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Abstract

This paper presents a general, nonlinear model for term structure in-
terest rate. The approach is the same of Stanton (1997) but it has
been extended to a multifactor model. The novel aspect is that rather
than choosing the functional specification of the model, the process is
generated from the data using approximation methods for multifac-
tor continuous-time Markov processes. In applying this technique to
the short and long end of the term structure for a general two-factor
diffusion process for interest rates is possible to find some interesting
nonlinearity in the interest rate data that are not considered in almost
all parametric specifications of term structure interest rate model of
the financial literature.

2



1 Introduction

The asset pricing theory gives us theoretical tools to value a wide array of
contingent claims, starting from a continuous-time model for the dynamics
of the underlying state variables. In this field one of the most common uses
continuous-time models has been in describing the dynamics of the short-
term riskless interest rate. Unfortunately, while the theory tells us what to
do once we have a model for the underlying variable, it gives us little or
no guidance in choosing the right model in the first place. For example,
researchers have proposed many different parametric models of short rate
dynamics, each attempting to capture particular features of observed interest
rate movements. Moreover, empirical tests of these models have yielded
mixed results. As a result, several recent researchers have used nonparametric

techniques to reduce the number of arbitrary parametric restrictions imposed
on the underlying process.

This paper apply the fully nonparametric method of Stanton (1997) in
order to estimate a multifactor model for term structure interest rates.

Section 2 is a brief overview about continuous-time models and related
estimation problems. Section 3 explains some features of existing parametric
and nonparametric models. Section 4 derives the same approximations of
Stanton (1997) and it is used to understand the philosophy of Stanton’s ap-
proach. Section 5 extends the Stanton’s approach to a multi-factor diffusion
process. The last two sections describe data and results with final comments

2 Continuous–time models and some related

estimation problems

In asset pricing models, is convenient to represent the underlying state vari-
able(s) (i.e.short-term interest rate) as a continuous-time diffusion process
represented by Itô stochastic differential equation:

dXt = µ(X, t; θ)dt + σ(X, t; θ)dWt (1)

where {Wt, t ≥ 0} is a standard Brownian motion. The functions µ(·)
and σ2(·) are respectively the drift (or instantaneous mean) and the diffusion
(or instantaneous variance) functions of the process.

In order to estimate (1) when is not possible to solve in an explicitly way
the likelihood function, the common approach is to estimate the parameters
θ, by applying maximum likelihood to a suitably discretized version of the
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continuous-time process. But if the time-step interval between observations
does not shrink to zero and simultaneously the sample size doesn’t increase,
the discretized estimators do not converge to the population parameters even
if other consistent estimators exists (so-called “infill assumption”, see Lo
(1988)). The reason is the inappropriateness of applying maximum likeli-
hood estimation to the discretized process when it is the parameters of the
continuous-time process that are of interest. This should not be surprising
since the likelihood of the discretized process may be viewed as a misspeci-
fication of the true likelihood function. All this imply that identification of
drift and diffusion functions from discretely sampled data at fixed interval,
is impossible in general without impose a restriction on the form of the drift
or diffusion function. This is the commonly used strategy to estimate (1):
first parameterizing µ(·) and σ2(·), then discretizing the model in order to
estimate the parameters (see Chan, Karolyi, Longstaff, and Sanders (1992)
for an empirical example).

But, as pointed above, discretization–based methods implicitly assume
that more data means more frequent data on a fixed period of observation
(the time interval between the observations must shrink to zero). Even if such
data were available, it is likely that market micro-structure problems, such as
bid–ask spread, the discreteness of the prices observed, and the irregularity of
the intra–day sampling interval, would complicate considerably the analysis
of high frequency data compared to daily or weekly data.

Moreover, empirical tests of these parametric version of (1) have yielded
mixed results since that financial data exhibit some features that are not
taking into account by the different specifications of the drift and diffusion
coefficients.

In contrast to this approach, the nonparametric approach1 solve some
drawbacks. It does not require any functional form for the diffusion and drift
coefficient: this is particular relevant when the researcher have no theoret-
ical justification for using a particular parametric specification of eq. (1).
Moreover some nonparametric methods applied to semiparametric model
(e.g. Aı̈t-Sahalia (1996)) do not require that the sampling interval shrink
to obtain asymptotic properties for its estimators: this is relevant to avoid
micro–structure problems.

The last feature is not valid when nonparametric estimators are applied

1There is a common misunderstanding about the use of the word nonparametric. Often
the Aı̈t-Sahalia (1996) approach is considered a nonparametric method but it is a non-
parametric estimation of the diffusion coefficient in a “semiparametric” model since that
the drift coefficient is estimated specifying the form of the function. Instead the Stanton
(1997) approach is a “full nonparametric model” since that the nonparametric estimation
is used for both drift and diffusion coefficients
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within a fully nonparametric models since that they are prone to discretiza-
tion bias (e.g. Stanton (1997)). But, on the other hand, in those context
the researcher is completely free from binding parametric specifications of
drift and diffusion coefficients. Moreover, the consistency and asymptotic
normality of the estimator can be achieved increasing the sample size n, and
for financial time series we have at our disposal very long time series.

All these argumentations constitute a perfect set up to try to estimate a
continuous-time stochastic process nonparametrically.

3 Estimating Diffusion Models

3.1 Parametric Models

In estimating the functions µ and σ in eq. (1), the usual approach is first
to specify parametric forms for the functions µ and σ, then to estimate the
values of the parameters. Given functions µ and σ, the transition density of
Xt+∆ at time t + ∆ conditioned to value Xt at time t, p(∆, Xt+∆|Xt) must
satisfy the Kolmogorov forward equation (see Oksendal (1995)),

∂p(∆, Xt+∆|Xt)

∂∆
= −

∂

∂Xt+∆

(µ(Xt+∆;θ)p(∆, Xt+∆|Xt)) (2)

+
1

2

∂2

∂X2
t+∆

(σ2(Xt+∆)p(∆, Xt+∆|Xt))

In principle, for a given parametrization of µ and σ, we can solve equa-
tion (2) for the conditional density p as function of the parameters, then use
maximum likelihood to estimate the model’s parameters (see, for example
Lo (1988)). This approach was followed by Pearson and Sun (1994) in esti-
mating the parameters of the CIR interest rate model, using the fact that,
under this process, interest rates are conditionally distributed as multiple of
a noncentral χ2 random variable. Unfortunately, in a few cases equation (2)
can be solved explicitly; in the other cases the equation can only be solved
numerically, making implementation of maximum likelihood extremely incon-
venient. To avoid this problem, often the researcher apply the Generalized
Method of Moments (GMM) since that it is possible to specify only certain
properties of the distribution, rather than the full likelihood function. Other
approaches are the simulated method of moments (SMM) of Duffie and Sin-
gleton (1993) and the efficient method of moments (EMM) of Gallant and
Tauchen (1996). Hansen and Scheinkman (1995) show how to derive ana-
lytic moment restrictions from eq. (1) using the infinitesimal generator (see
Oksendal (1995)) of Xt, L defined by
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Lf(x, t) = lim
τ↓t

E(f(Xτ , τ)) − f(x, t)

τ − t
= (3)

=
∂f(x, t)

∂t
+

∂f(x, t)

∂x
µ(x) +

1

2

∂2f(x, t)

∂x2
σ2(x)

For example, their first class of moment conditions can be obtained by noting
that, if Xt is stationary, E[φ(X−t)] must be independent of calendar time for
any function φ. This implies that its unconditional expected rate of change
must be zero:

E[Lφ(Xt)] = E[φ
′

(Xt)µ(Xt)] + 1/2φ
′′

(Xt)σ
2(Xt)] = 0 (4)

While these moment conditions are less computational intensive than
those of Duffie and Singleton (1993) or Gallant and Tauchen (1996), they
do not take advantage of all of the information contained in the discretely
observed data. An alternative approach is to use GMM with approximate
moment conditions. A well–known example is Chan, Karolyi, Longstaff, and
Sanders (1992). In estimating their continuous–time interest rate model:

dXt = (α + βXt)dt + σXλdZt (5)

They use approximate conditional moments of the form

Et(εt+∆) = 0 (6)

Et(ε
2
t+∆) = σ2X2λ

t δ (7)

where εt+∆ = Xt+∆ − Xt − (α + βXt)∆ (8)

While these are only approximately correct, this approach is the simplest
of all to implement.

3.2 Nonparametric Methods

One potentially serious problem with any parametric model, particularly
when there is no economic reason why we should prefer one functional form
over another, is misspecification. The reason is that even if a model fits in-
terest rate movements well in-sample, this does not necessarily imply that it
will price securities well. This is because the price today of an interest rate
dependent security depends not on the past interest rates, but on the entire
distribution of possible future interest rates between today and the maturity
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of the security. Fitting historical data well is no guarantee of matching this
entire distribution, leading to the possibility of large pricing and hedging er-
rors (see Backus, Foresi, and Zin (1995)). To solve misspecification problems,
recent researches have used nonparametric estimation techniques in order to
avoid arbitrary functional forms for µ and/or σ. Within the nonparametric
framework the approaches are different. For example, Aı̈t-Sahalia (1996) use
a nonparametric estimator for the diffusion coefficient after specifying the
form of the drift.

3.2.1 The Stanton’s approach

The philosophy of the Stanton’s approach is in some way similar to that
of Aı̈t-Sahalia (1996). Instead of specify the drift and diffusion functions,
he finds a relationship between them and some other variable that can be
estimated nonparametrically and come back to the determination of the drift
and the diffusion. Stanton start with eq. (1) and he rewrite the conditional
expectation Et[f(Xt+∆, t + ∆)] in the form of a Taylor series expansion (see
Stanton (1997)):

Et[f(Xt+∆, t + ∆)] = f(Xt, t) + Lf(Xt, t)∆ +
1

2
L2f(Xt, t)∆

2 + . . . (9)

+
1

n!
Lnf(Xt, t)∆

n + O(∆n+1)

where L is the infinitesimal generator of the process {Xt} (see eq.(3)).
The most common use of eq. (9) is the construction of numerical approxi-
mations to the expectation on the left–hand side, given known functions µ
and σ. Stanton change the approach since that he doesn’t specify the form
of the drift and diffusion function. Using a long enough interest rate series
he estimates the conditional expectation nonparametrically, given suitable
choices of the function f . Eq. (9) is used to construct approximations to µ
and σ.

The similarity between this and the Aı̈t–Sahalia’s approach is that in ei-
ther case the authors start with the proposal to avoid the fully parametrizing
of µ and/or σ, because in most cases there are no economic motivation for
choice a particular form of the drift and the diffusion coefficient. The dif-
ference is that Stanton avoid to specify the drift and the diffusion and the
researcher is completely free while Aı̈t–Sahalia bind the analysis choosing
the form of the drift. This ”more freedom” of the Stanton’s approach is paid
in terms of asymptotic properties of the estimators. This means that the
estimators converges to the true µ and σ at a rate ∆k where ∆ is the time
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between successive observations, and k is an arbitrary integer. In practice,
to achieve the consistency of the estimators, ∆ → 0. As mentioned above
this imply some micro–structure problem when the researcher use infra–daily
data. But as can be see in Stanton (1997), the approximation is quite good
with ∆ = 0.004 (daily data).

4 Constructing Approximations to µ and σ

Following the Stanton’s approach is possible to rewrite eq.(9) in the following
form:

Lf(Xt, t) =
1

∆
Et[f(Xt+∆, t + ∆) − f(Xt, t)] (10)

−
1

2
L2f(Xt, t)∆ −

1

3!
L3f(Xt, t)∆

2 − . . .

Ignoring all terms except the first on the right hand side gives us a first order
approximation for Lf ,

Lf(Xt, t) =
1

∆
Et[f(Xt+∆, t + ∆) − f(Xt, t)] + O(∆) (11)

Obviously is possible to construct higher order approximations using sim-
ple algebra manipulation to avoid to calculate derivatives of µ and σ (included
in Ln), which are themselves unknown. To see this, consider eq. (10) with a
time step of 2∆:

Lf(Xt, t) =
1

2∆
Et[f(Xt+2∆, t + 2∆) − f(Xt, t)] (12)

−
1

2
L2f(Xt, t)2∆ −

1

3!
L3f(Xt, t)(2∆)2 − . . .

Multiplying eq. (10) by 2,and subtracting eq. (12), yields a second order
approximation:

Lf(Xt, t) =
1

2∆
{4Et[f(Xt+∆, t + ∆) − f(Xt, t)] − (13)

− Et[f(Xt+2∆, t + 2∆) − f(Xt, t)]} + O(∆2)

an approximation to Lf in terms of expectations of functions of only ob-
served values of {Xt} which converges to the true function at a rate ∆2 as
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∆ → 0. The process could continue, generating approximations of succes-
sively higher order, using a time step of 3∆, 4∆ etc.

Generalizing eq. (11) and (13) this approach approximate a generic func-
tion g(x, t) (the right hand side of each equation) with Lf(x, t)

Lf(x, t) = g(x, t)

Now is necessary to find the right f(x, t)

4.1 Approximation of µ

To derive approximations to the drift µ, consider the function

f(1)(x, t) ≡ x (14)

From the definition of L, we have

Lf(1)(x, t) = µ(x) (15)

Substituting successively into eq. (11) and (13) leads to the following
approximations for µ:

µ(Xt) =
1

∆
Et[Xt+∆ − Xt] + O(∆) (16)

µ(Xt) =
1

2∆
{4Et[Xt+∆ − Xt] − Et[Xt+2∆ − Xt]} + O(∆2) (17)

4.2 Approximation of σ

To construct approximations to the diffusion σ, consider the function

f(2)(x, t) ≡ (x − Xt)
2 (18)

From the definition of L, we have

Lf(2)(x, t) = 2(x − Xt)µ(x) + σ2(x) (19)

and so, letting x ≡ Xt

Lf(2)(Xt, t) = σ2(x) (20)

Substituting in eq. (11) and (13) yields approximations for σ2
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σ2(Xt) =
1

∆
Et[(Xt+∆ − Xt)

2] + O(∆) (21)

σ2(Xt) =
1

2∆
{4Et[(Xt+∆ − Xt)

2] − Et[(Xt+2∆ − Xt)
2]} + O(∆2) (22)

It is possible to replace the terms in Et[(Xt+j∆ − Xt)
2] with the conditional

variance Vart(Xt+j∆) leading to the following set of approximations for σ(Xt):

σ(Xt) =

√

1

∆
Vart(Xt+∆ + O(∆) (23)

σ(Xt) =

√

1

2∆
[4Vart(Xt + ∆) − Vart(Xt+2∆)] + O(∆2) (24)

5 Estimation of a Continuous-Time Multi-Factor

Diffusion Process

Most of the literature about term structure interest rate models agree about
the inefficiency of single factor model to adequately fit the stylized facts of
interest rate. In order to obtain a model that is consistent with the true
process underlying the data theoretical studies promote multi-factor bond
pricing (see Brennan and Schwartz (1979), Schaefer and Schwartz (1984),
Longstaff and Schwartz (1992)). In this section i apply the Stanton’s ap-
proach to a multivariate setting providing the nonparametric estimation of
the drift and volatility functions of multivariate stochastic differential equa-
tion.

Under the “usual” assumption of no-arbitrage opportunities and that
bond prices are functions of two state variables, Rt and St, the stochastic
behaviour of these variables are supposed to follow the (jointly) Markov
diffusion process:

dRt = µR(Rt, St)dt + σR(Rt, St)dZ
R
t (25)

dSt = µS(Rt, St)dt + σS(Rt, St)dZ
S
t (26)

where the drift, volatility and correlation coefficients (i.e. the correlation
between ZR and ZS) all depend on Rt and St. Define the vector Xt =
(Rt, St)

′

.
Under suitable restriction on µ, σ, and a function f , we can write the

conditional expectation Et[f(Xt+∆, t + ∆)] in the form of a Taylor series
expansion:
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Et[f(Xt+∆, t + ∆)] = f(Xt, t) + Lf(Xt, t)∆ +
1

2
L2f(Xt, t)∆

2 + . . .(27)

+
1

n!
Lnf(Xt, t)∆

n + O(∆n+1)

which have the same form of eq.(9) but the infinitesimal generator is
defined in a multivariate form as2:

L =

(

∂f(Xt)

∂Xt

)

µX(Xt) +
1

2
trace

[

Σ(Xt)

(

∂2f(Xt)

∂Xt∂X
′

t

)]

(28)

where

Σ(Xt) =

(

σ2
R(Rt, St) ρ(Rt, St)σR(Rt, St)σS(Rt, St)

ρ(Rt, St)σR(Rt, St)σS(Rt, St) σ2
S(Rt, St)

)

Given an appropriately chosen set of functions f(·) and nonparametric
estimates of Et[f(Xt+∆)] it is possible to use eq. (27) to construct approx-
imations to the drift, volatility and correlation coefficients (i.e. µR, µS, ρ,
σR and σS) of the underlying multi-factor, continuous-time diffusion process
without impose any functional form. Using the same algebrical manipulation
of the univariate case and a time step of length i∆ (i=1,2,. . . ,N) we obtain:

Êi(Xt) ≡
1

i∆
Et[f(Xt+i∆) − f(Xt)] = (29)

= Lf(Xt) +
1

2
L2f(Xt)(i∆) + . . . +

1

n!
Lnf(Xt)(i∆)n−1 + O(∆n)

where the index i represent the time step. Eq. (29) show that if we ignore
all terms except the first, each of the Êi is a first order approximation to Lf :

Êi(Xt) = Lf(Xt) + O(∆) (30)

Consider a linear combination of these approximations
∑N

i=1 αiÊ
i(Xt).

Eq. (29) becomes3 :

2The dependency of f on t will be suppress for notational convenience, but the reader
must keep it in mind

3The model consider a number of Lf terms equal to N, the number of the element of
the linear combination
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N
∑

i=1

αiÊ
i(Xt) =

[

N
∑

i=1

αi

]

Lf(Xt) +
1

2

[

N
∑

i=1

αii

]

L2f(Xt)∆ +
1

6
(31)

+

[

N
∑

i=1

αii
2

]

L3f(Xt)∆
2 + . . .

The idea is to choose the αi in a way that the linear combination is an
approximation of Lf(·) of order N .

In order to do this, the weights α1, α2, . . . , αN must sum to 1. Further-
more, from eq. (31), to eliminate the term of order O(∆), the weights must
satisfy the equation:

N
∑

i=1

αi = 0

More generally, in order to eliminate the term of order O(∆n), the weights
must satisfy the equation

N
∑

i=1

αin = 0

We can write this set of restrictions more compactly in matrix form as















1 1 1 · · · 1
1 2 3 · · · N
1 4 9 · · · N2

...
...

...
. . .

...
1 2N−1 3N−1 · · · NN−1















α ≡ V α =















1
0
0
...
0















The matrix V is called a Vandermonde matrix, and is invertible for any
value of N . We can thus obtain α by calculating

α = V −1















1
0
0
...
0















Substituting α into eq. (31) and using eq. (29), we get the following
approximation of the infinitesimal generator of the process {Xt}:
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Lf(Xt) =
N
∑

i=1

αiÊ
i(Xt) + O(∆)

To approximate a particular function g(x), we now need merely to find a
specific function f satisfying

Lf(x) = g(x)

For our purposes, consider the functions

f(1)(R) ≡ (R − Rt)

f(2)(S) ≡ (S − St)

f(3)(R) ≡ (R − Rt)
2 (32)

f(4)(S) ≡ (S − St)
2

f(5)(R,S) ≡ (R − Rt)(S − St)

From the definition of L, we have:

Lf(1)(R) = µR(R,S)

Lf(2)(S) = µS(R,S)

Lf(3)(R) = 2(R − Rt)µR(R,S) + σ2
R(R,S)

Lf(4)(S) = 2(S − St)µS(R,S) + σ2
S(R,S)

Lf(5)(R,S) = (S − St)µR(R,S) + (R − Rt)µS(R,S) + ρ(R,S)σR(R,S)σS(R,S)

Evaluating these at R = Rt, S = St, we obtain

Lf(1)(Rt) = µR(Rt, St)

Lf(2)(St) = µS(Rt, St)

Lf(3)(Rt) = σ2
R(Rt, St) (33)

Lf(4)(St) = σ2
S(Rt, St)

Lf(5)(R,S) = ρ(Rt, St)σR(Rt, St)σS(Rt, St)
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Using each of these functions in turn as the function f above, we can
generate approximations to µR, µS, σR, σS and ρ respectively (see appendix
C for a formal derivation of approximations of first, second and third order).
For example, the third order approximations (taking square roots for σR and
σS) are:

µR(Rt, St) =
1

6∆
[18Et(Rt+∆ − Rt) − 9Et(Rt+2∆ − Rt) + 2Et(Rt+3∆ − Rt)] + O(∆3)

µS(Rt, St) =
1

6∆
[18Et(St+∆ − St) − 9Et(St+2∆ − St) + 2Et(St+3∆ − St)] + O(∆3) (34)

σ2
R(Rt, St) =

1

6∆
(18Et[(Rt+∆ − Rt)

2] − 9Et[(Rt+2∆ − Rt)
2] + 2Et[(Rt+3∆ − Rt)

2]) + O(∆3)

σS(Rt, St) =
1

6∆
(18Et[(St+∆ − St)

2] − 9Et[(St+2∆ − St)
2] + 2Et[(St+3∆ − St)

2]) + O(∆3)

σRS(Rt, St) =
1

6∆
(18Et[(Rt+∆ − Rt)(St+∆ − St)] − 9Et[(Rt+2∆ − Rt)(St+2∆ − St)]) +

+ 2Et[(Rt+3∆ − Rt)(St+3∆ − St)] + O(∆3)

The approximations of the drift, volatility and correlation coefficients are
written in terms of the true first, second and cross moments of multiperiod
changes in the two state variables. If the two-factor assumption is appro-
priate, and a large stationary time-series is available, then these conditional
moments can be estimated using appropriate nonparametric methods. In this
paper, conditional moments are estimated using a nonparametric regression
model( see appendix 7). The conditioning variable are the short and spread
rates. All that is required is that these factor span the same space as the
true state variables (see Duffie and Kan (1996) for a discussion, in a linear
setting, of the conditions under which this is possible).

6 Implementation

6.1 Data Description

The data are the 3 month Treasury Bill and constant maturity treasury yields
on the 10 year U.S. Government bond. They are collected from Datastream
and cover the period from January 3, 1982 to December 31, 1998, providing
roughly 4000 observations.

All the data are quoted as the midpoints between the bid and asked prices
at the close of the business day and they are expressed in annualized form.

The 3 month Treasury Bill is the proxy for the short-rate and the spread
between the 10 years and the 3 month yield is the proxy for the slope of
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term structure. These variables are chosen to coincide with interest rate
variables used in other studies (see Litterman and Scheinkman (1991) and
Chan, Karolyi, Longstaff, and Sanders (1992) among others).

Figure 1 show the time series of both the short rate and spread. Over
the period, the short rate ranges from 2.619% to 10.677%, while the spread
varies from -0.266% to 3.788%. This is a signal of distinct periods of low and
high interest rates, as well as spread ranges (i.e. different slopes of the term
structure interest rates).

Figure 2 presents a scatter plot of the short and spread rate. This graph
is particular useful because in this paper, short and spread rate are the
conditioning variables. The figure show some holes at the boundary of range,
namely at low short rates (i.e. from 2.619-3.5%) and low spread (i.e. from
-0.266 and 2%) at high short rate (i.e. from 9.2-10.677%) and low spread
(i.e. from -0.266 and 1.5%) and some other holes in regions close to the
boundary (ex. short rate in the range 3.5-4.5% and spread between 1 and
2.25%). This means that the researcher should be cautions in interpreting
the implied distribution of interest rate conditional on these values for short
rate and spread.

Figure 3 show the histograms of the short and spread rate. It’s clear that
the shapes of empirical distributions is not normal and table 1 and 2 show
results that go in the same direction of the visual indication.

Table 5 and 6 show the autocorrelation at different lags of the short and
spread daily rates and daily changes. The pattern of the autocorrelation of
the daily rates indicate the presence of a unit roots in the time series while
the daily changes seem stationary. Tables 7 and 8 confirm the perception
showing the augmented Dickey-Fuller nonstationarity test.

The null hypothesis of nonstationarity is rejected at 10% significance
level. Because the test is known to have low power, which is the probability
of rejecting the null hypothesis when it is not true, a rejection suggests that
stationarity of the series is very likely.

6.2 Nonparametric estimation

6.2.1 Marginal and joint nonparametric distribution

Nonparametric methods are particularly useful when the researcher has no
previous knowledge or experience about the data generating process of dataset
at hand. In this case, before to estimate the model (parametrically or not),
a nonparametric estimation of the density can be important in capturing
the stylized facts that need explanation and for judging how well a potential
model is likely to fit the data. The important elements in nonparametric
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estimation are the choice of a smoothing function - the kernel - and a matrix
parameter - the window width or bandwidth matrix. Empirical researches
found that the choice of the kernel function is not critical and the “optimal”
kernel yield only modest improvements in the performance of the density
estimator. This is not the case for the bandwidth matrix that play a crucial
role for a good “fitting” of the data (see Appendix A).

Figure 4 and 5 show the marginal nonparametric density estimation of
the short and spread rate. The bandwidth used is the “Normal reference
rule” that is the optimal value when the true density is Gaussian and the
kernel function is also Gaussian (see Scott (1992)) .

This ‘unrealistic” choice is due to the purely exploratory purpose of den-
sity estimation, in order to highlight some stylized fact like the presence of
different “humps”. The dataset at hand is quite long and it reflects different
“regime shift” relative to different economic period and consequently central
bank actions. This is one reason for the multi modal empirical distribution.
Same deductions from figure 6 and 7 where the bivariate density is estimated.

6.3 Estimation results of the continuous-time multi-

factor models

Drift, diffusion and correlation coefficients of eq. (25) and eq. (26) are
estimated using the third order approximations (see eq. (34)). The procedure
imply the estimation of different nonparametric conditional moments with
relative computational problem and computer time spending (see appendix B
for details). Estimation results are shown in figure 8-12.

As mentioned above the researcher should treat with caution the results
at the boundary of the range, since that there are no available or sufficient
data to estimate the conditional moments.

More precisely, it’s not possible to obtain reliable estimation in the re-
gion relative to low short rate/low spread rate as high short rate/low spread
rate. Even in the other two cases (low short rate/high level spread and high
short rate/low spread rate) the number of observations are not sufficient for
“robust” estimate.

About the diffusion process of the short rate, for fixed values of the short
rate between 4% and 9%, figure 8 show a nonlinear behavior along the spread
rate.

This feature seems more visible at low level of short rate (between 4%
and 5.5%) and at high level of short rate, close to the boundaries of ”reliable”
surface. Fixing the value of the spread rate between 2% and 3% and moving
along the short rate in the range where more observations occur, we find
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a substantial linear relation. The surface reveal some slight humps but is
not possible to state with certainty the nonlinearity of the drift because may
depend on the precision of the optimized bandwidth matrix. In general, the
results show that the drift is not perfectly linear, even if it’s hard to conclude
that these nonlinearities are the proof to reject the estimates of a parametric
model with linear drift specification.

An interesting element is that the surface does not exhibit a mean-
reverting behaviour and this is compatible with Aı̈t-Sahalia (1996)’s results.
On the other hand there are strong theoretical argumentations to believe
that interest rate data cannot mimic the path of a random walk.

In figure 9, the heart of the surface show that the volatility is increasing
and reach its maximum value when the short and spread rate are high: when
the rates are far from the long-run mean, the volatility increase. A possible
explanation could be that there is a “real” tendency of the rates, when they
are too high or too low, to match the long-run mean and this is in line with
the theory of term structure interest rate .

In particular the surface show a deeper inclination when both the short
and spread rate are high and the feature is more evident when we move along
the spread rate. In some sense, it seems that the volatility increase when the
short rate is high.

Figure 10 and 11 show the estimation of the drift and diffusion function
for the diffusion process of the spread rate. For the diffusion part the result
is similar to that of diffusion coefficient in figure 9, even if the surface seems
“oversmoothed”. This is due not only to a different time series but also
to bandwidth matrix whose entries are larger than those of the bandwidth
matrix for the short rate. One reason could be the difficulties to estimate
the bandwidth matrix using this kind of data. The drift function show a
behavior that seem exactly the contrary (oversmoothing aside) to the drift
function of the short rate. One possible interpretation could be the negative
correlation between the short and spread rate.

Figure 12 is relative to the correlation coefficient. It is always negative
even if close to zero. It seems more negative at high level of the spread rate
and high level of the spread rate. In practice when the slope of the term
structure increase, in mean, the short rate decrease to come back to the
long-run mean.

7 Conclusions

This paper provides a method for estimating in a nonparametric way a
multi-factor continuous-time Markov processes using the approach of Stan-
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ton (1997). The technique has been applied to the short and long-end of the
term structure for a general two-factor, continuous-time diffusion process for
interest rates. In estimating this process, the results show some nonlinearities
in the drift coefficients.

This seem a surprising result, since that almost all parametric model, in
the financial literature about term structure estimation, are specified with a
linear drift.

Obviously, this results should be treat with caution since that it could be
an artifact of the estimation methods and not a genuine nonlinearity.

Another results is that the volatility of interest rates is increasing in
the level of interest rates, only for sharply, upward sloping term structures.
Thus, the result of previous studies, suggesting an almost exponential relation
between interest rate volatility and levels, is due to the term structure on
average being upward sloping, and is not a general result per se.

There are several advantages of the procedure adopted in this paper.
First, there is a constant debate between researchers on the relative bene-
fits of using equilibrium versus arbitrage-free models. Here, we circumvent
this issue by using actual data to give us the process. Since the real world
coincides with the intersection of equilibrium and arbitrage-free models, the
model is automatically consistent.

Second, the approach of this paper may be useful in providing forecasts
of the conditional distribution of changes in the term structure of interest
rates.

Moreover it could be used to evaluate the performance of a parametric
model since that within this nonparametric framework no previous specifi-
cation are needed: the data speak for themselves.
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Appendix A

This appendix is devoted to state some basic definition about the kernel
density estimators and derive the Asymptotic Mean Integrated Squared Error
(MISE) in order to compute the optimal bandwidth matrix H.

(X1, . . . ,Xn) denote a d-variate random sample having density f(·). I
will use the notation Xi = (Xi1, . . . , Xid)

′

to denote the components of Xi

and a generic vector x ∈ R
d will have the representation x = (x1, . . . , xd).

Also
∫

will be the shorthand for
∫

. . .
∫

Rd .
A d-dimensional kernel density estimator is

f̂(x;H) = n−1

n
∑

i=1

KH(x − Xi) (35)

where H is a symmetric positive semidefinite d×d matrix called the bandwidth

matrix and

KH(x) = |H|−1/2K(H−1/2x)

is a d-variate kernel function. Usually, it is a function satisfying:

1.
∫

K(x)dx = 1

2.
∫

xxTK(x)dx = µ2(K)Id

3.
∫

xK(x)dx = 0

where µ2(K) =
∫

x2
i K(x)dx is independent of i.

The kernel function is often taken to be a d-variate probability density
function. A common technique for generating multivariate kernels from a
symmetric univariate kernel k is the product kernel:

KP (x) =
d
∏

i=1

k(xi)

The analysis of the performance of the kernel density estimator requires
the specification of appropriate errors criteria. In classical parametric statis-
tics it is common to measure the closeness of an estimator using the Mean
Squared Error (MSE). In a density estimation framework the MSE is rewrite
in the following way:

MSE(f̂(x;H)) = E[f̂(x;H) − f(x)]2 = Var(f̂(x;H)) + Bias2(f̂(x;H))
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where Bias =
[

E(f̂(x;H)) − f(x)
]

. The disadvantage with MSE is that it

evaluate the distance between f̂(·) and f(·). at some point of the support.
From a data analytic view point, to estimate f over the entire line is necessary
an error criteria that globally measure the distances between the function
f̂(x;H) and f(x). One criterion is the Integrated Squared Error (ISE) (or
the square of the L2 distance):

ISE =

∫

(f̂(x;H) − f(x))2dx

A improvement of ISE is MISE (Mean Integrated Squared Error) that
is the expected value of ISE. It has the advantage to consider not only the
dataset at hand but take into account other possible datasets from the density
f :

MISE = E

(∫

(f̂(x;H) − f(x))2dx

)

=

∫

MSE(f̂(x;H)) =

=

∫

Var(f̂(x;H)) +

∫

Bias2(f̂(x;H))

If we substitute f̂(x;H) with eq. (35) the result is a function of the
convolution of KH with the unknown density function f(·) (see Wand and
Jones (1995)). Using some “tractable” kernel density function, (i.e. the d-
variate normal density) is possible to simplify the equation but it remain a
function of bandwidth H in a complicate way.

The solution to this problem is to approximate asymptotically MISE
(AMISE) , using multivariate version of the Taylor’s formula.

Let F denote the class of symmetric positive definite d × d matrices. In
general H has 1

2
d(d+1) independent entries which, even for moderate d, can

be a substantial number of smoothing parameters to have to choose.
A simplification can be obtained by imposing the restriction H ∈ D,

where D ⊂ F is the subclass of diagonal positive definite d × d matrices:
H = diag(h2

1, . . . , h
2
d).

For H ∈ D the kernel estimator can then be written:

f̂(x; h) = n−1

(

d
∏

l=1

hl

)−1 n
∑

i=1

K(
x1 − Xi1

h1

, · · · ,
xd − Xid

hd

)

A further simplification follows from the restriction H ∈ S where S = {h2I :
h > 0} ⊂ D and leads to the single bandwidth kernel estimator:

f̂(x; h) = n−1h−d

n
∑

i=1

K{(x − Xi)/h}
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Following the same decomposition of MISE, the AMISE can be written as
the sum of asymptotic integrated square bias and asymptotic integrated vari-
ance. To evaluate the asymptotic square bias is necessary to approximate
via multivariate taylor’s theorem the expected value of f̂(x;H):

E(f̂(x;H)) =

∫

KH(x − u)f(u)du =

∫

K(z)f(x − H1/2z)dz

Let introduce the Taylor series expansion of second order of f(x − H1/2z)
around x where ∇ is the gradient and H is the hessian:

E(f̂(x;H)) ≈

∫

K(z){f(x) − (H1/2z)
′

∇(x) + 1/2((H1/2z)
′

H(H1/2z))}dz

+ o(tr(H))

= f(x) −

∫

z′H1/2∇(x)K(z)dz +
1

2

∫

z′H1/2HH1/2zK(z)dz

+ o(tr(H))

Using the property (1) of K(x), and some manipulations of the trace (tr)
operator, is possible to show that the leading bias term is:

E(f̂(x;H)) − f(x) ≈
1

2
µ2(K)tr{HH(x)}

The variance of f̂(x;H)is given by:

Var(f̂(x;H)) = −n−1|H|−1/2R(K)f(x) + o(n−1|H|−1/2)

where R(K) =
∫

K(z)2dz.
Putting all together:

AMISE(f̂(x;H)) = −n−1|H|−1/2R(K) +
1

4
µ2(K)2

∫

tr2{HH(x)}dx

It’s possible to simplify the expression if H ∈ S:

AMISE(f̂(x;H)) = −n−1h−dR(K) +
1

4
h4µ2(K)2

∫

I2dx

where

I2 =
d
∑

i=1

(∂2/∂x2
i )f(x)
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In order to obtain the optimal bandwidth h is necessary to minimize
AMISE with respect to h. Equating the derivative of AMISE respect to h to
zero and solving for h is possibile to obtain:

hAMISE =

[

dR(K)

µ2(K)2
∫

I2dxn

]1/(d+4)

= Cn−1/(d+4) (36)

where C =
[

dR(K)
µ2(K)2

∫

I2dx

]1/(d+4)

can be defined as a “scaling factor”4

One drawback in using the hAMISE is that it depend on the unknown
derivatives of the true density function f(·). In many case there are no
possibilities to know what is the density that generate the data and so hAMISE

in useless. This is the reason for the data-driven bandwidth selectors (or “hi-
tech” bandwidth selectors).

One of these is the Least Square Cross Validation (LSCV) (see Bowman
(1984) and Rudemo (1982)) that is derived from MISE:

ĤLSCV = arg min
H∈F

LSCV (H)

LSCV (H) =

∫

f̂(x;H)2 − 2n−1

n
∑

i=1

f̂−i(Xi;H)

where f̂−i(Xi;H) is the kernel estimator based on the sample with Xi deleted.
Of course, one can also minimise LSCV over H ∈ D or H ∈ S to obtain
bandwidth selectors belonging to a smaller class. In this paper the LSCV is
applied with H ∈ D.

4Even if H ∈ D is possible to show that HAMISE is a diagonal matrix and each
diagonal element is the bandwidth of i-th (1 ≤ i ≤ d) random variable. Each of them has
a representation like eq. (36)

24



Appendix B

Regression model is a natural setup to estimate conditional moments. There
are several approaches to the nonparametric regression problem: kernel func-
tions, spline functions and wavelets. In the context of kernel regression tradi-
tional approaches have involved the Nadaraya-Watson estimator (Nadaraya
(1964), Watson (1964)) and some other alternative kernel estimators (Priest-
ley and Chao (1972), Gasser and Müller (1979)). For example Stanton (1997)
use the Nadaraya-Watson kernel regression in order to estimate conditional
moments. In this paper a different class of kernel-type regression estimators
is used: the local polynomial kernel estimators. These estimate the regression
function at a particular point by “locally fitting” a pth degree polynomial
to the data via weighted least squares, where the weights are chosen accord-
ing to the height of a kernel function centered about that point. This class
includes, as a special case, the Nadaraya-Watson estimator since it can be
shown to correspond to fitting degree zero polynomials.

Of particular importance is the local linear kernel estimator, correspond-
ing to p = 1. The local linear kernel estimator shares some similarities with
the above mentioned traditional kernel regression estimators, although it has
good asymptotic properties and most important, favourable boundary be-
haviour compared with those. The last is the main reason for its use in this
paper.

A regression model start with the usual equation:

Y = m(X) + ε

where Y is the response variable, X are the regressors, m(·) is the regression
function and ε is the error variable.

In a nonparametric setting, the functional form of m(·) is not specified and
only mild conditions are required (i.e. smoothness condition and existence,
at least, of first and second derivatives in order to derive asymptotic MISE).
The goal is to estimate m(X) since that:

m(x) = E(Y|X = x)

is the conditional moment used to approximate drift, diffusion and correlation
function of diffusion process (i.e. in the paper, Y is substituted with the
changes of the daily rates, and the regressors X are the conditioning variables:
the short and spread rate). A local polynomial kernel estimator of m(·),m̂(·),
is a function of the point x at which we evaluate the regression function, the
degree of the polynomial p, and the bandwidth matrix H used to evaluate
the optimal weights to assign at the sample points close the support point x.
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Using a notation as much as possible similar to appendix A, the estimator
m̂(x, p,H) is obtained by fitting the polynomial:

β0 + β1(x − ·) + . . . + βp(x − ·)p

to the (Xi,Yi) using weighted least squares with kernel weights KH(x−Xi).
The value of m̂(x, p,H) is the height of the fit β̂0 where β̂ = (β̂0, β̂1, . . . , β̂p)

′

minimizes:

β̂ = arg min
β

n
∑

i

{Yi − β0 − · · · − βp(x − Xi)
p}2KH(x − Xi)

Assuming the invertibility of X′
x
WxXx, standard weighted least squares

theory leads to the solution

β̂ = (X
′

x
W

′

x
Xx)

−1X
′

x
WxY

where Y = (Y1, . . . , Yn)
′

is the vector of responses,

Xx =







1 (x − X1) · · · (x − X1)
p

...
...

...
. . .

...
1 (x − Xn) · · · (x − Xn)p







is an n × (p + 1) matrix and

Wx = diag (KH(x − X1), . . . , KH(x − Xn))

is an n × n diagonal matrix of weights.
Since the estimator of m(X) is the intercept coefficient we obtain:

m̂(x, p,H) = e
′

1(X
′

x
W

′

x
Xx)

−1X
′

x
WxY

where e1 is a (p+1)×1 vector having 1 in the first entry and zero elsewhere.
Fan (1993) and Fan and Gijbels (1992), in a univariate setting, show that

the local linear kernel regression estimator has asymptotic properties making
it superior to the Nadaraya-Watson and Gasser-Müller kernel estimator.

Ruppert and Wand (1994) have derived asymptotic bias and variance to
the case of multivariate predictor variables. The authors show that, assuming
some conditions, the asymptotic bias in an interior point of the support of
the density function f(x) is:

E{m̂(x;H) − m(x)|X1, . . . ,Xn} =
1

2
µ2(K)tr{HHm(x)} + op{tr(H)}
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with R(K) =
∫

K(u)2du, Hm is the d × d Hessian matrix of a sufficiently
smooth d-variate function m at x.

The variance of m̂(x;H) is given by:

Var{m̂(x;H)|X1, . . . ,Xn} = [n−1|H|−1/2R(K)/f(x)]v(x)[1 + op(1)]

where v(x) = Var(Y|X = x)
Putting all together to determine AMISE:

AMISE(m̂(x;H)|X1, . . . ,Xn) =

∫

[n−1|H|−1/2R(K)/f(x)]v(x)[1 + op(1)]dx +

+

∫ (

1

2
µ2(K)tr[HHm(x)] + op[tr(H)]

)2

dx

It’s possible to simplify the expression if H ∈ S:

AMISE(m̂(x;H)|X1, . . . ,Xn) = n−1h−dR(K)

∫

v(x)

f(x)
dx +

+
1

4
h4µ2(K)2

∫

I2dx

where

I2 =
d
∑

i=1

(∂2/∂x2
i )f(x)

In order to obtain the optimal bandwidth h i follow the same procedure
of appendix A about kernel density estimation and the solution is:

hAMISE =

[

dR(K)
∫ v(x)

f(x)
dx

µ2(K)2
∫

I2dxn

]1/(d+4)

= Cn−1/(d+4) (37)

where C =
[

dR(K)
µ2(K)2

∫

I2dx

]1/(d+4)

can be defined as a “scaling factor” in an

analogue way of kernel density estimation.
The problem using this formula is the evaluation of the scaling factor that

depend on unknown functions (i.e. density function and the variance). One
way could be the data-driven bandwidth selectors and more specific the cross
validation bandwidth selector. The goal is to minimize some “estimated”
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mean square error criteria that are function of the bandwidth: the Average
Squared Error (ASE) or its expectation (MASE), the MISE or AMISE.

Frequently cross validation procedure is performed minimizing, with re-
spect to H, the Estimated Integrated Squared Error (EISE):

arg min
H

CV (H) = arg min
H

n−1
∑

(Y − m(x;H))2

Considering eq. (37) the optimization has been conducted with a search
over a grid of bandwidth values in order to arrive to an optimal bandwidth.
In this paper H is a 2 × 2 diagonal matrix (H = diag(h2

1, h
2
2) with d = 2)

and h1, h2 are respectively the bandwidth for the short and spread rate. The
idea is to fix a matrix of possible “scaling factors”, one for the short and
spread rate (the only unknown value of eq. (37)). The choice has been
a square matrix C of scaling factors of dimension 12 × 12 with c1,·, c·,2 =
{1, 2, . . . , 12}. For each cij has been computed h1, h2 (according to eq. (37)),
the corresponding bandwidth matrix H and CV (·) function. At the end we
have a 12× 12 matrix of CV (·) values. The minimum value has been chosen
and so the optimal Ĥ has been found. The procedure is computational slow
and an alternative optimization strategy has been adopted subject to the
hypothesis that the CVH(·) function is sufficiently smooth.

Instead of calculate the CVH(·) function for each entries of the C matrix,
the algorithm fix the value of c along one dimension (i.e. the first value of c·,2
corresponding to h2) and calculate the bandwidth matrix for different value
of c along the second dimension (i.e. different values of h1). For each value of
H, has been computed the CVH(·) function. The first step of the strategy is
completed when CVH(·) function reach the minimum value or the difference
between to consecutive values are less than a tolerance threshold defined by
the researcher.

The second step start fixing the value of h1 at the level reached in the
previous step and calculating CVH(·) function for each H bandwidth matrix
obtained changing the value of h2 (due to a change in c·,2) that in the first
step was fixed. This step terminate when the same conditions of the previous
one are reached.

The third and last step start with the value of H determined before (that
is the result of the levels reached by h1 and h2) and creating a sub-square
grid of 5×5 around the value of H (or better the value cij) that represent its
neighborhood in two dimension. For each entries of this sub-square grid has
been calculated the corresponding bandwidth matrix H and CVH(·) function.
The step terminate if the minimum value of CVH(·) correspond to the center
of the sub-square grid. If not, another sub-square grid is determined around
the new minimum and the procedure continue until minimum is the center
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of the sub-square grid. For the dataset at hand this strategy reach the
minimum of CVH avoiding to compute each entry of C matrix and it’s three
times faster.

The cross validation function has been calculated using a Jackknife-based
procedure or what is called in nonparametric theory the “leave-k-out” cross
validation where k is equal to 100. Chu and Marron (1991) consider this
modified form of cross-validation to take into account short-range dependence
in the data. k has been fixed to 100 after some trials with different value of
k (see Hall, Nath Lahiri, and Polzehl (1995) for a discussion) .
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Appendix C

In this appendix are derived the first, second and third order approximations
of µR, µS, σR, σS, σRS.

For N = 1 the approximation is already derived in eq. (30). Substituting
f(Xt) with the functions in eq.(32) and using the calculation of eq. (33) is
possible to write the following approximations:

µR(Rt, St) =
1

∆
Et(Rt+∆ − Rt) + O(∆)

µS(Rt, St) =
1

∆
Et(St+∆ − St) + O(∆)

σ2
R(Rt, St) =

1

∆
Et[(Rt+∆ − Rt)

2] + O(∆)

σ2
S(Rt, St) =

1

∆
Et[(St+∆ − St)

2] + O(∆)

σRS(Rt, St) =
1

∆
Et[(Rt+∆ − Rt)(St+∆ − St)] + O(∆)]

For N = 2, the linear combination of Êi(·) becomes:

α1Ê(Xt) + α2Ê(Xt) = [α1 + α2]Lf(Xt) +
1

2
[α1 + α22]L2f(Xt)∆

[α1 + α2]Lf(Xt) = α1Ê(Xt) + α2Ê(Xt) −
1

2
[α1 + α22]L2f(Xt)∆

The value of α1, α2 will be chosen in order to sum to 1 and to eliminate
the term of order O(∆). This restriction are summarized in the following
expression:

(

1 1
1 2

)

α ≡ V α =

(

1
0

)

; α =

(

2
−1

)

Doing the several mentioned substitutions the approximations of second
order are:

µR(Rt, St) =
1

2∆
[4Et(Rt+∆ − Rt) − Et(Rt+2∆ − Rt)] + O(∆2)

µS(Rt, St) =
1

2∆
[4Et(St+∆ − St) − Et(St+2∆ − St)] + O(∆2)
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σ2
R(Rt, St) =

1

2∆

[

4Et[(Rt+∆ − Rt)
2] − Et[(Rt+2∆ − Rt)

2]
]

+ O(∆2)

σ2
S(Rt, St) =

1

2∆

[

4Et[(St+∆ − St)
2] − Et[(St+2∆ − St)

2]
]

+ O(∆2)

σRS(Rt, St) =
1

2∆
[4Et[(Rt+∆ − Rt)(St+∆ − St)] −

− Et[(Rt+2∆ − Rt)(St+2∆ − St)]] + O(∆2)

For N = 3 the Vandermond and vector α becomes:

α =





1 1 1
1 2 3
1 4 9





−1



1
0
0



 =





3
−3
1





and the approximations are:

µR(Rt, St) =
1

6∆
[18Et(Rt+∆ − Rt) − 9Et(Rt+2∆ − Rt) + 2Et(Rt+3∆ − Rt)] + O(∆3)

µS(Rt, St) =
1

6∆
[18Et(St+∆ − St) − 9Et(St+2∆ − St) + 2Et(St+3∆ − St)] + O(∆3)

σ2
R(Rt, St) =

1

6∆
(18Et[(Rt+∆ − Rt)

2] − 9Et[(Rt+2∆ − Rt)
2] + 2Et[(Rt+3∆ − Rt)

2]) + O(∆3)

σ2
S(Rt, St) =

1

6∆
(18Et[(St+∆ − St)

2] − 9Et[(St+2∆ − St)
2] + 2Et[(St+3∆ − St)

2]) + O(∆3)

σRS(Rt, St) =
1

6∆
(18Et[(Rt+∆ − Rt)(St+∆ − St)] − 9Et[(Rt+2∆ − Rt)(St+2∆ − St)]) +

+ 2Et[(Rt+3∆ − Rt)(St+3∆ − St)] + O(∆3)
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Figure 1— Plots of Short Rate and Spread
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Figure 2— Scatter plot of Short Rate vs Spread
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Figure 3— Histograms Short and Spread rate with superimposed fitted normal density
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Table 1— Descriptive statistics Short rate (level rate: rt)
N Mean Median Max Min

4004 6.027 5.640 10.677 2.619

Stand. Dev. Skewness Kurtosis Jarque Bera p value JB
1.860 0.283 2.366 120.506 0.000

Table 2— Descriptive statistics Spread rate (level rate: rt)
N Mean Median Max Min

4004 1.839 1.907 3.788 -0.266

Stand. Dev. Skewness Kurtosis Jarque Bera p value JB
1.005 -0.126 1.916 206.544 0.000
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Table 3— Descriptive statistics Short rate (first difference: rt − rt−1)
N Mean Median Max Min

4003 -0.000889 0.0000 0.452000 -0.541000

Stand. Dev. Skewness Kurtosis Jarque Bera p value JB
0.061766 -0.306298 11.81619 13026.50 0.000

Table 4— Descriptive statistics Spread rate (first difference: rt − rt−1)
N Mean Median Max Min

4003 -0.000477 0.000000 0.468000 -0.326000

Stand. Dev. Skewness Kurtosis Jarque Bera p value JB
0.066592 0.324651 7.262630 3100.926 0.000

Table 5— Autocorrelation Short rate
(level rt and first difference: rt − rt−1)

ρ1 ρ3 ρ5 ρ7

rt 0.999 0.997 0.996 0.994
rt − rt−1 0.086 -0.038 0.019 0.013

Table 6— Autocorrelation Spread rate
(level rt and first difference: rt − rt−1)

ρ1 ρ3 ρ5 ρ7

rt 0.997 0.992 0.988 0.983
rt − rt−1 0.060 -0.063 0.047 -0.005

Table 7— Augmented Dickey-Fuller stationary test
for first difference of short rate

H0 Test statistic Critical Value (10%)
Nonstationary -27.95896 -2.5675

Table 8— Augmented Dickey-Fuller stationary test for
first difference of spread rate

H0 Test statistic Critical Value (10%)
Nonstationary -28.98246 -2.5675
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Figure 4— Nonparametric density estimation Short rate
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Figure 5— Nonparametric density estimation Spread rate
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Figure 6— Nonparametric bivariate density estimation Short and Spread rates
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Figure 7— Nonparametric bivariate density Short and Spread rates (other perspective)

0.02 0.04
0.06

0.08 0.1
0.12

−0.01

0

0.01

0.02

0.03

0.04

0

500

1000

1500

Short Rate

Spread

f(
x,

y)

36



Figure 8— Third order approximation to the drift of the Short rate, conditional on Short
and Spread rate
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Figure 9— Third order approximation to the diffusion of the Short rate, conditional on
Short and Spread rate
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Figure 10— Third order approximation to the drift of the Spread rate, conditional on
Short and Spread rate
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Figure 11— Third order approximation to the diffusion of the Spread rate, conditional on
Short and Spread rate
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Figure 12— Third order approximation to the correlation between Short and Spread rate,
conditional on Short and Spread rate
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