
Lévy flights, autocorrelation, and slow 
convergence 

 
 

Annibal Figueiredoa, Iram Gleriab, Raul Matsushitac, Sergio Da Silvad,*  

   
aDepartment of Physics, University of Brasilia, 70910-900 Brasilia DF, Brazil 

bDepartment of Physics, Federal University of Alagoas, 57072-970 Maceio AL, Brazil 
cDepartment of Statistics, University of Brasilia, 70910-900 Brasilia DF, Brazil 

dDepartment of Economics, Federal University of Rio Grande Do Sul, 90040-000 Porto Alegre RS, 
Brazil 

 
 
Abstract 
Previously we have put forward that the sluggish convergence of truncated Lévy flights to a Gaussian [1] 
together with the scaling power laws in their probability of return to the origin [2] can be explained by 
autocorrelation in data [3, 4].  A purpose of this paper is to improve and enlarge the scope of such a result.  
The role of the autocorrelations in the convergence process as well as the problem of establishing the distance 
of a given distribution to the Gaussian are analyzed in greater detail.  We show that whereas power laws in the 
second moment can still be explained by linear correlation of pairs, sluggish convergence can now emerge 
from nonlinear autocorrelations.  Our approach is exemplified with data from the British pound-US dollar 
exchange rate. 
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1.  Introduction 
 
 We have previously suggested that the sluggish convergence associated with 
truncated Lévy flights (TLFs) [1] and the power laws emerging in their "probability of 
return to the origin" [2] can be explained on the basis of particular features of 
autocorrelation in data [3, 4].  Our case for the role of the autocorrelations has since been 
strengthened by others [5].  However, since only linear correlations of pairs have been 
considered in our previous work, that leaves room for examining the role of nonlinear 
correlations (if any) in the dynamics of a convergence process.  Here we tackle this issue.  
And by doing so we in a sense complement our previous theory.  We thus show that 
whereas power laws in the second moment can still be explained by linear correlation of 
pairs, sluggish convergence can now emerge from nonlinear autocorrelations. 
 As far as the convergence is concerned, we have incidentally advanced, too, a 
dynamic measure of the distance of a distribution from the Gaussian.  Here we revisit such 
a result to perfect it along the lines of our broader approach. 
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 To illustrate our novel methodology we employ data from the British pound-US 
dollar. 
 The rest of this paper is organized as follows.  Section 2 briefly revisits our previous 
work [3, 4].  Sections 3, 4, and 5 are devoted to explain and present novel results.  Our 
method is then exemplified in Section 6.  Finally, Section 7 concludes. 
 
2.  Quasi-Ω-stability and autocorrelation 
 

Our previous case for the role the autocorrelations [3, 4] relies on the concept of a 
"quasi-Ω-stable" process, which is as follows.  Take the sum of random variables xi: 
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Without loss of generality it can be assumed a zero mean for ix .  Lévy himself [6] shows 

that, for reduced variables 2iii xx µ=  (where generally Npix p
iip ∈∀>=< ,,µ ), the 

characteristic function (CF) ( )zψ  of a process with finite second moment can be written as 
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where w(0) = 0.  The probability density function (PDF) of the distribution is given by 
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with IR Iz ψψψ +=)( , where 1−≡I .  If we further assume that IR Iwwzw +=)(  it can 
be shown that 
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Note that Rw and Iw appear in )(xfeven  and )(xfodd . 
Definition 1.  A Ω -stable process occurs in interval [n1 , n2] if 
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and 2/))(1(2

)( zz
n nez Ω+−=Ψ  is the CF of nS .  Definition 1 cannot turn the PDFs stable.  But 

Definition 1 makes the CF constant in the interval [n1, n2].  For such a class of processes it 
can be shown that 
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where P(0) is the probability of return to the origin, and nν  is the standard deviation of nS .  
If nν  scales as a power law of type 
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This is a scaling property observed in TLFs, which holds for a finite time window until 
"termalization" (α = 2) takes place at a ultraslow pace, as shown by Mantegna and Stanley 
[1]. 

The term " Ω -stable process" is used rather than simply "stable process" to 
distinguish it from the more standard "α-stable process" (or "Lévy-stable process") [7-10].  
The latter is a stable process in the sense that all finite-dimensional distributions are stable.  
Note that, if compared with an α-stable process, our Ω -stable process still belongs to the 
Gaussian domain of attraction (thanks to the term 2z  in Eq. (5)).  This is not so surprising 
since we are dealing with a finite standard deviation.  Thus an Ω -stable process cannot be 
α-stable for an arbitrary choice of )(znΩ , α∀ . 

For practical purposes, we can think of a quasi-Ω-stable process.  Whereas 
)()( zzn Ω=Ω  in an Ω -stable process,  )()( zzn Ω≈Ω  in a quasi-Ω-stable process.  For 

quasi-Ω-stable processes, power law (8) holds temporarily. 
For independent and identically distributed (IID) variables, α = 2 in Eq. (8).  In fact, 

we have 
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where ν  is the standard deviation of ix .  Thus the TLF can be linked to both quasi-Ω-
stability and scaling in volatility.  The latter can be explained on the basis of linear 
correlation of pairs [3, 4].  Next sections will examine the role of nonlinear autocorrelations 
for the sluggish convergence. 
 
3.  The role of autocorrelations in the sum of stochastic variables 
 
 As for the statistical moments of ix  and nS , 
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as seen, and 
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Moreover 
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 As observed, Lévy proved [6] that, for a random variable ix  with a finite second 

moment, the CF of the reduced variable 2iii xx µ=  satisfies 
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Writing )(ziψ  for the CF of ix  yields ( )2)( iii zz µψψ = .  The CF of ix  and nS  can then 
be written as 
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respectively. 
 The existence of a CF for the sum variable when ∞→n  is guaranteed by Lévy’s 
continuity theorem.  For independent variables it holds true that 
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Eq. (16) does not hold for autocorrelated processes, though.  For the latter we propose that 
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where function )(zCn  allows one to get a measure of independence between the variables 

ix .  These are independent at the borderline case when )(zCn = 1; otherwise, 
autocorrelations are present.  Section 4 will evaluate )(zCn  to take the measurement of the 
degree of dependence into account. 



 Limiting sums of non-independent random variables have been extensively studied 
in the probability literature.  They include random variables that are associated [7, 11], 
weakly dependent [12], and mixed.  Alternative notions of dependence are presented 
elsewhere [13, 14], and application of summation schemes to finance are found in [15, 16]. 
 Expressions (15) can be expanded in series to give 
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and 
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 Now let us suppose that )(zCn  allows a series expansion in z, i.e. 
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By employing Eq. (18) it can be shown that 
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with 
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Substituting Eqs. (19), (20), and (21) into Eq. (17) yields 
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Comparing equal order terms produces 
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and 
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By taking Eq. (20) into account it can be assumed without loss of generality that 
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where )(zWn  allows a series expansion such that 
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Then it can be shown from (24)─(26) that 
 

( )331 3
1

nnnW σν −=                                                                                                              (29) 

 
and 
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After taking Eq. (14) into account, Eq. (21) can be rewritten as 
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 After considering Eqs. (28) and (31), the CF in (17) becomes 
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And for the reduced variables one has 
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 We now define 
 

)()()( )2()1( zzz nnn Ω+Ω=Ω                                                                                                   (34) 
 
and use Eq. (32) to get 
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and 
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Function )()1( znΩ  matches the one for uncorrelated series, i.e. as n → ∞ it approaches w(0) 
= 0.  And term )()2( znΩ  is related to the existence of autocorrelations.  It is key to 
understanding the ultraslow convergence.  The term gives the CF of the sum variable, 
which in turn can be used to obtain its PDF as ∞→n .  This result in a sense generalizes 
the central limit theorem for autocorrelated processes to which  Eq. (17) holds. 
 
4.  Autocorrelation and convergence 
 
 Now we look for an expression to )()2( znΩ  containing uniquely the statistical 
moments of a distribution.  That renders it suitable for practical applications.  Let us first 
define a nonlinear correlation term: 
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-where kppp L21  are positive integers, and kiii ≠≠≠ L21 .  For example, if we employ 
<11> in Eq. (37) we obtain the usual linear correlation of pairs, i.e. 
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 Eq. (37) gives our definition of nonlinear autocorrelations.  Our task is to evaluate 
the contribution of such nonlinear terms in the process of convergence.  By using Eqs. (28), 
(29), and (30) it can be shown that 
 

2)2(
2

)2(
1

)2( zzI nnn Ω+Ω=Ω                                                                                                         (39) 
 



2/3
2

2/3
2

33)2(
1

123111
3
1

n

nn

n

nn
n νν

σν ><+><
=

−
=Ω                                                                          (40) 

 
and 
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where )2(

1nΩ  and )2(
2nΩ  are functions of third- and fourth order correlations respectively. 

 Now let us turn to analyze the role of the linear correlations in convergence to the 
Gaussian regime.  First note that 
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depends only on 2nν  and 2nµ , which are related by Eq. (38).  As 1/ 22 →nn µσ , Rn 

approaches zero; according to Eq. (38) that is possible only if 0/11 →>< npn σ , i.e. if 2nσ  
dominates the sum of all linear correlations in the process.  Likewise we are sure that Rn 
cannot approach zero if term n>< 11  is relevant. 
 As an illustration, consider identically distributed variables for which 
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The sum of all linear correlations in the variables ix  is given by 2/11 mn>< .  As shown 
elsewhere [3], the presence of such correlations is responsible for the emergence of a power 
law in the cumulative dispersion nS , i.e. 
 

2/1,2 >→ αν αmnn                                                                                                        (44) 
 
As a result, one has, too, that 
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For ⇒∞→n 41→nR , and this prevents termalization to take place.  For actual data, Eq. 
(44) is expected to hold temporarily and as an approximation; so 4/1≠→ constantRn . 



Thus the linear correlations can cause delays in the convergence process; and that holds 
true even for short-range autocorrelated processes.  Nevertheless if 0→nR  then the 
nonlinear autocorrelations matter.  And here the measure of dependence can be evaluated 
from Eqs. (40) and (41).  By considering these equations, next section will tackle the 
problem of the distance to the Gaussian regime. 
 
5.  Distance to the Gaussian regime 
 
 Now we turn to the problem of how to measure the distance of a process which 
currently stands away from its ultimate Gaussian equilibrium.  By using Eqs. (2) and (18), 
we write IR Iwwzw +=)( .  With the help of some algebra it can be shown that 
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is the nth order momentum, 
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is the kurtosis, and 
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is the skewness. 



 We have proposed [3] that the norm of w(z) gives a good measure of the distance of 
a given PDF to the Gaussian one, where w(z) = 0.  For a given δ, the distance between two 
distributions f and g of a reduced normal family is given by 
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So if g is the reduced, normal distribution, the distance of a given f to the Gaussian is 
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 Terms wR and wI are constrained to some real value in a finite time window for 
systems with sluggish convergence, such as either our class of quasi-Ω-stable processes or 
the TLF.  Unlike an IID process, here the kurtosis K and the skewness Sk cannot decay to 
zero following curves 1/n and 1/n1/2 respectively.  For the sum variable, after writing  
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we can show that 
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Term 0

nSk  is the skewness of Sn for an IID process.  Correlations of third order can then be 
responsible for preventing wI to reach zero through 1

nSk .  It can be also shown, after 
considering Eqs. (33) and (34), that 
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Term 0

nK  is that of an IID process.  Term 1
nK  (= nR ) contains linear correlation of pairs.  

But correlations of fourth order appear in 2
nK .  Both linear and nonlinear correlations are 

critical for analysis of wR.  Although linear correlations play a key role in convergence of 



the distribution, it is still necessary to take the nonlinear autocorrelations into account to 
fully characterize the process. 
 It is worth noting a similarity between Eqs. (53)–(54) and (40)–(42).  The latter 
were obtained from the assumption that dependence is fully accounted by the presence of 
Cn(z) whereas Eqs. (53)–(54) were obtained without any prior assumption.  From both 
approaches we come to the conclusion that nonlinear autocorrelations play an important 
role in the sum of stochastic variables.  Although that is arguably well known in literature, 
our novel methodology presents formulas that allow one to evaluate the contributions of the 
nonlinear terms explicitly.  What is more, our formulas for statistical momenta are 
quantities easily obtained with the help of a computer. 
 
6.  Applications 
 
 Now we exemplify our approach with data coming from daily variations of the 
British pound against the US dollar.  Our data set contains 8213 data points, covering the 
time period from 1 April 1971 to 26 September 2003.  As usual, we take returns Z rather 
than raw data as our stochastic variable, i.e. 
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where )(tY  is a rate at day t.  Note that nt StZ ≡∆ )(  and nt ≡∆ . 

 Fig. 1 displays 2/1
nν  against n.  Curve n  of an IID process is also shown for 

comparison.  Scaling power law 
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emerges.  The autocorrelation function is presented in Fig. 2.  It is interesting to compare 
the results in Figs. 1 and 2 with those of a variable built from a random aggregation of the 
original data, say R

nS  [3].  For such a variable, curve nν  against n is expected to follow n , 
as indeed is the case (not shown). 
 When one looks at the autocorrelation function of R

nS  (Fig. 3), one cannot tell the 
difference between the curve and that of Fig. 2.  Both are "short-range" correlated.  But 
something else in the autocorrelation function of Fig. 2 is still responsible for the 
appearance of scaling law (57). 
 Previously we have shown [3, 4] that nS  for the pound is sluggish, and presents a 
ultraslow convergence together with other properties compatible with the presence of a 
TLF.  Are the linear correlations of pairs enough to explain the slow speed of convergence?  
Definitely not, as can be appreciated from the results in Sections 4 and 5. 
 Fig. 4 shows the curve of Eq. (53) for 1=δ .  It can be seen that the function is 
somewhat constrained to some real value which prevents termalization (w(0) = 0) to take 
place. 



 Fig. 5 displays a distance compared to ∫
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II .  For 

the pound-dollar rate, DI is the main responsible for saturation of w(z) at a nonzero, real 
value.  Also, from Eq. (4) one can see that either wR ≠ 0 or wI ≠ 0 is sufficient for 
termalization not to emerge. 
 The leading terms of wR and wI, i.e. nK  and nSk respectively are presented in Figs. 

6 and 7.  These figures also show curves n/1  (for the kurtosis) and n/1  (for the 
skewness) followed by an IID process, which gives the behavior of 0

nK  and 0
nSk . 

 Fig. 8 present the behavior of each term in the kurtosis.  It shows Rn, which equals 
1
nK  and accounts for the contribution of the linear autocorrelations in the dynamics of the 

process, together with 2
nK . 

 Finally, Figs. 9 and 10 present )2(
1nΩ  and )2(

2nΩ .  From Eq. (36) it can be seen that 
when 0)2( ≠→Ω εn  the limit distribution is not a Gaussian.  From Fig. 9 one cannot say for 
sure that this is the case of our example, because we have stopped at n = 500. However, the 
fact that )2(

nΩ  is always different from zero in that time window do provide an explanation 
for the slow convergence in terms of nonlinear autocorrelations in the behavior of the 
kurtosis and skewness. 
 
7.  Conclusion 
 

This paper revisits our previous result that the slow convergence associated with 
truncated Lévy flights and the scaling power laws emerging in their "probability of return 
to the origin" can be explained by autocorrelation in data [3, 4].  Our case for the role of the 
autocorrelations has since been strengthened by others [5].  However, here we enlarge the 
scope of such a result.  And the pound-dollar rate is taken to illustrate our discussion. 

Since only linear correlations of pairs are considered in our previous work, here we 
tackle the issue of the role of nonlinear autocorrelations in the dynamics of a convergence 
process.  We thus show that, whereas power laws in the second moment can still be 
accounted for by linear correlation of pairs, sluggish convergence can now emerge from the 
nonlinear autocorrelations. 
 Indeed, the standard deviation exhibits power law scaling for a finite time window, 
which ranges from 1 to 100≈ ; and that occurs thanks to some particular features of the 
linear correlation of pairs (though it is not "short-range" correlated). 
 The process studied also presents quasi-Ω-stability, as seen from the sluggish 
behavior of w(z).  And a novelty in this paper is to show that the nonlinear autocorrelations 
are responsible for that sort of behavior.  For instance, wR  ≠ 0 thanks to correlations of 
fourth order. 
 As before, both quasi-Ω-stability and the power law in volatility are sufficient for 
the Lévy distribution to fit the modal region of a distribution [3, 4].  Here scaling breaks 
down at 100≈t∆  after which the process reaches 2=α . 
 Thus, whereas linear autocorrelations can explain the emergence of power law 
scaling in volatility, nonlinear autocorrelations are needed for one to fully characterize 
convergence to the Gaussian regime. 
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Fig. 1.  Standard deviation versus n for the pound-dollar rate together with the curve for an IID process 

 
Fig. 2. Linear correlations of pairs for the pound-dollar rate (continuous line).  Dashed lines are the 95% 
confidence limits under the hypothesis that the autocorrelations are nil 
 



 
Fig. 3. Linear correlations of pairs for the randomized data from the pound-dollar rate (continuous line).  
Dashed lines show the 95% confidence limits under the hypothesis that the autocorrelations are nil 

Fig. 4.  Distance to the Gaussian distribution (D(f, Gauss)) versus n 



Fig. 5.  Comparison between D(f, Gauss), DR, and DI 



Fig. 6.  Kurtosis versus n and the curve of an IID process 



Fig. 7.  Skewness versus n and the curve of an IID process   



Fig. 8. Comparison between the kurtosis, Rn, and 2
nK  



Fig. 9.  | )2(
1nΩ | versus n 



Fig. 10.  | )2(
2nΩ | versus n 


