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Abstract

This paper describes a new method of bond portfolio optimization
based on stochastic string models of correlation structure in bond returns.
The paper shows how to approximate the correlation function of bond re-
turns with Padé approximations and compute the optimal portfolio allo-
cation using Wiener-Hopf factorization. The technique is illustrated with
an example of the Treasury bond portfolio.
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1 Introduction

While a cross-section of monthly stock returns exhibits an irregular saw-tooth
pattern, monthly bond returns plotted against maturity look like the sea wave
on a breezy but calm day — the nearby points are close to each other and
move in accord. This distinction explains why bond portfolio management is
a long-standing financial problem: Bond returns are more structured but also
more difficult to diversify. The present paper contends that the optimal bond
portfolio can be found by approximating the return correlation structure with a
rational function of the difference in maturities and reducing the optimization
problem to the inversion of a Hilbert space operator.
The importance of bond portfolio management is difficult to overestimate.

In 2000 the values of government and corporate debt outstanding were 7.7 and 5
trillions respectively, compared with 17 trillions of corporate equity outstanding.
In addition, the relative importance of debt is rising: the equity value in 2000
decreased by 13 percent from its 1999 level, while the government and corporate
debts were up 2 and 9 percent respectively.1 Despite all the effort to balance
its budget, the federal government is still spending more than it receives in
revenues and therefore the likelihood that the Treasury securities market will
be shriveling is scant. So, given the importance of debt markets how should
investors optimize their bond portfolios?
In the early 1980s Heaney and Cheng applied to bonds the techniques for

stock portfolio optimization. This approach, however, was later abandoned
because bonds move together to a much greater extent than stocks and modeling
these co-movements is harder.
Another idea appeared even earlier and got much greater application — the

idea of immunization (Fisher and Weil (1971)). The immunization technique
minimizes sensitivity of the portfolio with respect to small, parallel shifts in
all interest rates. So, this approach directly takes into account the observation
that interest rates are highly correlated. The modern development of this idea
uses stochastic programming (Dembo (1993), Mulvey and Zenios (1994), Golub
et al. (1995), Zenios et al. (1998), Consigli and Dempster (1998), Beltratti
et al. (1999), Dupačová and Bertocchi (2001)), in which the investor formulates
a set of scenarios for interest rate movements, prescribes them probabilities, and
minimizes a certain loss function — for example, loss that can occur with 5%
probability.
While practical, the immunization technique neglects many aspects of the

interest rate dynamics. The scenario probabilities are usually extracted from a
finite factor model, which does not capture all the information about the return
correlations. In addition, the market models require continually re-calibrating
parameters and are internally inconsistent. What is needed is a better method
for modeling interest rate correlations.
The present paper explores a synthesis of the two methods of portfolio opti-

mization: The correlations are directly estimated using a plausible assumption

1Source: Securities Industry Association Factbook 2001, page 22.
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on their structure, and the estimated correlations are then used by a portfolio
optimization model.
This new method has its provenance in modeling of bond returns as a ran-

dom field (Kennedy (1994), Kennedy (1997), Goldstein (2000), Santa-Clara and
Sornette (2001) and Baaquie et al. (2003)), an approach that provides more flex-
ibility than finite-factor models for bond return correlations. According to the
philosophy of these papers, correlations in bond returns should be approximated
as a function of the difference in maturities. Once the function is estimated,
the problem of optimization can be solved by inverting a special operator in
the Hilbert space spanned by bond returns, a task that was already extensively
studied in the communications engineering literature.
The rest of the paper is organized as follows. Section 2 explains assumptions

and notation. Section 3 is about Padé approximations to the correlation func-
tion. Section 4 solves the portfolio optimization in terms of the Wiener-Hopf
factorization. Section 5 applies the technique to a portfolio of the Treasury
bonds. And Section 6 concludes.

2 Assumptions and Notation

It is assumed that the bond returns form a random field that has a two-
dimensional correlation structure: across calendar time and across maturities.
It is also assumed that the correlation of two contemporaneous bond returns is a
function of the difference of bond maturities. Let us formulate this assumption
in a more detailed form.
Let symbol t denote the time remaining to bond maturity and symbol s the

calendar time. The market consists of infinite number of coupon-free bonds with
times to maturity t = nδ, n = 0, 1, 2, 3, ..., where δ is a fixed time period. The
price of the bond with maturity nδ at time s is denoted Pn(s). At maturity
the price of the bond is 1: P0(s) = 1. Let Rn(s), n = 1, 2, 3, ..., denote the
logarithmic return of investment in this bond after holding it for time δ :

Rn(s) = log
Pn−1(s+ δ)

Pn(s)
, (2.1)

Then it is assumed that

Cor(Rn(s), Rm(s)) = C(|n−m|). (2.2)

The assumption may be motivated by analogy with the assumption of sta-
tionarity in time series where the autocovariance of the returns depends only
on the difference between times of these returns. On a deeper level, the market
percepts the bonds with close maturities as similar and the assumption says that
the relevant measure of similarity is the difference between maturities. Since
the question about appropriate measure of similarity is a question about market
perceptions, it needs further empirical investigation. A priori, the assumption
that is taken in this paper seems to be reasonable.
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In the following the calendar time argument in Rn(s) will be suppressed for
the reader’s convenience.
Let me introduce artificial securities Sn, n = 0, 1, 2, ..., that have unit vari-

ance and the following expected return

En = (ERn+2 −R1)/
p
Vn+2, (2.3)

where ERn is the expected return of bond with maturity nδ, and Vn is the
variance of this return. The purpose of this normalization is two-fold: to restrict
attention to bonds that have a stochastic return over the next period (R1 is not
stochastic), and also to focus on the correlation structure in bond returns, not
on volatilities of individual bonds.
If holdings in the portfolio of bonds are denoted Xn for the bond with the

maturity nδ, let us also define a portfolio of the securities Sn that holds

Yn = Xn+2
p
Vn+2 (2.4)

in Sn. Then any portfolio of bonds that have stochastic returns is mapped to a
portfolio of securities Sn. Those two portfolios have the same variance and the
expected return of the new portfolio is equal to the abnormal expected return
of the original portfolio. The formulation it terms of securities Sn is useful as
it emphasizes the importance of the correlation structure. In the same time, if
the optimal portfolio of securities St is found, it is easy to translate it back to
the optimal portfolio of bonds by inverting relationship (2.4).
We will use the following criterion for portfolio optimization:

U(Π) = EΠ− γV ar(Π), (2.5)

where Π is a portfolio, EΠ is its expected abnormal return, V ar(Π) is its vari-
ance, and γ is a parameter that captures investor’s risk aversion. The task
of the investor is to maximize U(Π) with respect to all possible choices of Π.
We are going to re-write this problem to show explicitly the dependence of the
investment criterion on the correlation structure.
Let us introduce the generating functions for expected returns, correlations,

and holdings of securities St :

bE(z) ≡ ∞X
n=0

Enz
n. (2.6)

bC(z) ≡ ∞X
n=0

Cnz
n, (2.7)

bY (z) ≡ ∞X
n=0

Ynz
n,

The second step is to introduce some machinery of Hilbert spaces. Let H
be the linear space of the formal series in variable z with the bounded sum of
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squared coefficients:

a(z) =
∞X
−∞

akz
k such that

∞X
−∞

|ak|2 <∞. (2.8)

Scalar product < a|b >=:P aibi turns H into a Hilbert space. When a(z) and
b(z) are defined on |z| = 1, this scalar product can also be written in the integral
form:

< a|b >= 1

2πi

Z
|z|=1

a(z)b(z−1)
dz

z
. (2.9)

To any function

F (z) =
∞X
−∞

fiz
i such that sup |fi| <∞,

corresponds an operator of multiplication by this function,

a(z)→ F (z)a(z),

that maps H to H. To distinguish operators from functions, the operators will
have a multiplication sign in the subscript: F×. So, function F maps complex
numbers to complex numbers, and operator F× maps the Hilbert space H to
itself.
Finally, let H+ be a subspace of series with non-negative powers, H− its

orthogonal complement, and P+ the orthogonal projector on H+.
Using this notation it is easy to write the expectation and variance of port-

folio Π that holds Yn in each of the securities Sn :

E(Π) = < bE|bY > (2.10)

Var(Π) = < bY |P+A× bY >, (2.11)

where
A(z) = bC(z−1) + bC(z)− 1. (2.12)

Therefore,
U(Π) =< bE|bY > −γ < bY |P+A×bY > . (2.13)

If operator P+A× is invertible, the solution to this problem is:

bY =
1

2γ
[P+A×]

−1 bE, (2.14)

U =
1

4γ
< bE| [P+A×]−1 bE > .

If the operator is non-invertible, its kernel is non-empty, and it may signal an
arbitrage opportunity: Indeed if kerP+A× is non-orthogonal to bE, then the
investor can achieve an arbitrary large level of utility.
Finding the solution requires methods for estimating the correlation func-

tion, bC(z) and for inverting the operator P+A×.We will address these problems
in two next sections.
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3 Estimating Correlation

One method to estimate the correlation function is to compute empirical cor-
relations, Cn, and fit them with a rational function. In more detail, let PM (z)
and QN(z) be a couple of polynomials of degrees M and N , respectively. Let
their ratio has the following Tailor expansion:

PM (z)

QN (z)
=
∞X
i=0

fiz
i. (3.1)

This couple of polynomials is called a Padé approximation to the sequence {Cn}
if the first N +M +1 coefficients of the Tailor expansion coincide with the first
terms in {Cn} :

fi = Ci for i = 0, 1, ...,M +N. (3.2)

Padé approximations can be easily computed by solving a system of linear equa-
tions (see Baker and Graves-Morris (1996)).
A generalization of Padé approximations may be helpful when the data is

noisy. The generalization requires that the coefficients of the Taylor expansion
be only approximately equal to the terms of {Cn} :

fi = Ci + εi for i = 0, 1, ...,M +N +K. (3.3)

By definition, the [M,N,K]−order generalized Padé approximation minimizes
the sum of squared errors in (3.3).

4 Computing the Optimal Portfolio

In the engineering literature the operator P+A× is called a rational filter, and its
inversion is a well-known problem. It can be solve by several efficient methods
(Kailath et al. (2000)), from which one of the most elegant is given by the
Wiener-Hopf factorization. Let lnA(z) be decomposed as follows:

lnA(z) = A+(z) +A−(z), where a+(z) ∈ H+ and a−(z) ∈ H−. (4.1)

Then the Wiener-Hopf factorization theorem claims that

[P+A×]
−1 = [exp(−A+)]× P+ [exp(−A−)]× . (4.2)

See Lax (2002) for the proof.

Example 4.1 LetA(z) be a ratio of polynomials:

A(z) = a0

QM
i=1(z − θi)QN
j=1(z − ηi)

.
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Let θ+i and η
+
i be zeros and poles outside the unit circle, and θ

−
i and η

−
i be zeros

and poles inside the unit circle. Then

A+(z) = ln

·
a0

Q
(z − θ+i )Q
(z − η+i )

¸
,

A−(z) = ln

·Q
(z − θ−i )Q
(z − η−i )

¸
.

The technique of the Wiener-Hopf factorization allows writing analytic ex-
pressions for the optimal bond portfolio allocation and corresponding utility:

Theorem 4.1 The optimal allocation is

bY = 1

2γ

£
exp(−A+)

¤
× P+ [exp(−A−)]× bE

The corresponding utility function is

U =
1

4γ
< bE| [exp(−A+)]× P+ [exp(−A−)]× bE > .

Proof: This theorem is a direct consequence of the Wiener-Hopf factoriza-
tion theorem and expressions for optimal portfolio and utility (2.14).

Example 4.2 AR(1) correlations and expectations

Let correlations between bond returns be as they are in AR(1) time series model:

bC(z) = 1 + ∞X
i=1

αizi =
1

1− αz
. (4.3)

Then

A(z) = bC(z−1) + bC(z)− 1 = 1− α2

(1− αz)(1− αz−1)
, (4.4)

A+ = ln
1− α2

1− αz
, and A− = ln

1

1− αz−1
.

Therefore,

[P+A×]
−1
=

1

1− α2
(1− αz)×P+(1− αz−1)×. (4.5)

Assume also for the purposes of this example that the normalized expectations
for bonds with longer maturities are smaller — perhaps because of large variance
of the returns on longer maturity bonds. More precisely, let the normalized
expectations decline exponentially:

bE(z) = E0(1 + ∞X
i=1

βizi) =
E0

1− βz
, (4.6)
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where β < 1 is the rate of decline. Then, according to Theorem 4.1,

bY = E0
2γ

1− αβ

1− α2
1− αz

1− βz
, (4.7)

and

U =
E20
4γ

1− αβ

1− α2
<

1

1− βz
|1− αz

1− βz
> (4.8)

=
E20
4γ

1− αβ

1− α2
1

2πi

Z
|z|=1

1

1− βz−1
1− αz

1− βz

dz

z

=
E20
4γ

(1− αβ)2

(1− α2)(1− β2)
.

Note the symmetry of the expression relative to parameters that govern expec-
tations and correlations of bond returns. The symmetry shows neatly that the
investor need to take into account both the expectations and correlations of
future returns.

5 Application

We use Treasury interest rates data by J. Huston McCulloch that represent the
67 months from 8/1985 to 2/1991. These data give the zero-coupon yield curve
implicit in coupon bond prices. The yields have been defined for each month
using interpolation by cubic splines. From these data the returns on holding a
particular bond for one month have been computed.
The correlations have been estimated according to the formula

C(τ) =
1

N(s)N(t)

X
s,t

(Es,t −Es,t)(Es,t+τ −Es,t+τ ), (5.1)

where Es,t are returns normalized by their standard deviation, and N(s) and
N(t) are number of dates and maturities available for estimation.
Figure 1 shows the actual estimates of the correlations and the correlations

fitted by a Padé approximation. Figure 2 shows correlations fitted by a gen-
eralized Padé approximation. From the comparison of these figures, it is clear
that the traditional approximation is good for small differences in maturities
but severely underestimate the correlation between bonds with larger difference
in maturities. The generalized Padé approximation is more balanced in the
sense that it approximates equally well the correlations for all differences in ma-
turities. On the other hand, the generalized approximation underestimate the
correlations between bonds with small difference in maturities.
As usual, estimating expected returns is more tricky than estimating co-

variances. In particular, it depends on what theory the researcher holds about
formation of interest rates. One possibility, assumed here for the purposes of il-
lustration, is that expectations of the future interest rate curve coincide with the
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current interest rate curve. This allows to estimate expected return as follows:

ER(t, s) = log
P (t− 1, s)
P (t, s)

, (5.2)

where P (t, s) is the price of the bond with maturity t at time s. It should
be emphasized that this is only a possible choice among many others. It is
appropriate for illustrative purposes because of its simplicity.
Figure 3 compares a benchmark with results of investment in the portfolio

optimized by using the generalized Pade approximation. The benchmark is
the performance of the portfolio optimized using the assumption that the bond
returns are uncorrelated. In this example, the risk-aversion parameter is chosen
in such a way that the sum of investments is equal to 1.
From Figure 3 it is clear that the optimal portfolio performs much better

than the benchmark portfolio. It has much lower variance and its monthly
returns are always positive in a striking difference with the returns of bench-
mark portfolio. These results suggest that properly modelling the correlation
structure pays off.

6 Conclusion

An investor entering the business of bond portfolio management faces the busi-
ness that was regulated as early as in the time of Hammurabi when the law
required putting to death as a thief any man who received a deposit from a mi-
nor or a slave without power of attorney, but also the business that is still shaken
by unpredictable bubbles and demises of huge financial institutions, the business
that attracts more bright mathematicians and physicists than all mathematics
and physics departments in the country, that is operated by traders who play
toy machine guns during their lunch, and that demands deeper insight than
stock portfolio management will ever require, — but when he faces this fasci-
nating business, the investor may perhaps be comforted by the thought that
the business is the most scientific and precise in the whole area of financial
speculation.
The present article is a contribution that shows how engineering techniques

can be applied to calculating optimal bond portfolios. Pade approximations are
used to estimate correlations between returns on bonds of different maturities
and the Wiener-Hopf factorization technique is used for portfolio optimization.
Preliminary empirical investigation show that the approach is practically useful.
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Figure 1: Actual and Fitted Correlation Functions — Pade Approximation
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The solid line marked by circles is the actual correlation estimates. The
dashed line marked by pluses is the fitted correlations from the Padé [1/2]
approximation. The vertical axis shows size of correlations. The horizontal axis
shows the differences between maturity times measured in years.
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Figure 2: Actual and Fitted Correlation Functions — Generalized Pade Approx-
imation
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The solid line marked by circles is the actual correlation estimates. The
dashed line marked by pluses is the fitted correlations from the generalized
Padé [0/5/28] approximation. The vertical axis shows size of correlations. The
horizontal axis shows the differences between maturity times measured in years.
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Figure 3: Returns for Optimal and Benchmark Portfolios
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The solid line shows the returns of the optimal portfolio computed using
[0/5/28] generalized Padé approximation. The dashed line is the returns of the
benchmark portfolio computed under assumption of zero correlations between
bond returns. The horizontal axes shows time in months; the vertical axes shows
annualized monthly returns.
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