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Abstract

We propose a Bayesian methodology that enables banks to improve their credit

scoring models by imposing prior information. As prior information, we use coeffi-

cients from credit scoring models estimated on other data sets. Through simulations,

we explore the default prediction power of three Bayesian estimators in three differ-

ent scenarios and find that they perform better than standard maximum likelihood

estimates. We recommend that banks consider Bayesian estimation for internal and

regulatory default prediction models.
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1 Introduction

Banks use credit scoring models when approving and pricing loans. Under the proposed

new Basel capital accord (Basel II)1, banks can also use their default probability estimates

for calculating regulatory capital. Therefore, accurate default prediction is in the interest

of banks as well as regulators.

It is generally easier to predict defaults accurately if a large data set (including de-

faults) is available for estimating the prediction model. This puts not only small banks,

which tend to have smaller data sets, at disadvantage. It can also pose a problem for

large banks that began to collect their own historical data only recently, or banks that

recently introduced a new rating system.

We propose a Bayesian methodology that enables banks with small data sets to im-

prove their default probability estimates by imposing prior information on the estimates.

As prior information, we use coefficients from credit scoring models estimated on other

data sets. In many cases, such prior information will be readily available from the acad-

emic literature (e.g. Altman (1968) or Shumway (2001)). It could also be made available

by regulators. The Deutsche Bundesbank or the Banque de France, for example, have

large data sets with corporate financial statements which they use to estimate credit

scoring models (see Engelmann et al. (2003) and Banque de France (2001)).

For illustrating the accuracy gains from Bayesian estimation, we use simulations based

on a data set comprising the non-financial firms in the S&P 1500 index. Within a logit esti-

mation framework we estimate the coefficients of a credit scoring function with standard

maximum likelihood (”straight logit” hereafter) and compare them to an approximate

Bayes, an empirical Bayes and a Stein rule estimator. In order to evaluate the quality of

the resulting default probability estimates, we use the accuracy ratio and the Brier score,

two measures commonly applied in the literature.

In our settings, all three Bayesian estimators are significantly more accurate than the

straight logit estimator. We therefore recommend that banks use a Bayesian estimator

for their internal and regulatory default prediction models.

A closely related paper is Frerichs and Wahrenburg (2003). The simulations of the

1See Basel Committee on Banking Supervision (2003).
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authors suggest that pooling of estimation samples might improve credit rating systems.

As in our paper, the benchmark estimation model is a logistic credit scoring function. The

key difference between Bayesian methods and pooling is that the latter is only possible

if full access to additional data sets is available. Such data, however, will usually not be

available for free, and in some cases they may not be available at all. Another advantage

of the Bayesian method is that it provides a natural way for dealing with structural

differences between a bank’s internal data and additional, external data. In practice, the

true scoring function may differ across the data sets, the small internal data set may

contain information that is missing in the larger external data set, or the variables in

the two data sets are not exactly the same but related. In each of these cases pooling is

feasible, but it requires the modeler’s explicit decision on how to deal with the structural

differences, e.g. restricting coefficients to be equal across the data sets or determining

a way of imputing missing values. Bayesian methods by contrast endogenously combine

in-sample and prior information according to their precision; structural differences are

accounted for as they affect the relative precision of prior and in-sample information.

Seminal contributions to default prediction are Altman (1968) and Beaver (1968),

recent ones include Shumway (2001) and Chava and Jarrow (2004). Statistical methods

for evaluating default probability estimates are discussed in Sobehart and Keenan (2001),

Engelmann et al. (2003), Stein and Jordao (2003) and Stein (2005). Stein and Jordao

(2003) and Stein (2005) measure the power of scoring models using accuracy ratios, and

attach a monetary (i.e. dollar) value to a bank’s application of a model that is more

powerful.

The remainder of this paper is organised as follows. Section 2 introduces the data set.

Section 3 presents the Bayesian estimators. Section 4 describes the accuracy measures

that we use for evaluation. Section 5 describes the simulation set-up. Section 6 presents

the results, and Section 7 concludes.

2 Data

Following Altman (1968), we use five explanatory variables for default prediction: working

capital/total assets (WC/TA), retained earnings/total assets (RE/TA), earnings before
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interest and taxes /total assets (EBIT/TA), market value of equity/book value of total

liabilities (MV/TL), and sales/total assets (S/TA). For an economic interpretation of

these variables, see Altman (1968), pp. 594 - 596. In order to simulate a scenario in which

the external and internal data sets contain different variables, our data set additionally

contains book value of equity/book value of total liabilities (BV/TL).

We obtain data on these variables for the S&P 1500 index companies from World-

scope. We collect the data for the end of each year from 2000 to 2004 and exclude

financial firms and observations with missing values. Furthermore, we winsorise (see e.g.

Barnett and Lewis (1994)) each variable symmetrically to a 99% confidence band, as is

done in Shumway (2001). Table 1 provides summary statistics for the remaining 4,558

observations.

===Insert table 1 around here.===

Expected default probabilities are calculated using the coefficients estimated in Shumway

(2001), Table 2. In our data set, this leads to a mean expected default probability of 0.44%

with a standard deviation of 1.15%, a minimum of 0% and a maximum of 19.73%. This

compares to a default rate of 0.81% in the data used by Shumway (2001).

3 Bayesian Estimators

The Bayesian estimators we propose are based on Adkins and Hill (1996), who show how

prior information in the form of a coefficient vector can be used in a Probit analysis. We

apply their proposal to logit estimation, which is very similar to Probit, but more common

in the default prediction literature.

The estimators discussed by Adkins and Hill (1996) can be classified into two types.

The first type (Type-I) weighs the prior information vector equally for all vector entries,

i.e. each prior coefficient has the same, proportional influence on the posterior (Bayesian)

coefficient estimates. In the second type (Type-II), the weights use information on the

variance of the prior coefficient vector without assuming a particular structure of its

variance.
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The general form of the Type-I Bayesian Estimators is given by equation (1), where

βp denotes the prior information vector, which is obtained independently of the given

sample, while β̃ denotes the maximum likelihood (ML) estimation vector of the (unknown)

coefficients β in the current analysis (i.e. ’Straight logit estimator’) and w ∈ [0, 1] is a

given weight.

βBayes = w · βp + (1− w) · β̃ (1)

As in Adkins and Hill (1996) we employ an empirical Bayes estimator (EBE) and the

(James-)Stein rule estimator (SRE), proposed by James and Stein (1961). For details on

the close connection between these estimators see Judge et al. (1985), pp. 117-121.

Assuming that the covariance matrix of the prior is equal to the covariance matrix

of β̃ times a constant factor c results in the weight w = (1 + c)−1. Using the marginal

distribution of the estimator in the current sample conditional upon the prior information

(βp) leads to the weights of the empirical Bayes estimator (see Adkins and Hill (1996) for

a detailed derivation):

wEBE :=
J − 2

(β̃ − βp)
′I(β)(β̃ − βp)

, (2)

where J denotes the number of restrictions imposed through the prior, and I(β) is the

information matrix, i.e. the inverse of the covariance matrix of β. It is estimated using

the covariance matrix of β̃. If the point estimates of the coefficient vector β have a small

variance, the weight wEBE is relatively small, and hence the information in the current

sample is weighed more heavily.

The weight for the SRE is given by

wSRE :=
J − 2

2
(
ln L(βp)− ln L(β̃)

) , (3)

where ln L(·) is the Log-Likelihood of (·). Here the prior information is weighed heavily

when sample and non-sample information agree, i.e. if the Log-Likelihood functions of

the prior and the current sample coefficients do not differ much.

To avoid excessive shrinkage (’overshrinkage’), we set the weight to one if w > 1. In

these cases, the prior is used as the posterior (rather than the Bayesian estimator).
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By contrast, Type-II Bayesian Estimators require an estimate of the covariance matrix

of the prior coefficient vector. The approximate Bayes estimator is given by

βABE = [A + I(β)]−1
(
Aβp + I(β)β̃

)
(4)

where A is the information matrix (i.e. the inverse of the covariance matrix) of the

prior distribution. Following Zellner and Rossi (1984) we estimate A within the current

sample by imposing the prior coefficient vector βp as restriction. We obtain A as the

negative Hessian matrix of the logistic function at the prior coefficient vector βp (see e.g.

Greene (2003) for a derivation of the Hessian). The information matrix I(β) is again

estimated using I(β̃).

In contrast to the EBE and the SRE, the ABE allows for differences in the precision

of prior coefficients. This difference is particularly important when the internal data set

lacks variables that are contained in the external data set or vice versa. In such situations

there are at least two different approaches to estimating Bayesian coefficients.

The bank could replace the missing variable with another variable that is correlated

with the missing one. For example, the external data set may contain data on market

value of equity, whereas the bank has only data on book value of equity. In such a scenario,

one could use the estimated coefficient for market value as the prior when estimating a

Bayesian coefficient for book value. In section 6.2 we demonstrate Bayesian estimation in

this case using the prior coefficients of market value to derive estimators for book value.

The second approach is a restricted estimation within the bank’s own data set. If, for

example, variable 3 is missing in the external data set, we would estimate its coefficient in

the internal data set, restricting the remaining coefficients to the prior coefficients.2 The

resulting restricted coefficient vector βr = (β0
r , β1

p , β2
p , β3

r , β4
p , β5

p)
′
, where βi

x denotes the

i-th entry of the vector βx, is then used as the prior. In section 6.2 we use the two most

significant variables EBIT/TA and MV/TL to demonstrate this estimation procedure.

4 Accuracy Measures

We compare the accuracy of the default predictions under straight logit, approximate

Bayes, empirical Bayes, and Stein rule estimations using the accuracy ratio (see Sobehart

2The constant is left unrestricted in the estimation.
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and Keenan (2001) or Engelmann et al. (2003)) and the Brier score (Brier (1950), Frerichs

and Wahrenburg (2003), Grunert et al. (2005)).

The calculation of the accuracy ratio (AR) is based on the cumulative accuracy profile

(CAP). To construct the CAP all debtors are sorted according to their score, starting

with the debtor with the lowest score (highest probability of default) down to the debtor

with the highest score. A CAP is then obtained by plotting the proportion of defaulted

debtors against the proportion of all debtors, see figure 3.

===Insert figure 3 around here.===

A ’perfect’ scoring would assign the lowest score to all defaulters and higher scores

to all non-defaulters. The corresponding CAP increases linearly until all defaulters are

included and then stays at 100%. In constrast, a non-informative scoring would randomly

assign scores. In such a random scoring we expect x% defaulters among the x% of all

debtors with the lowest score and accordingly for higher scores. The CAP of this rating

is linear with a slope of one, starting at the origin. Real scoring models are between these

extremes. The accuracy ratio is defined as the area between the CAP of the analyzed

scoring system and the non-informative system (area A in figure 3) divided by the area

between the CAP of the ’perfect’ scoring model and the CAP of the non-informative

scoring model (area B in figure 3). A scoring model with high discriminative power has

an accuracy ratio close to 100%, while the minimum value of the AR is 0% for the random

scoring model.

The Brier score combines the quality of the ranking with the accuracy of the estimated

probabilities of default. It is defined as follows:

Brier =
1

N

N∑
i=1

(PDi − I(Defaulti))
2 (5)

where PDi is the estimated default probability, and I(Defaulti) is an indicator vari-

able that takes the value 1 if firm i defaults and zero otherwise. Thus, the Brier score is

the mean squared error of PDi.
3

3In the setting of this paper we could calculate the mean squared error using the correct default

probability instead of the indicator variable I(Defaulti) because it is set at the start of the simulation.
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5 Simulation Design

With the simulation, we demonstrate how a bank with a small debtor data set can im-

prove the accuracy of its default probability estimates. Such a bank could, for example,

obtain coefficient estimates from an academic study, a larger bank, a rating agency, or

from regulatory bodies. These estimates can be used as prior information in a Bayesian

estimation of the posterior coefficient vector.

===Insert figure 1 around here.===

We simulate both the external information and the bank’s hypothetical data sets. The

simulation, which is summarised in Figure 1, is structured as follows: We obtain a large

’external’ data set by drawing random samples with replacement (bootstrapping) from

the initial data set described in section 2. Considering the data set used by Shumway

(2001) to be representative with respect to the number of observations we expand our

data set such that it is 6.4 times larger than the initial one, yielding 29,500 firm-years.4

The expansion is done anew in each repetition n.

Using the coefficient vector as given in Shumway (2001), we then calculate expected

default probabilities for each observation in the expanded data set. We simulate defaults

based on the expected default probability using a uniformly distributed random variable.

Prior coefficient estimates βp are obtained using the expanded data set with maximum

likelihood. Therefore, the prior information is different in each repetition n. Note that

this coefficient vector is the only prior information needed to calculate Bayesian estimates.

In practice, it could come from an external source such as another bank or an agency.

Afterwards we draw without replacement from the expanded data set (including the

defaults) to obtain a smaller ’internal’ data set of size S. This corresponds to the internal

data set of a bank. Using this small data set, we first run a straight logit estimation

Since the correct default probability is not available in practical applications, this ’modified’ Brier score

is not used here.
4The resulting data set is quite small compared to the Deutsche Bundesbank database which contains

over 325,000 balance sheets (Engelmann et al. (2003)) and the FIBEN database of the Banque de France

with 180,000 balance sheets (Banque de France (2001)).
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(SLE). This is what a bank can achieve without any outside information. In the next step

we calculate the ABE, SRE and EBE.

Then, K = 100 new default vectors are generated randomly within the small sample

of size S. This results in 100 new ’samples’ and represents an out-of-time setting, in

which the performance of the straight logit, approximate Bayes, empirical Bayes, and

Stein rule estimators is tested. Accuracy measures are saved and used to evaluate the

accuracy of the Bayesian estimators relative to the straight logit estimator. Increasing the

number of out-of-sample repetitions K when simulating the defaults has no noteworthy

impact on the calculated measures of accuracy. For the further analysis, we use the

means of the accuracy measures across the K = 100 results. We assess the simulation

error through a Wilcoxon matched-pairs test for equality of distributions. The reported

differences between Bayesian estimates and straight logit are all significant on a level of less

than 0.01% if 1,000 simulation steps are conducted. We therefore repeat the calculations

N = 1, 000 times.

Figure 2 illustrates the effects of the Bayesian estimation for EBIT/TA. The figure

shows the empirical density distribution of the 1,000 simulated coefficients. The prior

coefficient varies in each repetition because we randomly draw the external data set from

which it is computed. Its variation is smaller than the variation of the SL because the

internal data set on which the latter is based is smaller. The variation of the Bayesian

estimators is in between as they combine the prior with the straight logit.

===Insert figure 2 around here.===

The size S of the smaller data set is fixed at the outset of the simulation. We vary its

proportion of the large data set between S = 5% and S = 10%, corresponding to 1,475

and 2,950 firm-years, respectively.5

5For S = 1% there are typically too few defaults in the internal data set (the expected number of

defaults is 1.3). If the number of defaults in a given simulation step is insufficient to estimate the logit

model we repeat that simulation step until we get sufficient defaults.
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6 Results

In the remainder of this section, the performance of the three Bayesian estimators is com-

pared to that of the straight logit estimator. As a benchmark table 2 reports the accuracy

ratio when using the prior coefficient vector. Recall that the prior is the maximum likeli-

hood estimator for the expanded data set. In our setting this provides efficient estimates

for the smaller data set because the latter is a subset of the expanded data set. The

accuracy ratio achieved by these estimates should be close to the upper boundary for the

accuracy obtainable by any estimation procedure.6

===Insert table 2 around here.===

We first report the results for the case in which there are no structural differences

between the two data sets. Then we examine situations in which the variables in the

internal and external data set differ. The results for the Brier score are qualitatively the

same as for the accuracy ratio and therefore not discussed. Key results are reported in

the Appendix, details are available upon request.

6.1 No structural differences between internal and external data

Table 3 records the simulated accuracy ratio of the three Bayesian estimators and the

straight logit approach and compares the former to the latter one.7

The accuracy ratio of the three Bayesian estimators is about 5 percentage points (pp)

higher in the S = 5% setting and about 2.5 pp in the S = 10% setting. The approximate

Bayes estimator (ABE) performs best with a mean increase in the accuracy ratio by 5.7

pp for the S = 5% setting and 2.7 pp in the S = 10% setting, compared to a straight

logit estimation (SLE). Comparing the performance of the two best-performing Bayesian

estimators, the approximate Bayes versus the empirical Bayes estimators, the approximate

Bayes performs significantly better according to the Wilcoxon test.

6An efficient coefficient vector does not necessarily maximize the accuracy ratio.
7Overshrinkage occurs less often for the Stein rule estimator (24% in the simulation with S = 10%

and 29.5% in the S = 5%-simulation) than for the empirical Bayes estimator (33.4% in the S = 10%-

simulation and 33.8% in the S = 5%-simulation).
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The ’Count’ is defined as the fraction of simulation repetitions in which the mean

accuracy ratio of the Bayesian estimator is higher than the mean accuracy ratio of the

straight logit estimator. It can be interpreted as follows: assume there are two sets of the

same size of mutually independent banks, and one set implements Bayesian estimation for

its credit scoring models, while the other set continues to use a standard logit approach.

The average of the accuracy ratios in the Bayesian bank set will be higher than that of

the other set in at least ’Count’ of the cases.

===Insert table 3 around here.===

6.2 Structural Differences

In the previous section we examined the ideal case where the structure of the prior data

set and the random subsample are identical. Now we impose structural differences. We

first assume that data for EBIT/TA or MV/TL are missing in the external data set.

We estimate the missing variable’s coefficient within the bank’s own data set using a

restricted ML estimation as described in section 3. If EBIT/TA is missing, for example,

we restrict the coefficients on WC/TA, RE/TA, MV/TL and S/TL to be equal to the

prior and leave the coefficient on EBIT/TA unrestricted.

Table 4 records the descriptive statistics for the accuracy ratio and compares the

three Bayesian estimators to the straight logit in the case of S = 5% and S = 10%. The

Bayesian estimators improve the default probability estimates by 2 to 4 pp as measured

by the accuracy ratio. In this case the approximate Bayes and the empirical Bayes per-

form equally well on average in the S = 10% setting, while the approximate Bayes is

significantly better in the S = 5% setting.

===Insert table 4 around here.===

===Insert table 5 around here.===

11



When MV/TL is missing in the prior data set, the Bayesian estimators improve the

default probability estimates by 1.9 to 4.8 pp as measured by the accuracy ratio (see table

5). Again, the approximate Bayes estimator performs best with 4.8 pp in the S = 5%

and 2.4 pp in the S = 10% setting, followed by the empirical Bayes estimator (4.3 pp

improvement in the S = 5% and 2.3 pp in the S = 10% setting).

The second approach described in section 3 concerning structural differences is the

replacement of the missing variable with another variable which is correlated with the

former. We demonstrate this approach by replacing market value (MV) by book value

(BV) in the small data set. The correlation between MV/TL and BV/TL is 0.823 showing

that book value is a good proxy for market value.8

The results for the S = 5% and S = 10% analysis are reported in table 6. In this

setting the relative performance of the Bayesian estimators is much better than in other

settings. The accuracy ratio increases by 6.5 to 9.4 pp (S = 5%) and 3.3 to 4.5 pp

(S = 10%).

The advantage is larger than in the base case of section 6.1 because the prior is based

on the same information as in the base case whereas the straight logit uses only a proxy

for market value and thus less information. The advantage is even larger when compared

to the cases examined above where EBIT/TA or MV/TL are missing in the expanded

data set. In those cases the prior lacks information that is incorporated in the straight

logit.

===Insert table 6 around here.===

6.3 Interpretation of Results

The results in Stein and Jordao (2003) and Stein (2005) suggest that a 2 to 4 pp dif-

ference in the accuracy ratios is economically significant, i.e. a bank would benefit from

applying the scoring system with the higher accuracy ratio. In our analysis Bayesian

estimators achieve improvements from 2 to 9 pp. This improvement is obtained even with

8The multiple correlation coefficient between MV/TL on the one hand and WC/TA, RE/TA, S/TL

on the other hand is 0.524, so book value adds valuable information not contained in the other variables.
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complication such as missing variables.

In the base case the mean accuracy ratio of Bayesian estimators comes close to the

mean accuracy ratio achievable in the ideal case in which coefficients can be estimated on

the full data set and Bayesian estimation is obsolete (see Panel A of table 3 and table 2).

This suggests that Bayesian estimators effectively combine the available information.

Comparing the Bayesian estimators to each other the Stein rule estimator performs

less well than the approximate Bayes and the empirical Bayes estimators. Among the

latter two, the ABE performs better than the EBE in most settings and equally well in

the remaining settings. The ABE accounts for differences in the precision of coefficients,

which are generally present in our setting as the variables differ in their significance, and

which are increased when imposing structural differences. Since differences in precision

are likely to be present in practical applications we recommend the use of the approximate

Bayes estimator.

Due to lack of data, we cannot directly explore the benefits of Bayesian estimation in a

situation that could often arise in practical applications of our methodology: while many

banks use qualitative assessments of management quality, business risk or other factors in

their credit scoring process, qualitative information is usually not available in an external

data set, and so there will typically be no prior for it. This situation, however, corresponds

to the case examined in section 6.2, where we assumed that a variable available in the

small data set is missing in the large data set. In our simulations, leaving MV/TL out of

the logit regression reduces McFadden’s R2 on average from 22.2% to 9.5%. Grunert et al.

(2005) use Probit models to examine the default prediction power of internal rating data

of major German banks and find that the R2 decreases from 36.0% to 26.8% when the

qualitative component of the bank’s rating is left out. It thus appears that the problem

of missing MV/TL studied in this paper is more severe than the problem of missing

qualitative factors, suggesting that Bayesian estimators might perform well in the latter

case, too.
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7 Conclusion

The purpose of this paper is to determine whether a bank can improve the accuracy of

its default probability estimates using Bayesian inference.

The accuracy of Bayesian estimators is evaluated in comparison to straight logit esti-

mators. As the Bayesian estimators incorporate prior information according to its preci-

sion, one expects them to perform better than a straight logit estimator. The results of

our analysis support this conjecture. On average, accuracy ratios of Bayesian estimates

are 2 to 9 percentage points higher than accuracy ratios of standard logit estimates. The

improvement is achieved even when an important predictive variable is missing in the

prior data set or if one has to resort to proxy variables.

As a result, we recommend that financial institutions implement the estimation process

proposed in this paper. The application of this method is not confined to the case where

the prior information comes from an external source. A bank expanding in a new market

segment, for example, could use its own data from established segments as a prior for the

scoring model to be used for the new segment. We emphasise that the prior information

is just a vector of coefficients from a credit scoring model, i.e. information that is often

readily available. Note, too, that the implementation of the Bayesian estimators does not

require any judgmental decisions apart from choosing the source of the prior information.
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1. Draw large random sample with replacement (source of prior information)

2. Generate random defaults

3. Obtain prior information through logit estimation (using data generated in steps 1

and 2)

4. Draw random subsample from the initial data set (without replacement) of size S

5. Calculate straight logit (using data from step 4) as well as Bayesian estimates (using

data from step 4 and priors from step 3)

6. Generate random defaults to evaluate default probability estimates out-of-time. Re-

peat this evaluation k = 1, ..., K = 100 times

7. Repeat steps 1.-6. n = 1, ..., N = 1, 000 times

Figure 1: Overview of the Simulation Process
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Straight Logit

Empirical Bayes

Stein rule

Approximate Bayes

Prior coefficients

Figure 2: Frequency Distribution of Simulated Coefficients of EBIT/TA.

S=10%
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Defaults
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100%
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CAP of non-informative Scoring

CAP of analyzed Scoring

A

Figure 3: Illustration of derivation of the accuracy ratio (A/B).
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WC/TA RE/TA EBIT/TA MV/TL S/TA BV/TL
Mean 0.208 0.262 0.083 5.408 1.096 1.675
Median 0.176 0.262 0.087 2.035 0.928 0.848
SD 0.214 0.325 0.110 9.868 0.727 2.490
5% Percentile -0.072 -0.179 -0.096 0.331 0.287 0.170
95% Percentile 0.616 0.728 0.241 23.639 2.623 5.767

Table 1: Summary Statistics for Explanatory Variables
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S=5% S=10%
accuracy ratio accuracy ratio

Mean 80.55 80.59
Median 80.56 80.66
SD 2.10 2.07
5% Percentile 76.95 77.12
95% Percentile 83.81 83.84

Table 2: Accuracy Ratio for Prior Coefficients (in %). This table gives descriptive
statistics of the accuracy ratio using the Prior Coefficient vector in the simulation. The simulation
was repeated N = 1, 000 times with randomly drawn subsamples of size S (see section 2 for a detailed
description of the simulation set-up.) S is the size of the small data set as percentage of the expanded
data set, which contains 29,500 firm-years. SD refers to the standard deviation.
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S=5% S=10%
ABE EBE SRE SLE ABE EBE SRE SLE

A. accuracy ratio of Bayesian estimators & straight logit

Mean 79.13 78.12 77.49 73.41 79.59 79.28 78.98 76.82
Median 79.31 79.19 79.01 75.93 79.59 79.62 79.45 77.77
SD 1.96 4.65 6.81 8.79 1.27 2.09 2.46 3.75
5% Percentile 75.75 69.99 68.77 59.79 77.42 76.11 74.98 69.96
95% Percentile 81.95 81.98 81.98 80.79 81.66 81.72 81.67 80.85

B. accuracy ratio of Bayesian estimators relative to straight logit

Mean 5.71 4.71 4.07 2.78 2.47 2.16
Median 3.01 2.86 2.86 1.64 1.71 1.68
SD 8.32 6.75 3.85 3.34 2.57 1.90
5% Percentile 0.23 0.30 0.30 0.15 0.16 0.12
95% Percentile 17.87 14.81 12.51 9.18 6.96 5.77

Count 99.7% 98.9% 98.7% 99.4% 98.4% 98.2%

Table 3: Simulated Accuracy Ratio in the Base Case (in %). Panel A of this table
gives descriptive statistics of the accuracy ratio in the simulation. Higher positive values indicate better
accuracy. Panel B compares the accuracy ratio of the three Bayesian estimators relative to the straight
logit estimation. ABE denotes the approximate Bayes estimator, SRE the Stein Rule estimator, EBE
the empirical Bayes estimator and SLE refers to a straight (i.e. standard) logit estimator (see section
3 for details). The simulation was repeated N = 1, 000 times with randomly drawn subsamples of size
S (see section 2 for a detailed description of the simulation set-up.) S is the size of the small data
set as percentage of the expanded data set, which contains 29,500 firm-years. SD refers to the standard
deviation. ’Count’ gives the percentage of simulation repetitions in which one estimator performed better
than the other.
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S=5% S=10%
ABE EBE SRE SLE ABE EBE SRE SLE

A. accuracy ratio of Bayesian estimators & straight logit

Mean 77.43 77.18 76.50 73.41 78.97 78.98 78.57 76.82
Median 78.66 78.91 78.63 75.93 79.28 79.49 79.25 77.77
SD 5.08 5.92 7.59 8.79 2.22 2.49 2.95 3.75
5% Percentile 66.95 65.68 64.02 59.79 75.52 74.94 73.42 69.96
95% Percentile 81.75 81.88 81.82 80.79 81.51 81.65 81.56 80.85

B. accuracy ratio of Bayesian estimators relative to straight logit

Mean 4.02 3.77 3.09 2.78 2.47 2.16
Median 2.40 2.62 2.28 1.64 1.71 1.68
SD 6.55 5.58 2.88 3.34 2.57 1.90
5% Percentile 0.09 -0.04 0.07 0.15 0.16 0.12
95% Percentile 12.59 10.45 8.91 9.18 6.96 5.77

Count 96.7% 94.8% 95.7% 99.4% 98.4% 98.2%

Table 4: Simulated Accuracy Ratio if EBIT/TA is missing in the prior vector
(in %). Panel A of this table gives descriptive statistics of the accuracy ratio in the simulation. Higher
positive values indicate better accuracy. Panel B compares the accuracy ratio of the three Bayesian
estimators relative to the straight logit estimation. ABE denotes the approximate Bayes estimator, SRE
the Stein Rule estimator, EBE the empirical Bayes estimator and SLE refers to a straight (i.e. standard)
logit estimator (see section 3 for details). The simulation was repeated N = 1, 000 times with randomly
drawn subsamples of size S (see section 2 for a detailed description of the simulation set-up.) S is the size
of the small data set as percentage of the expanded data set, which contains 29,500 firm-years. SD refers
to the standard deviation. ’Count’ gives the percentage of simulation repetitions in which one estimator
performed better than the other.
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S=5% S=10%
ABE EBE SRE SLE ABE EBE SRE SLE

A. accuracy ratio of Bayesian estimators & straight logit

Mean 78.19 77.78 77.03 73.41 79.18 79.15 78.72 76.82
Median 78.64 78.91 78.48 75.93 79.27 79.48 79.19 77.77
SD 4.08 4.98 6.91 8.79 1.50 2.09 2.50 3.75
5% Percentile 73.59 69.34 68.30 59.79 76.75 76.12 74.20 69.96
95% Percentile 81.67 81.75 81.63 80.79 81.52 81.65 81.51 80.85

B. accuracy ratio of Bayesian estimators relative to straight logit

Mean 4.77 4.37 3.62 2.36 2.34 1.90
Median 2.43 2.85 2.40 1.30 1.66 1.41
SD 7.47 6.24 3.73 3.03 2.49 1.85
5% Percentile 0.07 -0.10 -0.02 0.06 -0.05 0.00
95% Percentile 15.85 13.56 12.11 7.82 6.87 5.53

Count 96.2% 93.9% 94.9% 96.7% 94.2% 95.2%

Table 5: Simulated Accuracy Ratio if MV/TL is missing in the prior vector (in
%). Panel A of this table gives descriptive statistics of the accuracy ratio in the simulation. Higher
positive values indicate better accuracy. Panel B compares the accuracy ratio of the three Bayesian
estimators relative to the straight logit estimation. ABE denotes the approximate Bayes estimator, SRE
the Stein Rule estimator, EBE the empirical Bayes estimator and SLE refers to a straight (i.e. standard)
logit estimator (see section 3 for details). The simulation was repeated N = 1, 000 times with randomly
drawn subsamples of size S (see section 2 for a detailed description of the simulation set-up.) S is the size
of the small data set as percentage of the expanded data set, which contains 29,500 firm-years. SD refers
to the standard deviation. ’Count’ gives the percentage of simulation repetitions in which one estimator
performed better than the other.
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S=5% S=10%
ABE EBE SRE SLE ABE EBE SRE SLE

A. accuracy ratio of Bayesian estimators & straight logit

Mean 72.81 70.75 69.97 63.42 72.94 72.06 71.71 68.46
Median 72.88 72.37 72.24 67.24 73.04 72.66 72.41 69.96
SD 2.30 7.25 8.32 12.56 1.61 3.48 3.82 5.81
5% Percentile 68.75 59.28 56.33 37.76 70.12 66.93 65.03 57.72
95% Percentile 76.20 76.18 76.12 74.32 75.41 75.38 75.32 74.29

B. accuracy ratio of Bayesian estimators relative to straight logit

Mean 9.40 7.33 6.56 4.48 3.60 3.25
Median 5.06 4.37 4.21 2.69 2.53 2.52
SD 12.15 8.99 7.09 5.28 3.56 2.99
5% Percentile 0.31 0.27 0.26 0.16 0.15 0.13
95% Percentile 34.89 23.93 20.46 14.41 10.75 9.21

Count 97.7% 97.2% 96.7% 97.3% 96.8% 96.7%

Table 6: Simulated Accuracy Ratio if MV is replaced with BV (in %). Panel A of
this table gives descriptive statistics of the accuracy ratio in the simulation. Higher positive values indicate
better accuracy. Panel B compares the accuracy ratio of the three Bayesian estimators relative to the
straight logit estimation. ABE denotes the approximate Bayes estimator, SRE the Stein Rule estimator,
EBE the empirical Bayes estimator and SLE refers to a straight (i.e. standard) logit estimator (see
section 3 for details). The simulation was repeated N = 1, 000 times with randomly drawn subsamples
of size S (see section 2 for a detailed description of the simulation set-up.) S is the size of the small data
set as percentage of the expanded data set, which contains 29,500 firm-years. SD refers to the standard
deviation. ’Count’ gives the percentage of simulation repetitions in which one estimator performed better
than the other.
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Appendix

S=5% S=10%
ABE EBE SRE SLE ABE EBE SRE SLE

A. Brier Score of Bayesian estimators & straight logit
Mean 0.430 0.429 0.476 0.490 0.424 0.424 0.425 0.431
Median 0.429 0.427 0.428 0.437 0.424 0.424 0.425 0.431
SD 0.034 0.034 1.050 1.125 0.025 0.025 0.025 0.026
5% Percentile 0.376 0.376 0.376 0.382 0.385 0.385 0.385 0.390
95% Percentile 0.487 0.486 0.488 0.501 0.467 0.467 0.468 0.477

B. Brier Score of Bayesian estimators relative to straight logit

Mean -0.060 - 0.065 -0.018 -0.007 -0.007 -0.007
Median -0.005 - 0.010 -0.010 -0.005 -0.006 -0.005
SD 1.125 1.125 0.146 0.006 0.006 0.005
5% Percentile -0.001 - 0.003 -0.002 -0.001 -0.001 -0.001
95% Percentile - 0.031 -0.039 -0.037 -0.018 -0.019 -0.018

Count 97.8% 99.9% 99.8% 99.6% 98.5% 98.3%

Table 7: Simulated Brier Score in the Base Case (in %). Panel A of this table gives
descriptive statistics of the Brier score in the simulation. Lower values indicate better accuracy. Panel
B compares the Brier score of the three Bayesian estimators relative to the straight logit estimation.
ABE denotes the approximate Bayes estimator, SRE the Stein Rule estimator, EBE the empirical Bayes
estimator and SLE refers to a straight (i.e. standard) logit estimator (see section 3 for details). The
simulation was repeated N = 1, 000 times with randomly drawn subsamples of size S (see section 2 for
a detailed description of the simulation set-up.) S is the size of the small data set as percentage of the
expanded data set, which contains 29,500 firm-years. SD refers to the standard deviation. ’Count’ gives
the percentage of simulation repetitions in which one estimator performed better than the other.
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