (S,Σ) of states of nature. An uncertain
prospect is a Σ-measurable real valued function f : S → R, that is, a sto-
chastic monetary payoff.
The agent’s preferences are described by a binary relation º on a set of

uncertain prospects. [MMR-1] provides a set of simple behavioral conditions
that guarantee the existence of a utility function u : R→ R and an uncer-
tainty index c : ∆ → [0,∞] on the set ∆ of all probability measures, such
that

f º g ⇔ inf
Q∈∆

©
EQ [u (f)] + c (Q)

ª ≥ inf
Q∈∆

©
EQ [u (g)] + c (Q)

ª
(1)

for all (simple) prospects f, g.
Preferences having such a representation are called variational, and two

important special cases of variational preferences are the multiple priors pref-
erences of Gilboa and Schmeidler [GS], obtained when c only takes on values
0 and ∞, and the multiplier preferences of Hansen and Sargent [HS], ob-
tained when c (Q) is proportional to the relative entropy of Q with respect
to a fixed probability measure P .1 Variational preferences satisfy the basic
tenets of economic rationality. In particular, they are monotone, that is,
given any two prospects f and g, we have f º g whenever f (s) º g (s) for
each s ∈ S.

For concreteness, given a probability measure P on (S,Σ), we consider
the set L2 (P ) of all square integrable uncertain prospects. A mean-variance
preference relation ºmv on L2 (P ) is represented by the choice functional
Uθ : L2 (P )→ R given by

Uθ (f) = E
P [f ]− θ

2
VarP [f ] ,

1The relative entropy of Q given P is EP
h
dQ
dP ln

dQ
dP

i
if Q¿ P and ∞ otherwise.
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with θ > 0. Let Gθ be the domain of monotonicity of the preferenceºmv, that
is, the subset of L2 (P ) where ºmv is monotone. Formally, Gθ is the convex
set where the Gateaux differential of Uθ is positive (as a linear functional).
Some algebra shows that

Gθ =
½
f ∈ L2 (P ) : f − EP [f ] ≤ 1

θ
P -a.s.

¾
As we discussed in the Introduction, the domain of monotonicity Gθ is where
the mean-variance preference ºmv is economically meaningful. [MMR-1] and
[MMR-2] show that the restriction of ºmv to Gθ is a variational preference,
and that

Uθ (f) = min
Q∈∆2(P )

µ
EQ [f ] +

1

2θ
C (Q||P )

¶
, ∀f ∈ Gθ,

where ∆2 (P ) is the set of all probability measures with square-integrable
density with respect to P , and C (Q||P ) is the relative Gini concentration
index given by

C (Q||P ) =
(
EP
h¡

dQ
dP

¢2i− 1 if Q¿ P,

∞ otherwise.

Along with the Shannon entropy, the Gini index is the most classic con-
centration index. For discrete distributions it is given by

Pn
i=1Q

2
i − 1, and

C (Q||P ) is its continuous and relative version. [MMR-2] studies in detail the
properties of C (Q||P ), which turn out to be similar to those of the relative
entropy.

Now, say that a preference is a monotone mean-variance preference, writ-
ten ºmmv, if it is represented by the choice functional Vθ : L2 (P )→ R given
by

Vθ (f) = min
Q∈∆2(P )

½
EQ [f ] +

1

2θ
C (Q||P )

¾
, ∀f ∈ L2 (P ) , (2)

where θ > 0. [MMR-2] proves the following result:

Theorem 1 The functional Vθ : L2 (P ) → R given by (2) is the minimal
monotone functional on L2 (P ) such that Vθ (f) = Uθ (f) for all f ∈ Gθ; that
is,

Vθ (f) = sup {Uθ (g) : g ∈ Gθ and g 6 f} , ∀f ∈ L2 (P ) . (3)

Moreover, Vθ (f) ≥ Uθ (f) for each f ∈ L2 (P ).
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The functional Vθ is concave, continuous, and in view of this theorem it
has the following fundamental properties:

(i) Vθ coincides with the mean-variance choice functional Uθ on its domain
of monotonicity Gθ;

(ii) Vθ is the minimal monotone extension of Uθ outside the domain of
monotonicity Gθ, and so it is the most cautious monotone adjustment
of the mean-variance choice functional.

(iii) Vθ is the best possible monotone approximation of Uθ: if V 0θ is any other
monotone extension of Uθ outside the domain of monotonicity Gθ, then

|Vθ (f)− Uθ (f)| ≤ |V 0θ (f)− Uθ (f)| , ∀f ∈ L2 (P ) .

In view of (i)-(iii), the monotone choice functional Vθ provides a natural
adjustment of the mean-variance choice functional. It also has the remarkable
feature of involving, like multiplier preferences ([HS]), a classic concentration
index. This ensures to Vθ a good analytical tractability, as it will be seen in
the next section.

The next theorem further illustrates the nature of Vθ.

Theorem 2 Let f ∈ L2 (P ). Then:

Vθ (f) =

½
Uθ (f) if f ∈ Gθ,
Uθ (f ∧ κf) else,

where
κf = max {t ∈ R : f ∧ t ∈ Gθ} . (4)

A monotone mean-variance agent can thus be regarded as still using the
mean-variance functional Uθ even in evaluating prospects outside the domain
of monotonicity Gθ. In this case, however, the agent no longer considers the
original prospects, but rather their truncations at κf , the largest constant t
such that f ∧ t belongs to Gθ.
Observe that, besides depending on the given act f , the constant κf also

depends on the parameter θ. Corollary 9 in Appendix provides an explicit
formula for κf , which shows that κf becomes lower when θ increases.
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3 The Portfolio Selection Problem

We now present the static portfolio choice problem we are going to study.
We consider the one-period allocation problem of an agent who has to decide
how to invest a unit of wealth at time 0, dividing it among n+1 assets. The
first n assets are risky, while the (n+ 1)-th is risk-free. The gross return
on the i-th asset after one period is denoted by Xi. The (n × 1) vector of
the returns on the first n assets is denoted by X and the (n × 1) vector of
portfolio weights, indicating the fraction of wealth invested in each of the
first n assets, is denoted by α. The return on the (n+ 1)-th asset is risk-free,
and so equal to a constant R.
The end-of-period wealth Wα induced by a choice of α is given by:

Wα = R+ α
³
X −~1R

´
.

We assume that there are no frictions of any kind: securities are perfectly
divisible; there are no transaction costs or taxes; agents are price-takers, in
that they believe that their choices do not affect the distribution of asset
returns; there are no institutional restrictions, so that agents are allowed to
buy, sell or short sell any desired amount of any security.2 As a result, α can
be chosen in Rn.
We adopt ºmmv as a specification of preferences, and so portfolios α are

ranked according to the preference functional:

Vθ (Wα) = min
Q∈∆2(P )

µ
EQ [Wα] +

1

2θ
C (Q||P )

¶
,

where P is the reference probability measure. Hence, the portfolio problem
can be written as:

max
α∈Rn

min
Q∈∆2(P )

µ
EQ [Wα] +

1

2θ
C (Q||P )

¶
.

4 The Optimal Portfolio

In this section we give a solution to the portfolio selection problem outlined
in the previous section. The characterization of the optimal portfolio is given

2This assumption can be weakened, by simply requiring that at an optimum institu-
tional restrictions are not binding.
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by the following theorem.3

Theorem 3 The vector α∗ is a solution of the portfolio selection problem
if and only if there exists κ∗ ∈ R such that (α∗,κ∗) satisfies the system of
equations:(

θP (Wα ≤ κ)VarP [X |Wα ≤ κ ]α = EP
h
X −~1R |Wα ≤ κ

i
,

P (Wα ≤ κ)
¡
κ− EP [Wα |Wα ≤ κ ]

¢
= 1

θ
.

The optimal portfolio α∗ is thus determined along with the threshold κ∗

by solving a system of n + 1 equations in n + 1 unknowns. Although it is
not generally possible to find explicitly a solution of the above system of
equations, numerical calculation with a standard equation solver is straight-
forward: given an initial guess (α,κ), one is able to calculate the first two
moments of the conditional distribution of wealth; if the moments thus calcu-
lated, together with the initial guess (α,κ), satisfy the system of equations,
then (α,κ) = (α∗,κ∗) and numerical search stops; otherwise, the search pro-
cedure continues with a new initial guess for the parameters.4 In the next
Section we will solve in this way few simple portfolio problems in order to
illustrate some features of the model.

The optimal allocation rule of Theorem 3 is easily compared to the rule
that would obtain in a classic Markowitz’s setting. In the traditional mean-
variance model we would have:

α∗ =
1

θ

£
VarP [X]

¤−1
EP
h³
X −~1R

´i
.

Provided VarP [X |Wα ≤ κ ] is invertible, the first n equations can be written
as:

α∗ =
1

θP (Wα∗ ≤ κ∗)
VarP [X |Wα∗ ≤ κ∗ ]−1 EP

h
X −~1R |Wα∗ ≤ κ∗

i
,

which is easily compared to Markowitz’s optimal allocation. The uncondi-
tional mean and variance of the vector of returns X are replaced by a condi-
tional mean and a conditional variance, both calculated by conditioning on

3EP [· |Wα ≤ κ ] and VarP [· |Wα ≤ κ ] are the expectation and variance conditional on
the event {Wα ≤ κ}. Note that VarP [· |Wα ≤ κ ] is an (n× n) matrix.

4A R (S-Plus) routine to calculate the optimal portfolio in an economy with finitely
many states of nature and assets is available upon request from the authors.
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the event {Wα∗ ≤ κ∗}. Furthermore a scaling factor is introduced, which is
inversely proportional to the probability of exceeding the threshold κ∗. To
close the system, an extra equation is added to determine the threshold κ∗.
Roughly speaking, when computing the optimal portfolio we ignore that

part of the distribution of X where wealth is higher than κ∗. To see why
it is optimal to ignore the part of the distribution of X where one obtains
the highest returns, recall the example of non-monotonicity of mean-variance
illustrated in the Introduction. In that example, high payoffs were increasing
the variance more than the mean, thus leading the mean-variance agent to
prefer a strictly smaller prospect, contrary to what would commonly be re-
puted economically reasonable. With monotone mean-variance preferences,
this kind of behavior is avoided by artificially setting the probability of some
high payoff states equal to zero. In our portfolio selection problem we set the
probability of the event {Wα∗ > κ∗} equal to zero.

When there is only one risky asset, the optimal quantity of it to be held
according to our model and according to the mean-variance model can be
compared by means of the following result. Here α∗mmv denotes the opti-
mal portfolio according to the monotone mean-variance model and α∗mv the
optimal portfolio according to the mean-variance model.

Proposition 4 Suppose that S is finite, with P (s) > 0 for all s ∈ S, and
that there is only one risky asset. Then, either

α∗mmv ≥ α∗mv ≥ 0

or
α∗mmv ≤ α∗mv ≤ 0.

If, in addition, P
¡
Wα∗mmv > κ∗

¢
> 0, then:

α∗mmv > α∗mv if α∗mmv > 0,
α∗mmv < α∗mv if α∗mmv < 0.

In the presence of only one risky asset, an investor with monotone mean-
variance preferences always holds a portfolio which is more aggressive than
the portfolio held by a mean-variance investor. If she buys a positive quan-
tity of the risky asset, this is greater than or equal to the quantity that would
be bought by a mean-variance investor; on the contrary, if she sells the risky
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asset short, she sells more or as much as a mean-variance investor would
do. This kind of behavior will be thoroughly illustrated by the examples in
the next section: the intuition behind it is that in some cases a favorable
investment opportunity is discarded by a mean-variance investor because of
non-monotonicity of her preferences, while a monotone mean-variance in-
vestor exploits the opportunity, thus taking a more leveraged position.

5 Some Examples

In this section we present three simple examples to illustrate the optimal
portfolio rule we derived above. In every example there are five possible
states of Nature. Each of them obtains with a probability P (si) that remains
fixed throughout the examples. In all examples we also set θ = 10.
Example 1 is a case in which our model and the traditional mean-variance

model deliver the same optimal composition of the portfolio. This is not
interesting per se, but it serves as a benchmark and it helps to introduce
Example 2, where the two optimal portfolios differ. In Example 1 there is
only one risky asset, whose gross return is denoted by X1 and is reported in
the next table, and a risk-free asset, whose gross return R is equal to 1 across
all states. In this example, the optimal portfolio α∗mmv calculated according
to to our rule is equal to the mean-variance optimal portfolio α∗mv. Wmv and
Wmmv represent the overall return to the two optimal portfolios for each state
of the world. The table also displays the value of the constant κ∗ at which it
is optimal to truncate the distribution of the return to the portfolio of risky
assets.

P (si) P (si |Wmmv ≤ κ∗ ) R X1 Wmv Wmmv

s1 0.1 0.1 1 0.97 0.9375 0.9375
s2 0.2 0.2 1 0.99 0.9791 0.9791
s3 0.4 0.4 1 1.01 1.0208 1.0208
s4 0.2 0.2 1 1.03 1.0620 1.0620
s5 0.1 0.1 1 1.05 1.1041 1.1041
α∗mv = 2.083
α∗mmv = 2.083 κ∗ = 1.1211

Example 2 is a slight modification of Example 1. We increase the payoff
to the risky asset in state s5 from 1.05 to 1.10, leaving everything else un-
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changed. The effect of this change is an increase in both the mean and the
variance of X1, the payoff to the risky asset. The optimal behavior according
to the mean-variance model is to reduce the fraction of wealth invested in
the risky asset from 2.083 to 1.3574. In contrast, according to our model it is
also optimal to decrease the position in the risky asset, but less, from 2.083
to 1.8382.

P (si) P (si |Wmmv ≤ κ∗ ) R X1 Wmv Wmmv

s1 0.1 0.1111 1 0.97 0.9592 0.9448
s2 0.2 0.2222 1 0.99 0.9864 0.9816
s3 0.4 0.4444 1 1.01 1.0135 1.0183
s4 0.2 0.2222 1 1.03 1.0407 1.0551
s5 0.1 0 1 1.10 1.1357 1.1838
α∗mv = 1.3574
α∗mmv = 1.8382 κ∗ = 1.1213

In both cases the optimal behavior might seem puzzling at a first sight:
when the payoff of an asset increases in one state, it is optimal to hold less of
that asset. This behavior can be understood by looking at the distributions
of the overall return in the two tables. By reducing the fraction of wealth
invested in the risky asset, the overall return increases in the states where
the risky asset pays less than the risk-free asset. On the contrary, the overall
return decreases in the states where the risky asset pays more than the risk-
free asset. In state s5, however, the effect of this decrease is compensated
by the fact that we have raised the payoff to the risky asset from 1.05 to
1.10. Hence, by reducing the amount of wealth invested in the risky asset,
the investor gives up some of the extra payoff received in state s5 in order
to guarantee himself a higher overall return in the states where the risky
asset has a low payoff. The problem with this kind of behavior is that it can
become pathological with mean-variance preferences. The next table shows
what happens if we further increase the payoff in state s5.

X1 (s5) 1.05 1.10 1.15 1.20 1.50 2 3
α∗mv 2.0830 1.3574 0.9174 0.6747 0.2465 0.1175 0.0572
α∗mmv 2.0830 1.8382 1.8382 1.8382 1.8382 1.8382 1.8382

12



The more we increase the payoff in state s5, the more the mean-variance
optimal fraction α∗mv of wealth invested in the risky asset decreases, until it
goes to zero when the payoff in state s5 becomes very large. In our model this
does not happen. At first α∗mmv decreases, but it then stops to decrease and
it remains fixed at the same value, though the payoff in state s5 is further
increased. The reason why this happens is that, once probabilities have been
optimally reassigned to states and a zero probability has been assigned to
state s5, any further increases of the payoff in s5 are disregarded and have
no influence on the formation of the optimal portfolio.

Example 3 is slightly more complicated. Everything is as in Example 2,
but a second risky asset is added. The payoff to this new asset, denoted by
X2, is high in the states where X1 is low and low where X1 is high.

P (si) P (si |Wmmv ≤ κ∗ ) R X1 X2 Wmv Wmmv

s1 0.1 0.1111 1 0.97 1.05 1.002 1.0231
s2 0.2 0.2222 1 0.99 1.00 0.9833 0.9570
s3 0.4 0.4444 1 1.01 0.99 1.0061 1.0125
s4 0.2 0.2222 1 1.03 0.99 1.0393 1.0985
s5 0.1 0 1 1.10 0.99 1.1556 1.3994
α∗mv = (1.6613, 1.0495)
α∗mmv = (4.2989, 3.0423) κ∗ = 1.1316

Also in this case the optimal portfolios suggested by our model and by the
traditional model are different. To get an intuitive idea of what is happening,
note that, although the market is still arbitrage-free, asset 2 allows to hedge
away almost completely the risks taken by investing in asset 1. Consider for
example a portfolio formed by 0.5 units of asset 1 and 0.5 units of asset 2.
Its payoffs in the five states are collected in the following vector:

(1.01, 0.995, 1, 1.01, 1.045)

A qualitative inspection of this payoff vector reveals that in state s2 this
portfolio pays off slightly less than the risk-free asset, while in all other states
it pays off more and in some states considerably more. Roughly speaking, if
it was not for the slightly low payoff in state s2, there would be an arbitrage
opportunity because the portfolio would pay off more than the risk-free asset
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in every state. As a consequence, we would expect an optimal portfolio
rule to exploit this favorable configuration of payoffs by prescribing to take
a highly levered position. As reported in the last table, according to our
model it is optimal to take a highly levered position in the risky assets in
order to exploit this opportunity, at the cost of facing a low payoff in state
s2. In contrast, with the mean-variance model the optimal portfolio is much
less aggressive, and the investor is overly concerned with the unique state in
which the payoff is lower than the payoff to the risk-free asset.
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A Appendix: Proofs

For all f ∈ L (P ) define gf : R→ R by

gf (z) = zP (f ≤ z)−
Z
f1{f≤z}dP ∀z ∈ R.

Notice that

gf (z) = zP (f ≤ z)−
Z
{f≤z}

fdP

= zP (f < z) + zP (f = z)−
Z
{f<z}

fdP −
Z
{f=z}

fdP

= zP (f < z) + zP (f = z)−
Z
{f<z}

fdP − zP (f = z)

= zP (f < z)−
Z
{f<z}

fdP

for all z ∈ R.

Lemma 5 For all z ∈ R, gf (z) =
R z
−∞ Ff (t) dt.

5

Proof. Choose z ∈ R. Since f1{f≤z} = (f ∧ z)− z1{f>z}, then

gf (z) = zP (f ≤ z)−
Z
f1{f≤z}dP = zP (f ≤ z)−

Z ¡
f ∧ z − z1{f>z}

¢
dP

= zP (f ≤ z)−
Z
(f ∧ z) dP + z

Z
1{f>z}dP

= zP (f ≤ z) + zP (f > z)−
Z
(f ∧ z) dP =

Z
z − (f ∧ z) dP,

that is

gf (z) =

Z
z − (f ∧ z) dP. (5)

Observe that z − (f ∧ z) ≥ 0, and soZ
z − (f ∧ z) dP =

Z ∞

0

P (z − (f ∧ z) ≥ u) du.
5Ff : R→ [0, 1] is the cumulative distribution function given by Ff (t) = P (f ≤ t) for

each t ∈ R.
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On the other hand, {z − (f ∧ z) ≥ u} = {f ≤ z − u} for all u > 0. In fact,

z − (f ∧ z) ≥ u⇒ (f ∧ z) ≤ z − u < z ⇒ (f ∧ z) = f ⇒ f ≤ z − u

and

f ≤ z − u⇒ f ∧ z ≤ (z − u) ∧ z ⇒ f ∧ z ≤ z − u⇒ z − (f ∧ z) ≥ u.

Hence,

gf (z) =

Z ∞

0

P (z − (f ∧ z) ≥ u) du

=

Z ∞

0

P (f ≤ z − u) du =
Z z

−∞
P (f ≤ t) dt,

as desired. ¥

Corollary 6 For all z ∈ R,

gf (z) =

Z z

−∞
P (f < t) dt, ∀z ∈ R.

Proof. Notice that P (f < t) = limu→t− P (f ≤ u) 6= P (f ≤ t) for at most
a countably many ts. ¥

Lemma 7 The function gf is continuous on R, and

Ff (z) = lim
ε→0+

·
gf (z + ε)− gf (z)

ε

¸
, ∀z ∈ R.

That is, Ff is the right derivative of gf , and Ff (z) is the derivative of gf at
every point z at which Ff is continuous. Moreover, setting ζ = essinf (f),
gf is strictly increasing on (ζ,∞), gf ≡ 0 on (−∞, ζ],6 limz→ζ+ gf (z) = 0

+,
and limz→∞ gf (z) =∞.

Proof. The Fundamental Theorem of Calculus guarantees the continuity
and derivability properties of gf . Recall that

essinf (f) = sup {α ∈ R : P (f < α) = 0} .
6With the convention (−∞,−∞] = ∅.
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If z ∈ R and z ≤ essinf (f), for all t < z there exists α > t such that
P (f < α) = 0. Then,

0 ≤ P (f < t) ≤ P (f < α) = 0.

This implies gf (z) = 0 for all z ∈ (−∞, ζ].
On the other hand, if ζ < z < z0, then

gf (z
0)− gf (z) =

Z z0

z

P (f < t) dt ≥ P (f < z) (z0 − z) .

But P (f < z) = 0 would imply z ≤ ζ, a contradiction. Therefore, gf (z0)−
gf (z) > 0. That is, gf is strictly increasing on (ζ,∞).
Notice that limt→∞ Ff (t) = 1. Then, for all n > 1 there exists k ≥ 1

(n, k ∈ N) such that Ff (t) > 1− 1
n
for all t ≥ k. Therefore,

gf (k + n) =

Z k+n

−∞
Ff (t) dt ≥

Z k+n

k

Ff (t) dt

≥ n

µ
1− 1

n

¶
= n− 1.

Since gf is increasing on R, then limz→∞ gf (z) =∞.
If ζ > −∞, gf (ζ) = 0, continuity and nonnegativity imply limz→ζ+ gf (z) =

0+. Let ζ = −∞. By (5),

gf (−n) =

Z
−n− (f ∧ (−n)) dP =

Z
((−f) ∨ n)− ndP

=

Z
(−f)− ((−f) ∧ n) dP.

The Monotone Convergence Theorem guarantees that limn→∞ gf (−n) = 0.
Monotonicity and nonnegativity imply limz→ζ+ gT (z) = 0

+. ¥

For the rest of the Appendix we will equivalently write EP or just E.

Lemma 8 Let f ∈ L2 (P )− Gθ and t ∈ R. Then

f ∧ t ∈ Gθ ⇔ gf (t) ≤ 1
θ
. (6)
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Proof. Notice that

f ∧ t− E [f ∧ t] = f1{f≤t} + t1{f>t} − tP (f > t)− E
£
f1{f≤t}

¤
=

= f1{f≤t} + t1{f>t} − t+ tP (f ≤ t)− E
£
f1{f≤t}

¤
=

= (f − t) 1{f≤t} + gf (t) .
Since (f − t) 1{f≤t} ≤ 0,

gf (t) ≤ 1
θ
⇒ f ∧ t− E [f ∧ t] ≤ 1

θ
,

i.e., gf (t) ≤ 1
θ
⇒ f ∧ t ∈ Gθ.

For the converse implication, note that we are assuming f /∈ Gθ. Then,
being f ∧ t ∈ Gθ, it cannot be f ∧ t = f a.s. Hence, essup(f ∧ t) = t. It
follows that:

f ∧ t− E [f ∧ t] ≤ 1
θ
a.s. ⇒ essup (f ∧ t)− tP (f > t)− E £f1{f≤t}¤ ≤ 1θ

⇒ t− tP (f > t)− E £f1{f≤t}¤ ≤ 1θ
⇒ tP (f ≤ t)− E £f1{f≤t}¤ ≤ 1θ
⇒ gf (t) ≤ 1

θ
,

i.e., f ∧ t ∈ Gθ ⇒ gf (t) ≤ 1
θ
. ¥

Lemmas 7 and 8 immediately yield the following:

Corollary 9 Let f ∈ L2 (P )− Gθ and t ∈ R. Then

g−1f

µ
1

θ

¶
= max {t ∈ R : f ∧ t ∈ Gθ} .

Theorem 10 Let f ∈ L2 (P ). Then

Vθ (f) =

½
E [f ]− θ

2
Var [f ] if f ∈ Gθ,

E [f ∧ κ]− θ
2
Var [f ∧ κ] else,

where κ = g−1f
¡
1
θ

¢
. Moreover, the Gateaux differential of Vθ at f is

∇Vθ (f) = θ (κ− f) 1{f≤κ}.
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Proof. Let f ∈ L2 (P ). [MMR-2] shows that

Vθ (f) = min
Q∈∆2(P )

½
EQ (f) +

1

2θ
C (Q||P )

¾
.

That is, Vθ (f) is the value of the problem: min
©
E (fY ) + 1

2θ
E (Y 2)− 1

2θ

ª
Y ≥ 0
E (Y ) = 1

. (7)

They also observe that the solution of such problem exists, is unique, and it
coincides with the Gateaux derivative of Vθ at f . Notice that Y is a solution
of problem (7) if and only if it is a solution of the constrained optimization
problem:  min

©
E (fY ) + 1

2θ
E (Y 2)

ª
Y ≥ 0
E (Y ) = 1

The Lagrangian is

L (Y, µ,λ) = E (fY ) +
1

2θ
E
¡
Y 2
¢− E (µY )− λ (E (Y )− 1) ,

with µ ∈ L2+ (P ), λ ∈ R. The Karush-Kuhn-Tucker optimality conditions
are:

f +
1

θ
Y − µ− λ = 0 P -a.s.

E (µY ) = 0

Y ≥ 0, µ ≥ 0 P -a.s.

E (Y ) = 1

Since µ, Y ≥ 0, they are equivalent to:

f +
1

θ
Y − µ− λ = 0 P -a.s.

µY = 0 P -a.s.

Y ≥ 0, µ ≥ 0 P -a.s.

E (Y ) = 1
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that is,

f +
1

θ
Y − λ ≥ 0 P -a.s. (8)·

f +
1

θ
Y − λ

¸
Y = 0 P -a.s. (9)

Y ≥ 0 P -a.s. (10)

E [Y ] = 1 (11)

Assume (Y ∗,λ∗) satisfy (8) - (11). W.l.o.g. we can assume that (8) - (10)
are satisfied everywhere (not only P -a.s.).
If s ∈ {Y ∗ > 0}, then by (9) f (s) + 1

θ
Y ∗ (s)− λ∗ = 0 and

Y ∗ (s) = θ (λ∗ − f (s)) . (12)

In particular, λ∗ − f (s) > 0, and s ∈ {f < λ∗}. Conversely, if s ∈ {f < λ∗},
then by (8) Y ∗ (s) ≥ θ (λ∗ − f (s)) > 0 and s ∈ {Y ∗ > 0}. In sum,

{Y ∗ > 0} = {f < λ∗} and
Y ∗ = θ (λ∗ − f) 1{f<λ∗} .

By (11),

1 = E [Y ∗] = E
£
θ (λ∗ − f) 1{f<λ∗}

¤
= θ

¡
λ∗P (f < λ∗)− E £f1{f<λ∗}¤¢ ,

that is,

gf (λ
∗) = λ∗P (f < λ∗)− E £f1{f<λ∗}¤ = 1

θ
.

In other words

λ∗ = g−1f

µ
1

θ

¶
≡ κ, (13)

and λ∗ is unique. A fortiori, Y ∗ is unique and

Y ∗ = θ (κ− f) 1{f<κ}. (14)

By construction, the pair (Y ∗,λ∗) defined by (13) and (14) is a solution of
(8) - (11). Since the solution of (7) exists and it is unique, we conclude that
Y ∗ defined as in Eq. (14) is the unique solution of (7).

20



Notice that Y ∗ = θ (κ− f) 1{f<κ} + θ (κ− f) 1{f=κ} = θ (κ− f) 1{f≤κ},

(Y ∗)2 = θ2
¡
f21{f≤κ} + κ21{f≤κ} − 2κf1{f≤κ}

¢
and

E
£
(Y ∗)2

¤
= θ2

µZ
f21{f≤κ}dP + κ2P (f ≤ κ)− 2κ

Z
f1{f≤κ}dP

¶
.

Moreover,

E [fY ∗] = E
£
fθ (κ− f) 1{f≤κ}

¤
= E

£
θκf1{f≤κ} − θf21{f≤κ}

¤
= θκ

Z
f1{f≤κ}dP − θ

Z
f21{f≤κ}dP.

Therefore,

Vθ (f) = E [fY ∗] +
1

2θ
E
£
(Y ∗)2

¤− 1

2θ

= θκ

Z
f1{f≤κ}dP − θ

Z
f21{f≤κ}dP +

+
θ

2

µZ
f21{f≤κ}dP + κ2P (f ≤ k)− 2κ

Z
f1{f≤κ}dP

¶
− 1

2θ

= −θ

2

Z
f21{f≤κ}dP +

θ

2
κ2P (f ≤ k)− 1

2θ

Also observe that f1{f≤κ} + κ1{f>κ} = f ∧ κ, whence

E [f ∧ κ] = E
£
f1{f≤κ}

¤
+ κP (f > κ) = E

£
f1{f≤κ}

¤− κP (f ≤ κ) + κ

= −gf (κ) + κ = κ− 1
θ
,

and

Var [f ∧ κ] = E
h¡
f1{f≤κ} + κ1{f>κ}

¢2i−µκ− 1
θ

¶2
=

=

Z
f21{f≤κ}dP + κ2P (f > k)− κ2 − 1

θ2
+ 2

κ

θ

=

Z
f21{f≤κ}dP − κ2P (f ≤ k)− 1

θ2
+ 2

κ

θ
.
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Finally

E [f ∧ κ]− θ

2
Var [f ∧ κ] = κ− 1

θ
− θ

2

µZ
S

f21{f≤κ}dP − κ2P (f ≤ k)− 1

θ2
+ 2

κ

θ

¶
= κ− 1

θ
−
µ
θ

2

Z
S

f21{f≤κ}dP − θ

2
κ2P (f ≤ k)− 1

2θ
+ κ

¶
= −θ

2

Z
S

f21{f≤κ}dP +
θ

2
κ2P (f ≤ k)− 1

2θ

= Vθ (f) .

¥

Proof of Theorem 2. It is now enough to combine Corollary 9 and Theorem
10. ¥

Remark 1 Notice that:

• Inspection of the proof of Theorem 10 shows that for all f ∈ L2 (P )
(not only for f ∈ L2 (P )− Gθ), setting κ = g−1f

¡
1
θ

¢
we have

Vθ (f) = E [f ∧ κ]− θ

2
Var [f ∧ κ] ,

∇Vθ (f) = θ (κ− f) 1{f≤κ},
{∇Vθ (f)} = argminQ∈∆2(P )

½
EQ (f) +

1

2θ
C (Q||P )

¾
.

• The properties of gf guarantee that κ exists is unique and 1
θ
= κP (f ≤ κ)−R

f1{f≤κ}dP ; therefore, P (f ≤ κ) > 0.

• Moreover, 1
θ
= κP (f ≤ κ)−R f1{f≤κ}dP implies 1

θP (f≤κ)+
R
fdP{f≤κ} =

κ, and so

∇Vθ (f) = θ (κ− f) 1{f≤κ} =
µ

1

P (f ≤ κ)
+ θ

Z
S

fdP{f≤κ} − θf

¶
1{f≤κ}

=

µ
1

P (f ≤ κ)
− θ (f − E [f |f ≤ κ])

¶
1{f≤κ}.

N
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Proof of Theorem 3. The maximization problem is

sup
α∈R

Vθ (Wα)

whereWα = R+α (X −R) (remember that α ∈ Rn, X ∈ L2 (P )n, and ~1 is a
vector of 1s). From theorem (10) we know that Vθ is Gateaux differentiable
and

∇Vθ (Wα) =

µ
1

P (Wα ≤ κα)
− θ (Wα − E [Wα|Wα ≤ κα])

¶
1{Wα≤κα},

where κα solves:

P (Wα ≤ κα)
¡
κa − EP [Wα |Wα ≤ κα ]

¢
=
1

θ
.

Since for all i = 1, . . . , n

∂Vθ (Wα)

∂αi
= E [∇Vθ (Wα) (Xi −R)] ,

the first order conditions for an optimum are:

E [X∇Vθ (Wα)] = ~1R.

Substituting ∇Vθ (Wα):

E

·
1{Wα≤κα}

P (Wα ≤ κα)
X − θ

¡
(αX) 1{Wα≤κα}X − E [αX |Wα ≤ κα ] 1{Wα≤κα}X

¢¸
= ~1R

set A = {Wα ≤ κα} to obtain
E [X |A ]− θP (A) (E [(αX)X |A ]− E [X |A ] E [αX |A ]) = ~1R

the observation that E [(αX)X |A ]−E [X |A ] E [αX |A ] = Var [X |A ]α yields:

E
h
X −~1R |Wα ≤ κα

i
= θP (Wα ≤ κα)Var [X |Wα ≤ κα ]α.

These are the first n equations. The (n+ 1)-th is the equation which deter-
mines κα:

P (Wα ≤ κ) (κ− E [Wα |Wα ≤ κ ]) =
1

θ
.
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Concavity of Vθ guarantees the sufficiency of the first order condition. ¥

Proof of Proposition 4. Set α∗ = α∗mmv. The maximization problem it
solves is

max
α∈R

min
Y ∈Y

µ
E [(R+ α (X −R))Y ] + 1

2θ
E
£
Y 2
¤− 1

2θ

¶
(15)

where Y =
©
Y ∈ RS+ : E [Y ] = 1

ª
. Clearly, Y is convex and compact, and

(α∗, Y ∗) is a solution of (15) if and only if it is a solution of

max
α∈R

min
Y ∈Y

G (α, Y )

where G (α, Y ) = E [(R+ α (X −R))Y ] + 1
2θ
E [Y 2]. Moreover, notice that

G : R×Y→ R is continuous, it is affine in α (for each fixed Y ) and strictly
convex in Y (for each fixed α). Set v = maxα∈RminY ∈YG (α, Y ), by (a
version of) the Min-Max Theorem (e.g. [A, p. 134]) there exists Ȳ ∈ Y such
that

v = sup
α∈R

G
¡
α, Ȳ

¢
.

Moreover,

G
¡
α∗, Ȳ

¢ ≥ min
Y ∈Y

G (α∗, Y ) = G (α∗, Y ∗) = v = sup
α∈R

G
¡
α, Ȳ

¢ ≥ G ¡α∗, Ȳ ¢ ,
therefore, G

¡
α∗, Ȳ

¢
= minY ∈YG (α∗, Y ), strict convexity implies Ȳ = Y ∗.

In turn, this yields supα∈RG (α, Y
∗) = v 6=∞ and it cannot be

sup
α∈R

µ
R+ αE [(X −R)Y ∗] + 1

2θ
E
£
(Y ∗)2

¤¶
=∞,

therefore
E [Y ∗ (X −R)] = 0. (16)

Y ∗ is the solution of problem (7) in the proof of Theorem 10 with f =
R + α∗ (X −R) = Wα∗. Therefore, there exist λ

∗ ∈ R and µ ∈ L2 (P ) such
that Y ∗ satisfies the following conditions:

R+ α∗ (X −R) + 1
θ
Y ∗ − µ− λ∗ = 0, (17)

E [Y ∗] = 1, (18)

Y ∗ ≥ 0, µ ≥ 0, µY ∗ = 0. (19)
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Taking the expectation of both sides of (17) we obtain:

(1− α)R+ α∗E [X] +
1

θ
E [Y ∗]− E [µ]− λ∗ = 0 (20)

and, subtracting (20) from (17):

α∗ (X − E [X]) + 1
θ
(Y ∗ − E [Y ∗])− (µ− E [µ]) = 0.

Rearranging and using (18):

Y ∗ = 1− θα∗ (X − E [X]) + θ (µ− E [µ]) . (21)

Multiply both sides by µ, take expectations and use (19) to get:

E [µ]− θα∗Cov [µ,X] + θVar [µ] = 0

and, rearranging terms:

θα∗Cov [µ,X] = E [µ] + θVar [µ] . (22)

Since µ ≥ 0, then E [µ] ≥ 0 thus:

α∗ = 0⇒ µ = 0⇒ Cov [µ,X] = 0 (23)

α∗ > 0⇒ Cov [µ,X] ≥ 0 (24)

α∗ < 0⇒ Cov [µ,X] ≤ 0 (25)

Now, plugging (21) into (16) we obtain:

E [(1− θα∗ (X − E [X]) + θ (µ− E [µ]))X] = R

or:
E [X]− θα∗Var [X] + θCov [µ,X] = R

which becomes:

α∗ =
1

θ

E [X −R]
Var [X]

+
Cov [µ,X]

Var [X]

Recalling that:

α∗mv =
1

θ

E [X −R]
Var [X]
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we obtain:

α∗ = α∗mv +
Cov [µ,X]

Var [X]
(26)

Using (23) - (25), it is now obvious that:

α∗ = 0⇒ α∗ = α∗mv = 0 (27)

α∗ > 0⇒ α∗ ≥ α∗mv (28)

α∗ < 0⇒ α∗ ≤ α∗mv (29)

From the proof of Theorem 10 — Eq. (13) — we know that λ∗ = g−1Wα∗
¡
1
θ

¢
= κ∗.

Furthermore, if P (Wα∗ > κ∗) > 0, since S is finite, there exists s such that

R+ α∗ (X (s)−R) =Wα∗ (s) > κ∗ = λ∗,

that is R+ α∗ (X (s)−R)− λ∗ > 0. Since Y ∗ (s) ≥ 0, by (17), we have

µ (s) = R+ α∗ (X (s)−R)− λ∗ +
1

θ
Y ∗ > 0,

and E [µ] > 0. Thus, in this case (22) implies α∗Cov [µ,X] > 0 and the
inequalities in (28) and (29) become strict.
Finally, we want to show that α∗α∗mv ≥ 0. By contradiction, suppose

α∗α∗mv < 0. Then, either α∗ > 0 and α∗mv < 0 or α∗ < 0 and α∗mv > 0.
Suppose α∗ > 0 and α∗mv < 0, since

α∗mv =
1

θ

E [X −R]
Var [X]

,

it must be E [X −R] < 0 and
α∗E [X −R] < 0. (30)

Clearly, if α∗ < 0 and α∗mv > 0, (30) still holds. Remember that (α
∗, Y ∗) is

a saddle point for

G (α, Y ) = E [(R+ α (X −R))Y ] + 1

2θ
E
£
Y 2
¤

and so:
G (α∗, Y ∗) ≤ G (α∗, 1S) = R+ α∗E [X −R] < R

where the last inequality follows from (30). But,

min
Y ∈Y

G (0, Y ) = G (0, 1S) = R > G (α
∗, Y ∗) = max

α∈R
min
Y ∈Y

G (α, Y ) ,

which is impossible. ¥
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