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Abstract. This paper extends a recent martingale representation result of [N-S] for
a Lévy process to filtrations generated by a rather large class of semimartingales. As in
[N-S], we assume the underlying processes have moments of all orders, but here we allow
angle brackets to be stochastic. Following their approach, including a chaotic expansion,
and incorporating an idea of strong orthogonalization from [D], we show that the stable
subspace generated by Teugels martingales is dense in the space of square-integrable mar-
tingales, yielding the representation. While discontinuities are of primary interest here, the
special case of a (possibly infinite-dimensional) Brownian filtration is an easy consequence.

1. Introduction

Recently, [N-S] established a martingale representation property for the filtration gen-
erated by a Lévy process X = (Xt) having an exponentially decaying law. They showed
that every square-martingale M ∈ H2 has a representation as an infinite sum of the form
M =

∑∞
n=1

∫
HndNn for certain pairwise strongly orthogonal martingales Nn.1 The series

convergence takes place in H2. The base martingales Nn are intrinsically associated to X,
and, in their case, on a choice of an orthogonal polynomial. The result is an interesting
contrast to the standard theory for filtrations generated by a finite-dimensional Brownian
motion or Poisson process, where martingale representation takes the form of a finite sum.

Lévy processes are very interesting, but the concepts and techniques introduced in [N-S]
appear of wider applicability. Chief among them are their notion of Teugels Martingales
X(n), whose strong orthogonalization gives the base martingales Nn, a chaotic representa-
tion of n-th power Xn in terms of X(i), and the idea that polynomials in Xtj are dense in
the space of square integrable random variables, given a suitable growth condition on X.

In a recent expository article, [D] discusses several approaches and results on martingale
representation, including those based on the Jacod-Yor Theorem, and an earlier general
result in [D2] (and other cited references) for the filtration generated by a finite activity
process. It appears that the [N-S] result is the first of its kind for an infinite activity
process, let alone a discontinuous process of infinite variation, which Lévy processes often

1In this paper we use integer powers Xn frequently. To avoid confusion, we use subscripts to denote
sequences of processes, such as Hn. If necessary, the time t-value is then denoted Hn(t). (In the univariate
case, we use the usual notation Xt.)
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are. In connection to [N-S], [D] highlights the role played by the infinite direct sum of
stable subspaces generated by a sequence of strongly orthogonal martingales in H2.

Our aim is to generalize the [N-S] results in two directions. First, we extend to processes
X quite a bit more general than Lévy processes. These processes and their (generalized)
Lévy measures ν = ν(ω, dt, dx) have moments of all order. Aside from stringent growth
conditions, the main assumption is that xn ∗ ν be continuous and adapted to a Brownian
filtration for all integers n ≥ 2. In the Lévy case, xn ∗ ν is a constant times t. A more
general example is a “Lévy processes with stochastic intensity λt”, where ν takes the form
ν = λtdt v(dx) for some ordinary Lévy measure v and a nonnegative Ito process (λt). Here,
simply, xn ∗ν = an

∫ ·
0
λtdt, where an =

∫
xnv(dx); so xn ∗ν are stochastic but proportional.

Secondly, we extend the univariate treatment of [N-S] to the multivariate case, indeed to
the case where the underlying filtration is generated by a countable number of independent
processes Xn of the above general type. The [N-S] approach to representation as a conver-
gent series in H2 is ideal for this purpose. Such an extension is already of interest when the
processes Xn are independent Brownian motions, extending the standard finite-dimensional
result to yield a unique representation for every martingale M ∈ H2 as M =

∑∞
n=1

∫
HndXn

for some predictable processes Hn satisfying
∑∞

n=1 E
∫ T

0
|Hn(t)|2dt < ∞.

With regard to the standard finite-dimensional Brownian case, as derived in texts such
as [E], [K-S], [Ø], and [P] , [D] remarks that the approach of [Ø] appears the simplest. For
the Brownian case, the Teugels martingales vanish, substantially simplifying the technique
of [N-S]. In this case, the derivation in [N-S] becomes actually quite similar to that of
[Ø]: both are based on denseness arguments, the former utilizing integer powers Xn and
polynomials, the latter employing complex powers ei ξX and the Fourier integral. It seems
to us that, for the Brownian case, the technique of [N-S] is as simple, but more constructive.

We follow closely the approach and ideas of [N-S], aided also by an elaboration on strong
orthogonalization in [D]. The more general development here calls for a somewhat different
route at places, and furthering of some of the arguments and calculations in [N-S].

The next section establishes notation, culminating in definitions of “power brackets”
[X](n) and 〈X〉(n), and the Teugels martingales X(n) := [X](n)−〈X〉(n) = xn ∗(µ−ν).2 Sec-
tion 3 sets forth the strategy, based on strong orthogonalization and a decomposition of H2

into an infinite orthogonal sum of stable subspaces, given a denseness hypothesis. Section
4 establishes some technical results based on the Burkholder-Davis-Gundy inequalities to
ensure that various local martingales that later arise in the chaotic expansion as (iterated)
stochastic integrals of Teugels martingales are in fact square-integrable martingales. Sec-
tion 5 derives the needed L2 denseness of polynomials for processes with an exponentially
decreasing law. Section 6 presents an inductive chaotic expansion which basically shows
(stopped) polynomials have representations as a sum of stochastic integrals of X(i) times
functionals of the 〈X〉(j). These are put together in Section 7 to state and prove our main
results. Section 8 is not needed for the main results, rather, by presenting an explicit
chaotic expansion of powers Xn, it brings out the relevance of power brackets and provides
motivation for the inductive definitions in Section 6. A final section concludes the paper.

2We use a different notation than [N-S]. Their equivalent of our [X](n), 〈X〉(n), X(n) is X(n), mnt, Y (n).
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2. Notation and basic concepts

The notation below is for the most part standard, but we introduce some new ones too.

2.1. Stochastic basis. We fix throughout 0 < T ≤ ∞ and a complete right-continuous
filtered probability space (Ω,F , P, F), F = (Ft)

T
t=0 such that F = FT .

We denote by F(Xn)k
n=1 the completed filtration generated by a finite or infinite sequence

(Xn)k
n=1, 1 ≤ k ≤ ∞, of measurable processes Xn.

Let L0 denote the set of F -measurable real-valued functions on Ω. For p > 0, we denote

Lp := Lp(Ω,F , P) := {ξ ∈ L0 : E |ξ|p < ∞}.

Of interest will be L1, L2, and random variables of finite moments, L∗ :=
⋂∞

n=1 Ln.
We denote by M the set of uniformly integrable martingales M = (Mt)t∈[0,T ] with

M0 = 0. Note, M ∈ M is closed by MT . As is well-known, as t → T−, Mt converges to
E(MT |

∨
0≤t<T Ft) a.s. and in L1. The localization of M is denoted Mloc.

2.2. Semimartingales. Let P denote the set of predictable processes H = (Ht)t≥0.
3

If X = (Xt)t≥0 is a semimartingale, we abbreviate its bracket [X, X] by [X], and if H is
a predictable X-integrable process, we denote the stochastic integral by4

∫
HdX := H ·X = (

∫ t

0

HsdXs)t≥0.

Let A+ denote the set of adapted right-continuous increasing processes A = (At)t∈[0,T ]

such that A0 = 0 and AT ∈ L1. Let A := A+ 	 A+ denote the set of adapted right-
continuous processes of integrable variation. So, every A ∈ A has a unique decomposition
A = B − C for some B, C ∈ A+. Its total variation, denoted Var(A), then equals B + C.

Every A ∈ A has a unique Doob-Meyer decomposition A = Â + M with Â ∈ P ∩A and

M ∈M. The compensator Â is increasing if A is so.

2.3. Square-integrable martingales. As customary, we denote this Hilbert space by

H2 := {M ∈M : MT ∈ L2} = {M ∈Mloc : [M ]T ∈ L1}.

Let M, N ∈ H2. The compensators of [M ] and M2 coincide, and is denoted 〈M〉.5 We
have M2 − [M ], [M ] − 〈M〉 ∈ M. One sets 〈M, N〉 := (〈M + N〉 − 〈M − N〉)/4. (So,
〈M, M〉 = 〈M〉.) The space H2 is endowed with the Hilbert norm6

‖M‖2 := E M2
T = E [M ]T = E 〈M〉T . (M ∈ H2)

Note, L2 is isometric to L2(Ω,F0, P)
⊕
H2.

3By “t ≥ 0” we mean t ∈ [0, T ] if T < ∞ and t ∈ [0,∞) if T = ∞.
4One has, [X] = [Xc] +

∑
s≤·(∆X)2s, where Xc denotes the unique continuous local martingale such

that Xc
0 = 0 and X −Xc is a purely discontinuous semimartingale. Also, [Xc] = [X]c = 〈Xc〉.

5The definition of 〈M〉 extends to H2
loc by localization. Then, we get H2 = {M ∈ H2

loc : E 〈M〉T < ∞}.
6We also have ‖M‖2 = sup0≤t<T E M2

t ≥ 1
4 E M2

∗ , where M∗ := sup0≤t≤T |Mt|.
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2.4. Infinite direct sum of strongly orthogonal stable subspaces. For N ∈ H2, set

L2〈N〉 := {H ∈ P : E
∫ T

0

H2d[N ] < ∞} = {H ∈ P : E
∫ T

0

H2d〈N〉 < ∞}.

Any H ∈ L2〈N〉 is N -integrable,
∫

HdN ∈ H2, and 〈
∫

HdN〉 =
∫

H2d〈N〉. Denote

S(N) := {
∫

HdN : H ∈ L2〈N〉} ⊂ H2. (N ∈ H2)

As is well known, the subspace S(N) is a (closed) stable subspace of H2.7 Given a sequence
(Ni)

∞
i=1 of pairwise strongly orthogonal martingales Ni ∈ H2, we denote the direct sum8

∞⊕
i=1

S(Ni) := {
∞∑
i=1

Xi : Xi ∈ S(Ni) and
∞∑
i=1

‖Xi‖2 < ∞}

= {
∞∑
i=1

∫
HidNi : Hi ∈ P and

∞∑
i=1

E
∫ T

0

H2
i d〈Ni〉 < ∞}.

As
⊕∞

i=1 S(Ni) is a (countable) direct sum of orthogonal closed subspaces, it is a closed
subspace of H2. (In fact, it is the stable subspace generated by (Ni)

∞
i=1.

9)

2.5. Power brackets. For any semimartingale X, set [X](2) := [X] and [X](n) :=
∑

s≤·(∆X)n
s

for 3 ≤ n ∈ N. Note, [X](n+1) = [X, [X](n)]. Assume E [X]
(2n)
T < ∞, i.e., [X](2n) ∈ A+,

for all n ∈ N. It is easy to see that Var([X](m)) ≤ [X](m−1) + [X](m+1) for any odd integer
m ≥ 3.10 So, it follows [X](n) ∈ A for all n ≥ 2. We denote the compensator of [X](n)

by 〈X〉(n). So, 〈X〉(n) is characterized as the unique predictable right-continuous finite
variation process such that [X](n) − 〈X〉(n) ∈M, and it is increasing when n is even.

7Recall, a stable subspace K is a closed subspace of H2 which is closed under stopping, or equivalently,
closed under stochastic integration, i.e., S(M) ⊂ K for every M ∈ K.

8Recall, M,N ∈ H2 are strongly orthogonal if 〈M,N〉 = 0. Then clearly, they are orthogonal in the
Hilbert space sense, and every martingale in S(M) is strongly orthogonal to every martingale S(N).

9That is,
⊕∞

i=1 S(Ni) =: K is the smallest (the intersection of all) stable subspace(s) containing all Ni.
Indeed, K is stable, for if N =

∑
i Xi ∈ K with Xi ∈ S(Ni) and T is stopping time, then the stopped

process NT =
∑

i XT
i ∈ K as each XT

i ∈ S(Ni). Further, any stable subspace that contains all Ni also
contains S(Ni), and so contains the closure of linear span of the S(Ni), which closure clearly equals K.

10Indeed, for odd m ≥ 3, we have

Var([X](m)) =
∑
s≤·

|∆X|ms =
∑
s≤·

1|∆X|s≤1|∆X|ms +
∑
s≤·

1|∆X|s>1|∆X|ms

≤
∑
s≤·

1|∆X|s≤1|∆X|m−1
s +

∑
s≤·

1|∆X|s>1|∆X|m+1
s ≤ [X](m−1) + [X](m+1).
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2.6. Teugels martingales. Assume E [X]
(2n)
T < ∞ for all n ∈ N. Following [N-S], we

define the Teugels martingales X(n) of order n ≥ 2 by (X(1) will be defined later)

X(n) := [X](n) − 〈X〉(n), n ≥ 2.

As we saw, X(n) ∈M, all n. (It is easy to see X(n) ∈ H2 if all 〈X〉(n) are continuous.11)
In order to relate to the Lévy measure notation adopted in [N-S], let µ = µ(ω, dt, dx)

denote the integer-valued random measure associated to X and ν = ν(ω, dt, dx) be the
compensator of µ.12 Since, x2 ∗ µ =

∑
s≤·(∆X)2

s, we have [X] = [X]c + x2 ∗ µ and

〈X〉 = [X]c +x2 ∗ν. So, X(2) := [X]−〈X〉 = x2 ∗ (µ−ν). Let n ≥ 3. Above, we saw [X](n)

is of integrable total variation and denoted is compensator 〈X〉(n). But xn ∗ µ = [X](n); so
xn ∗ ν is also the compensator of [X](n). Therefore, xn ∗ ν = 〈X〉(n), and we have,

X(n) = xn ∗ µ− xn ∗ ν = xn ∗ (µ− ν), n ≥ 2.

3. Strong orthogonalization

Let (Mi)
∞
i=1 be a sequence of martingales Mi ∈ H2. As in [D], we associate to it a sequence

(Ni)
∞
i=1 of pairwise strongly orthogonal martingales, which we call its Strong Orthogonal-

ization. Set N1 := M1, and for n ≥ 2 inductively define Nn as the orthogonal projection
of Mn on the orthogonal complement of

⊕n−1
i=1 S(Ni). Note, this definition implies that Ni

are pairwise strongly orthogonal and
⊕n

i=1 S(Ni) is a (closed) stable subspace.13 For exam-
ple, if Mi are correlated Brownian motions, then Ni will be independent Brownian motions.

Remark. For almost all paths ω, d〈Mi, Nj〉(ω) is a measure on [0, T ] which is absolutely
continuous with respect to the measure d〈Nj, Nj〉(ω) on [0, T ]. So, the Radon-Nikodym

derivative
d〈Mi,Nj〉
d〈Nj ,Nj〉 is well-defined, and one easily verifies that

Mi = Ni +
i−1∑
j=1

∫
d〈Mi, Nj〉
d〈Nj, Nj〉

dNj.

This leads to an alternative definition of Ni: set N1 := M1, and having defined Nj induc-

tively for j < i, use the above equation to define Ni. Note, N2 = M2 −
∫ d〈M1,M2〉

d〈M1〉 dM1.

11Indeed, the continuity of 〈X〉(n) implies [X(n)] = [[X](n)] = [X](2n) ∈ L1; hence X(n) ∈ H2.
12Following the notation in Chapter II of [J-S], for a random measure υ(ω, dt, dx) and an optional

function W = W (ω, t, x), we set (W ∗υ)t :=
∫
[0,t]×{x6=0} W (s, x)υ(ds, dx). For a Lévy process, ν = dtν0(dx)

is time and state-independent. More general examples are processes with ν of form λtdtν0(dx), for some,
say, Itô process (λt). These include Cox processes where ν0(dx) is simply the Lévy measure of a Poisson
process. As Cox processes are often thought of as “Poisson processes with stochastic intensity λt”, the
aforementioned more general examples may be thought of as “Lévy processes with stochastic intensity λt.”

13These statements follow by a simple induction, using the fact if K is a stable subspace then its
orthogonal complement is (a stable subspace and is) strongly orthogonal to K.
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Remark. For 1 ≤ k ≤ ∞,
⊕k

i=1 S(Ni) is not only the stable subspace generated by
(Ni)

k
i=1, but also the stable subspace generated by (Mi)

k
i=1.

We denote the linear span of S(Mi), i = 1, 2 · · · , by14

Span(S(Mi))
∞
i=1 :=

∞⋃
n=1

S(M1) + · · ·+ S(Mn).

The following is essentially a reformulation of the abstract martingale representation The-
orem 3 of [D].15 Our strategy will be to apply it the Teugels martingales X(i) as the Mi.

Proposition 3.1. Let (Mi)
∞
i=1 be a sequence of martingales inH2 such that Span(S(Mi))

∞
i=1

is dense in H2. Then, H2 =
⊕∞

i=1 S(Ni), where (Ni)
∞
i=1 is the strong orthogonalization of

(Mi)
∞
i=1. In other words, every martingale M ∈ H2 has a representation

M =
∞∑
i=1

∫
HidNi

(as a convergent series in H2) for some predictable processes Hi satisfying

∞∑
i=1

E(

∫ T

0

H2
i d〈Ni〉) =

∞∑
i=1

E(

∫ T

0

H2
i d[Ni]) = ‖M‖2 < ∞.

Moreover, if (H ′
i)
∞
i=1 is another sequence with this property, then

∫
|H ′

i − Hi|2d〈Ni〉 = 0
a.s., all i. In particular, the Hi are unique if 〈Ni〉 are strictly increasing.

Proof. Since
⊕n

i=1 S(Ni) is a stable subspace and contains Mn, we have S(Mn) ⊂
⊕n

i=1 S(Ni).
Hence, Span(S(Mi))

∞
i=1 ⊂

⊕∞
i=1 S(Ni). The first statement follows as the former is as-

sumed dense and the latter is closed. The uniqueness statement follows because direct
sum decomposition is unique; so,

∫
H ′

idNi =
∫

HidNi, implying
∫
|H ′

i−Hi|2d〈Ni〉 = 0. �

Remark. The Hi are unique on the support of the measure measure d〈Ni, Ni〉 (as mea-

sure on [0, T ] for each ω.) There, Hi in fact equals the Radon-Nikodym derivative d〈M,Ni〉
d〈Ni〉 .

Remark. When d〈Ni, Ni〉 = λidt for some positive predictable processes λi, we can nor-

malize by replacing Ni with
∫

λ
−1/2
i dNi. The new Ni still satisfy 〈Ni, Ni〉t = t, so the

condition on the Hi simplify to
∑∞

i=1 E(
∫ T

0
H2

i dt) < ∞, as in [N-S]. This is possible in the

14In this paper, we denote the linear span of any subset K of a vector space by Span(K). So, Span(K)
is a the set of (finite) linear combinations of elements of K, i.e., the smallest (intersection of all) linear
subspace(s) containing K. If Ki, i ∈ I, is a family of linear subspaces of a vector space, we denote their
linear span Span(Ki)i∈I . When the index set I is finite, we also denote Span(Ki)n

i=1 by K1+· · ·+Kn. When
Ki are orthogonal subspaces of a Hilbert space, we emphasize the orthogonality by writing Span(Ki)n

i=1 as
K1⊕ · · · ⊕Kn or

⊕n
i=1Ki. Note, when I is countable, and Ki are closed, orthogonal subspaces, then their

infinite direct sum
⊕∞

i=1Ki := {
∑∞

i=1 Ki : Ki ∈ Ki;
∑∞

i=1 ‖Ki‖2 < ∞} equals the closure of Span(Ki)∞i=1.
15Prop 3.1 yields the same conclusion as Theorem 3 of [D] if H2 is separable. For, if (Mi)∞i=1 is a dense

sequence in H2, then Span(S(Mi))∞i=1 is also dense in H2, as it obviously contains all the Mi.
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Lévy case, where the λi turn out to be positive constants. However, the condition does not
hold in general (some Ni may even be zero); so, unlike [N-S], we do not normalize here.

Remark. It is easy show that the the strong orthogonalization of two sequences (Xi)
∞
i=1

and (Mi)
∞
i=1 of martingales in H2 coincide if Xj := Mj +

∑j−1
i=1

∫
Hi,jdMj for some locally

bounded predictable processes Hi,j.

4. Martingales and semimartingales of finite moments

Here we define a set C∗ of semimartingales, to a subset of which our main results apply.
Recall, L∗ :=

⋂∞
n=1 Ln. We begin with the definition of martingales of finite moments:

H? := {M ∈ H2 : MT ∈ L∗} = {M ∈Mloc : [M ]T ∈ L∗}.

The equality is a direct consequence of the Burkholder-Davis-Gundy inequalities.16

Proposition 4.1. Let M, N ∈ H?. Then
∫

M−dN ∈ H? ∩ S(N).

Proof. Set M∗ = supt∈[0,T ] |Mt|. By Schwartz inequality then Doob’s maximal inequality,

E [

∫
M−dN ]nT = E (

∫ T

0

M2
−d[N ])n ≤ E (M2

∗ [N ]T )n

≤ (E M4n
∗ )

1
2 (E [N ]2n

T )
1
2 ≤ (

4n

4n− 1
)2n(E M4n

T )
1
2 (E [N ]2n

T )
1
2 < ∞.

Hence [
∫

M−dN ]T ∈ L∗. Thus the local martingale
∫

M−dN is in fact in H? ∩ S(N). �

Clearly, [X](2n) ≤ [X]n for any semimartingales X and n ∈ N.17 So, if M ∈ H?, then

[M ]
(2n)
T ∈ L∗ for all n ∈ N. Recall, the Teugels martingale is now defined as M (n) :=

[M ](n) − 〈M〉(n) ∈M. Our approach relies on 〈M〉(n) being continuous. We define

H∗ := {M ∈ H? : 〈M〉(n) is continuous for all n ≥ 2}.
For any M ∈ H2, we set

S∗(M) := H∗ ∩ S(M).

Proposition 4.2. Let M, N ∈ H∗. Then
∫

M−dN ∈ S∗(N).

Proof. One readily shows by induction that [
∫

M−dN ](n) =
∫

M2n
− d[N ](n). So 〈

∫
M−dN〉(n) =∫

M2n
− d〈N〉(n), which is continuous. The desired result thus follows by Prop. 4.1. �

16The Burkholder-Davis-Gundy inequalities, as stated on page 175, section IV.5 of [P], states that for
any local martingale M , finite stopping time T , and p ≥ 1, there are constants c and C such that

E (M∗
T )p ≤ c E [MT ]p/2 ≤ C E (M∗

T )p.

In this paper, T is deterministic, but is allowed to equal infinity. On page 190, [P] also states the first
inequality for T = ∞. Above, M∗

T := supt≤T |Mt|. However, by Doob’s maximal inequality, we can replace
M∗

T simply by |MT | (with a larger constant C).
17Indeed, we obviously have

∑
s≤t(∆Xs)2n ≤ (

∑
s≤t(∆Xs)2)n.



8 FARSHID JAMSHIDIAN

The following consequence will be useful for multivariate representations.

Corollary 4.3. Let M ′, N ′ ∈ H2. Let M ∈ S∗(M ′) and N ∈ S∗(N ′). Assume [M ′, N ′] =
0. Then, MN ∈ S∗(M ′)⊕ S∗(N ′).

Proof. Clearly, [M, N ] = 0. So, Prop 3.2 and integration by parts imply MN ∈ S∗(M)⊕
S∗(N). But, S(M) ⊂ S(M ′) and S(N) ⊂ S(N ′) as S(M ′) and S(N ′) are stable subspaces.
Hence, MN ∈ S∗(M ′)⊕ S∗(N ′). �

The following result will guarantee that the stochastic integrals of the Teugels martingales
in the chaotic expansions below will actually be martingales belonging to H2 (even to H∗).

Proposition 4.4. Let M ∈ H∗. Then M (n) ∈ H∗ and 〈M〉(n)
T ∈ L∗ for all n ∈ N, where

M (1) := M . Moreover, [M (n)] = [M ](2n) and 〈M (n)〉 = 〈M〉(2n).

Proof. Recall, [X, A] = 0 for all semimartingales X and continuous finite variation semi-
martingales A. As 〈X〉(n) is assumed continuous, this implies [M (n)] = [M ](2n). But,

[M ](2n) ≤ [M ]n. Therefore [M (n)]T ∈ L∗. Thus M (n) ∈ H?. Hence M
(n)
T ∈ L∗, and

〈M〉(n)
T = [M (n)]T − M

(n)
T ∈ L∗. Let i ≥ 2. Clearly, [M (n)](i) = [M ](ni). So 〈M (n)〉(i) =

〈M〉(ni) is continuous. Therefore M (n) ∈ H∗. �

As 〈M〉(n) is continuous if M ∈ H∗, for all semimartingales X, [M (n), X] = [[M ](n), X].

Proposition 4.5. Let M, N ∈ H∗. If [M, N ] = 0, then [M (i), N (j)] = 0 for all i, j ∈ N.

Proof. Note, for any two semimartingales X and Y , and i + j ≥ 3, we have

[[X](i), [Y ](j)] =
∑
·≤s

(∆Xs)
i(∆Ys)

j =

∑
·≤s

(∆Xs∆Ys)(∆Xs)
i−1(∆Ys)

j−1 = [[X, Y ], [[X](i−1), [Y ](j−1)]].

This implies [[X](i), [Y ](j)] = 0 if [X, Y ] = 0. The result follows by applying to M and N
and invoking the remark preceding the proposition on continuity of 〈M〉(i) and 〈N〉(j). �

Let A∗ ⊂ A denote the set of continuous processes A ∈ A such that Var(A)T ∈ L∗. As
A∗ := supt∈[0,T ] |At| ≤ Var(X)T , clearly then At, A∗ ∈ L∗, all t.

Proposition 4.6. Let A, B ∈ A∗ and M ∈ H∗. Then AB ∈ A∗ and
∫

AdM ∈ S∗(M).

Proof. Without loss of generality we may assume A and B are increasing. That |AT BT | ∈
L∗ then follows from Schwartz inequality. (Also

∫
AdB ∈ A∗, as |

∫ T

0
AdB| ≤ |AT BT |.)

Similarly, [
∫ T

0
AdM ] ≤ A2

T [M ]T . So again by Schwartz inequality
∫

AdM ∈ S∗(M). �

We now define C∗ := A∗ + H∗. So, any semimartingale X ∈ C∗ has a decomposition
X = A + M , necessarily unique, with A ∈ A∗ and M ∈ H∗. Note, XT ∈ L∗. We denote
this compensator A by 〈X〉(1) and this martingale M by X(1). So,

X = 〈X〉(1) + X(1), X ∈ C∗, 〈X〉(1) ∈ A∗, X(1) ∈ H∗;
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As 〈X〉(1) is continuous, [X, Y ] = [X(1), Y ] for any semimartingale Y . Hence [X](n) =
[X(1)](n) for n ≥ 2, implying X(n) = (X(1))(n).18 Clearly, a process X belongs to C∗ if
and only if it is a special semimartingale, its compensator belongs to A∗, X0 = 0, and
[X]T ∈ L∗. The above propositions and the preceding remarks clearly yield

Corollary 4.7. Let X,Y ∈ C∗. Then XY,
∫

X−dY ∈ C∗ and
∫

X−dM ∈ S∗(M) for any

M ∈ H∗. Moreover, X(n) ∈ H∗ and 〈X〉(n) ∈ A∗ for all n ∈ N. Furthermore, if [X, Y ] = 0,
then [X(i), Y (j)] = 0 for all i, j ∈ N.

5. Exponentially decaying laws and L2-denseness of polynomials

We first look at random variables, then processes. Define the subspace L∗ ⊂ L∗ by

L∗ := {ξ ∈ L0 : E exp(a|ξ|) < ∞ for some a > 0}.
Using Schwartz inequality, one easily verifies that L∗ is indeed a linear subspace.19

Given a finite or infinite sequence (ξi)
k
i=1, k ≤ ∞ of random variables ξi ∈ L0, we denote

by F(ξi)
k
i=1 the σ-algebra generated by the ξi. A polynomial in the ξi is a (finite) linear

combination of products ξi1 · · · ξim , with m ≥ 0 ranging over non-negative integers, ij ∈ N,
and ij ≤ k when k < ∞. (When m = 0, the product is empty, and by convention equals
1). As the indices ij need not be distinct, this includes the monomials ξn1

i1
· · · ξnm

im
, ni ∈ N.

Proposition 5.1. Let ξ1, · · · , ξn ∈ L∗. Assume F = F(ξi)
n
i=1. Then the set of polynomials

in ξi, i.e., the linear space Span{ξi1 · · · ξim}1≤i1,··· ,im≤n, m≥0, is dense in L2.

Proof. Let ϕ ∈ L2 satisfy E(ϕ ξi1 · · · ξim) = 0 for all m ≥ 0 and multi-indices (i1, · · · , im) ∈
Nm. (For m = 0 this means E ϕ = 0.) It suffices to show ϕ = 0. Let C∞

0 (Rn) denote the
set of complex-valued smooth functions of compact support on Rn. As is well known, the
set {f(ξ) : f ∈ C∞

0 (Rn) is real valued} is dense in L2, where ξ = (ξ1 · · · ξn).20 Therefore,
it suffices to show E(ϕf(ξ)) = 0 for all f ∈ C∞

0 (Rn). Define u : C∞
0 (Rn) → C by

u(f) := E(ϕf(ξ)). Then, u is distribution, i.e., a continuous linear functional on C∞
0 (Rn)

under the latter’s usual Frechet topology. We must show u = 0. For x ∈ Rn, define û(x) =
E(ϕ exp(−

√
−1 x · ξ)). Then, û is in L1

loc(Rn), and considered as such as a distribution, it
is the Fourier transform of u in the sense of distribution. Hence, it suffices to show û = 0.

As |ξi| ∈ L∗, we have |ξ| ≤ |ξ1| + · · · + |ξn| ∈ L∗. So, E exp(a|ξ|) < ∞ for some a > 0.
Using Schwartz inequality yields E|ϕ exp(−iz · ξ)| < ∞ for z ∈ Cn with |Im(z)| < a/2.

18Indeed [X] = [X, X(1)] = [X(1)], and for n ≥ 3, using induction,

[X](n) = [X, [X](n−1)] = [X, [X(1)](n−1)] = [X(1), [X(1)](n−1)] = [X(1)](n).

19Indeed, if ξ = ξ1 + ξ2 with E exp(ai|ξi|) < ∞, then E exp(a|ξ|) < ∞, where a = 1
2 min(a1, a2).

20Indeed, Lp can be identified with Lp(Rn,B, P ◦ ξ−1), where B is the Borel σ-algebra on Rn. Radon-
integral theory then implies that compactly supported continuous functions of ξ are dense in Lp. But,
such functions can be uniformly approximated by smooth functions of compact support, using convolution
with a non-negative smooth function of small compact support and integral 1.
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This implies that the function z 7→ E(ϕ exp(−
√
−1z · ξ)) is holomorphic on |Im(z)| < a/2.

It follows that û, which is the restriction of this function to Rn, is real analytic. But,

∂mû

∂xi1 · · · ∂xim

(0) = (−
√
−1)mE(ϕ ξi1 · · · ξim) = 0,

for all m ≥ 0 by assumption. Since û is analytic, it follows û = 0, as desired. �

The result extends to infinite sequences by L2-version of martingale convergence theorem:

Lemma 5.2. Let ξi ∈ L2, i = 1, 2, · · · . Assume F = F(ξi)
∞
i=1. Then

⋃∞
n=1 L2(Ω,F(ξi)

n
i=1), P)

is dense in L2.

Proof. Set Fn := F(ξi)
n
i=1. Let θ ∈ L2. Set θn := E[θ | Fn]. By the martingale convergence

theorem θn → θ a.s. and in L1. Moreover, since θ ∈ L2, the convergence also takes place
in L2.21 The desired result follows because θn belongs to L2(Ω,Fn, P) by construction. �

Proposition 5.3. Let ξi ∈ L∗, i = 1, 2, · · · . Assume F = F(ξ)∞i=1. Then the set of
polynomials in ξi, i.e., the linear space Span{ξi1 · · · ξim}(i1,··· ,im)∈Nm, m≥0, is dense in L2.

Proof. By Prop. 5.1, polynomials in ξ1, · · · , ξn are dense in L2(Ω,F(ξi)
n
i=1, P). Since the

latter’s topology coincides with its relative topology as a subset of L2, it follows that
polynomials in ξ1, ξ2, · · · are dense in

⋃∞
n=1 L2(Ω,F(ξi)

n
i=1, P) in the L2 topology. The

desired result thus follows from the previous Lemma. �

We now extend these results to continuous-time stochastic processes, first univariate. Set

C∗ := {left or right continuous processes X = (Xt)t∈[0,T ] such that Xt ∈ L∗ for all t}.
Proposition 5.4. Let X ∈ C∗. Assume F = F(Xt)t∈[0,T ]. Then the linear space of random
variables Span{Xt1 · · ·Xtn}(t1,··· ,tn)∈[0,T ]n, n≥0 is dense in L2.

Proof. Let (si)
∞
i=0 be a dense sequence in [0, T ], containing 0 and T . Set ξi = Xsi

. By right
or left continuity of X, we have F = F(ξi)

∞
i=1. Also, ξi ∈ L∗. The desired result therefore

follows by Prop. 5.3. (More strongly, it follows that we may choose the ti in {si}∞i=0.) �

Remark. By not requiring the ti to be distinct, we are including products of powers X
ij
tj .

Indeed, Span{Xt1 · · ·Xtn}(t1,··· ,tn)∈[0,T ]n, n≥0 = Span{X i1
t1 · · ·X

in
tn}t1<···<tn∈[0,T ], i1,··· ,in∈N, n≥0.

Clearly, these also equal Span{X i1
t1 (Xt2−Xt1)

i1 · · · (Xtn−Xtn−1)
in}t1<···<tn∈[0,T ], i1,··· ,in∈N, n≥0.

The latter is the form stated and used in [N-S]. Here, we use the simpler first form.

Proposition 5.5. Let Xi ∈ C∗, i = 1, 2, · · · . Assume F = F(Xi(t))t∈[0,T ], i∈N. Then the
linear space Span{Xi1(t1) · · ·Xin(tn)}(t1,··· ,tn)∈[0,T ]n, (i1,··· ,in)∈Nn, n≥0 is dense in L2.

21See, e.g., Theorem I.1.42 in [J-S]. The L2-convergence can be seen directly as follows. Note,

E[θ2
n] = E[(E[θ | Fn])2] ≤ E[E[θ2 | Fn]] = E[θ2].

Hence, θn ∈ L2(Ω,F(ξ1, · · · , ξn), P). It remains to show E[(θn − θ)2] → 0. Set ϕn = (θn − θ)2. Then,

E[ϕn] = E[θ2] + E[θ2
n]− 2E[θn]E[θ] ≤ E[θ2] + E[θ2

n] + 2
√

E[θ2]
√

E[θ2
n] ≤ 4E[θ2].

Hence supn E[ϕn] < ∞. As ϕn → 0 a.s. and (ϕn)∞n=1 is a positive submartingale, it follows from the
submartingale convergence theorem that E[ϕn] → 0, as desired.
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Proof. Let (si)
∞
i=0 be a dense sequence in [0, T ], containing 0 and T . Set ξij = Xj(si). By

right or left continuity of Xi, we have F = F(ξij)
∞
i,j=1. Also, ξij ∈ L∗. Using any bijection

of N×N onto N, we may regard (ξij)
∞
i,j=1 as one long sequence. The desired result therefore

follows by Prop. 5.3. (More strongly, if follows that we may choose the ti in {si}∞i=0.) �

Remark. The above specializes to a finite dimensional version by letting all except a
finite number of Xi be zero.

Remark. Since we are not requiring i1, · · · , in to be distinct, we are including products
of the form Xi(t1) · · ·Xi(tn) for each i as well as products of such expressions over different i.

Although L2 is isometric to L2(Ω,F0, P) ⊕ H2, it is H2 that embodies the filtration
structure, not L2. For our purposes it is more convenient to cast the last two propositions
in terms of H2. To this end, we utilize the following notation. For any ξ ∈ L1, set

E(ξ |F) := (E(ξ | Ft))t∈[0,T ] − E(ξ | F0) ∈M.

Clearly, E(ξ |F) ∈ H∗ for ξ ∈ L∗. The previous two propositions respectively yield,

Corollary 5.6. Let X ∈ C∗. Assume F = F(X). Then the linear subspace of martingales

Span{E(Xt1 · · ·Xtn|F)}(t1,··· ,tn)∈[0,T ]n, n∈N

is (contained in H∗ and) dense in H2.

Corollary 5.7. Let Xi ∈ C∗, i = 1, 2, · · · . Assume F = F(Xi)
∞
i=1. Then the linear subspace

Span{E(Xi1(t1) · · ·Xin(tn)|F)}(t1,··· ,tn)∈[0,T ]n, (i1,··· ,in)∈Nn, n∈N

is (contained in H∗ and) dense in H2.

6. Inductive chaotic expansion of stopped polynomials

Throughout this section, let X ∈ C∗. Let A∗
0(X) denote the set of simple functions, i.e.,

the linear span of (deterministic) processes of the form 1[0,t], 0 < t ≤ T . For n ≥ 1, set

A∗
n〈X〉 := {A ∈ A∗ : A is adapted to F(〈X〉(i))n

i=1}.

Note, if 〈X〉(i) are deterministic (as in the Lévy case) then any A ∈ A∗
n〈X〉 is deterministic.

We next define a sequence of linear subspaces (C∗i (X))∞i=0 of C∗ and a sequence of linear
subspaces of (S∗i (X))∞i=1 of H∗. We employ a joint inductive definition. Set S∗0 (X) := R,

S∗1 (X) := {
∫

A dX(1) : A ∈ A∗
0(X)};

C∗1(X) := A∗
1〈X〉 + {AM : A ∈ A∗

0(X); M ∈ S∗1 (X)}.
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Note, X ∈ C∗1(X). For n ≥ 2, we define inductively,

S∗n(X) = span{
∫

Y−dX(j) : Y ∈ C∗i (X), i + j = n, 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n};

C∗n(X) := span{AM : A ∈ A∗
i 〈X〉; M ∈ S∗j (X), i + j = n, 0 ≤ i, j ≤ n}.

For example, X(9) +
∫
〈X〉(6)d〈X〉(3) + 〈X〉(2)

∫
(
∫
〈X〉(1)dX(2))dX(4) ∈ C∗9(X).

Section 8 below presents an explicit (huge) decomposition Xn =
∑

k AkMk ∈ C∗n(X).
The Ak will be iterated (multiple) Stieltjes integrals of 〈X〉(i), and the Mk will be iterated
stochastic integrals of products of such forms A against the Teugels martingales X(j).
However, what is important for our main results is not the explicit form, but two key
properties of C∗n: it is closed under multiplication and under stopping at deterministic
times. (The latter is clear.) The following is a simple consequence of Section 4.

Proposition 6.1. We have S∗n(X) ⊂ Span(S∗(X(i)))n
i=1 and C∗n(X) ⊂ C∗, all n ∈ N.

Proof. We use induction, case n = 1 being clear. Let n ≥ 2, M ∈ S∗n := S∗n(X), and
Y ∈ C∗n := C∗n(X). By linearity we may assume M =

∫
Z−dX(j) for some Z ∈ C∗i , i+j = n,

i < n, and Y = AN for some A ∈ A∗
i and N ∈ C∗j , i + j = n. By induction, Z ∈ C∗,

and by Corollary 4.7, X(j) ∈ H∗. So by Corollary 4.7,
∫

Y−dX(j) ∈ S∗(X(j)). Therefore,

M ∈ Span(S∗(X(i)))n
i=1. If j = n by what was just shown and otherwise by induction, we

have N ∈ C∗. So, Y = AN ∈ C∗ by Corollary 4.7. �

A principal and non-trivial property of C∗n(X) is closedness under multiplication:

Proposition 6.2. Let Y ∈ C∗n(X), Z ∈ C∗m(X), n,m ≥ 0. Then Y Z,
∫

Y−dZ ∈ C∗m+n(X).22

Proof. We use induction on n+m. The case n+m = 1 is trivial. Assume n+m ≥ 2. Note,
if A ∈ A∗

i and B ∈ A∗
j , then AB ∈ A∗

i∨j. This shows we may assume Y ∈ S∗n and Z ∈ S∗m.

By linearity we may further assume Y =
∫

Y ′
−dX(j) for some Y ′ ∈ C∗i with i+ j = n, i ≥ 0,

j ≥ 1, and Z =
∫

Z ′
−dX(l) for some Z ′ ∈ C∗l with l + k = m, k ≥ 0, l ≥ 1.

By induction we have Y Z ′ ∈ C∗n+m−l. Therefore,
∫

Y−dZ is a sum of forms
∫

AM−dX(l)

for some A ∈ A∗
a, M ∈ S∗b with a + b + l = n + m, a, b ≥ 0. Clearly, AM ∈ C∗n+m−l; so∫

AM−dX(l) ∈ S∗n+m. It follows
∫

Y−dZ ∈ S∗n+m. Next, we show [Y, Z] ∈ C∗m+n. We have,

[Y, Z] =

∫
Y ′
−Z ′

−d[X(j), X(l)] =

∫
Y ′
−Z ′

−d[X](j+l)

=

∫
Y ′
−Z ′

−dX(j+l) +

∫
Y ′
−Z ′

−d〈X〉(j+l)

=

∫
Y ′
−Z ′

−dX(j+l) + Y ′Z ′〈X〉(j+l) −
∫
〈X〉(j+l)d(Y ′Z ′),

22Moreover, by Itô’s product rule we have, [Y,Z] ∈ C∗m+n(X). The proof further shows, Y Z −
[Y, Z], [Y, Z]− 〈Y, Z〉 ∈ Span(S∗(X(i))n

i=1, and 〈Y, Z〉 ∈ A∗.
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the last step by integration by parts and continuity of 〈X〉(j+l). By induction Y ′Z ′ ∈
C∗n+m−j−l. Hence, the first term is in S∗n+m, the second term is in C∗n+m, and the third term

is a sum of forms
∫
〈X〉(j+l)d(AM) (or simpler forms

∫
〈X〉(j+l)d(A) ∈ A∗

n+m) for some

A ∈ A∗
c and M ∈ S∗d with c+d+ j + l = n+m, c ≥ 0, d ≥ 1. Set B :=

∫
〈X〉(j+l)dA. Then

B ∈ A∗
j+l+c. Integrating by parts twice (bracket vanishing by continuities of 〈X〉(j+l), B)∫

〈X〉(j+l)d(AM) =

∫
A〈X〉(j+l)dM +

∫
M−〈X〉(j+l)dA

=

∫
A〈X〉(j+l)dM +

∫
M−dB =

∫
A〈X〉(j+l)dM + BM −

∫
BdM.

All three terms are visibly in C∗n+m. Hence, [Y, Z] ∈ C∗n+m. We already showed
∫

Y−dZ,
and by symmetry

∫
Z−dY , are in C∗n+m. Therefore, by Itô’s product rule, so is Y Z. �

In particular, Xn ∈ C∗1(X) as X ∈ C∗n(X). If Y ∈ C∗n and s ∈ [0, T ], then clearly the stopped
process Y·∧s := (Yt∧s)t∈[0,T ] is also in C∗n(X). Therefore the product X·∧t1 · · ·X·∧tn ∈ C∗n(X).

We illustrate the significance of this for the case when 〈X〉(n) are deterministic here, and
for the stochastic case in Section 7.2. We begin with the univariate case.

Corollary 6.3. If 〈X〉(i) are deterministic for all i ∈ N then for all (t1, · · · , tn) ∈ [0, T ]n,

E(Xt1 · · ·Xtn |F) ∈ Span(S∗(X(i)))n
i=1.

Proof. Note, Xt1 · · ·Xtn = YT , where Y := X·∧t1 · · ·X·∧tn . So, it suffices to show E(YT |F) ∈
Span(S∗(X(i)))n

i=1. By the previous proposition, Y ∈ C∗n(X) because each X·∧ti ∈ C∗1(X).
So, by linearity, we may assume Y = AM for some A ∈ A∗

i and M ∈ S∗j , i + j = n,

i, j ≥ 0. But, the assumption implies that A is deterministic. Therefore, E(YT |F) =
AT E(MT |F) = AT M . The desired result now follows from Prop. 6.1. �

The multivariate case combines a similar argument with Cor. 4.3 and Prop. 4.5 as follows.

Lemma 6.4. Let X,Y ∈ C∗. Assume [X, Y ] = 0 and 〈X〉(n) and 〈X ′〉(n) are deterministic
for all n ∈ N. Then, for any Z ∈ C∗n(X) and W ∈ C∗m(Y ), we have [Z,W ] = 0 and

E(ZT WT |F) = E(ZT |F) E(WT |F) ∈ Span(S∗(X(i)),S∗(Y (j)))1≤i≤n, 1≤j≤m.

Proof. By definition of C∗n and linearity, we may assume Z = AM for some A ∈ A∗
k(X)

and M ∈ S∗l (X) such that k+ l = n, k, l ≥ 0, and similarly, W = BN for some B ∈ A∗
a(Y )

and N ∈ S∗b (X) such that a + b = m, k, l ≥ 0. By Prop. 6.1, we have M =
∑l

i=1 Mi

and N =
∑b

j=1 Nj for some Mi ∈ S∗(X(i)) and Nj ∈ S∗(Y (j)). And by Prop. 4.5

[X(i), Y (j)] = 0. Applying Cor. 4.3, with M ′ = X(i) and N ′ = Y (j), we see that MiNj ∈
S∗(X(i)) ⊕ S∗(Y (j)). We conclude MN ∈ K := (Span(S∗(X(i)),S∗(Y (j)))1≤i≤n, 1≤j≤m. As

MN ∈ M, we have E(MT NT |F) = MN . (Both martingales have the same terminal
value.) Now, the assumption implies A and B are deterministic. Hence,

E(ZT WT |F) = E(AT MT BT NT |F)
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= AT BT E(MT NT |F) = AT BT NM = AT BT E(MT |F) E(NT |F)

= E(AT MT |F) E(BT NT |F) = E(ZT |F) E(WT |F).

Since as we showed above MN ∈ K, and AT , BT are deterministic, AT BT NM ∈ K. �

A straightforward generalization using induction gives

Lemma 6.5. Let Y1, · · · , Ym ∈ C∗. Assume [Yj, Yk] = 0 if j 6= k and 〈Yj〉(k) are determin-
istic all j, k. Let Zj ∈ C∗nj

(Yk), 1 ≤ j ≤ m. Then, [Zj, Zk] = 0 for j 6= k, and

E(Z1(T ) · · ·Zm(T ) |F) = E(Z1(T ) |F) · · ·E(Zm(T ) |F) ∈ Span(S∗(Y (kj)
j ))1≤j≤m, 1≤kj≤nj

.

Corollary 6.6. Let Xi ∈ C∗, i ∈ N. Assume [Xi, Xj] = 0 if i 6= j and 〈Xi〉(j) are
deterministic all i, j ∈ N. Then for all n ∈ N, (t1, · · · , tn) ∈ [0, T ]n, and (i1, · · · , in) ∈ Nn,

E(Xi1(t1) · · ·Xin(tn) |F) ∈ Span(S∗(X(j)
i ))i∈N, 1≤j≤n.

Proof. Let m be the number of (distinct) elements in the set {i1, · · · , in}. By a permutation
if necessary, we may assume that i1 = · · · = in1 , in1+1 = · · · = in2 , · · · , inm−1 = · · · inm = in,
with n1 + · · · + nm = n, nj ≥ 1. (So non-distinct elements are put next to each other).
Set Yj := Xnj

, j = 1, · · · , m. Define the product Zj(t) := Yj(t ∧ tnj
) · · ·Yj(t ∧ tnj+1−1).

By Prop 6.2, Zj ∈ C∗nj
(Yk). Moreover, clearly, Z1(T ) · · ·Zm(T ) = Xi1(t1) · · ·Xin(tn). The

desired result now follows directly from the previous lemma. �

Remark. Cor. 6.6 generalizes Cor. 6.3: simply set X1 = X and Xi = 0 for i ≥ 2.

7. Square-integrable martingale representation

We set C := C∗ ∩ C∗. (Recall, C∗ is the set of semimartingales of finite moments with
continuous angel brackets, and C∗ is the set of processes with exponentially decreasing law.)

7.1. Lévy and Infinite-dimensional Brownian filtrations. We begin with an exten-
sion of the [N-S] result to Lévy processes which may be non-stationary.

Theorem 7.1. Let X ∈ C be such that 〈X〉(i) are deterministic for all i ≥ 1. Let (Ni)
∞
i=1

denote the strong orthogonalization of (X(i))∞i=1. Assume F = F(X). Then

H2 =
∞⊕
i=1

S(Ni).

Proof. Let (t1, · · · , tn) ∈ [0, T ]n, n ∈ N. By Cor. 6.3, E(Xt1 · · ·Xtn |F) ∈ Span(S(X(i)))n
i=1.

Hence by Cor. 5.6, Span(S(X(i)))n
i=1 is dense in H2. Prop. 3.1 now yields the result. �

Remark : A curious consequence is that the continuous martingale part Xc is in
⊕∞

i=1 S(Ni).
It somehow indicates that the discontinuous martingale part can be recovered in the limit
from stochastic integral of X(n), n ≥ 2. This is readily seen when X is a linear combination
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of n independent Poisson processes. Then, in fact, X(1) ∈ Span{X(2), · · · , X(n+1)}.

For a Brownian motion or a Poisson process the result simplifies to H2 = S(X(1)).
We need the Brownian case in our main results. Let us define a Brownian martingale

as a continuous martingale such that 〈B〉 is deterministic. The law of B is then Gaussian,
implying B ∈ C . Clearly B(n) = 0 for n ≥ 2, as B is continuous. When T < ∞, a Brownian
motion is a Brownian-martingale. In general, if W is a Brownian motion, then

∫
HdW is

a Brownian martingale for any deterministic process H ∈ S(W ), i.e., with
∫ T

0
H2

t dt < ∞.
Any Brownian martingale B with strictly increasing 〈B〉 is of this type.23

By a Poisson-martingale we mean a martingale P ∈ C such that 〈P 〉 is deterministic
and P (2) = P . Clearly then, P (n) = P , 〈P 〉(n) = 〈P 〉, and [P ](n) = [P ] for all n ≥ 2. A
non-stationary compensated Poisson process P with intensity (λt) is a Poisson martingale

if
∫ T

0
λtdt < ∞. Then, 〈P 〉 =

∫
λdt. The stationary case of constant λ implies T < ∞.

As Brownian and Poisson martingales both satisfy Nn = 0 for n ≥ 2, Theorem 7.1 yields

Corollary 7.2. Let B be either a Brownian martingale or a Poisson martingale. Assume
F = F(B). Then H2 = S(B).

We now turn to multivariate Lévy filtrations. The argument is similar, but the statement
utilizes a notation of iterated countable direct sums which we first explain. Suppose we
have a doubly indexed family (Kij)i,j∈N of closed, pairwise orthogonal subspaces Kij of
H2. If we choose any bijection between N × N and N, we can identify this family with
a sequence of closed orthogonal subspaces, and then take their direct sum. Clearly, the
resulting subspace is independent of the choice of bijection. We denote this direct sum by

∞⊕
i,j=1

Kij := {
∞∑

i,j=1

Nij : Nij ∈ Kij;
∞∑

i,j=1

‖Nij‖2 < ∞} ⊂ H2.

The order of the summation is irrelevant: we can interchange sums and write
∑∞

j=1

∑∞
i=1 Nij

=
∑∞

i,j=1 Nij =
∑∞

i=1

∑∞
j=1 Nij. Each inner sum is in H2. This, corresponds to writing,

∞⊕
j=1

∞⊕
i=1

Kij =
∞⊕

i,j=1

Kij =
∞⊕
i=1

∞⊕
j=1

Kij.

Theorem 7.3. Let Xi ∈ C, i ∈ N be such that [Xi, Xj] = 0 for i 6= j and 〈Xi〉(j) are
deterministic for all i, j ∈ N. Assume F = F(Xi)

∞
i=1. Then

H2 =
∞⊕

i,j=1

S(Nij),

where, for each i, the sequence (Nij)
∞
j=1 is the strong orthogonalization of (X

(j)
i )∞j=1.

23Indeed, then B =
∫

HdW , where W :=
∫

KdB, K :=
√

d〈B〉/dt, and H := 1/K.
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Proof. Let (t1, · · · , tn) ∈ [0, T ]n and (i1, · · · , in) ∈ Nn, n ∈ N. By Corollary 6.6, we have

E(Xi1(t1) · · ·Xin(tn)|F) ∈ Span(S(X
(j)
i ))∞i,j=1. Hence by Corollary 5.7, Span(S(X

(j)
i ))∞i,j=1

is dense in H2. The desired result now follows by Prop. 3.1, applied to the doubly indexed

sequence of martingales (X
(j)
i ))∞i,j=1. �

As a consequence we obtain an infinite-dimensional extension of the standard finite-dimensional
martingale representation theorems for Brownian motions and Poisson processes.

Corollary 7.4. Let (Bi)
∞
i=1 be sequence martingales such that [Bi, Bj] = 0 for i 6= j, and

for each i, Bi is either a Brownian or a Poisson martingale. Assume F = F(Bi)
∞
i=1. Then,

H2 =
∞⊕
i=1

S(Bi).

Moreover, if all Bi are Brownian martingales, then every martingale in H2 is continuous.

Proof. The first statement follows because Nij = 0 for j ≥ 2 and Ni1 = Bi. As for the
continuity statement, let M ∈ H2. Write M = M c + Md for the continuous-discontinuous
decomposition. If all Bi are continuous, then Md is strongly orthogonal to all Bi, and
hence also strong orthogonal to

⊕∞
i=1 S(Bi) = H2, implying Md = 0. �

Remark. The above specializes to the standard finite-dimensional case by taking all but
a finite number of Bi equal to zero. Also, the assumption [Bi, Bj] = 0, i 6= j can weakened
to correlated Brownian motions (such as [Bi, Bj] = ρijt). The conclusion is then expressed
in terms of the orthogonalization of the Bi, which will be independent Brownian motions.

7.2. The main result. We now generalize the results of the previous section to stochastic
〈X〉(n), beginning with the univariate case.

Theorem 7.5. Let X ∈ C and (Bi)
∞
i=1 be a sequence of Brownian martingales such that

[Bi, Bj] = 0 for i 6= j, [X, Bi] = 0 all i, and 〈X〉(n) is adapted to F(Bi)
∞
i=1 all n. Let (Ni)

∞
i=1

denote the strong orthogonalization of (X(i))∞i=1. Assume F = F(X, B1, B2, · · · ). Then

H2 =
∞⊕
i=1

S(Bi)⊕
∞⊕

j=1

S(Nj).

Proof. Note, [X(j), Bi] = 0 for all i, j, for j = 1 by assumption, and for j ≥ 2 because
X(j) is purely discontinuous and Bi is continuous. This implies [Bi, Nj] = 0, which in
turn implies implies

⊕∞
i=1 S(Bi) and

⊕∞
j=1 S(Nj) are orthogonal subspaces. Therefore,⊕∞

i=1 S(Bi) +
⊕∞

j=1 S(Nj) is a closed subspace of H2; so it suffices to show it is dense.

Corollary 5.7 applied to the sequence (X,B1, B2, · · · ) implies that the linear span of
martingales of the form E((Xt1 · · ·Xtn)(Bi1(s1) · · ·Bim(sm))|F) is dense in H2, as the in-
dices run over (t1, · · · , tn) ∈ [0, T ]n, n ∈ N, and (s1, · · · , sm) ∈ [0, T ]m, (i1, · · · , im) ∈ Nm,
m ∈ N. As in Prop. 3.1, we have, Span(S(X(j)))n

j=1 ⊂
⊕n

j=1 S(Nj) ⊂
⊕∞

j=1 S(Nj).
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Therefore it is sufficient to show that

E((Xt1 · · ·Xtn)(Bi1(s1) · · ·Bim(sm))|F) ∈
∞⊕
i=1

S(Bi) + Span(S(X(j)))n
j=1.

Set Y := X·∧t1 · · ·X·∧tn . Note, Xt1 · · ·Xtn = YT . Set ϕ := Bi1(s1) · · ·Bim(sm). We must
show E(ϕYT |F) ∈

⊕∞
i=1 S(Bi) + Span(S(X(j)))n

j=1. By Prop. 6.2, Y ∈ C∗n(X). So, Y is a
sum of terms of the form AM , where A ∈ A∗

l (X) and M ∈ S∗k(X), l + k = n, 0 ≤ l, k ≤ n.
Note that ϕAT is in L∗ and is also G := F(Bi)

n
i=1-measurable because both ϕ and AT have

these two properties. Therefore, it is sufficient to show that for all M ∈ S∗k(X), k ≤ n,
and all G-measurable ξ ∈ L∗, we have E(ξMT |F) ∈

⊕∞
i=1 S(Bi) + Span(S(X(j)))n

j=1.

Let G := F(Bi)
∞
i=1. Set N := E(ξ |G). Cor. 7.4, applied to the filtration G implies

N is continuous and N =
∑∞

i=1

∫
HidBi for some G-predictable processes Hi satisfying∑∞

i=1 E
∫ T

0
Hi(t)

2d〈Bi〉 < ∞. But, Hi are a-forteriori F-predictable too. So, in fact, we

have N ∈
⊕∞

i=1 S(Bi). In particular, N is also an F-martingale. Hence N = E(ξ |F).
Since N is continuous and X(n) are purely discontinuous for n ≥ 2, we have [N, X(n)] = 0.

This is also true for n = 1, as [X, Bi] = 0 by assumption. Hence, [N, M ] = 0. Since
N, M ∈ H∗ ⊂ H2, it follows NM ∈ M. Hence E(ξMT |F) = NM , as both sides are
martingales with the same value at T (namely ξMT ).

Now, NM =
∫

NdM +
∫

M−dN . By Prop. 4.2,
∫

M−dN ∈ S(N). Since
⊕∞

i=1 S(Bi) is
a stable subspace and contains N , it contains S(N). Therefore,

∫
M−dN ∈

⊕∞
i=1 S(Bi).

So, it remains to show
∫

NdM ∈ Span(S(X(j)))n
j=1. Since M ∈ S∗k(X), it is a sum of terms

of form
∫

AdX(i) with A ∈ A∗ and i ≤ k ≤ n. But, by Cor. 4.7, X(i) ∈ H∗ and AN ∈ C∗.
Hence, by Cor. 4.7,

∫
ANdX(i) ∈ S(X(i)) ⊂ Span(S(X(j)))n

j=1, as desired. �

Remark . Lévy case is special case: simply take Bi = 0 for all i. The Brownian case of
Corollary 7.4 is also a special case: simply take X = 0.

Remark . Since Bi are continuous, the assumption [X,Bi] = 0 is equivalent to [Xc, Bi] =
0. It is easy to see that that this assumption can be weakened to the following: Xc = M+N
for some M, N ∈ H2 such that [M, Bi] = 0 for all i and N is adapted to F(Bi)

∞
i=1.

Remark . We assumed X0 = 0 throughout. This assumption is relaxed simply by re-
quiring X −X0 ∈ C instead of X ∈ C.

Open Question: Assume Xc is a Brownian motion, 〈X〉(n) are adapted to F(Xc), and
F = F(X). If 〈X〉(n) are deterministic, then, as previously remarked, Xc ∈

⊕∞
j=1 S(Nj).

The question is to what extend this holds in general. It holds in the simple case where
X −Xc is a linear combination of independent Cox processes. When it holds, the conclu-
sion of above theorem sharpens to H2 =

⊕∞
j=1 S(Nj) from H2 = S(Xc)⊕

⊕∞
j=1 S(Nj).

The above result extends to the multivariate case by arguments already visited. For
completeness, we include the proof.
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Theorem 7.6. Let Xi ∈ C, i ∈ N. Let (Bi)
∞
i=1 be a sequence of Brownian martingales.

Assume [Xi, Xj] = [Bi, Bj] = 0 for i 6= j, and for all i, j, [Xi, Bj] = 0, and 〈Xi〉(j) are
adapted to F(Bk)

∞
k=1. Assume further that F = F(Xi, Bi)

∞
i=1. Then

H2 =
∞⊕

k=1

S(Bk)⊕
∞⊕

i,j=1

S(Nij),

where, for each i, the sequence (Nij)
∞
j=1 is the strong orthogonalization of (X

(j)
i )∞j=1.

Proof. As above, we have [X
(j)
i , Bk] = 0, all i, j, k, and by Prop 4.5, we also have [X

(j)
i , X

(l)
k ] =

0, all i, j, k, l. Hence all Bk and Nij are strongly orthogonal to each other. Therefore⊕∞
k=1 S(Bk)⊕

⊕∞
i,j=1 S(Nij) is a closed subspace of H2, and it suffices to show it is dense.

Corollary 5.7 applied to the sequence (Xi, Bi)
∞
i=1 implies that the linear span of mar-

tingales of the form E((Xj1(t1) · · ·Xjn(tn))(Bi1(s1) · · ·Bim(sm))|F) is dense in H2, as the
indices run over (t1, · · · , tn) ∈ [0, T ]n, (j1, · · · , jn) ∈ Nn, n ∈ N, and (s1, · · · , sm) ∈ [0, T ]m,

(i1, · · · , im) ∈ Nm, m ∈ N. As in Prop. 3.1, we have, Span(S(X
(j)
i ))n

j=1 ⊂
⊕n

j=1 S(Nij).
Therefore it suffices to show that

E((Xj1(t1) · · ·Xjn(t1))(Bi1(s1) · · ·Bim(sm))|F) ∈
∞⊕

k=1

S(Bk) + Span(S(X
(j)
i ))n

i,j=1.

Set Yt := Xj1(t∧ t1) · · ·Xjn(t∧ tn), and ϕ := Bi1(s1) · · ·Bim(sm). As Xj1(t1) · · ·Xjn(t1)) =

YT , we must show E(ϕYT |F) ∈
⊕∞

k=1 S(Bk) + Span(S(X
(j)
i ))n

i,j=1. As in the proof of Cor.
6.6, we break j1, · · · , jn into distinct elements, which by a permutation we may assume
are next to each other. As such, we can write Y = Y1 · · ·Yl, where each Yi is of the
form Xji

(t ∧ tk1) · · ·Xji
(t ∧ tkji

). By Prop. 6.2, each Yi ∈ C∗mi
(Xi) for some mi ≥ 1 with∑

i mi = n. So, Yi ∈ C∗n(Xi). So, each Yi is a sum of terms of the form AiMi, where
Ai ∈ A∗

li
(Xi) and Mi ∈ S∗ki

(Xi), li +ki = n, 0 ≤ li, ki ≤ n. Note that ϕA1(T ) · · ·Al(T ) is in
L∗ and is also G := F(Bi)

n
i=1-measurable because ϕ and all Ai(T ) have these two properties.

Therefore, it is sufficient to show that for all Mi ∈ S∗ki
(Xi), ki ≤ n, i ≤ l (l ≤ n) and all

G-measurable ξ ∈ L∗, we have E(ξM1(T ) · · ·Ml(T )|F) ∈
⊕∞

i=1 S(Bi) + Span(S(X
(j)
i ))n

i,j=1.

Let G := F(Bi)
∞
i=1. Set N := E(ξ |G). As in the proof of Theorem 7.5, it follows

that is N is continuous and is actually F-martingale; so N = E(ξ |F). As before, the

continuity of N and the assumption imply that [N, X
(j)
i ] = 0, all i, j. Hence, [N, Mi] = 0,

all i. Moreover, as [X
(k)
i , X

(l)
j ] = 0 by Prop 4.5 for i 6= j, we get [Mi, Mj] = 0 for i 6= j.

As N, Mi ∈ H∗, these imply that M := M1 · · ·Ml and NM are martingales. Hence,
E(ξM1(T ) · · ·Ml(T )|F) = NM , as both sides are martingales with the same value at T .

Now, NM =
∫

NdM +
∫

M−dN . By Prop. 4.2,
∫

M−dN ∈ S(N). Since
⊕∞

i=1 S(Bi) is a
stable subspace and contains N , it contains S(N). Therefore,

∫
M−dN ∈

⊕∞
i=1 S(Bi). So,

it remains to show
∫

NdM ∈ Span(S(X
(j)
i ))n

i,j=1. But,
∫

NdM =
∫

NM2− · · ·Ml−dM1 +

· · · +
∫

NM1− · · ·Ml−1−dMl. Since Mi ∈ S∗ki
(Xi), it is a sum of terms of the form∫

AidX
(ji)
i with Ai ∈ A∗ and ji ≤ ki ≤ n. But, by Cor. 4.7, X

(ji)
i ∈ H∗ and also
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all the products M1 · · ·Ml−1AlN , · · · , M2 · · ·MlA1N are in C∗. Hence, by Cor. 4.7,∫
M1 · · ·Ml−1AlNdX

(jl)
l ∈ S(X

(jl)
l ) ⊂ Span(S(X

(j)
l ))n

j=1, · · · ,
∫

M2 · · ·Ml−1AlNdX
(j1)
1 ∈

S(X
(j1)
1 ) ⊂ Span(S(X

(j)
1 ))n

j=1. Hence,
∫

NdM ∈ Span(S(X
(j)
i ))n

i,j=1, as desired. �

8. Explicit chaotic expansion of powers

The following binomial expansion shows the relationship between integer powers and the
power brackets. We set [X](1) := X for any semimartingale. (Recall, [X](2) := [X].)

Proposition 8.1. Let X be a semimartingale with X0 = 0. Then, for all n ∈ N we have,

(8.1) Xn =
n−1∑
i=0

(
n

i

) ∫
X i
−d[X](n−i).

Proof. By Itô’s formula, and binomial expansion of Xn = (X− + ∆X)n, we have

Xn − n

∫
Xn−1
− dX − 1

2
n(n− 1)

∫
Xn−2
− d[X]c

=
∑
s≤·

(Xn
s −Xn

s− − n∆XsX
n−1
s− ) =

∑
s≤·

n−2∑
i=0

(
n

i

)
X i

s−(∆Xs)
n−i.

For i ≤ n− 3,
∑

s≤· X
i
s−(∆Xs)

n−i =
∫

X i
−d[X](n−i). For i = n− 2, the term

∫
Xn−2
− d[X]c

combines with the term
∑

s≤· X
n−2
s− (∆Xs)

2 to give
∫

Xn−2
− d[X]. The formula follows. �

Note, the leading term (corresponding to i = 0) is [X](n).
We can substitute the same formula for X i

− on the right-hand-side of Eq. (8.1) Repeating
this procedure clearly leads to iterated integrals. We adopt the following notation. If H is
a locally bounded predictable process, and X and Y are semimartingales, we denote∫ −

HdX := (

∫
HdX)−,

∫ ∫ −
HdXdY :=

∫
(

∫ −
HdX)dY.

Note,
∫

X−dY =
∫ ∫ −

dXdY if X0 = 0. For semimartingales Y1, · · · , Yn define inductively∫ ∫ −
· · ·

∫ −
HdY1 · · · dYn−1dYn :=

∫
(

∫ −
· · ·

∫ −
HdY1 · · · dYn−1)dYn.

We denote multi-indices by I = (i1, · · · , ip) ∈ Np, and for integers 1 ≤ p ≤ n, we set

Np
n := {I = (i1, · · · , ip) ∈ Np : i1 + · · · ip = n}, p, n ∈ N.

Proposition 8.2. Let X be a semimartingale with X0 = 0. Then, for all n ∈ N we have,

Xn =
n∑

p=1

∑
I∈Np

n

n!

i1! · · · ip!

∫ ∫ −
· · ·

∫ −
d[X](i1) · · · d[X](ip−1)d[X](ip).
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Proof. Cases n = 1, 2 are clear, as the formula reads X =
∫

d[X](1) and X2 =
∫

d[X](2) +

2
∫

[X]
(1)
− d[X](1). For n ≥ 3, each summand in Eq. (8.1) involving X i

−, i ≥ 2, can be
expanded by Eq. (8.1) itself. Substituting and regrouping yields,

Xn = [X]n +
n−1∑
i=1

(
n

i

) ∫
[X]i−d[X]n−i +

n−1∑
i=2

i−1∑
j=1

(
n

i

)(
i

j

) ∫ ∫ −
Xj
−d[X]i−jd[X]n−i.

If n = 3, we are done. For n ≥ 4, substituting for Xj
−, j ≥ 2 from (8.1) and regrouping,

Xn = [X]n +
n−1∑
i=1

(
n

i

) ∫
[X]i−d[X]n−i +

n−1∑
i=2

i−1∑
j=1

(
n

i

)(
i

j

) ∫ ∫ −
[X]j−d[X]i−jd[X]n−i

+
n−1∑
i=3

i−1∑
j=2

j−1∑
k=1

(
n

i

)(
i

j

)(
j

k

) ∫ ∫ − ∫ −
Xk
−d[X]j−kd[X]i−jd[X]n−i.

If n = 4, we are done. For n ≥ 5, we continue substituting from (8.1) in this way, and
clearly this procedure terminates by the n-th step, yielding then the desired result. �

Combing the two propositions, one finds a similar iterated integral formula for [Xn, Xm].24

Substituting [X](i) = 〈X〉(i)+X(i) into the term
∫ ∫ − · · ·

∫ −
d[X](i1) · · · d[X](ip−1)d[X](ip),

we get sums of expressions of form
∫ ∫ − · · ·

∫ −
dY (i1) · · · dY (ip−1)dY (ip), where each Y (i) can

be either 〈X〉(i) or X(i). If Y (ip) is X(ip), then the quantity belongs to S∗p(X). Otherwise, if

q < p is the largest integer such that Y (iq) is X(iq), then we are dealing with an expression of
the form

∫
· · ·

∫
M−d〈X〉(iq+1) · · · d〈X〉(ip), where M of the form M =

∫
Y−dX(iq) ∈ S∗q (X),

with Y ∈ C∗q−1(X). In the proof of Proposition 6.2, we integrated by parts such expressions
and used induction to show it belongs to C∗p(X). The next result reports the explicit
outcome of such repeated integration by parts, under a slightly more general setting, which
applies to the present case with the Aj standing for the various 〈X〉(ij).

Proposition 8.3. Let M , A1, · · · , An be semimartingales. Assume that M0 = 0 (or all
Ai(0) = 0) and all Ai are continuous and of finite variation. (So, [Ai, M ] = 0.) Then

∫
· · ·

∫
M−dA1 · · · dAn =

n∑
p=0

∑
0=i0<i1<···<ip≤n

(−1)p(

∫
Ai0,i1 · · ·Aip−1,ip dM) Aip,n,

24Namely, using the two propositions and the easily verified fact that [[X](i), [X](j)] = [X](i+j), we get

[Xn, Xm] =
n−1∑
i=0

m−1∑
j=0

i+j∑
p=1

∑
I∈Np

i+j

(
n

i

)(
m

j

)
(i + j)!
i1! · · · ip!

∫ ∫ −
· · ·

∫ − ∫ −
d[X](i1) · · · d[X](ip−1)d[X](ip)d[X](n+m−i−j).
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where Ai,j for 0 ≤ i < j ≤ n is defined by Ai,i = 1, (Ai−1,i = Ai,) and

Ai,j :=

∫
· · ·

∫
Ai+1dAi+2 · · · dAj. (0 ≤ i < j ≤ n)

Proof. (Outline.) For n = 1 the formula reads
∫

M−dA1 = MA1 −
∫

A1dM, which follows
by integration by parts. For n = 2, we substitute this expression in

∫ ∫
M−dA1dA2. The

first term
∫

MA1dA2 is integrated by parts to give M
∫

A1dA2−
∫ ∫

A1dA2dM . The second
term −

∫ ∫
A1dMdA2 is likewise integrated by parts. The result is∫ ∫

M−dA1dA2 = M

∫
A1dA2 −

∫ ∫
A1dA2dM −

∫
A1dMA2 +

∫
A1A2dM.

For n ≥ 3, one proceeds in a similar manner using integration by parts and induction.25 �

Note, the term corresponding to p = 0 is M
∫
· · ·

∫
A1dA2 · · · dAn, while that corre-

sponding to p = n is (−1)n
∫

A1 · · ·AndM . As an example, say n = 12 + 1, p = 4, and
(i1, i2, i3, i4) = (2, 6, 7, 10). Then the corresponding term is∫

(

∫
A1dA2(

∫ ∫ ∫
A3dA4dA5dA6)A7

∫ ∫
A8dA9dA10) dM (

∫ ∫
A11dA12dA13).

The explicit form of the F(〈X〉(i))n
i=1-adapted processes A ∈ A∗

n(X) appearing in the chaotic
expansion of Xn ∈ C∗n(X) is now clear: such A are products of iterated integrals of 〈X〉(i).

9. Concluding remarks

The martingale representation result of [D] for finite activity processes mentioned in
the introduction is seemingly of a quite different form than that of [N-S] or those here.
However, the two forms can be tentatively reconciled through the language of random
measures. Recast in this terms, Theorem 9 of [D] basically states that in the finite activity
case a martingale can be represented as W ∗ (µ − ν) for a suitable predictable function
W (ω, t, x). The [N-S] series representation

∑∞
n=1 HndNn can be heuristically brought to

this same form, once we consider that the Teugels martingale are given by xi ∗ (µ− ν) and
their strong orthogonalization Nn are basically of the form (

∑n
i=1 Kni x

i)∗ (µ−ν) for some
predictable (constant in the Lévy case) processes Kn,i. In a loose sense, this then gives a
representation of the form W ∗ (µ−ν) with the predictable function W given be the formal
power series W =

∑∞
i=1 Lix

i, where, formally, Li =
∑∞

n=i HnKni.
In closing, we pose an open question. We assumed throughout that angle brackets are

continuous. This is a natural assumption and often met in practice. It is essentially a quasi-
left-continuity assumption requiring all jumps be unpredictable. However, it may still be
interesting to investigate the relaxation of this requirement within the present setting.

25We point out that the continuity and finite variation assumption on Ai can be relaxed to [Ai,M ] = 0
at the expense of left limits in the expressions. We also note that this is really an ordinary calculus result.
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