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Abstract. In a discrete setting, we develop a model for pricing a con-
tingent claim in incomplete markets. Since hedging opportunities in-
fluence the price of a contingent claim, we first introduce the optimal
hedging strategy assuming that a contingent claim has been issued: a
strategy implemented by investing initial wealth plus the selling price
is optimal if it maximizes the expected utility of the agent’s net payoff,
which is the difference between the outcome of the hedging portfolio and
the payoff of the claim.
Next, we introduce the ‘reservation price’ as a subjective valuation of
a contingent claim. This is defined as the minimum price that makes
the issue of the claim preferable to stay put given that, once the claim
has been written, the writer hedges it according to the expected utility
criterion. We define the reservation price both for a short position (reser-
vation selling price) and for a long position (reservation buying price) in
the claim. When the contingent claim is redundant, both the selling and
the buying price collapse in the usual Arrow-Debreu (or Black-Scholes)
price. If the claim is non-redundant, then the reservation prices are
interior points of the bid-ask interval. We provide also two numerical
examples with different utility functions and contingent claims. Some
qualitative properties of the reservation price are shown.
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1. Introduction

In this paper we develop a model for hedging and pricing a non-redundant

contingent claim when the financial market is incomplete.

Hedging and pricing are two sides of the same problem. In a complete

financial market, according to the ‘replication approach’, the price of a con-

tingent claim is the cost of the hedging portfolio. On the other hand, by the

‘martingale approach’, the price is the present value of the random payoff

with respect to the unique state (or Arrow-Debreu) price vector. This du-

ality between the ‘replication’ and the ‘martingale’ approaches permits to

solve the pricing problem easily under market completeness. It is less ob-

vious that the duality can be exploited also when the market is incomplete

and the claim to be priced is redundant.

Essentially, given a contingent claim hedging and pricing are the same

problem solved in two different spaces: hedging works in the space of port-

folios; pricing in the space of payoffs. When the contingent claim is non-

redundant, the duality relation cannot be usefully exploited, because it does

not provide a unique price. Actually, on portfolios side, there is no replicat-

ing portfolio and the hedging strategy could involve a risky position; on the

payoffs side, there is an infinite number of martingale measures and each

of them provides a different price for the contingent claim. This leads to

an interval where the minimum is the ‘ask price’ and maximum is the ‘bid

price’. In correspondence to each price of the bid-ask interval there is a

hedging strategy, once the hedging criterion has been chosen.

Assume that a new (non-redundant) contingent claim is issued by, say,

an investment banker so that a proper price for this claim should be found.

The bid price is the minimum cost of a super-replicating portfolio for a

short position in the claim and the ask price is the maximum cost of a

sub-replicating portfolio for a long position in the claim. If the potential
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counterparts of the writer are risk averse, no one would buy a claim offered

at the bid price (and a risk averse writer would not sell the claim at the ask

price). A risk averse agent will buy the claim at a price lower than the bid

price and will sell at a price higher than the ask price. If the claim is issued

for a price lower than the bid price, the writer must commit his wealth in

the deal because the hedging strategy becomes risky.

In the financial literature several models have been proposed to partially

hedge the claim if the writer accepts a risky hedging strategy. The first

was the risk-minimizing strategy proposed by Föllmer and Sondermann in

their 1986 seminal article [11]. According to this model, given a European

non-redundant contingent claim, the writer’s goal is the minimization of the

quadratic additional cost of revision of the hedging portfolio at each trading

date. The most important features of Föllmer and Sondermann’s model are

that the hedging portfolio can be obtained by backward recursion and that

the strategy is mean self-financing. Other models based on the same idea

have been proposed by Schweizer [17] and Schäl [16]. All these models are

limited mainly by the fact that, according to a quadratic criterion, both

positive and negative net payoffs resulting from the hedging strategy are

assumed to be equally disliked by the agent. One of the consequences of this

drawback is that, in a general setting, pricing a non-redundant contingent

claim by taking the cost of the hedging portfolio can lead to a negative price

even if the claim has a non-negative payoff. Obviously, this is not consistent

with the absence of arbitrage opportunities.

Since risk is involved, a hedging criterion based on the maximization of

the expected utility for the net payoff of the writer comes up as the most

natural solution. A model based on a utility gradient approach is due to

Davis [7], exploiting the idea first offered in Lucas [14] (see also Duffie and

Skiadas [10]). Davis’ model proposes a (fair) price for the contingent claim
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based on the assumption that the agent, an expected utility maximizer, is

willing to divert only an infinitesimal amount of his initial wealth to sell

(or to purchase, as for the buyer) the claim. Once the fair price has been

determined, Davis finds out the optimal hedging strategy for a given (not

necessarily infinitesimal) number of units of the claim by maximizing the

expected utility of the net payoff.

The problem of risky hedges has been addressed also in the literature

on pricing and hedging in presence of transaction costs. Actually, if there

are transaction costs, the perfect replication of a contingent claim could

not be an efficient strategy. It has been proved by Bensaid, Lesne, Pagés

and Scheinkman [3] that transaction costs can make it cheaper to domi-

nate than to replicate a claim. This amounts to say that transaction costs

create market incompleteness since not all risks can be hedged; moreover,

the issue of a derivative security when the market presents frictions involves

unavoidable risks. Since the hedging of the contingent claim involves risk,

then its price (i.e. the cost of the hedging portfolio) depends on the risk at-

titude of the agent. The concept of reservation price for a contingent claim

(Andersen and Damgaard [1], Clewlow and Hodges [5], Davis, Panas and

Zariphopoulou [8], Hodges and Neuberger [13]) takes into account both the

agent’s preferences and the financial market structure.

More specifically, the reservation selling price of a claim is defined as the

price that makes the following two situations equivalent from the writer’s

standpoint: (a) writing a prespecified number of the claim and hedging the

liability deriving from the deal with a portfolio of existing assets financed

with the revenue of the sale of the claim, and (b) leaving his wealth optimally

invested in the existing assets. The reservation buying price can be defined

in the same way from a buyer viewpoint. It should be clear that the price
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is, as a rule, dependent on the number of claims issued and on the wealth,

utility and beliefs of the writer.

The reservation price above defined is different from Davis’ fair price.

The fair price of the claim does not depend on the number of units written,

as should be conceivably expected, and the hedging strategy is consistent

with the price only if the number of units sold is “infinitesimal”. We will

show that the reservation price is consistent with Davis’ fair price when the

quantity issued is infinitesimal.

We frame the model in a discrete-time discrete-state space setting. We ex-

amine the problem of hedging and pricing a non redundant contingent claim

mainly from the viewpoint of the writer. Hence, throughout the paper we

will be talking of “hedging a liability” because (once issued) the contingent

claim gives the writer the obligation to pay a state-contingent payoff. The

description of the buyer’s point of view is straightforward and can be easily

derived from the results we present below.

The paper is organized as follows: after introducing the notation (Sec-

tion 2), we first study the agent’s hedging problem assuming that he has

already issued a given amount of contingent claims (Section 3). We provide

also some sufficient conditions on the agent’s preferences and on the financial

market to make the problem meaningful (Section 4). Next, we introduce the

reservation price and study its properties. In particular we show that the

reservation price is the Arrow-Debreu price if the claim is redundant, that

the reservation price is always greater than the ask price and lower than

the bid price and that it is consistent with Davis’ fair price if the quantity

traded is infinitesimal (Section 5). In the same section we provide also two

numerical examples regarding option pricing in incomplete markets. We fi-

nally give some concluding remarks in Section 6. Proof of propositions are
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relegated in the Appendix A. In Appendix B, we describe the non-trivial

procedure used to calculate the reservation price in the examples.

2. Notation

The notation we introduce is standard in financial economics.1 Let there

be given T + 1 dates {t = 0, 1, . . . , T}. We assume that an agent can

correctly anticipate the states of nature: let there be given S states of nature

Ω = {ω1, . . . , ωS}. Uncertainty concerns the prevailing state at T . We

assume that the agent’s information unfolds gradually as time proceeds:

{Ft, t = 0, . . . , T} is the sequence of partitions of Ω.

This can be described by means of an event-tree. The couple (t, At)

represents a node at time t with At in Ft. At t = 0 there is one node; at

each 0 < t ≤ T there are Nt nodes (NT = S is the cardinality of Ω). Let

N =
∑T

t=1Nt be the number of non-initial nodes of the event-tree (the total

number of nodes being N + 1). We will number the nodes of the tree from

0 to N , where 0 is the initial node, the subsequent N1 are the nodes at time

1, the next N2 are the time-2 nodes and so on.

Given a node ξ = (t, At), t < T ,

ξ→ =
{

ξ′ | ξ′ = (t + 1, At+1), At+1 ⊂ At

}
denotes the set of immediate successors of node ξ. The cardinality of ξ→ is

the branching number of node ξ. The sub-tree of a node ξ is the set of nodes

of the tree following ξ: formally, the sub-tree of node ξ = (t, At) is the set

of nodes (τ,Aτ ) such that τ > t and Aτ ⊂ At.

Let there be a frictionless financial market where K financial contracts are

traded. A financial security is characterized by the sequence of its prices at

the nodes of the sub-tree of the node of issue. We assume that the securities

pay no dividend and that the prices of securities are exogenously given.

1For a reference, see Duffie and Shafer [9] or Magill and Quinzii [15].
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Let2 {Pk(ξ), ξ = 0, . . . ,N} be the prices of security k at the nodes of

the event-tree, k = 1, . . . ,K. We can consider, with no loss of generality,

the number of securities available for trading as a constant throughout the

event-tree.

A long term position in security k can be split into a sequence of two-

period strategies. At each node ξ = (t, At), with t = 0, . . . , T − 1, (at the

terminal date T the securities cannot be traded) the security k is bought

for −Pk(ξ) and, in each subsequent node ξ′, the security is sold for Pk(ξ′).

If there is no transaction cost, assuming that the portfolio is rebalanced at

each trading date does not reduce the generality of the model.

Let P(ξ) = (P1(ξ), . . . , PK(ξ)) be the (row) vector of prices of securities

in node ξ at time t = 0, . . . , T − 1 and let

P(ξ→) =
(
P(ξ′)

)
ξ′∈ξ→

be the matrix of prices in the successors of node ξ. The rank of P(ξ→) is

called the spanning number of node ξ. Obviously, the spanning number can

not be strictly greater than the branching number.

LetN− =
∑T−1

t=0 Nt be the number of non-final nodes of the event-tree; i.e.

N− is the number of nodes where the securities are traded. Let M = KN−.

We represent the financial market by the following (N + 1)×M matrix

W =



−P (0, A0) · · · 0 · · ·
P

(
1, A1

1

)
· · · 0 · · ·

...
. . .

...
. . .

P
(
1, AN1

1

)
· · · 0 · · ·

...
. . .

...
. . .

0 · · · −P(ξ) · · ·
...

. . .
...

. . .
0 · · · P(ξ→) · · ·
...

. . .
...

. . .


.

2With a slight abuse of notation we identify the node with its number.
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Consider the first K columns of this matrix: the first row represents the

investment in one unit of each of the K securities at the initial node of the

event-tree. The following N1 rows are the payoff of the subsequent sale in

each node at t = 1. The same meaning can be given to the K columns of

node ξ.

Sometimes it is easier to refer to the following representation of W:

W =
(
−W0

W1

)

where W0 is the (row) vector of initial prices augmented by a vector of

zeroes and W1 is the matrix of prices at non-initial nodes. Throughout the

paper we assume that W1 has full rank, that is at any date-state couple the

prices of the securities are linearly independent. This is not restrictive: if it

were not the case, we could simply skip the redundant assets.

A portfolio x will be a (column) vector in RM, whose components are

the holdings of the K securities at the nodes of the event-tree. The vector

x can be decomposed as

x =
(
x(0),x(1), . . . ,x(N−)

)>
where the K-vector x(ξ) is the portfolio at the node ξ.

In what follows it will be assumed that the agent can take both long or

short positions in all securities at any node. Given a portfolio x, W0x is

the initial cost and W1x is the payoff produced in the subsequent dates by

x. At an intermediate date, the agent changes his positions in the assets

selling the portfolio he has been holding for one period and buying a new

portfolio. At the final date the agent must sell the portfolio and consume

his wealth. Hence, the payoff in node ξ can be described as follows:

(2.1) (W1x)ξ =

{
P(ξ)x(ξ−)−P(ξ)x(ξ) if ξ ∈ Ft, t = 1, . . . , T − 1
P(ξ)x(ξ−) if ξ ∈ FT
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where ξ− is the (unique) predecessor of node ξ and (·)ξ denotes the ξ-th com-

ponent of a vector. Equation (2.1) holds because of the particular “block”

structure of matrix W.3

3. Hedging a non-redundant contingent claim

Assume that there is an agent with time-separable and Von Neumann-

Morgestern preferences, with a smooth utility function u(·) such that u′ > 0

(strict non-satiation) and u′′ < 0 (strict risk-aversion) and with subjective

probability

p = (p1,p2, . . . ,pT )

at the various dates. pt = (pt(1), . . . , pt(Nt)) is the vector of unconditional

probabilities of nodes (t, At), At ∈ Ft at time t.

The agent has an initial wealth v0 and, in order to maximize the expected

utility for his wealth in the futures dates, he invests v0 in the financial

market. The cash flow produced by this strategy is v1, and must be non-

negative.4 The expected utility of v1 at t = 0 is

(3.1) U(v1) = d(1)
N1∑
ξ=1

p1(ξ)u(v1(ξ)) + . . . + d(T )
NT∑
ξ=1

pT (ξ)u(vT (ξ))

where vt(ξ) is the wealth at time t and node ξ ∈ Ft and 0 < d(t) ≤ 1 is the

discount factor.

The investment problem at time t = 0 is:5

(3.2) max
z
{U(v1) | v1 = W1z, W0z = v0, v1 ≥ 0 } .

3See Example 1 in Section 5.
4We can model different strategies: for instance, if we constrain the payoff to be equal

to zero for all intermediate dates and non negative at the last date, we would have a
self-financing portfolio strategy.

5The investment problem could have been written as
maxz {U(v1) | v1 = W1z, W0z ≤ v0, v1 ≥ 0 }. The assumption on non satiation of
the agent makes the two forms equivalent.
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Let z∗ ∈ RM be the portfolio strategy6 which produces the optimal payoff:

v∗1 = W1z∗.

Now, assume that the agent is willing to write a contingent claim. In

doing so, the agent will incur the obligation to pay an amount l(t, At) ≥ 0

for all t = 1, . . . , T : this time-and-state dependent liability is represented

by a (column) vector l1 ∈ RN . Assume that the agent sells a given number

δ 6= 0 of units of the contingent claim for l dollars a piece. The agent’s

goal is to hedge δl1 with a portfolio financed with the revenue obtained by

writing the claims: δl. If the claim in non-redundant, the deal involve some

risk for the writer.

The risk of the writer can be reduced in several ways. The most obvious

of these is a super-replication strategy (perfect hedging): the selling price

should be high enough to buy a self-financing portfolio whose payoff is at

any date and state not lower then the liability. This is an insurance strategy:

the agent writes the claim but wants to keep his future wealth unaffected

by the deal. It is easy to see that the price that permits the writer to insure

its wealth at any node is too high to be paid by any risk-averse buyer.

On the contrary, if the selling price, l, of the claim is too low, the deal

turns to be attractive for some risk-averse counterpart but the writer can

possibly commit his wealth in the deal in some unfavourable state of nature.

There are two problems facing the writer. The first one is the valuation of

the claim in order to establish the minimum price that makes issuing a good

trade. Let’s call this reservation selling price. Obviously, any price above

the reservation price would make selling the claim more and more desirable.

The second problem is the choice of a portfolio financed with δl to partially

hedge the liability. The agent will honor the liability at each date and state

with the payoff of the hedging portfolio and, if needed, with his own wealth.

6In Section 4 we will give conditions such that Problem (3.2) is meaningful and the
solution is unique.
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The solution of the hedging problem influences the valuation problem:

actually, the reservation price depends on the hedging opportunities offered

in the financial market. If the claim is redundant, the reservation price

must be equal to the cost of the hedging (replicating) portfolio if arbitrage

opportunities are ruled out. In case of non-redundancy, the agent may find

it optimal to partially hedge the claim and then to pay the liability also

with his own wealth. In this case, the reservation price depends on the risk

attitude and on the wealth of the agent.

For the sake of exposition, the two steps of the deal will be considered

in reverse order: first we will be concerned with the selection of a hedging

portfolio assuming that the claim has already been issued. This provides the

optimal solution as a function of the selling price, considered as a parameter.

Next, we will provide the reservation price of the claim as the value of the

parameter that leaves unaffected the optimal expected utility of the payoff.

As for the hedging strategy, the agent uses the (whole) revenue δl to

buy a portfolio x to hedge the liability l1. The net payoff of the deal,

denoted w1 = W1x − δl1, is added to the optimal payoff v∗1 obtained by

the investment of initial wealth v0. Hence, the agent does not re-discuss the

optimal allocation of the initial wealth as a consequence of the deal, but

can resort to his state-and-time contingent wealth to finance a loss in some

unfavorable nodes and can benefit of any possible gain. A natural constraint

is v∗1 + w1 ≥ 0; that is, the agent can resort only to his wealth to pay the

liability.

Summing up, the hedging problem is

(3.3) max
x
{U(v∗1 + w1) | w1 = W1x− δl1,W0x = δl,v∗1 + w1 ≥ 0} .

Remark 3.1. Problem (3.3) is equivalent to

(H) max
y
{U(w1) | w1 = W1y − δl1, W0y = v0 + δl, w1 ≥ 0 } .
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To see that this is true, let it be given z∗, the optimal portfolio for problem

(3.2). Since the optimal contingent wealth is traded, by plugging v∗1 = W1z∗

in (3.3) we obtain:

max
x
{U(W1 (z∗ + x)− δl1) | W0x = δl,W1 (z∗ + x)− δl1 ≥ 0}

and, letting y = z∗+x and observing that W0z∗ = v0, problem (H) follows

immediately.

Problem (H) and problem (3.2) have the same structure. Assuming that

z∗ is known, once the optimal portfolio y∗ for problem (H) has been found,

the hedging portfolio x∗ is given by y∗ − z∗. We will find is easier to solve

problem (H) than problem (3.3).

Observe that problem (H) can model also a partial commitment of the

agent in the deal: assume that the agent’s purpose, for the sake of prudence,

is to put only a small fraction of his initial wealth in the deal of writing a

contingent claim. Denote b the budget he is going to put in the deal, b < v0.

As in the case of total commitment (b = v0), the budget can be used to

finance a portfolio whose payoff maximizes the expected utility for state

contingent wealth. If the agent writes a contingent claim, he will find out

the optimal hedging portfolio by solving problem (H) with b in place of v0.

Moreover, if the deal is marginal with respect to the agent’s total wealth

and the agent partially commits with a budget b � v0, then we can assume

that the agent will always be so well off to be able to pay any outcome

from writing the claim. Formally, if the deal is marginal with respect to

the agent previous investment, the net payoff always satisfies the budget

constraint and the nonnegativity constraint in problem (H) can be dropped

(see also Hodges and Neuberger [13]).

With small changes we can model also the problem of the buyer of the

claim. The investment problem from the buyer’s viewpoint has the same
12



structure of problem (H) with −δ in place of δ. Given v∗1, the payoff of the

optimal portfolio obtained by investing v0 (see problem in (3.2)), the buyer

problem’s is

(3.4) max
x
{U(v∗1 + w1) | w1 = W1x + δl1,W0x = −δl,v∗1 + w1 ≥ 0}

and x is a portfolio which alters the previous positions in the existing assets.

The equivalence between problem (3.4) and (H) with −δ can be proved with

the argument used above.

4. Existence of a solution and no-arbitrage

In this section we will provide conditions for existence of an optimal so-

lution to Problem (H).7 These conditions are mainly related to the absence

of arbitrage opportunity in the financial market.8 This is related also to the

existence of strictly positive price (row) vectors π = (1,π1) ∈ RN+1
++ called

state-price vectors (π1 is the part of π which refers to non-initial nodes)

such that πW = 0.

A financial market is complete if any claim can be replicated by a portfolio

of traded securities. Hence, a market is incomplete if there is at least one

claim that cannot be replicated by trading in the existing securities. It is

known that the financial market W is complete if at each node the spanning

number is equal to the branching number [15, Proposition 22.4]. This type

of completeness is referred to as dynamic completeness; that is, although

there are less financial securities (K) than states of nature (S), the market

can be completed (in each node) by trading the existing securities if the

number of securities is equal to the number of contingencies at each node.

A financial market is incomplete if at some node ξ the spanning number is

strictly smaller that the branching number.

7Since Problem (H) and problem (3.3) have the same structure, the conditions apply
also to the latter one.

8An arbitrage is a portfolio y such that Wy ≥ 0 with at least a positive component.
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In an arbitrage-free financial market, completeness can be characterized

also by the existence of a state-prices vector π. If the market is incomplete,

there is an infinite number of state-price vectors such that πW = 0 whereas,

if it is complete, there is a unique state price that satisfies that condition.

By relation πW = 0, the price at t < T of the k-th security is the present

value of its payoff at t + 1: in node ξ = (t, At), the price is

(4.1) Pk(ξ) =
1
πξ

∑
ξ′∈ξ→

πξ′Pk(ξ′).

Hence πξ′/πξ is called node-price: πξ′/πξ represents the cost in node ξ of an

additional unit of payoff available in node ξ′ ∈ ξ→.

Remark 4.1. If l1 is redundant, then there is only one price, denoted q(l1),

compatible with the absence of arbitrage opportunities. We call q(l1) the

Arrow-Debreu price of the claim.

If there is an arbitrage opportunity, Problem (H) has no solution because

a non satiated agent could increase his utility by increasing the position in

the arbitrage portfolio. The next proposition states that also the converse

is true: if there is no arbitrage, then Problem (H) has a solution.

Proposition 4.2. Assume that the utility function u(·) is continuous and

increasing. Then, Problem (H) has a solution if and only if there is no

arbitrage opportunity in the financial market.

To make problem (H) meaningful, the solution must be unique.

Remark 4.3. If the utility function u(·) is smooth and u′ > 0 and u′′ < 0,

the solution for Problem (H) is unique.

Throughout the following section we will assume that u satisfies the hy-

potheses which ensure that the solution for the hedging problem is unique.
14



5. Reservation price

In this section we introduce the notion of reservation price of a contingent

claim. Loosely speaking, the reservation price from the point of view of the

writer of the claim is the minimum price that makes the deal better than

staying put.

Given an agent with utility function u, subjective probability p and initial

wealth v0, first assume that the agent sells a number δ 6= 0 of contingent

claims for l a piece. The time-and-state contingent payoff of the claim is

l1. The related hedging problem is (H): the agent maximizes the expected

utility for the net payoff w1 = W1x− δl1 of a portfolio strategy x financed

with v0 + δl. We denote by U(·) the (indirect) utility for initial wealth plus

the revenue:

(5.1) U(v0+δl) = max
x
{U(w1) | w1 = W1x−δl1,W0x = v0+δl, w1 ≥ 0 }.

On the other hand, if he does not write the claim, his initial wealth remains

optimally invested according to problem (3.3). In this case, the indirect

utility for initial wealth, denoted V(·), is

(5.2) V(v0) = max
x
{U(w1) | w1 = W1x,W0x = v0, w1 ≥ 0 }.

Obviously, V(v0) = U(v0 + δl) when no claim is written (δ = 0). The

following proposition is important in order to define the reservation price.

Proposition 5.1. The indirect utility function U(·) is strictly increasing.

We define the reservation selling price of the claim with payoff l1 and

denote it by ls as the minimum price that makes writing the claim better

than doing nothing; that is

ls = min{ l | U(v0 + δl) ≥ V(v0) }.

Needless to say, ls depends, among the others, both on the initial wealth,

v0, and on the units sold, δ. Since U(·) is strictly increasing, δls is the only
15



increment of the initial wealth due to selling δl1, that leaves the optimal

expected utility unchanged. Hence ls satisfies equation

(P) U(v0 + δls) = V(v0)

and is called the reservation selling price of a claim with payoff l1. We

observe that ls does not depend on the representation of the preferences but

only on preferences themselves: that is, ls is unchanged if we take an affine

increasing transformation of the utility function u.

The reservation buying price, i.e. the reservation price for the buyer,

(denoted lb) can be defined in the same way by putting −δ in place of δ in

condition (P).

The reservation price can be thought of as the certainty equivalent (c.e.)

of the random payoff l1 under the assumption that the agent is optimally

investing his wealth v0 (see Bellini and Frittelli [2]).

The next proposition states that, when the claim with payoff l1 is redun-

dant, that is, there exists a portfolio x̄ such that l1 = W1x̄, the reservation

selling (and buying) price collapses into the Arrow-Debreu price q(l1).

Proposition 5.2. If the contingent claim is redundant then:

(1) ls = lb = q(l1);

(2) the optimal portfolio strategy for problem in (5.1), denoted x∗, is

equal to x∗ = y∗ + δx̄, where y∗ is the optimal investment portfolio

for problem in (5.2).

According to this proposition, when the claim is redundant the agent’s

strategy is given by the sum of two portfolios: the hedging (replicating)

portfolio financed by δls and the optimal investment portfolio financed by

v0. This means that, in case of redundancy, the deal in the contingent claim

does not affect the optimal state-contingent wealth v∗1 from problem (3.2).
16



On the other hand, according to the very definition (problem (3.3)), when

the claim is non-redundant the net losses from the deal will be paid also

with v∗1. The next proposition states that the reservation prices always lie

between the bid and the ask price: if the claim is not redundant, the selling

price is strictly lower than the bid price and the buying price is strictly

higher than the ask price.

To this aim, define the bid (respectively, ask) price as the optimal value

of the problem

lbid(lask) = sup
π

(inf
π

) πl1

subject to πW1 = W0,(5.3)

π > 0.

The bid (ask) price is the maximum (minimum) price compatible with no

arbitrage. If we take the dual of the linear program (5.3) we can define the

bid (ask) price also as

lbid(lask) = inf
y

(sup
y

) W0y

subject to W1y ≥ l1(5.4)

(W1y ≤ l1)

so that the bid price is the minimum cost of a perfect hedge (the ask price

is the maximum cost of a dominated portfolio).

Remark 5.3. If there is no arbitrage in the financial market, then the

solution for problem (5.4) is unique.

Proposition 5.4. If the claim is not redundant, then lask < lb and ls < lbid.

To add more intuition to the concepts described above, we provide two

examples regarding option pricing problems. The details of the numerical

procedure can be found in Appendix B.
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Example 1. The first example concerns a european call option in a three-

date setting in incomplete financial market. We assume that there is a bond

(interest rate equal to 0.1 per period) and a non-dividend paying stock. The

event-tree is as in Figure 1. Assume also that a single european call option

on the stock with strike price X = 110 is sold (δ = 1) (respectively, bought,

δ = −1) by an agent with utility function u(w). We consider exponential

and Hyperbolic Absolute Risk Aversion (HARA) utility functions

u(w) = − exp(−αw), u(w) =
1− γ

γ

(
ηw

1− γ
+ β

)γ

.

Let ρ(v0) = −u′′(v0)/u′(v0) be the De Finetti-Arrow-Pratt absolute risk

aversion coefficient at v0 and assume the agent has uniform subjective prob-

ability

p = (1/3, 1/3, 1/3, 1/9, . . . , 1/9),

and let v(1) = v(2) = 1.

u(100, 102.23)
�

�
�

�
�

�
�

@
@

@
@

@
@

@

u(110, 133.46)
�������

XXXXXXX

u(121, 174.24)

64.24u(121, 145.2)

35.2u(121, 121)

11

u(110, 111.22)
�������

XXXXXXX

u(121, 145.2)

35.2u(121, 121)

11u(121, 91.66)

0

u(110, 92.69)
�������

XXXXXXX

u(121, 121)

11u(121, 91.66)

0u(121, 84.02)

0

Figure 1. Example 1: in the nodes of the event-tree there
are the security prices (bond and stock, respectively) and in
the leaves the payoff of a european call option (X = 110)
written on the stock.
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For illustrative purposes, the matrix W for this example is

−100 −102.23 0 0 0 0 0 0
110 133.46 −110 −133.46 0 0 0 0
110 111.22 0 0 −110 −111.22 0 0
110 92.69 0 0 0 0 −110 −92.69
0 0 121 174.24 0 0 0 0
0 0 121 145.2 0 0 0 0
0 0 121 121 0 0 0 0
0 0 0 0 121 145.2 0 0
0 0 0 0 121 121 0 0
0 0 0 0 121 91.66 0 0
0 0 0 0 0 0 121 121
0 0 0 0 0 0 121 91.66
0 0 0 0 0 0 121 84.02


In Table 1 we show the reservation selling and buying prices of the eu-

ropean call option for different risk aversions and wealth. In order to have

somehow comparable results across various utility functions, we adjust the

parameters of the functions to get the same ρ(v0).

Table 1. Example 1: reservation selling and buying prices
for different initial wealth v0 and absolute risk aversion ρ’s.
The prices are obtained with α = ρ for exponential and η =
0.1, γ = −1 for HARA utility function. We adjust β in the
HARA case in order to get the desired absolute risk aversion
at v0. All figures are rounded to the third decimal place.

EXP HARA
ρ(v0) v0 = 10 v0 = 20 v0 = 10 v0 = 20
0.05 16.533 16.507 16.527 16.535

10 16.379 10 16.394
0.1 16.562 16.560 16.590 16.631

10 16.304 10 16.228
0.15 16.609 16.609 16.658 16.779

10 16.228 10 15.782

Observe that an agent with little initial wealth v0 = 10 is willing to spend

his whole endowment to buy the security and that the spread between the

buying and the selling price is larger the higher the risk aversion. This is

also more clearly shown in Figure 2 that depicts the reservation buying and

selling prices against the absolute risk aversion coefficient for an exponential

agent with v0 = 20.

Figure 3 shows reservation selling prices for different initial wealth. Note

that the selling price is generally not increasing in the risk aversion coefficient

and that, given the risk aversion, the lower the initial wealth the higher is
19



the selling price. The three selling prices collapse to a unique price for ρ

around 0.1: nonnegativity constraints are redundant for such risk averse

agents and it then applies the result stating that the price is independent

on wealth for exponential agents.

The reservation prices of two agents having different subjective proba-

bilities are shown in Figure 4 as a function of the absolute risk aversion

coefficient. The probabilities are respectively p and

q =
(

1
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)
.
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Figure 2. Reservation selling and buying prices against the
absolute risk aversion coefficient in the case of exponential
utility (v0 = 20).

Example 2. This example is intended to mimic the pricing of a spread option

(which has final payoff max(0, S2−S1−X) where S1 and S2 are the prices of

two risky assets). No analytical formula is known to price such derivative and

simulations or other numerical approximations must be used. We compute
20
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Figure 3. Reservation selling prices against the absolute
risk aversion coefficient in the case of exponential utility for
different initial endowments (v0 = 10, 20, 30).

the selling (δ = 1) (respectively, the buying) price of the spread option with

X = 5, in an incomplete financial market where just the securities S1 and S2

(and no risk-less bond) are available. The event-tree is described in Figure 5.

Note that we are implicitly assuming a positive correlation among assets,

which need not to be the case (see [4]). The subjective probabilities and

discounting of the agent are the same as in Example 1.

The agent’s preferences are represented by exponential, HARA (as de-

fined above) and logarithmic utility function, u(w) = log(w + M), where

M is suitably chosen. The reservation prices obtained for some wealth and

absolute risk aversion coefficients are shown in Table 2. Again, we adjust

parameters β and M to have same ρ(v0). In two cases, however, this nor-

malization give raise to unfeasible problems when logarithmic utility is used.
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Figure 4. Reservation selling and buying prices against the
absolute risk aversion for exponential agents with different
subjective probabilities, respectively p and q.

Table 2. Example 2: reservation selling and buying prices
for different budget and absolute risk aversions. The figures
for exponential utility are obtained setting α = ρ for expo-
nential and η = 0.1, γ = −1 for HARA utility function. We
adjust M and β in order to get absolute risk aversion ρ at v0

with logarithmic and HARA utilities. All figures are rounded
to the third decimal place.

EXP HARA LOG
ρ(v0) v0 = 10 v0 = 20 v0 = 10 v0 = 20 v0 = 10 v0 = 20
0.05 3.371 3.375 3.375 3.387 3.381 3.411

3.309 3.314 3.305 3.306 3.230 3.290
0.1 3.405 3.413 3.425 3.481 3.462 -

3.282 3.291 3.263 3.242 3.222 -
0.15 3.437 3.449 3.489 3.693 3.642 -

3.254 3.268 3.201 3.049 2.972 -

Figure 6 shows the reservation prices obtained with logarithmic utility

against v0. The interval spanned by reservation selling and buying prices

is wider the smaller the wealth. Note, however, that being absolute risk
22
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Figure 5. Example 2: security prices (in the nodes) and
payoff of a spread option (X = 5) (on the leaves).

aversion dependent on v0, a bigger endowment comes together with smaller

risk aversion. Finally it is interesting to contrast reservation, bid and ask

prices. The latter are respectively 4.359 and 1.328 (not plotted for graphical

convenience), and span a much wider interval than utility based prices.

6. Concluding remarks

In this article we introduced the reservation price as a valuation criterion

for a newly-issued non-redundant contingent claim in an incomplete financial

market. We described also some properties of the price both from the seller’s

and the buyer’s viewpoints.

There are two issues that need to be addressed at the end of this work.

The first is that we assumed that the equilibrium in the financial market is

unaffected by the introduction of the new claim. This is unlikely to last for a

long time. Essentially, when a non-redundant contingent claim is issued, the

prices of the existing financial securities change because the opportunities

offered by the financial market to hedge risky positions are different. This

influences the equilibrium consumption and portfolio policies of the agents
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Figure 6. Reservation selling and buying prices against ini-
tial wealth v0 in the case of logarithmic utility (M = 15).

and, as a consequence, the prices of the existing assets. The same can be

said for other pricing criteria in incomplete markets offered in the literature

[1, 5, 7, 8, 13]. With respect to this, our pricing criterion is best suited to

determine the initial (offered or requested) price of the claim.

The second issue is that our model describes the behavior of a single part:

either the writer or the buyer. It is quite natural to extend the model in

order to describe the bargaining process between the parts. Assuming that

both parts select the hedging portfolio by maximizing the expected utility

of the net payoff, and if the reservation price for the writer is lower than

the reservation price for the buyer, then there is room for bargaining. The

existence and the properties of the bargaining solution will be the subject

of future research.
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Appendix A. Proof of propositions

Let B be the set of feasible net payoffs:

B =
{
w1 ∈ RN | w1 = W1x− δl1,W0x = v0 + δl, w1 ≥ 0

}
.

We will denote the set of arbitrage-free state-price vectors by

Π =
{

π = (1,π1) ∈ RN+1
++ | πW = 0

}
and by c̀ Π its closure. Let Bπ denote the budget-feasible set according to a

given state-price vector π ∈ c̀ Π:

Bπ =
{
w1 ∈ RN | π1(w1 + δl1) = v0 + δl, π = (1,π1) ∈ Π, w1 ≥ 0

}
.

The following preliminary results can be easily proved:

Lemma A.1. For all π ∈ c̀ Π, B ⊂ Bπ.

Proof of Proposition 4.2. This proposition is drawn on a well known theo-

rem stating the equivalence between the existence of a solution for a con-

sumption - investment problem and the absence of arbitrage opportunities

in a financial market [15, Th. 9.3].

To prove necessity, if Problem (H) has a solution, then there is no ar-

bitrage. Assume that x is an optimal portfolio such that w = Wx − δl,

with w = (−v0,w1) and l = (−l, l1). If there was an arbitrage y such that

Wy ≥ 0 with at least a positive component, then we would have

w = Wx− δl ≤ Wx + Wy − δl = w′,

where w′ = (−v0,w′
1), that is, we would have w ≤ w′ with a strict inequality

for at least a component, against the assumption that w is optimal. This

ends the necessity part.

To prove sufficiency, absence of arbitrage opportunities is equivalent to the

existence of a state-price vector π ∈ RN+1
++ . According to [15, Proposition

7.3], this implies that the budget-feasible set, Bπ, is compact. Since B is
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closed, also B ⊂ Bπ, from Lemma A.1, is compact. Hence, Problem (H) has

a solution because U(·) is continuous. �

Proof of Proposition 5.1. Let θ = v0 + δl. First we prove that θ′ > θ implies

U(θ′) ≥ U(θ). To see that this is true, define the set of feasible portfolios

D = {x | W0x ≤ θ,W1x ≥ δl1}

It is easy to see that D(θ) ⊂ D(θ′). Hence, the optimal expected utility of

w1 = W1 − δl1 is not lower in D(θ′) than in D(θ).

We have to prove that, if θ′ > θ, we cannot have U(θ) = U(θ′). Actually,

if the last equality held, then denoting with w1(θ) the optimal net payoff

as a function of θ, this would give w1(θ) = w1(θ′) for the uniqueness of

the solution. Since W1 has full rank, then this would imply that x(θ) =

x(θ′), where x(θ) is the optimal portfolio supporting w1(θ), that is w1(θ) =

W1x(θ) − δl1. The last equality gives θ = W0x(θ) = W0x(θ′) = θ′. And

this contradicts the assumption. �

Proof of Proposition 5.2.

(1) Since there is a x̄ such that W1x̄ = l1, let q(l1) = W0x̄ be the Arrow-

Debreu price of l1. By letting x = y + δx̄, the hedging problem (H)

becomes

max{U(w1) | w1 = W1x− δl1,W0x = v0 + δl,w1 ≥ 0 } =

max{U(w1) | w1 = W1y,W0y = v0 − δq(l1) + δl,w1 ≥ 0 }.

Since

V(v0) = max{U(w1) | w1 = W1x,W0x = v0,w1 ≥ 0 },

clearly V(v0) = V(v0− δq(l1)+ δl). Since V(·) is a strictly increasing

function (Proposition 5.1), then ls = q(l1). The proof for the buying

price is the same, by taking x = y + δx̄ in place of x = y − δx̄.
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(2) Let x∗ be optimal for problem (5.1) and let x∗ = y∗ + δx̄. Since

l1 = W1x̄ and using part (1) of Proposition 5.2, we have that y∗ is

optimal for problem (5.2).

On the other hand, let y∗ be the optimal strategy for prob-

lem (5.2). Then by taking y∗ = x∗ − δx̄ we have that x∗ is optimal

for problem (5.1).

�

Proof of Proposition 5.4. We prove that ls ≤ lbid for any claim. Let w1 be

the optimal net payoff according to problem (3.3) with δ = 1 for convenience.

Moreover, let define the net payoff ŵ1 = W1x̂ − l1, where x̂ is the perfect

hedging portfolio such that W0x̂ = lbid (see problem in (5.4)). Since ŵ1 ≥ 0,

then U(v1 + ŵ1) ≥ U(v1) because u(·) is strictly increasing, where v1 is

optimal for problem (3.2). Moreover, v1 + ŵ1 is feasible. Since

max
x

{
U(v1 + w1) | w1 = W1x− l1,W0x = lbid,v1 + w1 ≥ 0

}
≥

≥ U(v1 + ŵ1),

then we have, by definition of reservation selling price,

U(v0 + δlbid) ≥ V(v0) = U(v0 + ls),

and since U(·) is monotone (Proposition 5.1), ls ≤ lbid. Strict inequality

ls < lbid in case of non-redundancy of the claim follows immediately from

condition ŵ1 ≥ 0 and ŵ1 6= 0.

To prove that lask < lb, let it be given ŵ1 = W1x̂ − l1, where x̂ is

the perfect hedging portfolio such that W0x̂ = lask (from problem (5.4)).

Condition ŵ1 ≤ 0 and ŵ1 6= 0 implies that U(v1 + ŵ1) ≤ U(v1). Since

max
x

{
U(v1 + w1) | w1 = −W1x + l1,W0x = lask,v1 + w1 ≥ 0

}
≤

≤ U(v1 + ŵ1),

then the inequality can be proved with the same argument used before. �
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Appendix B. The numerical algorithm

The reservation price, as seen in section 5, is defined as the unique solution

of equation (P). Once v0,W0,W1 and δ are fixed the left hand side of (P) is

a function of the price ls while the right hand side V(v0) is a fixed constant,

namely the optimal utility that can be attained if no security is written.

Equation (P) can be solved by bisection, after ls is bracketed in an interval

[l∗, l∗] such that

U(v0 + δl∗) ≤ V(v0) ≤ U(v0 + δl∗).

Clearly, each evaluation of function U need the solution of the constrained

optimization problem (H). To this aim, we used the “NEOS Server for

Optimization” hosted at Argonne National Laboratories.9 Actually, NEOS

is an acronym for Network-Enabled Optimization System. This site of-

fers a variety of solvers for general optimization problems. The user is

asked to precisely define the problem, to submit it to the server in one

of several possible ways and to specify a suitable solver. In particular,

we adopt the AMPL language (Fourer et al. [12]) to submit the problem

(H) and use the LANCELOT solver to get a solution (Conn et al. [6] or

see www.cse.clrc.ac.uk/Activity/LANCELOT for details). Each result was

checked using the MINOS solver, which is available at NEOS server too: the

two programs always produced the same solution, up to required precision.

Further details on MINOS can be found in Fourer’s book or at the NEOS

server.

Note that it is not trivial to execute a bisection algorithm in a pure

optimization environment. In fact, although it is quite easy to solve an

optimization problem using the AMPL language, it is not straightforward

to program an iterative procedure like bisection. However, taking profit of

9URL: http://www-neos.mcs.anl.gov

28



the AMPL statements let and if, it is possible to iterate the solution of

problem (H) to compute ls repeating the following AMPL code

let l_down := if optimal_U < VV_0 then l else l_down;

let l_up := if optimal_U > VV_0 then l else l_up;

let l := if optimal_U < VV_0 then (l+l_up)/2 else (l+l_down)/2;

solve;

that performs a bisection step. The notation of the code is suggestive of that

in the paper, namely l down = l∗, l up = l∗, VV 0 = V(v0) and optimal U is

the optimal value of problem (H), given l = ls. Observe that each step of

the bisection algorithm is followed by the solution of problem (H) (solve)

which allows to perform another step of the bisection procedure.

In summary, we numerically compute the reservation price in two steps:

solution of a constrained multidimensional optimization problem by submis-

sion to the LANCELOT solver and solution of the equation (P) by bisection

method, iterating the previous point until convergence is reached. In par-

ticular, we stop iterating when two successive values of the price ls differ by

less than 10−4.
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