# Chaotic expansion of powers and martingale representation 

FARSHID JAMSHIDIAN

Coordinator of Quantitative Research, NIBCapital Bank, jamshidian@nibcapital.com. Part-time Professor of Applied Mathematics, FELAB, University of Twente. 14-June-2005, version 1.2


#### Abstract

This paper extends a recent martingale representation result of [ $\mathrm{N}-\mathrm{S}$ ] for a Lévy process to filtrations generated by a rather large class of semimartingales. As in [ $\mathrm{N}-\mathrm{S}]$, we assume the underlying processes have moments of all orders, but here we allow angle brackets to be stochastic. Following their approach, including a chaotic expansion, and incorporating an idea of strong orthogonalization from [D], we show that the stable subspace generated by Teugels martingales is dense in the space of square-integrable martingales, yielding the representation. While discontinuities are of primary interest here, the special case of a (possibly infinite-dimensional) Brownian filtration is an easy consequence.


## 1. Introduction

Recently, $[\mathrm{N}-\mathrm{S}]$ established a martingale representation property for the filtration generated by a Lévy process $X=\left(X_{t}\right)$ having an exponentially decaying law. They showed that every square-martingale $M \in \mathcal{H}^{2}$ has a representation as an infinite sum of the form $M=\sum_{n=1}^{\infty} \int H_{n} d N_{n}$ for certain pairwise strongly orthogonal martingales $N_{n} \cdot{ }^{1}$ The series convergence takes place in $\mathcal{H}^{2}$. The base martingales $N_{n}$ are intrinsically associated to $X$, and, in their case, on a choice of an orthogonal polynomial. The result is an interesting contrast to the standard theory for filtrations generated by a finite-dimensional Brownian motion or Poisson process, where martingale representation takes the form of a finite sum.

Lévy processes are very interesting, but the concepts and techniques introduced in [ $\mathrm{N}-\mathrm{S}$ ] appear of wider applicability. Chief among them are their notion of Teugels Martingales $X^{(n)}$, whose strong orthogonalization gives the base martingales $N_{n}$, a chaotic representation of $n$-th power $X^{n}$ in terms of $X^{(i)}$, and the idea that polynomials in $X_{t_{j}}$ are dense in the space of square integrable random variables, given a suitable growth condition on $X$.

In a recent expository article, [D] discusses several approaches and results on martingale representation, including those based on the Jacod-Yor Theorem, and an earlier general result in [D2] (and other cited references) for the filtration generated by a finite activity process. It appears that the $[\mathrm{N}-\mathrm{S}]$ result is the first of its kind for an infinite activity process, let alone a discontinuous process of infinite variation, which Lévy processes often

[^0]are. In connection to [N-S], [D] highlights the role played by the infinite direct sum of stable subspaces generated by a sequence of strongly orthogonal martingales in $\mathcal{H}^{2}$.

Our aim is to generalize the $[\mathrm{N}-\mathrm{S}]$ results in two directions. First, we extend to processes $X$ quite a bit more general than Lévy processes. These processes and their (generalized) Lévy measures $\nu=\nu(\omega, d t, d x)$ have moments of all order. Aside from stringent growth conditions, the main assumption is that $x^{n} * \nu$ be continuous and adapted to a Brownian filtration for all integers $n \geq 2$. In the Lévy case, $x^{n} * \nu$ is a constant times $t$. A more general example is a "Lévy processes with stochastic intensity $\lambda_{t}$ ", where $\nu$ takes the form $\nu=\lambda_{t} d t v(d x)$ for some ordinary Lévy measure $v$ and a nonnegative Ito process $\left(\lambda_{t}\right)$. Here, simply, $x^{n} * \nu=a_{n} \int_{0}^{\dot{p}} \lambda_{t} d t$, where $a_{n}=\int x^{n} v(d x)$; so $x^{n} * \nu$ are stochastic but proportional.

Secondly, we extend the univariate treatment of [ $\mathrm{N}-\mathrm{S}$ ] to the multivariate case, indeed to the case where the underlying filtration is generated by a countable number of independent processes $X_{n}$ of the above general type. The [ $\left.\mathrm{N}-\mathrm{S}\right]$ approach to representation as a convergent series in $\mathcal{H}^{2}$ is ideal for this purpose. Such an extension is already of interest when the processes $X_{n}$ are independent Brownian motions, extending the standard finite-dimensional result to yield a unique representation for every martingale $M \in \mathcal{H}^{2}$ as $M=\sum_{n=1}^{\infty} \int H_{n} d X_{n}$ for some predictable processes $H_{n}$ satisfying $\sum_{n=1}^{\infty} \mathbb{E} \int_{0}^{T}\left|H_{n}(t)\right|^{2} d t<\infty$.

With regard to the standard finite-dimensional Brownian case, as derived in texts such as $[\mathrm{E}],[\mathrm{K}-\mathrm{S}],[\varnothing]$, and $[\mathrm{P}],[\mathrm{D}]$ remarks that the approach of $[\varnothing]$ appears the simplest. For the Brownian case, the Teugels martingales vanish, substantially simplifying the technique of $[\mathrm{N}-\mathrm{S}]$. In this case, the derivation in $[\mathrm{N}-\mathrm{S}]$ becomes actually quite similar to that of [Ø]: both are based on denseness arguments, the former utilizing integer powers $X^{n}$ and polynomials, the latter employing complex powers $e^{i \xi X}$ and the Fourier integral. It seems to us that, for the Brownian case, the technique of $[\mathrm{N}-\mathrm{S}]$ is as simple, but more constructive.

We follow closely the approach and ideas of [ $\mathrm{N}-\mathrm{S}$ ], aided also by an elaboration on strong orthogonalization in [D]. The more general development here calls for a somewhat different route at places, and furthering of some of the arguments and calculations in [N-S].

The next section establishes notation, culminating in definitions of "power brackets" $[X]^{(n)}$ and $\langle X\rangle^{(n)}$, and the Teugels martingales $X^{(n)}:=[X]^{(n)}-\langle X\rangle^{(n)}=x^{n} *(\mu-\nu) .{ }^{2}$ Section 3 sets forth the strategy, based on strong orthogonalization and a decomposition of $\mathcal{H}^{2}$ into an infinite orthogonal sum of stable subspaces, given a denseness hypothesis. Section 4 establishes some technical results based on the Burkholder-Davis-Gundy inequalities to ensure that various local martingales that later arise in the chaotic expansion as (iterated) stochastic integrals of Teugels martingales are in fact square-integrable martingales. Section 5 derives the needed $L^{2}$ denseness of polynomials for processes with an exponentially decreasing law. Section 6 presents an inductive chaotic expansion which basically shows (stopped) polynomials have representations as a sum of stochastic integrals of $X^{(i)}$ times functionals of the $\langle X\rangle^{(j)}$. These are put together in Section 7 to state and prove our main results. Section 8 is not needed for the main results, rather, by presenting an explicit chaotic expansion of powers $X^{n}$, it brings out the relevance of power brackets and provides motivation for the inductive definitions in Section 6. A final section concludes the paper.

[^1]
## 2. Notation and basic concepts

The notation below is for the most part standard, but we introduce some new ones too.
2.1. Stochastic basis. We fix throughout $0<T \leq \infty$ and a complete right-continuous filtered probability space $(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{F}), \mathbb{F}=\left(\mathcal{F}_{t}\right)_{t=0}^{T}$ such that $\mathcal{F}=\mathcal{F}_{T}$.

We denote by $\mathbb{F}\left(X_{n}\right)_{n=1}^{k}$ the completed filtration generated by a finite or infinite sequence $\left(X_{n}\right)_{n=1}^{k}, 1 \leq k \leq \infty$, of measurable processes $X_{n}$.

Let $L^{0}$ denote the set of $\mathcal{F}$-measurable real-valued functions on $\Omega$. For $p>0$, we denote

$$
L^{p}:=L^{p}(\Omega, \mathcal{F}, \mathbb{P}):=\left\{\xi \in L^{0}: \mathbb{E}|\xi|^{p}<\infty\right\} .
$$

Of interest will be $L^{1}, L^{2}$, and random variables of finite moments, $L^{*}:=\bigcap_{n=1}^{\infty} L^{n}$.
We denote by $\mathcal{M}$ the set of uniformly integrable martingales $M=\left(M_{t}\right)_{t \in[0, T]}$ with $M_{0}=0$. Note, $M \in \mathcal{M}$ is closed by $M_{T}$. As is well-known, as $t \rightarrow T_{-}, M_{t}$ converges to $\mathbb{E}\left(M_{T} \mid \bigvee_{0 \leq t<T} \mathcal{F}_{t}\right)$ a.s. and in $L^{1}$. The localization of $\mathcal{M}$ is denoted $\mathcal{M}_{\text {loc }}$.
2.2. Semimartingales. Let $\mathcal{P}$ denote the set of predictable processes $H=\left(H_{t}\right)_{t \geq 0}{ }^{3}$

If $X=\left(X_{t}\right)_{t \geq 0}$ is a semimartingale, we abbreviate its bracket $[X, X]$ by $[X]$, and if $H$ is a predictable $X$-integrable process, we denote the stochastic integral by ${ }^{4}$

$$
\int H d X:=H \cdot X=\left(\int_{0}^{t} H_{s} d X_{s}\right)_{t \geq 0}
$$

Let $\mathcal{A}^{+}$denote the set of adapted right-continuous increasing processes $A=\left(A_{t}\right)_{t \in[0, T]}$ such that $A_{0}=0$ and $A_{T} \in L^{1}$. Let $\mathcal{A}:=\mathcal{A}^{+} \ominus \mathcal{A}^{+}$denote the set of adapted rightcontinuous processes of integrable variation. So, every $A \in \mathcal{A}$ has a unique decomposition $A=B-C$ for some $B, C \in \mathcal{A}^{+}$. Its total variation, denoted $\operatorname{Var}(A)$, then equals $B+C$.

Every $A \in \mathcal{A}$ has a unique Doob-Meyer decomposition $A=\widehat{A}+M$ with $\widehat{A} \in \mathcal{P} \cap \mathcal{A}$ and $M \in \mathcal{M}$. The compensator $\widehat{A}$ is increasing if $A$ is so.
2.3. Square-integrable martingales. As customary, we denote this Hilbert space by

$$
\mathcal{H}^{2}:=\left\{M \in \mathcal{M}: M_{T} \in L^{2}\right\}=\left\{M \in \mathcal{M}_{\mathrm{loc}}:[M]_{T} \in L^{1}\right\} .
$$

Let $M, N \in \mathcal{H}^{2}$. The compensators of $[M]$ and $M^{2}$ coincide, and is denoted $\langle M\rangle .{ }^{5}$ We have $M^{2}-[M],[M]-\langle M\rangle \in \mathcal{M}$. One sets $\langle M, N\rangle:=(\langle M+N\rangle-\langle M-N\rangle) / 4$. (So, $\langle M, M\rangle=\langle M\rangle$.) The space $\mathcal{H}^{2}$ is endowed with the Hilbert norm ${ }^{6}$

$$
\|M\|^{2}:=\mathbb{E} M_{T}^{2}=\mathbb{E}[M]_{T}=\mathbb{E}\langle M\rangle_{T} . \quad\left(M \in \mathcal{H}^{2}\right)
$$

Note, $L^{2}$ is isometric to $L^{2}\left(\Omega, \mathcal{F}_{0}, \mathbb{P}\right) \bigoplus \mathcal{H}^{2}$.

[^2]2.4. Infinite direct sum of strongly orthogonal stable subspaces. For $N \in \mathcal{H}^{2}$, set
$$
L^{2}\langle N\rangle:=\left\{H \in \mathcal{P}: \mathbb{E} \int_{0}^{T} H^{2} d[N]<\infty\right\}=\left\{H \in \mathcal{P}: \mathbb{E} \int_{0}^{T} H^{2} d\langle N\rangle<\infty\right\}
$$

Any $H \in L^{2}\langle N\rangle$ is $N$-integrable, $\int H d N \in \mathcal{H}^{2}$, and $\left\langle\int H d N\right\rangle=\int H^{2} d\langle N\rangle$. Denote

$$
\mathcal{S}(N):=\left\{\int H d N: H \in L^{2}\langle N\rangle\right\} \subset \mathcal{H}^{2} . \quad\left(N \in \mathcal{H}^{2}\right)
$$

As is well known, the subspace $\mathcal{S}(N)$ is a (closed) stable subspace of $\mathcal{H}^{2} .^{7}$ Given a sequence $\left(N_{i}\right)_{i=1}^{\infty}$ of pairwise strongly orthogonal martingales $N_{i} \in \mathcal{H}^{2}$, we denote the direct sum ${ }^{8}$

$$
\begin{aligned}
& \bigoplus_{i=1}^{\infty} \mathcal{S}\left(N_{i}\right):=\left\{\sum_{i=1}^{\infty} X_{i}: X_{i} \in \mathcal{S}\left(N_{i}\right) \text { and } \sum_{i=1}^{\infty}\left\|X_{i}\right\|^{2}<\infty\right\} \\
& =\left\{\sum_{i=1}^{\infty} \int H_{i} d N_{i}: H_{i} \in \mathcal{P} \text { and } \sum_{i=1}^{\infty} \mathbb{E} \int_{0}^{T} H_{i}^{2} d\left\langle N_{i}\right\rangle<\infty\right\} .
\end{aligned}
$$

As $\bigoplus_{i=1}^{\infty} \mathcal{S}\left(N_{i}\right)$ is a (countable) direct sum of orthogonal closed subspaces, it is a closed subspace of $\mathcal{H}^{2}$. (In fact, it is the stable subspace generated by $\left(N_{i}\right)_{i=1}^{\infty} .{ }^{9}$ )
2.5. Power brackets. For any semimartingale $X$, set $[X]^{(2)}:=[X]$ and $[X]^{(n)}:=\sum_{s \leq .}(\Delta X)_{s}^{n}$ for $3 \leq n \in \mathbb{N}$. Note, $[X]^{(n+1)}=\left[X,[X]^{(n)}\right]$. Assume $\mathbb{E}[X]_{T}^{(2 n)}<\infty$, i.e., $[X]^{(2 n)} \in \mathcal{A}^{+}$, for all $n \in \mathbb{N}$. It is easy to see that $\operatorname{Var}\left([X]^{(m)}\right) \leq[X]^{(m-1)}+[X]^{(m+1)}$ for any odd integer $m \geq 3 .{ }^{10}$ So, it follows $[X]^{(n)} \in \mathcal{A}$ for all $n \geq 2$. We denote the compensator of $[X]^{(n)}$ by $\langle X\rangle^{(n)}$. So, $\langle X\rangle^{(n)}$ is characterized as the unique predictable right-continuous finite variation process such that $[X]^{(n)}-\langle X\rangle^{(n)} \in \mathcal{M}$, and it is increasing when $n$ is even.

[^3]2.6. Teugels martingales. Assume $\mathbb{E}[X]_{T}^{(2 n)}<\infty$ for all $n \in \mathbb{N}$. Following [N-S], we define the Teugels martingales $X^{(n)}$ of order $n \geq 2$ by ( $X^{(1)}$ will be defined later)
$$
X^{(n)}:=[X]^{(n)}-\langle X\rangle^{(n)}, \quad n \geq 2
$$

As we saw, $X^{(n)} \in \mathcal{M}$, all $n$. (It is easy to see $X^{(n)} \in \mathcal{H}^{2}$ if all $\langle X\rangle^{(n)}$ are continuous. ${ }^{11}$ )
In order to relate to the Lévy measure notation adopted in [N-S], let $\mu=\mu(\omega, d t, d x)$ denote the integer-valued random measure associated to $X$ and $\nu=\nu(\omega, d t, d x)$ be the compensator of $\mu .{ }^{12}$ Since, $x^{2} * \mu=\sum_{s \leq}(\Delta X)_{s}^{2}$, we have $[X]=[X]^{c}+x^{2} * \mu$ and $\langle X\rangle=[X]^{c}+x^{2} * \nu$. So, $X^{(2)}:=[X]-\langle X\rangle=x^{2} *(\mu-\nu)$. Let $n \geq 3$. Above, we saw $[X]^{(n)}$ is of integrable total variation and denoted is compensator $\langle X\rangle^{(n)}$. But $x^{n} * \mu=[X]^{(n)}$; so $x^{n} * \nu$ is also the compensator of $[X]^{(n)}$. Therefore, $x^{n} * \nu=\langle X\rangle^{(n)}$, and we have,

$$
X^{(n)}=x^{n} * \mu-x^{n} * \nu=x^{n} *(\mu-\nu), \quad n \geq 2 .
$$

## 3. Strong orthogonalization

Let $\left(M_{i}\right)_{i=1}^{\infty}$ be a sequence of martingales $M_{i} \in \mathcal{H}^{2}$. As in [D], we associate to it a sequence $\left(N_{i}\right)_{i=1}^{\infty}$ of pairwise strongly orthogonal martingales, which we call its Strong Orthogonalization. Set $N_{1}:=M_{1}$, and for $n \geq 2$ inductively define $N_{n}$ as the orthogonal projection of $M_{n}$ on the orthogonal complement of $\bigoplus_{i=1}^{n-1} \mathcal{S}\left(N_{i}\right)$. Note, this definition implies that $N_{i}$ are pairwise strongly orthogonal and $\bigoplus_{i=1}^{n} \mathcal{S}\left(N_{i}\right)$ is a (closed) stable subspace. ${ }^{13}$ For example, if $M_{i}$ are correlated Brownian motions, then $N_{i}$ will be independent Brownian motions.

Remark. For almost all paths $\omega, d\left\langle M_{i}, N_{j}\right\rangle(\omega)$ is a measure on $[0, T]$ which is absolutely continuous with respect to the measure $d\left\langle N_{j}, N_{j}\right\rangle(\omega)$ on $[0, T]$. So, the Radon-Nikodym derivative $\frac{d\left\langle M_{i}, N_{j}\right\rangle}{d\left\langle N_{j}, N_{j}\right\rangle}$ is well-defined, and one easily verifies that

$$
M_{i}=N_{i}+\sum_{j=1}^{i-1} \int \frac{d\left\langle M_{i}, N_{j}\right\rangle}{d\left\langle N_{j}, N_{j}\right\rangle} d N_{j} .
$$

This leads to an alternative definition of $N_{i}:$ set $N_{1}:=M_{1}$, and having defined $N_{j}$ inductively for $j<i$, use the above equation to define $N_{i}$. Note, $N_{2}=M_{2}-\int \frac{d\left\langle M_{1}, M_{2}\right\rangle}{d\left\langle M_{1}\right\rangle} d M_{1}$.

[^4]Remark. For $1 \leq k \leq \infty, \bigoplus_{i=1}^{k} \mathcal{S}\left(N_{i}\right)$ is not only the stable subspace generated by $\left(N_{i}\right)_{i=1}^{k}$, but also the stable subspace generated by $\left(M_{i}\right)_{i=1}^{k}$.

We denote the linear span of $\mathcal{S}\left(M_{i}\right), i=1,2 \cdots$, by $^{14}$

$$
\operatorname{Span}\left(\mathcal{S}\left(M_{i}\right)\right)_{i=1}^{\infty}:=\bigcup_{n=1}^{\infty} \mathcal{S}\left(M_{1}\right)+\cdots+\mathcal{S}\left(M_{n}\right)
$$

The following is essentially a reformulation of the abstract martingale representation Theorem 3 of $[\mathrm{D}] .{ }^{15}$ Our strategy will be to apply it the Teugels martingales $X^{(i)}$ as the $M_{i}$.
Proposition 3.1. Let $\left(M_{i}\right)_{i=1}^{\infty}$ be a sequence of martingales in $\mathcal{H}^{2}$ such that $\operatorname{Span}\left(\mathcal{S}\left(M_{i}\right)\right)_{i=1}^{\infty}$ is dense in $\mathcal{H}^{2}$. Then, $\mathcal{H}^{2}=\bigoplus_{i=1}^{\infty} \mathcal{S}\left(N_{i}\right)$, where $\left(N_{i}\right)_{i=1}^{\infty}$ is the strong orthogonalization of $\left(M_{i}\right)_{i=1}^{\infty}$. In other words, every martingale $M \in \mathcal{H}^{2}$ has a representation

$$
M=\sum_{i=1}^{\infty} \int H_{i} d N_{i}
$$

(as a convergent series in $\mathcal{H}^{2}$ ) for some predictable processes $H_{i}$ satisfying

$$
\sum_{i=1}^{\infty} \mathbb{E}\left(\int_{0}^{T} H_{i}^{2} d\left\langle N_{i}\right\rangle\right)=\sum_{i=1}^{\infty} \mathbb{E}\left(\int_{0}^{T} H_{i}^{2} d\left[N_{i}\right]\right)=\|M\|^{2}<\infty
$$

Moreover, if $\left(H_{i}^{\prime}\right)_{i=1}^{\infty}$ is another sequence with this property, then $\int\left|H_{i}^{\prime}-H_{i}\right|^{2} d\left\langle N_{i}\right\rangle=0$ a.s., all $i$. In particular, the $H_{i}$ are unique if $\left\langle N_{i}\right\rangle$ are strictly increasing.

Proof. Since $\bigoplus_{i=1}^{n} \mathcal{S}\left(N_{i}\right)$ is a stable subspace and contains $M_{n}$, we have $\mathcal{S}\left(M_{n}\right) \subset \bigoplus_{i=1}^{n} \mathcal{S}\left(N_{i}\right)$. Hence, $\operatorname{Span}\left(\mathcal{S}\left(M_{i}\right)\right)_{i=1}^{\infty} \subset \bigoplus_{i=1}^{\infty} \mathcal{S}\left(N_{i}\right)$. The first statement follows as the former is assumed dense and the latter is closed. The uniqueness statement follows because direct sum decomposition is unique; so, $\int H_{i}^{\prime} d N_{i}=\int H_{i} d N_{i}$, implying $\int\left|H_{i}^{\prime}-H_{i}\right|^{2} d\left\langle N_{i}\right\rangle=0$.

Remark. The $H_{i}$ are unique on the support of the measure measure $d\left\langle N_{i}, N_{i}\right\rangle$ (as measure on $[0, T]$ for each $\omega$.) There, $H_{i}$ in fact equals the Radon-Nikodym derivative $\frac{d\left\langle M, N_{i}\right\rangle}{d\left\langle N_{i}\right\rangle}$.

Remark. When $d\left\langle N_{i}, N_{i}\right\rangle=\lambda_{i} d t$ for some positive predictable processes $\lambda_{i}$, we can normalize by replacing $N_{i}$ with $\int \lambda_{i}^{-1 / 2} d N_{i}$. The new $N_{i}$ still satisfy $\left\langle N_{i}, N_{i}\right\rangle_{t}=t$, so the condition on the $H_{i}$ simplify to $\sum_{i=1}^{\infty} \mathbb{E}\left(\int_{0}^{T} H_{i}^{2} d t\right)<\infty$, as in [N-S]. This is possible in the

[^5]Lévy case, where the $\lambda_{i}$ turn out to be positive constants. However, the condition does not hold in general (some $N_{i}$ may even be zero); so, unlike [ $\mathrm{N}-\mathrm{S}$ ], we do not normalize here.

Remark. It is easy show that the the strong orthogonalization of two sequences $\left(X_{i}\right)_{i=1}^{\infty}$ and $\left(M_{i}\right)_{i=1}^{\infty}$ of martingales in $\mathcal{H}^{2}$ coincide if $X_{j}:=M_{j}+\sum_{i=1}^{j-1} \int H_{i, j} d M_{j}$ for some locally bounded predictable processes $H_{i, j}$.

## 4. Martingales and semimartingales of finite moments

Here we define a set $\mathcal{C}^{*}$ of semimartingales, to a subset of which our main results apply.
Recall, $L^{*}:=\bigcap_{n=1}^{\infty} L^{n}$. We begin with the definition of martingales of finite moments:

$$
\mathcal{H}^{\star}:=\left\{M \in \mathcal{H}^{2}: M_{T} \in L^{*}\right\}=\left\{M \in \mathcal{M}_{\mathrm{loc}}:[M]_{T} \in L^{*}\right\}
$$

The equality is a direct consequence of the Burkholder-Davis-Gundy inequalities. ${ }^{16}$
Proposition 4.1. Let $M, N \in \mathcal{H}^{\star}$. Then $\int M_{-} d N \in \mathcal{H}^{\star} \cap \mathcal{S}(N)$.
Proof. Set $M_{*}=\sup _{t \in[0, T]}\left|M_{t}\right|$. By Schwartz inequality then Doob's maximal inequality,

$$
\begin{gathered}
\mathbb{E}\left[\int M_{-} d N\right]_{T}^{n}=\mathbb{E}\left(\int_{0}^{T} M_{-}^{2} d[N]\right)^{n} \leq \mathbb{E}\left(M_{*}^{2}[N]_{T}\right)^{n} \\
\leq\left(\mathbb{E} M_{*}^{4 n}\right)^{\frac{1}{2}}\left(\mathbb{E}[N]_{T}^{2 n}\right)^{\frac{1}{2}} \leq\left(\frac{4 n}{4 n-1}\right)^{2 n}\left(\mathbb{E} M_{T}^{4 n}\right)^{\frac{1}{2}}\left(\mathbb{E}[N]_{T}^{2 n}\right)^{\frac{1}{2}}<\infty .
\end{gathered}
$$

Hence $\left[\int M_{-} d N\right]_{T} \in L^{*}$. Thus the local martingale $\int M_{-} d N$ is in fact in $\mathcal{H}^{*} \cap \mathcal{S}(N)$.
Clearly, $[X]^{(2 n)} \leq[X]^{n}$ for any semimartingales $X$ and $n \in \mathbb{N} .^{17}$ So, if $M \in \mathcal{H}^{\star}$, then $[M]_{T}^{(2 n)} \in L^{*}$ for all $n \in \mathbb{N}$. Recall, the Teugels martingale is now defined as $M^{(n)}:=$ $[M]^{(n)}-\langle M\rangle^{(n)} \in \mathcal{M}$. Our approach relies on $\langle M\rangle^{(n)}$ being continuous. We define

$$
\mathcal{H}^{*}:=\left\{M \in \mathcal{H}^{\star}:\langle M\rangle^{(n)} \text { is continuous for all } n \geq 2\right\}
$$

For any $M \in \mathcal{H}^{2}$, we set

$$
\mathcal{S}^{*}(M):=\mathcal{H}^{*} \cap \mathcal{S}(M)
$$

Proposition 4.2. Let $M, N \in \mathcal{H}^{*}$. Then $\int M_{-} d N \in \mathcal{S}^{*}(N)$.
Proof. One readily shows by induction that $\left[\int M_{-} d N\right]^{(n)}=\int M_{-}^{2 n} d[N]^{(n)}$. So $\left\langle\int M_{-} d N\right\rangle^{(n)}=$ $\int M_{-}^{2 n} d\langle N\rangle^{(n)}$, which is continuous. The desired result thus follows by Prop. 4.1.

[^6]The following consequence will be useful for multivariate representations.
Corollary 4.3. Let $M^{\prime}, N^{\prime} \in \mathcal{H}^{2}$. Let $M \in \mathcal{S}^{*}\left(M^{\prime}\right)$ and $N \in \mathcal{S}^{*}\left(N^{\prime}\right)$. Assume $\left[M^{\prime}, N^{\prime}\right]=$ 0. Then, $M N \in \mathcal{S}^{*}\left(M^{\prime}\right) \oplus \mathcal{S}^{*}\left(N^{\prime}\right)$.

Proof. Clearly, $[M, N]=0$. So, Prop 3.2 and integration by parts imply $M N \in \mathcal{S}^{*}(M) \oplus$ $\mathcal{S}^{*}(N)$. But, $\mathcal{S}(M) \subset \mathcal{S}\left(M^{\prime}\right)$ and $\mathcal{S}(N) \subset \mathcal{S}\left(N^{\prime}\right)$ as $\mathcal{S}\left(M^{\prime}\right)$ and $\mathcal{S}\left(N^{\prime}\right)$ are stable subspaces. Hence, $M N \in \mathcal{S}^{*}\left(M^{\prime}\right) \oplus \mathcal{S}^{*}\left(N^{\prime}\right)$.

The following result will guarantee that the stochastic integrals of the Teugels martingales in the chaotic expansions below will actually be martingales belonging to $\mathcal{H}^{2}$ (even to $\mathcal{H}^{*}$ ).
Proposition 4.4. Let $M \in \mathcal{H}^{*}$. Then $M^{(n)} \in \mathcal{H}^{*}$ and $\langle M\rangle_{T}^{(n)} \in L^{*}$ for all $n \in \mathbb{N}$, where $M^{(1)}:=M$. Moreover, $\left[M^{(n)}\right]=[M]^{(2 n)}$ and $\left\langle M^{(n)}\right\rangle=\langle M\rangle{ }^{(2 n)}$.
Proof. Recall, $[X, A]=0$ for all semimartingales $X$ and continuous finite variation semimartingales $A$. As $\langle X\rangle^{(n)}$ is assumed continuous, this implies $\left[M^{(n)}\right]=[M]^{(2 n)}$. But, $[M]^{(2 n)} \leq[M]^{n}$. Therefore $\left[M^{(n)}\right]_{T} \in L^{*}$. Thus $M^{(n)} \in \mathcal{H}^{\star}$. Hence $M_{T}^{(n)} \in L^{*}$, and $\langle M\rangle_{T}^{(n)}=\left[M^{(n)}\right]_{T}-M_{T}^{(n)} \in L^{*}$. Let $i \geq 2$. Clearly, $\left[M^{(n)}\right]^{(i)}=[M]^{(n i)}$. So $\left\langle M^{(n)}\right\rangle^{(i)}=$ $\langle M\rangle^{(n i)}$ is continuous. Therefore $M^{(n)} \in \mathcal{H}^{*}$.

As $\langle M\rangle^{(n)}$ is continuous if $M \in \mathcal{H}^{*}$, for all semimartingales $X,\left[M^{(n)}, X\right]=\left[[M]^{(n)}, X\right]$. Proposition 4.5. Let $M, N \in \mathcal{H}^{*}$. If $[M, N]=0$, then $\left[M^{(i)}, N^{(j)}\right]=0$ for all $i, j \in \mathbb{N}$. Proof. Note, for any two semimartingales $X$ and $Y$, and $i+j \geq 3$, we have

$$
\begin{gathered}
{\left[[X]^{(i)},[Y]^{(j)}\right]=\sum_{\cdot \leq s}\left(\Delta X_{s}\right)^{i}\left(\Delta Y_{s}\right)^{j}=} \\
\sum_{\cdot \leq s}\left(\Delta X_{s} \Delta Y_{s}\right)\left(\Delta X_{s}\right)^{i-1}\left(\Delta Y_{s}\right)^{j-1}=\left[[X, Y],\left[[X]^{(i-1)},[Y]^{(j-1)}\right]\right]
\end{gathered}
$$

This implies $\left[[X]^{(i)},[Y]^{(j)}\right]=0$ if $[X, Y]=0$. The result follows by applying to $M$ and $N$ and invoking the remark preceding the proposition on continuity of $\langle M\rangle^{(i)}$ and $\langle N\rangle^{(j)}$.

Let $\mathcal{A}^{*} \subset \mathcal{A}$ denote the set of continuous processes $A \in \mathcal{A}$ such that $\operatorname{Var}(A)_{T} \in L^{*}$. As $A_{*}:=\sup _{t \in[0, T]}\left|A_{t}\right| \leq \operatorname{Var}(X)_{T}$, clearly then $A_{t}, A_{*} \in L^{*}$, all $t$.
Proposition 4.6. Let $A, B \in \mathcal{A}^{*}$ and $M \in \mathcal{H}^{*}$. Then $A B \in \mathcal{A}^{*}$ and $\int A d M \in \mathcal{S}^{*}(M)$.
Proof. Without loss of generality we may assume $A$ and $B$ are increasing. That $\left|A_{T} B_{T}\right| \in$ $L^{*}$ then follows from Schwartz inequality. (Also $\int A d B \in \mathcal{A}^{*}$, as $\left|\int_{0}^{T} A d B\right| \leq\left|A_{T} B_{T}\right|$.) Similarly, $\left[\int_{0}^{T} A d M\right] \leq A_{T}^{2}[M]_{T}$. So again by Schwartz inequality $\int A d M \in \mathcal{S}^{*}(M)$.

We now define $\mathcal{C}^{*}:=\mathcal{A}^{*}+\mathcal{H}^{*}$. So, any semimartingale $X \in \mathcal{C}^{*}$ has a decomposition $X=A+M$, necessarily unique, with $A \in \mathcal{A}^{*}$ and $M \in \mathcal{H}^{*}$. Note, $X_{T} \in L^{*}$. We denote this compensator $A$ by $\langle X\rangle^{(1)}$ and this martingale $M$ by $X^{(1)}$. So,

$$
X=\langle X\rangle^{(1)}+X^{(1)}, \quad X \in \mathcal{C}^{*},\langle X\rangle^{(1)} \in \mathcal{A}^{*}, X^{(1)} \in \mathcal{H}^{*} ;
$$

As $\langle X\rangle^{(1)}$ is continuous, $[X, Y]=\left[X^{(1)}, Y\right]$ for any semimartingale $Y$. Hence $[X]^{(n)}=$ $\left[X^{(1)}\right]^{(n)}$ for $n \geq 2$, implying $X^{(n)}=\left(X^{(1)}\right)^{(n)} .{ }^{18}$ Clearly, a process $X$ belongs to $\mathcal{C}^{*}$ if and only if it is a special semimartingale, its compensator belongs to $\mathcal{A}^{*}, X_{0}=0$, and $[X]_{T} \in L^{*}$. The above propositions and the preceding remarks clearly yield

Corollary 4.7. Let $X, Y \in \mathcal{C}^{*}$. Then $X Y, \int X_{-} d Y \in \mathcal{C}^{*}$ and $\int X_{-} d M \in \mathcal{S}^{*}(M)$ for any $M \in \mathcal{H}^{*}$. Moreover, $X^{(n)} \in \mathcal{H}^{*}$ and $\langle X\rangle^{(n)} \in \mathcal{A}^{*}$ for all $n \in \mathbb{N}$. Furthermore, if $[X, Y]=0$, then $\left[X^{(i)}, Y^{(j)}\right]=0$ for all $i, j \in \mathbb{N}$.

## 5. EXponentially decaying laws and $L^{2}$-Denseness of polynomials

We first look at random variables, then processes. Define the subspace $L_{*} \subset L^{*}$ by

$$
L_{*}:=\left\{\xi \in L^{0}: \mathbb{E} \exp (a|\xi|)<\infty \text { for some } a>0\right\} .
$$

Using Schwartz inequality, one easily verifies that $L_{*}$ is indeed a linear subspace. ${ }^{19}$
Given a finite or infinite sequence $\left(\xi_{i}\right)_{i=1}^{k}, k \leq \infty$ of random variables $\xi_{i} \in L^{0}$, we denote by $\mathcal{F}\left(\xi_{i}\right)_{i=1}^{k}$ the $\sigma$-algebra generated by the $\xi_{i}$. A polynomial in the $\xi_{i}$ is a (finite) linear combination of products $\xi_{i_{1}} \cdots \xi_{i_{m}}$, with $m \geq 0$ ranging over non-negative integers, $i_{j} \in \mathbb{N}$, and $i_{j} \leq k$ when $k<\infty$. (When $m=0$, the product is empty, and by convention equals 1). As the indices $i_{j}$ need not be distinct, this includes the monomials $\xi_{i_{1}}^{n_{1}} \cdots \xi_{i_{m}}^{n_{m}}, n_{i} \in \mathbb{N}$.

Proposition 5.1. Let $\xi_{1}, \cdots, \xi_{n} \in L_{*}$. Assume $\mathcal{F}=\mathcal{F}\left(\xi_{i}\right)_{i=1}^{n}$. Then the set of polynomials in $\xi_{i}$, i.e., the linear space $\operatorname{Span}\left\{\xi_{i_{1}} \cdots \xi_{i_{m}}\right\}_{1 \leq i_{1}, \cdots, i_{m} \leq n, m \geq 0}$, is dense in $L^{2}$.
Proof. Let $\varphi \in L^{2}$ satisfy $\mathbb{E}\left(\varphi \xi_{i_{1}} \cdots \xi_{i_{m}}\right)=0$ for all $m \geq 0$ and multi-indices $\left(i_{1}, \cdots, i_{m}\right) \in$ $\mathbb{N}^{m}$. (For $m=0$ this means $\mathbb{E} \varphi=0$.) It suffices to show $\varphi=0$. Let $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ denote the set of complex-valued smooth functions of compact support on $\mathbb{R}^{n}$. As is well known, the set $\left\{f(\xi): f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right.$ is real valued $\}$ is dense in $L^{2}$, where $\xi=\left(\xi_{1} \cdots \xi_{n}\right){ }^{20}$ Therefore, it suffices to show $\mathbb{E}(\varphi f(\xi))=0$ for all $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Define $u: C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$ by $u(f):=\mathbb{E}(\varphi f(\xi))$. Then, $u$ is distribution, i.e., a continuous linear functional on $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ under the latter's usual Frechet topology. We must show $u=0$. For $x \in \mathbb{R}^{n}$, define $\widehat{u}(x)=$ $\mathbb{E}(\varphi \exp (-\sqrt{-1} x \cdot \xi))$. Then, $\widehat{u}$ is in $L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$, and considered as such as a distribution, it is the Fourier transform of $u$ in the sense of distribution. Hence, it suffices to show $\widehat{u}=0$.
As $\left|\xi_{i}\right| \in L_{*}$, we have $|\xi| \leq\left|\xi_{1}\right|+\cdots+\left|\xi_{n}\right| \in L_{*}$. So, $\mathbb{E} \exp (a|\xi|)<\infty$ for some $a>0$. Using Schwartz inequality yields $\mathbb{E}|\varphi \exp (-i z \cdot \xi)|<\infty$ for $z \in \mathbb{C}^{n}$ with $|\operatorname{Im}(z)|<a / 2$.

$$
\begin{aligned}
& \left.{ }^{{ }^{18} \text { Indeed }[X]} \begin{array}{l}
\text { I }
\end{array}\right]=\left[X, X^{(1)}\right]=\left[X^{(1)}\right] \text {, and for } n \geq 3 \text {, using induction, } \\
& \qquad[X]^{(n)}=\left[X,[X]^{(n-1)}\right]=\left[X,\left[X^{(1)}\right]^{(n-1)}\right]=\left[X^{(1)},\left[X^{(1)}\right]^{(n-1)}\right]=\left[X^{(1)}\right]^{(n)} .
\end{aligned}
$$

${ }^{19}$ Indeed, if $\xi=\xi_{1}+\xi_{2}$ with $\mathbb{E} \exp \left(a_{i}\left|\xi_{i}\right|\right)<\infty$, then $\mathbb{E} \exp (a|\xi|)<\infty$, where $a=\frac{1}{2} \min \left(a_{1}, a_{2}\right)$.
${ }^{20}$ Indeed, $L^{p}$ can be identified with $L^{p}\left(\mathbb{R}^{n}, \mathcal{B}, \mathbb{P} \circ \xi^{-1}\right)$, where $\mathcal{B}$ is the Borel $\sigma$-algebra on $\mathbb{R}^{n}$. Radonintegral theory then implies that compactly supported continuous functions of $\xi$ are dense in $L^{p}$. But, such functions can be uniformly approximated by smooth functions of compact support, using convolution with a non-negative smooth function of small compact support and integral 1.

This implies that the function $z \mapsto \mathbb{E}(\varphi \exp (-\sqrt{-1} z \cdot \xi))$ is holomorphic on $|\operatorname{Im}(z)|<a / 2$. It follows that $\widehat{u}$, which is the restriction of this function to $\mathbb{R}^{n}$, is real analytic. But,

$$
\frac{\partial^{m} \hat{u}}{\partial x_{i_{1}} \cdots \partial x_{i_{m}}}(0)=(-\sqrt{-1})^{m} \mathbb{E}\left(\varphi \xi_{i_{1}} \cdots \xi_{i_{m}}\right)=0
$$

for all $m \geq 0$ by assumption. Since $\widehat{u}$ is analytic, it follows $\widehat{u}=0$, as desired.
The result extends to infinite sequences by $L^{2}$-version of martingale convergence theorem:
Lemma 5.2. Let $\xi_{i} \in L^{2}, i=1,2, \cdots$. Assume $\mathcal{F}=\mathcal{F}\left(\xi_{i}\right)_{i=1}^{\infty}$. Then $\left.\bigcup_{n=1}^{\infty} L^{2}\left(\Omega, \mathcal{F}\left(\xi_{i}\right)_{i=1}^{n}\right), \mathbb{P}\right)$ is dense in $L^{2}$.

Proof. Set $\mathcal{F}_{n}:=\mathcal{F}\left(\xi_{i}\right)_{i=1}^{n}$. Let $\theta \in L^{2}$. Set $\theta_{n}:=\mathbb{E}\left[\theta \mid \mathcal{F}_{n}\right]$. By the martingale convergence theorem $\theta_{n} \rightarrow \theta$ a.s. and in $L^{1}$. Moreover, since $\theta \in L^{2}$, the convergence also takes place in $L^{2} .{ }^{21}$ The desired result follows because $\theta_{n}$ belongs to $L^{2}\left(\Omega, \mathcal{F}_{n}, \mathbb{P}\right)$ by construction.
Proposition 5.3. Let $\xi_{i} \in L_{*}, i=1,2, \cdots$. Assume $\mathcal{F}=\mathcal{F}(\xi)_{i=1}^{\infty}$. Then the set of polynomials in $\xi_{i}$, i.e., the linear space $\operatorname{Span}\left\{\xi_{i_{1}} \cdots \xi_{i_{m}}\right\}_{\left(i_{1}, \cdots, i_{m}\right) \in \mathbb{N}^{m}, m \geq 0}$, is dense in $L^{2}$.
Proof. By Prop. 5.1, polynomials in $\xi_{1}, \cdots, \xi_{n}$ are dense in $L^{2}\left(\Omega, \mathcal{F}\left(\xi_{i}\right)_{i=1}^{n}, \mathbb{P}\right)$. Since the latter's topology coincides with its relative topology as a subset of $L^{2}$, it follows that polynomials in $\xi_{1}, \xi_{2}, \cdots$ are dense in $\bigcup_{n=1}^{\infty} L^{2}\left(\Omega, \mathcal{F}\left(\xi_{i}\right)_{i=1}^{n}, \mathbb{P}\right)$ in the $L^{2}$ topology. The desired result thus follows from the previous Lemma.
We now extend these results to continuous-time stochastic processes, first univariate. Set $\mathcal{C}_{*}:=\left\{\right.$ left or right continuous processes $X=\left(X_{t}\right)_{t \in[0, T]}$ such that $X_{t} \in L_{*}$ for all $\left.t\right\}$.
Proposition 5.4. Let $X \in \mathcal{C}_{*}$. Assume $\mathcal{F}=\mathcal{F}\left(X_{t}\right)_{t \in[0, T]}$. Then the linear space of random variables $\operatorname{Span}\left\{X_{t_{1}} \cdots X_{t_{n}}\right\}_{\left(t_{1}, \cdots, t_{n}\right) \in[0, T]^{n}, n \geq 0}$ is dense in $L^{2}$.
Proof. Let $\left(s_{i}\right)_{i=0}^{\infty}$ be a dense sequence in $[0, T]$, containing 0 and $T$. Set $\xi_{i}=X_{s_{i}}$. By right or left continuity of $X$, we have $\mathcal{F}=\mathcal{F}\left(\xi_{i}\right)_{i=1}^{\infty}$. Also, $\xi_{i} \in L_{*}$. The desired result therefore follows by Prop. 5.3. (More strongly, it follows that we may choose the $t_{i}$ in $\left\{s_{i}\right\}_{i=0}^{\infty}$.)

Remark. By not requiring the $t_{i}$ to be distinct, we are including products of powers $X_{t_{j}}^{i_{j}}$. Indeed, $\operatorname{Span}\left\{X_{t_{1}} \cdots X_{t_{n}}\right\}_{\left(t_{1}, \cdots, t_{n}\right) \in[0, T]^{n}, n \geq 0}=\operatorname{Span}\left\{X_{t_{1}}^{i_{1}} \cdots X_{t_{n}}^{i_{n}}\right\}_{t_{1}<\cdots<t_{n} \in[0, T], i_{1}, \cdots, i_{n} \in \mathbb{N}, n \geq 0}$. Clearly, these also equal Span $\left\{X_{t_{1}}^{i_{1}}\left(X_{t_{2}}-X_{t_{1}}\right)^{i_{1}} \cdots\left(X_{t_{n}}-X_{t_{n-1}}\right)^{i_{n}}\right\}_{t_{1}<\cdots<t_{n} \in[0, T], i_{1}, \cdots, i_{n} \in \mathbb{N}, n \geq 0}$. The latter is the form stated and used in [N-S]. Here, we use the simpler first form.
Proposition 5.5. Let $X_{i} \in \mathcal{C}_{*}, i=1,2, \cdots$. Assume $\mathcal{F}=\mathcal{F}\left(X_{i}(t)\right)_{t \in[0, T], i \in \mathbb{N}}$. Then the linear space $\operatorname{Span}\left\{X_{i_{1}}\left(t_{1}\right) \cdots X_{i_{n}}\left(t_{n}\right)\right\}_{\left(t_{1}, \cdots, t_{n}\right) \in[0, T]^{n},\left(i_{1}, \cdots, i_{n}\right) \in \mathbb{N}^{n}, n \geq 0}$ is dense in $L^{2}$.

$$
\begin{aligned}
& { }^{21} \text { See, e.g., Theorem I.1.42 in }[\mathrm{J}-\mathrm{S}] \text {. The } L^{2} \text {-convergence can be seen directly as follows. Note, } \\
& \qquad \begin{array}{c}
\mathbb{E}\left[\theta_{n}^{2}\right]=\mathbb{E}\left[\left(\mathbb{E}\left[\theta \mid \mathcal{F}_{n}\right]\right)^{2}\right] \leq \mathbb{E}\left[\mathbb{E}\left[\theta^{2} \mid \mathcal{F}_{n}\right]\right]=\mathbb{E}\left[\theta^{2}\right] . \\
\text { Hence, } \theta_{n} \in L^{2}\left(\Omega, \mathcal{F}\left(\xi_{1}, \cdots, \xi_{n}\right), \mathbb{P}\right) . \text { It remains to show } \mathbb{E}\left[\left(\theta_{n}-\theta\right)^{2}\right] \rightarrow 0 . \text { Set } \varphi_{n}=\left(\theta_{n}-\theta\right)^{2} . \text { Then, } \\
\mathbb{E}\left[\varphi_{n}\right]=\mathbb{E}\left[\theta^{2}\right]+\mathbb{E}\left[\theta_{n}^{2}\right]-2 \mathbb{E}\left[\theta_{n}\right] \mathbb{E}[\theta] \leq \mathbb{E}\left[\theta^{2}\right]+\mathbb{E}\left[\theta_{n}^{2}\right]+2 \sqrt{\mathbb{E}\left[\theta^{2}\right]} \sqrt{\mathbb{E}\left[\theta_{n}^{2}\right]} \leq 4 \mathbb{E}\left[\theta^{2}\right] .
\end{array}
\end{aligned}
$$

Hence $\sup _{n} \mathbb{E}\left[\varphi_{n}\right]<\infty$. As $\varphi_{n} \rightarrow 0$ a.s. and $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is a positive submartingale, it follows from the submartingale convergence theorem that $\mathbb{E}\left[\varphi_{n}\right] \rightarrow 0$, as desired.

Proof. Let $\left(s_{i}\right)_{i=0}^{\infty}$ be a dense sequence in $[0, T]$, containing 0 and $T$. Set $\xi_{i j}=X_{j}\left(s_{i}\right)$. By right or left continuity of $X_{i}$, we have $\mathcal{F}=\mathcal{F}\left(\xi_{i j}\right)_{i, j=1}^{\infty}$. Also, $\xi_{i j} \in L_{*}$. Using any bijection of $\mathbb{N} \times \mathbb{N}$ onto $\mathbb{N}$, we may regard $\left(\xi_{i j}\right)_{i, j=1}^{\infty}$ as one long sequence. The desired result therefore follows by Prop. 5.3. (More strongly, if follows that we may choose the $t_{i}$ in $\left\{s_{i}\right\}_{i=0}^{\infty}$.)

Remark. The above specializes to a finite dimensional version by letting all except a finite number of $X_{i}$ be zero.

Remark. Since we are not requiring $i_{1}, \cdots, i_{n}$ to be distinct, we are including products of the form $X_{i}\left(t_{1}\right) \cdots X_{i}\left(t_{n}\right)$ for each $i$ as well as products of such expressions over different $i$.

Although $L^{2}$ is isometric to $L^{2}\left(\Omega, \mathcal{F}_{0}, \mathbb{P}\right) \oplus \mathcal{H}^{2}$, it is $\mathcal{H}^{2}$ that embodies the filtration structure, not $L^{2}$. For our purposes it is more convenient to cast the last two propositions in terms of $\mathcal{H}^{2}$. To this end, we utilize the following notation. For any $\xi \in L^{1}$, set

$$
\overline{\mathbb{E}}(\xi \mid \mathbb{F}):=\left(\mathbb{E}\left(\xi \mid \mathcal{F}_{t}\right)\right)_{t \in[0, T]}-\mathbb{E}\left(\xi \mid \mathcal{F}_{0}\right) \in \mathcal{M} .
$$

Clearly, $\overline{\mathbb{E}}(\xi \mid \mathbb{F}) \in \mathcal{H}^{*}$ for $\xi \in L^{*}$. The previous two propositions respectively yield,
Corollary 5.6. Let $X \in \mathcal{C}_{*}$. Assume $\mathbb{F}=\mathbb{F}(X)$. Then the linear subspace of martingales

$$
\operatorname{Span}\left\{\overline{\mathbb{E}}\left(X_{t_{1}} \cdots X_{t_{n}} \mid \mathbb{F}\right)\right\}_{\left(t_{1}, \cdots, t_{n}\right) \in[0, T]^{n}, n \in \mathbb{N}}
$$

is (contained in $\mathcal{H}^{*}$ and) dense in $\mathcal{H}^{2}$.
Corollary 5.7. Let $X_{i} \in \mathcal{C}_{*}, i=1,2, \cdots$. Assume $\mathbb{F}=\mathbb{F}\left(X_{i}\right)_{i=1}^{\infty}$. Then the linear subspace

$$
\operatorname{Span}\left\{\overline{\mathbb{E}}\left(X_{i_{1}}\left(t_{1}\right) \cdots X_{i_{n}}\left(t_{n}\right) \mid \mathbb{F}\right)\right\}_{\left(t_{1}, \cdots, t_{n}\right) \in[0, T]^{n},\left(i_{1}, \cdots, i_{n}\right) \in \mathbb{N}^{n}, n \in \mathbb{N}}
$$

is (contained in $\mathcal{H}^{*}$ and) dense in $\mathcal{H}^{2}$.

## 6. Inductive chaotic expansion of stopped polynomials

Throughout this section, let $X \in \mathcal{C}^{*}$. Let $\mathcal{A}_{0}^{*}(X)$ denote the set of simple functions, i.e., the linear span of (deterministic) processes of the form $1_{[0, t]}, 0<t \leq T$. For $n \geq 1$, set

$$
\mathcal{A}_{n}^{*}\langle X\rangle:=\left\{A \in \mathcal{A}^{*}: A \text { is adapted to } \mathbb{F}\left(\langle X\rangle^{(i)}\right)_{i=1}^{n}\right\} .
$$

Note, if $\langle X\rangle^{(i)}$ are deterministic (as in the Lévy case) then any $A \in \mathcal{A}_{n}^{*}\langle X\rangle$ is deterministic.
We next define a sequence of linear subspaces $\left(\mathcal{C}_{i}^{*}(X)\right)_{i=0}^{\infty}$ of $\mathcal{C}^{*}$ and a sequence of linear subspaces of $\left(\mathcal{S}_{i}^{*}(X)\right)_{i=1}^{\infty}$ of $\mathcal{H}^{*}$. We employ a joint inductive definition. Set $\mathcal{S}_{0}^{*}(X):=\mathbb{R}$,

$$
\begin{gathered}
\mathcal{S}_{1}^{*}(X):=\left\{\int A d X^{(1)}: A \in \mathcal{A}_{0}^{*}(X)\right\} \\
\mathcal{C}_{1}^{*}(X):=\mathcal{A}_{1}^{*}\langle X\rangle+\left\{A M: A \in \mathcal{A}_{0}^{*}(X) ; M \in \mathcal{S}_{1}^{*}(X)\right\} .
\end{gathered}
$$

Note, $X \in \mathcal{C}_{1}^{*}(X)$. For $n \geq 2$, we define inductively,

$$
\begin{gathered}
\mathcal{S}_{n}^{*}(X)=\operatorname{span}\left\{\int Y_{-} d X^{(j)}: Y \in \mathcal{C}_{i}^{*}(X), i+j=n, 0 \leq i \leq n-1,1 \leq j \leq n\right\} ; \\
\mathcal{C}_{n}^{*}(X):=\operatorname{span}\left\{A M: A \in \mathcal{A}_{i}^{*}\langle X\rangle ; M \in \mathcal{S}_{j}^{*}(X), i+j=n, 0 \leq i, j \leq n\right\} .
\end{gathered}
$$

For example, $X^{(9)}+\int\langle X\rangle^{(6)} d\langle X\rangle{ }^{(3)}+\langle X\rangle^{(2)} \int\left(\int\langle X\rangle^{(1)} d X^{(2)}\right) d X^{(4)} \in \mathcal{C}_{9}^{*}(X)$.
Section 8 below presents an explicit (huge) decomposition $X^{n}=\sum_{k} A_{k} M_{k} \in \mathcal{C}_{n}^{*}(X)$. The $A_{k}$ will be iterated (multiple) Stieltjes integrals of $\langle X\rangle^{(i)}$, and the $M_{k}$ will be iterated stochastic integrals of products of such forms $A$ against the Teugels martingales $X^{(j)}$. However, what is important for our main results is not the explicit form, but two key properties of $\mathcal{C}_{n}^{*}$ : it is closed under multiplication and under stopping at deterministic times. (The latter is clear.) The following is a simple consequence of Section 4.
Proposition 6.1. We have $\mathcal{S}_{n}^{*}(X) \subset \operatorname{Span}\left(\mathcal{S}^{*}\left(X^{(i)}\right)\right)_{i=1}^{n}$ and $\mathcal{C}_{n}^{*}(X) \subset \mathcal{C}^{*}$, all $n \in \mathbb{N}$.
Proof. We use induction, case $n=1$ being clear. Let $n \geq 2, M \in \mathcal{S}_{n}^{*}:=\mathcal{S}_{n}^{*}(X)$, and $Y \in \mathcal{C}_{n}^{*}:=\mathcal{C}_{n}^{*}(X)$. By linearity we may assume $M=\int Z_{-} d X^{(j)}$ for some $Z \in \mathcal{C}_{i}^{*}, i+j=n$, $i<n$, and $Y=A N$ for some $A \in A_{i}^{*}$ and $N \in \mathcal{C}_{j}^{*}, i+j=n$. By induction, $Z \in \mathcal{C}^{*}$, and by Corollary 4.7, $X^{(j)} \in \mathcal{H}^{*}$. So by Corollary 4.7, $\int Y_{-} d X^{(j)} \in \mathcal{S}^{*}\left(X^{(j)}\right)$. Therefore, $M \in \operatorname{Span}\left(\mathcal{S}^{*}\left(X^{(i)}\right)\right)_{i=1}^{n}$. If $j=n$ by what was just shown and otherwise by induction, we have $N \in \mathcal{C}^{*}$. So, $Y=A N \in \mathcal{C}^{*}$ by Corollary 4.7.

A principal and non-trivial property of $\mathcal{C}_{n}^{*}(X)$ is closedness under multiplication:
Proposition 6.2. Let $Y \in \mathcal{C}_{n}^{*}(X), Z \in \mathcal{C}_{m}^{*}(X), n, m \geq 0$. Then $Y Z, \int Y_{-} d Z \in \mathcal{C}_{m+n}^{*}(X) .{ }^{22}$
Proof. We use induction on $n+m$. The case $n+m=1$ is trivial. Assume $n+m \geq 2$. Note, if $A \in \mathcal{A}_{i}^{*}$ and $B \in \mathcal{A}_{j}^{*}$, then $A B \in \mathcal{A}_{i \vee j}^{*}$. This shows we may assume $Y \in \mathcal{S}_{n}^{*}$ and $Z \in \mathcal{S}_{m}^{*}$. By linearity we may further assume $Y=\int Y_{-}^{\prime} d X^{(j)}$ for some $Y^{\prime} \in \mathcal{C}_{i}^{*}$ with $i+j=n, i \geq 0$, $j \geq 1$, and $Z=\int Z_{-}^{\prime} d X^{(l)}$ for some $Z^{\prime} \in \mathcal{C}_{l}^{*}$ with $l+k=m, k \geq 0, l \geq 1$.

By induction we have $Y Z^{\prime} \in \mathcal{C}_{n+m-l}^{*}$. Therefore, $\int Y_{-} d Z$ is a sum of forms $\int A M_{-} d X^{(l)}$ for some $A \in \mathcal{A}_{a}^{*}, M \in \mathcal{S}_{b}^{*}$ with $a+b+l=n+m, a, b \geq 0$. Clearly, $A M \in \mathcal{C}_{n+m-l}^{*}$; so $\int A M_{-} d X^{(l)} \in \mathcal{S}_{n+m}^{*}$. It follows $\int Y_{-} d Z \in \mathcal{S}_{n+m}^{*}$. Next, we show $[Y, Z] \in \mathcal{C}_{m+n}^{*}$. We have,

$$
\begin{gathered}
{[Y, Z]=\int Y_{-}^{\prime} Z_{-}^{\prime} d\left[X^{(j)}, X^{(l)}\right]=\int Y_{-}^{\prime} Z_{-}^{\prime} d[X]^{(j+l)}} \\
=\int Y_{-}^{\prime} Z_{-}^{\prime} d X^{(j+l)}+\int Y_{-}^{\prime} Z_{-}^{\prime} d\langle X\rangle^{(j+l)} \\
=\int Y_{-}^{\prime} Z_{-}^{\prime} d X^{(j+l)}+Y^{\prime} Z^{\prime}\langle X\rangle^{(j+l)}-\int\langle X\rangle^{(j+l)} d\left(Y^{\prime} Z^{\prime}\right),
\end{gathered}
$$

[^7]the last step by integration by parts and continuity of $\langle X\rangle^{(j+l)}$. By induction $Y^{\prime} Z^{\prime} \in$ $\mathcal{C}_{n+m-j-l}^{*}$. Hence, the first term is in $\mathcal{S}_{n+m}^{*}$, the second term is in $\mathcal{C}_{n+m}^{*}$, and the third term is a sum of forms $\int\langle X\rangle^{(j+l)} d(A M)$ (or simpler forms $\int\langle X\rangle{ }^{(j+l)} d(A) \in \mathcal{A}_{n+m}^{*}$ ) for some $A \in \mathcal{A}_{c}^{*}$ and $M \in \mathcal{S}_{d}^{*}$ with $c+d+j+l=n+m, c \geq 0, d \geq 1$. Set $B:=\int\langle X\rangle^{(j+l)} d A$. Then $B \in \mathcal{A}_{j+l+c}^{*}$. Integrating by parts twice (bracket vanishing by continuities of $\left.\langle X\rangle^{(j+l)}, B\right)$
\[

$$
\begin{gathered}
\int\langle X\rangle^{(j+l)} d(A M)=\int A\langle X\rangle^{(j+l)} d M+\int M_{-}\langle X\rangle^{(j+l)} d A \\
=\int A\langle X\rangle^{(j+l)} d M+\int M_{-} d B=\int A\langle X\rangle^{(j+l)} d M+B M-\int B d M .
\end{gathered}
$$
\]

All three terms are visibly in $\mathcal{C}_{n+m}^{*}$. Hence, $[Y, Z] \in \mathcal{C}_{n+m}^{*}$. We already showed $\int Y_{-} d Z$, and by symmetry $\int Z_{-} d Y$, are in $\mathcal{C}_{n+m}^{*}$. Therefore, by Itô's product rule, so is $Y Z$.
In particular, $X^{n} \in \mathcal{C}_{1}^{*}(X)$ as $X \in \mathcal{C}_{n}^{*}(X)$. If $Y \in \mathcal{C}_{n}^{*}$ and $s \in[0, T]$, then clearly the stopped process $Y_{\cdot \wedge s}:=\left(Y_{t \wedge s}\right)_{t \in[0, T]}$ is also in $\mathcal{C}_{n}^{*}(X)$. Therefore the product $X_{\cdot \wedge t_{1}} \cdots X_{\cdot \wedge t_{n}} \in \mathcal{C}_{n}^{*}(X)$.

We illustrate the significance of this for the case when $\langle X\rangle^{(n)}$ are deterministic here, and for the stochastic case in Section 7.2. We begin with the univariate case.
Corollary 6.3. If $\langle X\rangle^{(i)}$ are deterministic for all $i \in \mathbb{N}$ then for all $\left(t_{1}, \cdots, t_{n}\right) \in[0, T]^{n}$,

$$
\overline{\mathbb{E}}\left(X_{t_{1}} \cdots X_{t_{n}} \mid \mathbb{F}\right) \in \operatorname{Span}\left(\mathcal{S}^{*}\left(X^{(i)}\right)\right)_{i=1}^{n}
$$

Proof. Note, $X_{t_{1}} \cdots X_{t_{n}}=Y_{T}$, where $Y:=X_{\cdot \wedge t_{1}} \cdots X_{. \wedge t_{n}}$. So, it suffices to show $\overline{\mathbb{E}}\left(Y_{T} \mid \mathbb{F}\right) \in$ $\operatorname{Span}\left(\mathcal{S}^{*}\left(X^{(i)}\right)\right)_{i=1}^{n}$. By the previous proposition, $Y \in \mathcal{C}_{n}^{*}(X)$ because each $X_{\cdot \wedge t_{i}} \in \mathcal{C}_{1}^{*}(X)$. So, by linearity, we may assume $Y=A M$ for some $A \in A_{i}^{*}$ and $M \in \mathcal{S}_{j}^{*}, i+j=n$, $i, j \geq 0$. But, the assumption implies that $A$ is deterministic. Therefore, $\overline{\mathbb{E}}\left(Y_{T} \mid \mathbb{F}\right)=$ $A_{T} \overline{\mathbb{E}}\left(M_{T} \mid \mathbb{F}\right)=A_{T} M$. The desired result now follows from Prop. 6.1.
The multivariate case combines a similar argument with Cor. 4.3 and Prop. 4.5 as follows.
Lemma 6.4. Let $X, Y \in \mathcal{C}^{*}$. Assume $[X, Y]=0$ and $\langle X\rangle^{(n)}$ and $\left\langle X^{\prime}\right\rangle^{(n)}$ are deterministic for all $n \in \mathbb{N}$. Then, for any $Z \in \mathcal{C}_{n}^{*}(X)$ and $W \in \mathcal{C}_{m}^{*}(Y)$, we have $[Z, W]=0$ and

$$
\overline{\mathbb{E}}\left(Z_{T} W_{T} \mid \mathbb{F}\right)=\overline{\mathbb{E}}\left(Z_{T} \mid \mathbb{F}\right) \overline{\mathbb{E}}\left(W_{T} \mid \mathbb{F}\right) \in \operatorname{Span}\left(\mathcal{S}^{*}\left(X^{(i)}\right), \mathcal{S}^{*}\left(Y^{(j)}\right)\right)_{1 \leq i \leq n, 1 \leq j \leq m}
$$

Proof. By definition of $\mathcal{C}_{n}^{*}$ and linearity, we may assume $Z=A M$ for some $A \in \mathcal{A}_{k}^{*}(X)$ and $M \in \mathcal{S}_{l}^{*}(X)$ such that $k+l=n, k, l \geq 0$, and similarly, $W=B N$ for some $B \in \mathcal{A}_{a}^{*}(Y)$ and $N \in \mathcal{S}_{b}^{*}(X)$ such that $a+b=m, k, l \geq 0$. By Prop. 6.1, we have $M=\sum_{i=1}^{l} M_{i}$ and $N=\sum_{j=1}^{b} N_{j}$ for some $M_{i} \in \mathcal{S}^{*}\left(X^{(i)}\right)$ and $N_{j} \in \mathcal{S}^{*}\left(Y^{(j)}\right)$. And by Prop. 4.5 $\left[X^{(i)}, Y^{(j)}\right]=0$. Applying Cor. 4.3, with $M^{\prime}=X^{(i)}$ and $N^{\prime}=Y^{(j)}$, we see that $M_{i} N_{j} \in$ $\mathcal{S}^{*}\left(X^{(i)}\right) \oplus \mathcal{S}^{*}\left(Y^{(j)}\right)$. We conclude $M N \in \mathcal{K}:=\left(\operatorname{Span}\left(\mathcal{S}^{*}\left(X^{(i)}\right), \mathcal{S}^{*}\left(Y^{(j)}\right)\right)_{1 \leq i \leq n, 1 \leq j \leq m}\right.$. As $M N \in \mathcal{M}$, we have $\overline{\mathbb{E}}\left(M_{T} N_{T} \mid \mathbb{F}\right)=M N$. (Both martingales have the same terminal value.) Now, the assumption implies $A$ and $B$ are deterministic. Hence,

$$
\overline{\mathbb{E}}\left(Z_{T} W_{T} \mid \mathbb{F}\right)=\overline{\mathbb{E}}\left(A_{T} M_{T} B_{T} N_{T} \mid \mathbb{F}\right)
$$

$$
\begin{gathered}
=A_{T} B_{T} \overline{\mathbb{E}}\left(M_{T} N_{T} \mid \mathbb{F}\right)=A_{T} B_{T} N M=A_{T} B_{T} \overline{\mathbb{E}}\left(M_{T} \mid \mathbb{F}\right) \overline{\mathbb{E}}\left(N_{T} \mid \mathbb{F}\right) \\
=\overline{\mathbb{E}}\left(A_{T} M_{T} \mid \mathbb{F}\right) \overline{\mathbb{E}}\left(B_{T} N_{T} \mid \mathbb{F}\right)=\overline{\mathbb{E}}\left(Z_{T} \mid \mathbb{F}\right) \overline{\mathbb{E}}\left(W_{T} \mid \mathbb{F}\right)
\end{gathered}
$$

Since as we showed above $M N \in \mathcal{K}$, and $A_{T}, B_{T}$ are deterministic, $A_{T} B_{T} N M \in \mathcal{K}$.
A straightforward generalization using induction gives
Lemma 6.5. Let $Y_{1}, \cdots, Y_{m} \in \mathcal{C}^{*}$. Assume $\left[Y_{j}, Y_{k}\right]=0$ if $j \neq k$ and $\left\langle Y_{j}\right\rangle^{(k)}$ are deterministic all $j, k$. Let $Z_{j} \in \mathcal{C}_{n_{j}}^{*}\left(Y_{k}\right), 1 \leq j \leq m$. Then, $\left[Z_{j}, Z_{k}\right]=0$ for $j \neq k$, and

$$
\overline{\mathbb{E}}\left(Z_{1}(T) \cdots Z_{m}(T) \mid \mathbb{F}\right)=\overline{\mathbb{E}}\left(Z_{1}(T) \mid \mathbb{F}\right) \cdots \overline{\mathbb{E}}\left(Z_{m}(T) \mid \mathbb{F}\right) \in \operatorname{Span}\left(\mathcal{S}^{*}\left(Y_{j}^{\left(k_{j}\right)}\right)\right)_{1 \leq j \leq m, 1 \leq k_{j} \leq n_{j}}
$$

Corollary 6.6. Let $X_{i} \in \mathcal{C}^{*}, i \in \mathbb{N}$. Assume $\left[X_{i}, X_{j}\right]=0$ if $i \neq j$ and $\left\langle X_{i}\right\rangle^{(j)}$ are deterministic all $i, j \in \mathbb{N}$. Then for all $n \in \mathbb{N},\left(t_{1}, \cdots, t_{n}\right) \in[0, T]^{n}$, and $\left(i_{1}, \cdots, i_{n}\right) \in \mathbb{N}^{n}$,

$$
\overline{\mathbb{E}}\left(X_{i_{1}}\left(t_{1}\right) \cdots X_{i_{n}}\left(t_{n}\right) \mid \mathbb{F}\right) \in \operatorname{Span}\left(\mathcal{S}^{*}\left(X_{i}^{(j)}\right)\right)_{i \in \mathbb{N}, 1 \leq j \leq n}
$$

Proof. Let $m$ be the number of (distinct) elements in the set $\left\{i_{1}, \cdots, i_{n}\right\}$. By a permutation if necessary, we may assume that $i_{1}=\cdots=i_{n_{1}}, i_{n_{1}+1}=\cdots=i_{n_{2}}, \cdots, i_{n_{m-1}}=\cdots i_{n_{m}}=i_{n}$, with $n_{1}+\cdots+n_{m}=n, n_{j} \geq 1$. (So non-distinct elements are put next to each other). Set $Y_{j}:=X_{n_{j}}, j=1, \cdots, m$. Define the product $Z_{j}(t):=Y_{j}\left(t \wedge t_{n_{j}}\right) \cdots Y_{j}\left(t \wedge t_{n_{j+1}-1}\right)$. By Prop 6.2, $Z_{j} \in \mathcal{C}_{n_{j}}^{*}\left(Y_{k}\right)$. Moreover, clearly, $Z_{1}(T) \cdots Z_{m}(T)=X_{i_{1}}\left(t_{1}\right) \cdots X_{i_{n}}\left(t_{n}\right)$. The desired result now follows directly from the previous lemma.

Remark. Cor. 6.6 generalizes Cor. 6.3: simply set $X_{1}=X$ and $X_{i}=0$ for $i \geq 2$.

## 7. Square-integrable martingale representation

We set $\mathcal{C}:=\mathcal{C}^{*} \cap \mathcal{C}_{*}$. (Recall, $\mathcal{C}^{*}$ is the set of semimartingales of finite moments with continuous angel brackets, and $\mathcal{C}_{*}$ is the set of processes with exponentially decreasing law.)
7.1. Lévy and Infinite-dimensional Brownian filtrations. We begin with an extension of the $[\mathrm{N}-\mathrm{S}]$ result to Lévy processes which may be non-stationary.
Theorem 7.1. Let $X \in \mathcal{C}$ be such that $\langle X\rangle^{(i)}$ are deterministic for all $i \geq 1$. Let $\left(N_{i}\right)_{i=1}^{\infty}$ denote the strong orthogonalization of $\left(X^{(i)}\right)_{i=1}^{\infty}$. Assume $\mathbb{F}=\mathbb{F}(X)$. Then

$$
\mathcal{H}^{2}=\bigoplus_{i=1}^{\infty} \mathcal{S}\left(N_{i}\right)
$$

Proof. Let $\left(t_{1}, \cdots, t_{n}\right) \in[0, T]^{n}, n \in \mathbb{N}$. By Cor. 6.3, $\overline{\mathbb{E}}\left(X_{t_{1}} \cdots X_{t_{n}} \mid \mathbb{F}\right) \in \operatorname{Span}\left(\mathcal{S}\left(X^{(i)}\right)\right)_{i=1}^{n}$. Hence by Cor. 5.6, $\operatorname{Span}\left(\mathcal{S}\left(X^{(i)}\right)\right)_{i=1}^{n}$ is dense in $\mathcal{H}^{2}$. Prop. 3.1 now yields the result.

Remark: A curious consequence is that the continuous martingale part $X^{c}$ is in $\bigoplus_{i=1}^{\infty} \mathcal{S}\left(N_{i}\right)$. It somehow indicates that the discontinuous martingale part can be recovered in the limit from stochastic integral of $X^{(n)}, n \geq 2$. This is readily seen when $X$ is a linear combination
of $n$ independent Poisson processes. Then, in fact, $X^{(1)} \in \operatorname{Span}\left\{X^{(2)}, \cdots, X^{(n+1)}\right\}$.
For a Brownian motion or a Poisson process the result simplifies to $\mathcal{H}^{2}=\mathcal{S}\left(X^{(1)}\right)$.
We need the Brownian case in our main results. Let us define a Brownian martingale as a continuous martingale such that $\langle B\rangle$ is deterministic. The law of $B$ is then Gaussian, implying $B \in \mathcal{C}$. Clearly $B^{(n)}=0$ for $n \geq 2$, as $B$ is continuous. When $T<\infty$, a Brownian motion is a Brownian-martingale. In general, if $W$ is a Brownian motion, then $\int H d W$ is a Brownian martingale for any deterministic process $H \in \mathcal{S}(W)$, i.e., with $\int_{0}^{T} H_{t}^{2} d t<\infty$. Any Brownian martingale $B$ with strictly increasing $\langle B\rangle$ is of this type. ${ }^{23}$

By a Poisson-martingale we mean a martingale $P \in \mathcal{C}$ such that $\langle P\rangle$ is deterministic and $P^{(2)}=P$. Clearly then, $P^{(n)}=P,\langle P\rangle^{(n)}=\langle P\rangle$, and $[P]^{(n)}=[P]$ for all $n \geq 2$. A non-stationary compensated Poisson process $P$ with intensity $\left(\lambda_{t}\right)$ is a Poisson martingale if $\int_{0}^{T} \lambda_{t} d t<\infty$. Then, $\langle P\rangle=\int \lambda d t$. The stationary case of constant $\lambda$ implies $T<\infty$.

As Brownian and Poisson martingales both satisfy $N_{n}=0$ for $n \geq 2$, Theorem 7.1 yields
Corollary 7.2. Let $B$ be either a Brownian martingale or a Poisson martingale. Assume $\mathbb{F}=\mathbb{F}(B)$. Then $\mathcal{H}^{2}=\mathcal{S}(B)$.

We now turn to multivariate Lévy filtrations. The argument is similar, but the statement utilizes a notation of iterated countable direct sums which we first explain. Suppose we have a doubly indexed family $\left(\mathcal{K}_{i j}\right)_{i, j \in \mathbb{N}}$ of closed, pairwise orthogonal subspaces $K_{i j}$ of $\mathcal{H}^{2}$. If we choose any bijection between $\mathbb{N} \times \mathbb{N}$ and $\mathbb{N}$, we can identify this family with a sequence of closed orthogonal subspaces, and then take their direct sum. Clearly, the resulting subspace is independent of the choice of bijection. We denote this direct sum by

$$
\bigoplus_{i, j=1}^{\infty} \mathcal{K}_{i j}:=\left\{\sum_{i, j=1}^{\infty} N_{i j}: N_{i j} \in \mathcal{K}_{i j} ; \sum_{i, j=1}^{\infty}\left\|N_{i j}\right\|^{2}<\infty\right\} \subset \mathcal{H}^{2}
$$

The order of the summation is irrelevant: we can interchange sums and write $\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} N_{i j}$ $=\sum_{i, j=1}^{\infty} N_{i j}=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} N_{i j}$. Each inner sum is in $\mathcal{H}^{2}$. This, corresponds to writing,

$$
\bigoplus_{j=1}^{\infty} \bigoplus_{i=1}^{\infty} \mathcal{K}_{i j}=\bigoplus_{i, j=1}^{\infty} \mathcal{K}_{i j}=\bigoplus_{i=1}^{\infty} \bigoplus_{j=1}^{\infty} \mathcal{K}_{i j}
$$

Theorem 7.3. Let $X_{i} \in \mathcal{C}, i \in \mathbb{N}$ be such that $\left[X_{i}, X_{j}\right]=0$ for $i \neq j$ and $\left\langle X_{i}\right\rangle^{(j)}$ are deterministic for all $i, j \in \mathbb{N}$. Assume $\mathbb{F}=\mathbb{F}\left(X_{i}\right)_{i=1}^{\infty}$. Then

$$
\mathcal{H}^{2}=\bigoplus_{i, j=1}^{\infty} \mathcal{S}\left(N_{i j}\right)
$$

where, for each $i$, the sequence $\left(N_{i j}\right)_{j=1}^{\infty}$ is the strong orthogonalization of $\left(X_{i}^{(j)}\right)_{j=1}^{\infty}$.

[^8]Proof. Let $\left(t_{1}, \cdots, t_{n}\right) \in[0, T]^{n}$ and $\left(i_{1}, \cdots, i_{n}\right) \in \mathbb{N}^{n}, n \in \mathbb{N}$. By Corollary 6.6, we have $\overline{\mathbb{E}}\left(X_{i_{1}}\left(t_{1}\right) \cdots X_{i_{n}}\left(t_{n}\right) \mid \mathbb{F}\right) \in \operatorname{Span}\left(\mathcal{S}\left(X_{i}^{(j)}\right)\right)_{i, j=1}^{\infty}$. Hence by Corollary 5.7, $\operatorname{Span}\left(\mathcal{S}\left(X_{i}^{(j)}\right)\right)_{i, j=1}^{\infty}$ is dense in $\mathcal{H}^{2}$. The desired result now follows by Prop. 3.1, applied to the doubly indexed sequence of martingales $\left.\left(X_{i}^{(j)}\right)\right)_{i, j=1}^{\infty}$.

As a consequence we obtain an infinite-dimensional extension of the standard finite-dimensional martingale representation theorems for Brownian motions and Poisson processes.

Corollary 7.4. Let $\left(B_{i}\right)_{i=1}^{\infty}$ be sequence martingales such that $\left[B_{i}, B_{j}\right]=0$ for $i \neq j$, and for each $i, B_{i}$ is either a Brownian or a Poisson martingale. Assume $\mathbb{F}=\mathbb{F}\left(B_{i}\right)_{i=1}^{\infty}$. Then,

$$
\mathcal{H}^{2}=\bigoplus_{i=1}^{\infty} \mathcal{S}\left(B_{i}\right)
$$

Moreover, if all $B_{i}$ are Brownian martingales, then every martingale in $\mathcal{H}^{2}$ is continuous.
Proof. The first statement follows because $N_{i j}=0$ for $j \geq 2$ and $N_{i 1}=B_{i}$. As for the continuity statement, let $M \in \mathcal{H}^{2}$. Write $M=M^{c}+M^{d}$ for the continuous-discontinuous decomposition. If all $B_{i}$ are continuous, then $M^{d}$ is strongly orthogonal to all $B_{i}$, and hence also strong orthogonal to $\bigoplus_{i=1}^{\infty} \mathcal{S}\left(B_{i}\right)=\mathcal{H}^{2}$, implying $M^{d}=0$.

Remark. The above specializes to the standard finite-dimensional case by taking all but a finite number of $B_{i}$ equal to zero. Also, the assumption $\left[B_{i}, B_{j}\right]=0, i \neq j$ can weakened to correlated Brownian motions (such as $\left[B_{i}, B_{j}\right]=\rho_{i j} t$ ). The conclusion is then expressed in terms of the orthogonalization of the $B_{i}$, which will be independent Brownian motions.
7.2. The main result. We now generalize the results of the previous section to stochastic $\langle X\rangle^{(n)}$, beginning with the univariate case.

Theorem 7.5. Let $X \in \mathcal{C}$ and $\left(B_{i}\right)_{i=1}^{\infty}$ be a sequence of Brownian martingales such that $\left[B_{i}, B_{j}\right]=0$ for $i \neq j,\left[X, B_{i}\right]=0$ all $i$, and $\langle X\rangle^{(n)}$ is adapted to $\mathbb{F}\left(B_{i}\right)_{i=1}^{\infty}$ all $n$. Let $\left(N_{i}\right)_{i=1}^{\infty}$ denote the strong orthogonalization of $\left(X^{(i)}\right)_{i=1}^{\infty}$. Assume $\mathbb{F}=\mathbb{F}\left(X, B_{1}, B_{2}, \cdots\right)$. Then

$$
\mathcal{H}^{2}=\bigoplus_{i=1}^{\infty} \mathcal{S}\left(B_{i}\right) \oplus \bigoplus_{j=1}^{\infty} \mathcal{S}\left(N_{j}\right)
$$

Proof. Note, $\left[X^{(j)}, B_{i}\right]=0$ for all $i, j$, for $j=1$ by assumption, and for $j \geq 2$ because $X^{(j)}$ is purely discontinuous and $B_{i}$ is continuous. This implies $\left[B_{i}, N_{j}\right]=0$, which in turn implies implies $\bigoplus_{i=1}^{\infty} \mathcal{S}\left(B_{i}\right)$ and $\bigoplus_{j=1}^{\infty} \mathcal{S}\left(N_{j}\right)$ are orthogonal subspaces. Therefore, $\bigoplus_{i=1}^{\infty} \mathcal{S}\left(B_{i}\right)+\bigoplus_{j=1}^{\infty} \mathcal{S}\left(N_{j}\right)$ is a closed subspace of $\mathcal{H}^{2}$; so it suffices to show it is dense.

Corollary 5.7 applied to the sequence $\left(X, B_{1}, B_{2}, \cdots\right)$ implies that the linear span of martingales of the form $\overline{\mathbb{E}}\left(\left(X_{t_{1}} \cdots X_{t_{n}}\right)\left(B_{i_{1}}\left(s_{1}\right) \cdots B_{i_{m}}\left(s_{m}\right)\right) \mid \mathbb{F}\right)$ is dense in $\mathcal{H}^{2}$, as the indices run over $\left(t_{1}, \cdots, t_{n}\right) \in[0, T]^{n}, n \in \mathbb{N}$, and $\left(s_{1}, \cdots, s_{m}\right) \in[0, T]^{m},\left(i_{1}, \cdots, i_{m}\right) \in \mathbb{N}^{m}$, $m \in \mathbb{N}$. As in Prop. 3.1, we have, $\operatorname{Span}\left(\mathcal{S}\left(X^{(j)}\right)\right)_{j=1}^{n} \subset \bigoplus_{j=1}^{n} \mathcal{S}\left(N_{j}\right) \subset \bigoplus_{j=1}^{\infty} \mathcal{S}\left(N_{j}\right)$.

Therefore it is sufficient to show that

$$
\overline{\mathbb{E}}\left(\left(X_{t_{1}} \cdots X_{t_{n}}\right)\left(B_{i_{1}}\left(s_{1}\right) \cdots B_{i_{m}}\left(s_{m}\right)\right) \mid \mathbb{F}\right) \in \bigoplus_{i=1}^{\infty} \mathcal{S}\left(B_{i}\right)+\operatorname{Span}\left(\mathcal{S}\left(X^{(j)}\right)\right)_{j=1}^{n}
$$

Set $Y:=X_{. \wedge t_{1}} \cdots X_{\wedge \wedge t_{n}}$. Note, $X_{t_{1}} \cdots X_{t_{n}}=Y_{T}$. Set $\varphi:=B_{i_{1}}\left(s_{1}\right) \cdots B_{i_{m}}\left(s_{m}\right)$. We must show $\overline{\mathbb{E}}\left(\varphi Y_{T} \mid \mathbb{F}\right) \in \bigoplus_{i=1}^{\infty} \mathcal{S}\left(B_{i}\right)+\operatorname{Span}\left(\mathcal{S}\left(X^{(j)}\right)\right)_{j=1}^{n}$. By Prop. 6.2, $Y \in \mathcal{C}_{n}^{*}(X)$. So, $Y$ is a sum of terms of the form $A M$, where $A \in \mathcal{A}_{l}^{*}(X)$ and $M \in \mathcal{S}_{k}^{*}(X), l+k=n, 0 \leq l, k \leq n$. Note that $\varphi A_{T}$ is in $L^{*}$ and is also $\mathcal{G}:=\mathcal{F}\left(B_{i}\right)_{i=1}^{n}$-measurable because both $\varphi$ and $A_{T}$ have these two properties. Therefore, it is sufficient to show that for all $M \in \mathcal{S}_{k}^{*}(X), k \leq n$, and all $\mathcal{G}$-measurable $\xi \in L^{*}$, we have $\overline{\mathbb{E}}\left(\xi M_{T} \mid \mathbb{F}\right) \in \bigoplus_{i=1}^{\infty} \mathcal{S}\left(B_{i}\right)+\operatorname{Span}\left(\mathcal{S}\left(X^{(j)}\right)\right)_{j=1}^{n}$.

Let $\mathbb{G}:=\mathbb{F}\left(B_{i}\right)_{i=1}^{\infty}$. Set $N:=\overline{\mathbb{E}}(\xi \mid \mathbb{G})$. Cor. 7.4 , applied to the filtration $\mathbb{G}$ implies $N$ is continuous and $N=\sum_{i=1}^{\infty} \int H_{i} d B_{i}$ for some $\mathbb{G}$-predictable processes $H_{i}$ satisfying $\sum_{i=1}^{\infty} \mathbb{E} \int_{0}^{T} H_{i}(t)^{2} d\left\langle B_{i}\right\rangle<\infty$. But, $H_{i}$ are a-forteriori $\mathbb{F}$-predictable too. So, in fact, we have $N \in \bigoplus_{i=1}^{\infty} \mathcal{S}\left(B_{i}\right)$. In particular, $N$ is also an $\mathbb{F}$-martingale. Hence $N=\overline{\mathbb{E}}(\xi \mid \mathbb{F})$.

Since $N$ is continuous and $X^{(n)}$ are purely discontinuous for $n \geq 2$, we have $\left[N, X^{(n)}\right]=0$. This is also true for $n=1$, as $\left[X, B_{i}\right]=0$ by assumption. Hence, $[N, M]=0$. Since $N, M \in \mathcal{H}^{*} \subset \mathcal{H}^{2}$, it follows $N M \in \mathcal{M}$. Hence $\overline{\mathbb{E}}\left(\xi M_{T} \mid \mathbb{F}\right)=N M$, as both sides are martingales with the same value at $T$ (namely $\xi M_{T}$ ).

Now, $N M=\int N d M+\int M_{-} d N$. By Prop. $4.2, \int M_{-} d N \in \mathcal{S}(N)$. Since $\bigoplus_{i=1}^{\infty} \mathcal{S}\left(B_{i}\right)$ is a stable subspace and contains $N$, it contains $\mathcal{S}(N)$. Therefore, $\int M_{-} d N \in \bigoplus_{i=1}^{\infty} \mathcal{S}\left(B_{i}\right)$. So, it remains to show $\int N d M \in \operatorname{Span}\left(\mathcal{S}\left(X^{(j)}\right)\right)_{j=1}^{n}$. Since $M \in \mathcal{S}_{k}^{*}(X)$, it is a sum of terms of form $\int A d X^{(i)}$ with $A \in \mathcal{A}^{*}$ and $i \leq k \leq n$. But, by Cor. 4.7, $X^{(i)} \in \mathcal{H}^{*}$ and $A N \in \mathcal{C}^{*}$. Hence, by Cor. 4.7, $\int A N d X^{(i)} \in \mathcal{S}\left(X^{(i)}\right) \subset \operatorname{Span}\left(\mathcal{S}\left(X^{(j)}\right)\right)_{j=1}^{n}$, as desired.

Remark. Lévy case is special case: simply take $B_{i}=0$ for all $i$. The Brownian case of Corollary 7.4 is also a special case: simply take $X=0$.

Remark. Since $B_{i}$ are continuous, the assumption $\left[X, B_{i}\right]=0$ is equivalent to $\left[X^{c}, B_{i}\right]=$ 0 . It is easy to see that that this assumption can be weakened to the following: $X^{c}=M+N$ for some $M, N \in \mathcal{H}^{2}$ such that $\left[M, B_{i}\right]=0$ for all $i$ and $N$ is adapted to $\mathbb{F}\left(B_{i}\right)_{i=1}^{\infty}$.

Remark. We assumed $X_{0}=0$ throughout. This assumption is relaxed simply by requiring $X-X_{0} \in \mathcal{C}$ instead of $X \in \mathcal{C}$.

Open Question: Assume $X^{c}$ is a Brownian motion, $\langle X\rangle^{(n)}$ are adapted to $\mathbb{F}\left(X^{c}\right)$, and $\mathbb{F}=\mathbb{F}(X)$. If $\langle X\rangle^{(n)}$ are deterministic, then, as previously remarked, $X^{c} \in \bigoplus_{j=1}^{\infty} \mathcal{S}\left(N_{j}\right)$. The question is to what extend this holds in general. It holds in the simple case where $X-X^{c}$ is a linear combination of independent Cox processes. When it holds, the conclusion of above theorem sharpens to $\mathcal{H}^{2}=\bigoplus_{j=1}^{\infty} \mathcal{S}\left(N_{j}\right)$ from $\mathcal{H}^{2}=\mathcal{S}\left(X^{c}\right) \oplus \bigoplus_{j=1}^{\infty} \mathcal{S}\left(N_{j}\right)$.

The above result extends to the multivariate case by arguments already visited. For completeness, we include the proof.

Theorem 7.6. Let $X_{i} \in \mathcal{C}, i \in \mathbb{N}$. Let $\left(B_{i}\right)_{i=1}^{\infty}$ be a sequence of Brownian martingales. Assume $\left[X_{i}, X_{j}\right]=\left[B_{i}, B_{j}\right]=0$ for $i \neq j$, and for all $i, j$, $\left[X_{i}, B_{j}\right]=0$, and $\left\langle X_{i}\right\rangle^{(j)}$ are adapted to $\mathbb{F}\left(B_{k}\right)_{k=1}^{\infty}$. Assume further that $\mathbb{F}=\mathbb{F}\left(X_{i}, B_{i}\right)_{i=1}^{\infty}$. Then

$$
\mathcal{H}^{2}=\bigoplus_{k=1}^{\infty} \mathcal{S}\left(B_{k}\right) \oplus \bigoplus_{i, j=1}^{\infty} \mathcal{S}\left(N_{i j}\right),
$$

where, for each $i$, the sequence $\left(N_{i j}\right)_{j=1}^{\infty}$ is the strong orthogonalization of $\left(X_{i}^{(j)}\right)_{j=1}^{\infty}$.
Proof. As above, we have $\left[X_{i}^{(j)}, B_{k}\right]=0$, all $i, j, k$, and by Prop 4.5, we also have $\left[X_{i}^{(j)}, X_{k}^{(l)}\right]=$ 0 , all $i, j, k, l$. Hence all $B_{k}$ and $N_{i j}$ are strongly orthogonal to each other. Therefore $\bigoplus_{k=1}^{\infty} \mathcal{S}\left(B_{k}\right) \oplus \bigoplus_{i, j=1}^{\infty} \mathcal{S}\left(N_{i j}\right)$ is a closed subspace of $\mathcal{H}^{2}$, and it suffices to show it is dense.

Corollary 5.7 applied to the sequence $\left(X_{i}, B_{i}\right)_{i=1}^{\infty}$ implies that the linear span of martingales of the form $\overline{\mathbb{E}}\left(\left(X_{j_{1}}\left(t_{1}\right) \cdots X_{j_{n}}\left(t_{n}\right)\right)\left(B_{i_{1}}\left(s_{1}\right) \cdots B_{i_{m}}\left(s_{m}\right)\right) \mid \mathbb{F}\right)$ is dense in $\mathcal{H}^{2}$, as the indices run over $\left(t_{1}, \cdots, t_{n}\right) \in[0, T]^{n},\left(j_{1}, \cdots, j_{n}\right) \in \mathbb{N}^{n}, n \in \mathbb{N}$, and $\left(s_{1}, \cdots, s_{m}\right) \in[0, T]^{m}$, $\left(i_{1}, \cdots, i_{m}\right) \in \mathbb{N}^{m}, m \in \mathbb{N}$. As in Prop. 3.1, we have, $\operatorname{Span}\left(\mathcal{S}\left(X_{i}^{(j)}\right)\right)_{j=1}^{n} \subset \bigoplus_{j=1}^{n} \mathcal{S}\left(N_{i j}\right)$. Therefore it suffices to show that

$$
\overline{\mathbb{E}}\left(\left(X_{j_{1}}\left(t_{1}\right) \cdots X_{j_{n}}\left(t_{1}\right)\right)\left(B_{i_{1}}\left(s_{1}\right) \cdots B_{i_{m}}\left(s_{m}\right)\right) \mid \mathbb{F}\right) \in \bigoplus_{k=1}^{\infty} \mathcal{S}\left(B_{k}\right)+\operatorname{Span}\left(\mathcal{S}\left(X_{i}^{(j)}\right)\right)_{i, j=1}^{n}
$$

Set $Y_{t}:=X_{j_{1}}\left(t \wedge t_{1}\right) \cdots X_{j_{n}}\left(t \wedge t_{n}\right)$, and $\varphi:=B_{i_{1}}\left(s_{1}\right) \cdots B_{i_{m}}\left(s_{m}\right)$. As $\left.X_{j_{1}}\left(t_{1}\right) \cdots X_{j_{n}}\left(t_{1}\right)\right)=$ $Y_{T}$, we must show $\overline{\mathbb{E}}\left(\varphi Y_{T} \mid \mathbb{F}\right) \in \bigoplus_{k=1}^{\infty} \mathcal{S}\left(B_{k}\right)+\operatorname{Span}\left(\mathcal{S}\left(X_{i}^{(j)}\right)\right)_{i, j=1}^{n}$. As in the proof of Cor. 6.6, we break $j_{1}, \cdots, j_{n}$ into distinct elements, which by a permutation we may assume are next to each other. As such, we can write $Y=Y_{1} \cdots Y_{l}$, where each $Y_{i}$ is of the form $X_{j_{i}}\left(t \wedge t_{k_{1}}\right) \cdots X_{j_{i}}\left(t \wedge t_{k_{j_{i}}}\right)$. By Prop. 6.2, each $Y_{i} \in \mathcal{C}_{m_{i}}^{*}\left(X_{i}\right)$ for some $m_{i} \geq 1$ with $\sum_{i} m_{i}=n$. So, $Y_{i} \in \mathcal{C}_{n}^{*}\left(X_{i}\right)$. So, each $Y_{i}$ is a sum of terms of the form $A_{i} M_{i}$, where $A_{i} \in \mathcal{A}_{l_{i}}^{*}\left(X_{i}\right)$ and $M_{i} \in \mathcal{S}_{k_{i}}^{*}\left(X_{i}\right), l_{i}+k_{i}=n, 0 \leq l_{i}, k_{i} \leq n$. Note that $\varphi A_{1}(T) \cdots A_{l}(T)$ is in $L^{*}$ and is also $\mathcal{G}:=\mathcal{F}\left(B_{i}\right)_{i=1}^{n}$-measurable because $\varphi$ and all $A_{i}(T)$ have these two properties. Therefore, it is sufficient to show that for all $M_{i} \in \mathcal{S}_{k_{i}}^{*}\left(X_{i}\right), k_{i} \leq n, i \leq l(l \leq n)$ and all $\mathcal{G}$-measurable $\xi \in L^{*}$, we have $\overline{\mathbb{E}}\left(\xi M_{1}(T) \cdots M_{l}(T) \mid \mathbb{F}\right) \in \bigoplus_{i=1}^{\infty} \mathcal{S}\left(B_{i}\right)+\operatorname{Span}\left(\mathcal{S}\left(X_{i}^{(j)}\right)\right)_{i, j=1}^{n}$.

Let $\mathbb{G}:=\mathbb{F}\left(B_{i}\right)_{i=1}^{\infty}$. Set $N:=\overline{\mathbb{E}}(\xi \mid \mathbb{G})$. As in the proof of Theorem 7.5, it follows that is $N$ is continuous and is actually $\mathbb{F}$-martingale; so $N=\overline{\mathbb{E}}(\xi \mid \mathbb{F})$. As before, the continuity of $N$ and the assumption imply that $\left[N, X_{i}^{(j)}\right]=0$, all $i, j$. Hence, $\left[N, M_{i}\right]=0$, all $i$. Moreover, as $\left[X_{i}^{(k)}, X_{j}^{(l)}\right]=0$ by Prop 4.5 for $i \neq j$, we get $\left[M_{i}, M_{j}\right]=0$ for $i \neq j$. As $N, M_{i} \in \mathcal{H}^{*}$, these imply that $M:=M_{1} \cdots M_{l}$ and $N M$ are martingales. Hence, $\overline{\mathbb{E}}\left(\xi M_{1}(T) \cdots M_{l}(T) \mid \mathbb{F}\right)=N M$, as both sides are martingales with the same value at $T$.
Now, $N M=\int N d M+\int M_{-} d N$. By Prop. $4.2, \int M_{-} d N \in \mathcal{S}(N)$. Since $\bigoplus_{i=1}^{\infty} \mathcal{S}\left(B_{i}\right)$ is a stable subspace and contains $N$, it contains $\mathcal{S}(N)$. Therefore, $\int M_{-} d N \in \bigoplus_{i=1}^{\infty} \mathcal{S}\left(B_{i}\right)$. So, it remains to show $\int N d M \in \operatorname{Span}\left(\mathcal{S}\left(X_{i}^{(j)}\right)\right)_{i, j=1}^{n}$. But, $\int N d M=\int N M_{2-} \cdots M_{l-} d M_{1}+$ $\cdots+\int N M_{1-} \cdots M_{l-1-} d M_{l}$. Since $M_{i} \in \mathcal{S}_{k_{i}}^{*}\left(X_{i}\right)$, it is a sum of terms of the form $\int A_{i} d X_{i}^{\left(j_{i}\right)}$ with $A_{i} \in \mathcal{A}^{*}$ and $j_{i} \leq k_{i} \leq n$. But, by Cor. 4.7, $X_{i}^{\left(j_{i}\right)} \in \mathcal{H}^{*}$ and also
all the products $M_{1} \cdots M_{l-1} A_{l} N, \cdots, M_{2} \cdots M_{l} A_{1} N$ are in $\mathcal{C}^{*}$. Hence, by Cor. 4.7, $\int M_{1} \cdots M_{l-1} A_{l} N d X_{l}^{\left(j_{l}\right)} \in \mathcal{S}\left(X_{l}^{\left(j_{l}\right)}\right) \subset \operatorname{Span}\left(\mathcal{S}\left(X_{l}^{(j)}\right)\right)_{j=1}^{n}, \cdots, \int M_{2} \cdots M_{l-1} A_{l} N d X_{1}^{\left(j_{1}\right)} \in$ $\mathcal{S}\left(X_{1}^{\left(j_{1}\right)}\right) \subset \operatorname{Span}\left(\mathcal{S}\left(X_{1}^{(j)}\right)\right)_{j=1}^{n}$. Hence, $\int N d M \in \operatorname{Span}\left(\mathcal{S}\left(X_{i}^{(j)}\right)\right)_{i, j=1}^{n}$, as desired.

## 8. Explicit chaotic expansion of powers

The following binomial expansion shows the relationship between integer powers and the power brackets. We set $[X]^{(1)}:=X$ for any semimartingale. (Recall, $[X]^{(2)}:=[X]$.)
Proposition 8.1. Let $X$ be a semimartingale with $X_{0}=0$. Then, for all $n \in \mathbb{N}$ we have,

$$
\begin{equation*}
X^{n}=\sum_{i=0}^{n-1}\binom{n}{i} \int X_{-}^{i} d[X]^{(n-i)} . \tag{8.1}
\end{equation*}
$$

Proof. By Itô's formula, and binomial expansion of $X^{n}=\left(X_{-}+\Delta X\right)^{n}$, we have

$$
\begin{gathered}
X^{n}-n \int X_{-}^{n-1} d X-\frac{1}{2} n(n-1) \int X_{-}^{n-2} d[X]^{c} \\
=\sum_{s \leq \cdot}\left(X_{s}^{n}-X_{s_{-}}^{n}-n \Delta X_{s} X_{s_{-}}^{n-1}\right)=\sum_{s \leq \cdot} \sum_{i=0}^{n-2}\binom{n}{i} X_{s-}^{i}\left(\Delta X_{s}\right)^{n-i} .
\end{gathered}
$$

For $i \leq n-3, \sum_{s \leq \cdot} X_{s-}^{i}\left(\Delta X_{s}\right)^{n-i}=\int X_{-}^{i} d[X]^{(n-i)}$. For $i=n-2$, the term $\int X_{-}^{n-2} d[X]^{c}$ combines with the term $\sum_{s \leq} X_{s-}^{n-2}\left(\Delta X_{s}\right)^{2}$ to give $\int X_{-}^{n-2} d[X]$. The formula follows.

Note, the leading term (corresponding to $i=0$ ) is $[X]^{(n)}$.
We can substitute the same formula for $X_{-}^{i}$ on the right-hand-side of Eq. (8.1) Repeating this procedure clearly leads to iterated integrals. We adopt the following notation. If $H$ is a locally bounded predictable process, and $X$ and $Y$ are semimartingales, we denote

$$
\int^{-} H d X:=\left(\int H d X\right)_{-}, \quad \iint^{-} H d X d Y:=\int\left(\int^{-} H d X\right) d Y .
$$

Note, $\int X_{-} d Y=\iint^{-} d X d Y$ if $X_{0}=0$. For semimartingales $Y_{1}, \cdots, Y_{n}$ define inductively

$$
\iint^{-} \cdots \int^{-} H d Y_{1} \cdots d Y_{n-1} d Y_{n}:=\int\left(\int^{-} \cdots \int^{-} H d Y_{1} \cdots d Y_{n-1}\right) d Y_{n}
$$

We denote multi-indices by $I=\left(i_{1}, \cdots, i_{p}\right) \in \mathbb{N}^{p}$, and for integers $1 \leq p \leq n$, we set

$$
\mathbb{N}_{n}^{p}:=\left\{I=\left(i_{1}, \cdots, i_{p}\right) \in \mathbb{N}^{p}: i_{1}+\cdots i_{p}=n\right\}, \quad p, n \in \mathbb{N}
$$

Proposition 8.2. Let $X$ be a semimartingale with $X_{0}=0$. Then, for all $n \in \mathbb{N}$ we have,

$$
X^{n}=\sum_{p=1}^{n} \sum_{I \in \mathbb{N}_{n}^{p}} \frac{n!}{i_{1}!\cdots i_{p}!} \iint^{-} \cdots \int^{-} d[X]^{\left(i_{1}\right)} \cdots d[X]^{\left(i_{p-1}\right)} d[X]^{\left(i_{p}\right)} .
$$

Proof. Cases $n=1,2$ are clear, as the formula reads $X=\int d[X]^{(1)}$ and $X^{2}=\int d[X]^{(2)}+$ $2 \int[X]_{-}^{(1)} d[X]^{(1)}$. For $n \geq 3$, each summand in Eq. (8.1) involving $X_{-}^{i}, i \geq 2$, can be expanded by Eq. (8.1) itself. Substituting and regrouping yields,

$$
X^{n}=[X]_{n}+\sum_{i=1}^{n-1}\binom{n}{i} \int[X]_{i-} d[X]_{n-i}+\sum_{i=2}^{n-1} \sum_{j=1}^{i-1}\binom{n}{i}\binom{i}{j} \iint^{-} X_{-}^{j} d[X]_{i-j} d[X]_{n-i} .
$$

If $n=3$, we are done. For $n \geq 4$, substituting for $X_{-}^{j}, j \geq 2$ from (8.1) and regrouping,

$$
\begin{gathered}
X^{n}=[X]_{n}+\sum_{i=1}^{n-1}\binom{n}{i} \int[X]_{i-} d[X]_{n-i}+\sum_{i=2}^{n-1} \sum_{j=1}^{i-1}\binom{n}{i}\binom{i}{j} \iint^{-}[X]_{j-} d[X]_{i-j} d[X]_{n-i} \\
+\sum_{i=3}^{n-1} \sum_{j=2}^{i-1} \sum_{k=1}^{j-1}\binom{n}{i}\binom{i}{j}\binom{j}{k} \iint^{-} \int^{-} X_{-}^{k} d[X]_{j-k} d[X]_{i-j} d[X]_{n-i} .
\end{gathered}
$$

If $n=4$, we are done. For $n \geq 5$, we continue substituting from (8.1) in this way, and clearly this procedure terminates by the $n$-th step, yielding then the desired result.

Combing the two propositions, one finds a similar iterated integral formula for $\left[X^{n}, X^{m}\right] .{ }^{24}$
Substituting $[X]^{(i)}=\langle X\rangle^{(i)}+X^{(i)}$ into the term $\iint^{-} \cdots \int^{-} d[X]^{\left(i_{1}\right)} \cdots d[X]^{\left(i_{p-1}\right)} d[X]^{\left(i_{p}\right)}$, we get sums of expressions of form $\iint^{-} \cdots \int^{-} d Y^{\left(i_{1}\right)} \cdots d Y^{\left(i_{p-1}\right)} d Y^{\left(i_{p}\right)}$, where each $Y^{(i)}$ can be either $\langle X\rangle^{(i)}$ or $X^{(i)}$. If $Y^{\left(i_{p}\right)}$ is $X^{\left(i_{p}\right)}$, then the quantity belongs to $\mathcal{S}_{p}^{*}(X)$. Otherwise, if $q<p$ is the largest integer such that $Y^{\left(i_{q}\right)}$ is $X^{\left(i_{q}\right)}$, then we are dealing with an expression of the form $\int \cdots \int M_{-} d\langle X\rangle^{\left(i_{q+1}\right)} \cdots d\langle X\rangle^{\left(i_{p}\right)}$, where $M$ of the form $M=\int Y_{-} d X^{\left(i_{q}\right)} \in \mathcal{S}_{q}^{*}(X)$, with $Y \in \mathcal{C}_{q-1}^{*}(X)$. In the proof of Proposition 6.2, we integrated by parts such expressions and used induction to show it belongs to $\mathcal{C}_{p}^{*}(X)$. The next result reports the explicit outcome of such repeated integration by parts, under a slightly more general setting, which applies to the present case with the $A_{j}$ standing for the various $\langle X\rangle^{\left({ }_{j}\right)}$.

Proposition 8.3. Let $M, A_{1}, \cdots, A_{n}$ be semimartingales. Assume that $M_{0}=0$ (or all $\left.A_{i}(0)=0\right)$ and all $A_{i}$ are continuous and of finite variation. (So, $\left[A_{i}, M\right]=0$.) Then

$$
\int \cdots \int M_{-} d A_{1} \cdots d A_{n}=\sum_{p=0}^{n} \sum_{0=i_{0}<i_{1}<\cdots<i_{p} \leq n}(-1)^{p}\left(\int A_{i_{0}, i_{1}} \cdots A_{i_{p-1}, i_{p}} d M\right) A_{i_{p}, n}
$$

[^9]where $A_{i, j}$ for $0 \leq i<j \leq n$ is defined by $A_{i, i}=1,\left(A_{i-1, i}=A_{i},\right)$ and
$$
A_{i, j}:=\int \cdots \int A_{i+1} d A_{i+2} \cdots d A_{j} . \quad(0 \leq i<j \leq n)
$$

Proof. (Outline.) For $n=1$ the formula reads $\int M_{-} d A_{1}=M A_{1}-\int A_{1} d M$, which follows by integration by parts. For $n=2$, we substitute this expression in $\iint M_{-} d A_{1} d A_{2}$. The first term $\int M A_{1} d A_{2}$ is integrated by parts to give $M \int A_{1} d A_{2}-\iint A_{1} d A_{2} d M$. The second term $-\iint A_{1} d M d A_{2}$ is likewise integrated by parts. The result is

$$
\iint M_{-} d A_{1} d A_{2}=M \int A_{1} d A_{2}-\iint A_{1} d A_{2} d M-\int A_{1} d M A_{2}+\int A_{1} A_{2} d M
$$

For $n \geq 3$, one proceeds in a similar manner using integration by parts and induction. ${ }^{25}$
Note, the term corresponding to $p=0$ is $M \int \cdots \int A_{1} d A_{2} \cdots d A_{n}$, while that corresponding to $p=n$ is $(-1)^{n} \int A_{1} \cdots A_{n} d M$. As an example, say $n=12+1, p=4$, and $\left(i_{1}, i_{2}, i_{3}, i_{4}\right)=(2,6,7,10)$. Then the corresponding term is

$$
\int\left(\int A_{1} d A_{2}\left(\iiint A_{3} d A_{4} d A_{5} d A_{6}\right) A_{7} \iint A_{8} d A_{9} d A_{10}\right) d M\left(\iint A_{11} d A_{12} d A_{13}\right) .
$$

The explicit form of the $\mathbb{F}\left(\langle X\rangle^{(i)}\right)_{i=1}^{n}$-adapted processes $A \in \mathcal{A}_{n}^{*}(X)$ appearing in the chaotic expansion of $X^{n} \in \mathcal{C}_{n}^{*}(X)$ is now clear: such $A$ are products of iterated integrals of $\langle X\rangle^{(i)}$.

## 9. Concluding Remarks

The martingale representation result of [D] for finite activity processes mentioned in the introduction is seemingly of a quite different form than that of $[\mathrm{N}-\mathrm{S}]$ or those here. However, the two forms can be tentatively reconciled through the language of random measures. Recast in this terms, Theorem 9 of [D] basically states that in the finite activity case a martingale can be represented as $W *(\mu-\nu)$ for a suitable predictable function $W(\omega, t, x)$. The $[\mathrm{N}-\mathrm{S}]$ series representation $\sum_{n=1}^{\infty} H_{n} d N_{n}$ can be heuristically brought to this same form, once we consider that the Teugels martingale are given by $x^{i} *(\mu-\nu)$ and their strong orthogonalization $N_{n}$ are basically of the form $\left(\sum_{i=1}^{n} K_{n i} x^{i}\right) *(\mu-\nu)$ for some predictable (constant in the Lévy case) processes $K_{n, i}$. In a loose sense, this then gives a representation of the form $W *(\mu-\nu)$ with the predictable function $W$ given be the formal power series $W=\sum_{i=1}^{\infty} L_{i} x^{i}$, where, formally, $L_{i}=\sum_{n=i}^{\infty} H_{n} K_{n i}$.

In closing, we pose an open question. We assumed throughout that angle brackets are continuous. This is a natural assumption and often met in practice. It is essentially a quasi-left-continuity assumption requiring all jumps be unpredictable. However, it may still be interesting to investigate the relaxation of this requirement within the present setting.

[^10]
## REFERENCES

[D] Davis, M.H.A.: Martingale Representation and All That. Advances in Control, Communication Networks, and Transportation Systems: In Honor of Pravin Varaiya, E.H. Abed (Ed.), Systems and Control: Foundations and Applications Series, Birkhauser, Boston, (2005).
[D2] Davis, M.H.A.: The representation of martingales of jump processes. SIAM J. Control \& Optimization 14, 623-638, (1976).
[D3] Davis, M.H.A.: Martingales of Wiener and Poisson processes. J. Lon. Math. Soc. (2), 13, 336-338, (1976).
[E] Elliott, R.J.: Stochastic Calculus and Applications. Springer, (1982).
[J-S] Jacod, J. and Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Springer Verlag, Berlin (1987).
[K-S] Karatzas, I. and Shreve, E: Brownian Motion and Stocahstic Calculus. Springer-Verlag, second edition (1991).
[N-S] Nualart, D. and Schoutens, W.: Chaotic and predictable representations for Lévy processes. Stochastic Processes and their Applications 90, 109122, (2000).
[Ø] Øksendal, B: Stochastic Differential Equations. Springer-Verlag, 6th ed. (2004).
[P] Protter, P.: Stochastic Integration and Differential Equations. Springer-Verlag, Berlin (1992).


[^0]:    ${ }^{1}$ In this paper we use integer powers $X^{n}$ frequently. To avoid confusion, we use subscripts to denote sequences of processes, such as $H_{n}$. If necessary, the time $t$-value is then denoted $H_{n}(t)$. (In the univariate case, we use the usual notation $X_{t}$.)

[^1]:    ${ }^{2}$ We use a different notation than $[\mathrm{N}-\mathrm{S}]$. Their equivalent of our $[X]^{(n)},\langle X\rangle^{(n)}, X^{(n)}$ is $X^{(n)}, m_{n} t, Y^{(n)}$.

[^2]:    ${ }^{3}$ By " $t \geq 0$ " we mean $t \in[0, T]$ if $T<\infty$ and $t \in[0, \infty)$ if $T=\infty$.
    ${ }^{4}$ One has, $[X]=\left[X^{c}\right]+\sum_{s \leq \cdot}(\Delta X)_{s}^{2}$, where $X^{c}$ denotes the unique continuous local martingale such that $X_{0}^{c}=0$ and $X-X^{c}$ is a purely discontinuous semimartingale. Also, $\left[X^{c}\right]=[X]^{c}=\left\langle X^{c}\right\rangle$.
    ${ }^{5}$ The definition of $\langle M\rangle$ extends to $\mathcal{H}_{\text {loc }}^{2}$ by localization. Then, we get $\mathcal{H}^{2}=\left\{M \in \mathcal{H}_{\text {loc }}^{2}: \mathbb{E}\langle M\rangle_{T}<\infty\right\}$.
    ${ }^{6} \mathrm{We}$ also have $\|M\|^{2}=\sup _{0 \leq t<T} \mathbb{E} M_{t}^{2} \geq \frac{1}{4} \mathbb{E} M_{*}^{2}$, where $M_{*}:=\sup _{0 \leq t \leq T}\left|M_{t}\right|$.

[^3]:    ${ }^{7}$ Recall, a stable subspace $\mathcal{K}$ is a closed subspace of $\mathcal{H}^{2}$ which is closed under stopping, or equivalently, closed under stochastic integration, i.e., $\mathcal{S}(M) \subset \mathcal{K}$ for every $M \in \mathcal{K}$.
    ${ }^{8}$ Recall, $M, N \in \mathcal{H}^{2}$ are strongly orthogonal if $\langle M, N\rangle=0$. Then clearly, they are orthogonal in the Hilbert space sense, and every martingale in $\mathcal{S}(M)$ is strongly orthogonal to every martingale $\mathcal{S}(N)$.
    ${ }^{9}$ That is, $\bigoplus_{i=1}^{\infty} \mathcal{S}\left(N_{i}\right)=: \mathcal{K}$ is the smallest (the intersection of all) stable subspace(s) containing all $N_{i}$. Indeed, $\mathcal{K}$ is stable, for if $N=\sum_{i} X_{i} \in \mathcal{K}$ with $X_{i} \in \mathcal{S}\left(N_{i}\right)$ and $T$ is stopping time, then the stopped process $N^{T}=\sum_{i} X_{i}^{T} \in \mathcal{K}$ as each $X_{i}^{T} \in \mathcal{S}\left(N_{i}\right)$. Further, any stable subspace that contains all $N_{i}$ also contains $\mathcal{S}\left(N_{i}\right)$, and so contains the closure of linear span of the $\mathcal{S}\left(N_{i}\right)$, which closure clearly equals $\mathcal{K}$.
    ${ }^{10}$ Indeed, for odd $m \geq 3$, we have

    $$
    \begin{aligned}
    & \operatorname{Var}\left([X]^{(m)}\right)=\sum_{s \leq .}|\Delta X|_{s}^{m}=\sum_{s \leq .} 1_{|\Delta X|_{s} \leq 1}|\Delta X|_{s}^{m}+\sum_{s \leq \cdot} 1_{|\Delta X|_{s}>1}|\Delta X|_{s}^{m} \\
    & \leq \sum_{s \leq \cdot} 1_{|\Delta X|_{s} \leq 1}|\Delta X|_{s}^{m-1}+\sum_{s \leq .} 1_{|\Delta X|_{s}>1}|\Delta X|_{s}^{m+1} \leq[X]^{(m-1)}+[X]^{(m+1)} .
    \end{aligned}
    $$

[^4]:    ${ }^{11}$ Indeed, the continuity of $\langle X\rangle^{(n)}$ implies $\left[X^{(n)}\right]=\left[[X]^{(n)}\right]=[X]^{(2 n)} \in L^{1}$; hence $X^{(n)} \in \mathcal{H}^{2}$.
    ${ }^{12}$ Following the notation in Chapter II of [J-S], for a random measure $v(\omega, d t, d x)$ and an optional function $W=W(\omega, t, x)$, we set $(W * v)_{t}:=\int_{[0, t] \times\{x \neq 0\}} W(s, x) v(d s, d x)$. For a Lévy process, $\nu=d t \nu_{0}(d x)$ is time and state-independent. More general examples are processes with $\nu$ of form $\lambda_{t} d t \nu_{0}(d x)$, for some, say, Itô process $\left(\lambda_{t}\right)$. These include Cox processes where $\nu_{0}(d x)$ is simply the Lévy measure of a Poisson process. As Cox processes are often thought of as "Poisson processes with stochastic intensity $\lambda_{t}$ ", the aforementioned more general examples may be thought of as "Lévy processes with stochastic intensity $\lambda_{t}$."
    ${ }^{13}$ These statements follow by a simple induction, using the fact if $\mathcal{K}$ is a stable subspace then its orthogonal complement is (a stable subspace and is) strongly orthogonal to $\mathcal{K}$.

[^5]:    ${ }^{14}$ In this paper, we denote the linear span of any subset $\mathcal{K}$ of a vector space by $\operatorname{Span}(\mathcal{K})$. $\operatorname{So}, \operatorname{Span}(\mathcal{K})$ is a the set of (finite) linear combinations of elements of $\mathcal{K}$, i.e., the smallest (intersection of all) linear subspace(s) containing $\mathcal{K}$. If $\mathcal{K}_{i}, i \in I$, is a family of linear subspaces of a vector space, we denote their linear span $\operatorname{Span}\left(\mathcal{K}_{i}\right)_{i \in I}$. When the index set $I$ is finite, we also denote $\operatorname{Span}\left(\mathcal{K}_{i}\right)_{i=1}^{n}$ by $\mathcal{K}_{1}+\cdots+\mathcal{K}_{n}$. When $\mathcal{K}_{i}$ are orthogonal subspaces of a Hilbert space, we emphasize the orthogonality by writing $\operatorname{Span}\left(\mathcal{K}_{i}\right)_{i=1}^{n}$ as $\mathcal{K}_{1} \oplus \cdots \oplus \mathcal{K}_{n}$ or $\bigoplus_{i=1}^{n} \mathcal{K}_{i}$. Note, when $I$ is countable, and $\mathcal{K}_{i}$ are closed, orthogonal subspaces, then their infinite direct sum $\bigoplus_{i=1}^{\infty} \mathcal{K}_{i}:=\left\{\sum_{i=1}^{\infty} K_{i}: K_{i} \in \mathcal{K}_{i} ; \sum_{i=1}^{\infty}\left\|K_{i}\right\|^{2}<\infty\right\}$ equals the closure of $\operatorname{Span}\left(\mathcal{K}_{i}\right)_{i=1}^{\infty}$.
    ${ }^{15}$ Prop 3.1 yields the same conclusion as Theorem 3 of [D] if $\mathcal{H}^{2}$ is separable. For, if $\left(M_{i}\right)_{i=1}^{\infty}$ is a dense sequence in $\mathcal{H}^{2}$, then $\operatorname{Span}\left(\mathcal{S}\left(M_{i}\right)\right)_{i=1}^{\infty}$ is also dense in $\mathcal{H}^{2}$, as it obviously contains all the $M_{i}$.

[^6]:    ${ }^{16}$ The Burkholder-Davis-Gundy inequalities, as stated on page 175 , section IV. 5 of $[\mathrm{P}]$, states that for any local martingale $M$, finite stopping time $T$, and $p \geq 1$, there are constants $c$ and $C$ such that

    $$
    \mathbb{E}\left(M_{T}^{*}\right)^{p} \leq c \mathbb{E}\left[M_{T}\right]^{p / 2} \leq C \mathbb{E}\left(M_{T}^{*}\right)^{p}
    $$

    In this paper, $T$ is deterministic, but is allowed to equal infinity. On page $190,[\mathrm{P}]$ also states the first inequality for $T=\infty$. Above, $M_{T}^{*}:=\sup _{t \leq T}\left|M_{t}\right|$. However, by Doob's maximal inequality, we can replace $M_{T}^{*}$ simply by $\left|M_{T}\right|$ (with a larger constant $C$ ).
    ${ }^{17}$ Indeed, we obviously have $\sum_{s \leq t}\left(\Delta X_{s}\right)^{2 n} \leq\left(\sum_{s \leq t}\left(\Delta X_{s}\right)^{2}\right)^{n}$.

[^7]:    ${ }^{22}$ Moreover, by Itô's product rule we have, $[Y, Z] \in \mathcal{C}_{m+n}^{*}(X)$. The proof further shows, $Y Z-$ $[Y, Z],[Y, Z]-\langle Y, Z\rangle \in \operatorname{Span}\left(\mathcal{S}^{*}\left(X^{(i)}\right)_{i=1}^{n}\right.$, and $\langle Y, Z\rangle \in \mathcal{A}^{*}$.

[^8]:    ${ }^{23}$ Indeed, then $B=\int H d W$, where $W:=\int K d B, K:=\sqrt{d\langle B\rangle / d t}$, and $H:=1 / K$.

[^9]:    ${ }^{24}$ Namely, using the two propositions and the easily verified fact that $\left[[X]^{(i)},[X]^{(j)}\right]=[X]^{(i+j)}$, we get $\left[X^{n}, X^{m}\right]=\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \sum_{p=1}^{i+j} \sum_{I \in \mathbb{N}_{i+j}^{p}}\binom{n}{i}\binom{m}{j} \frac{(i+j)!}{i_{1}!\cdots i_{p}!} \iint^{-} \cdots \int^{-} \int^{-} d[X]^{\left(i_{1}\right)} \cdots d[X]^{\left(i_{p-1}\right)} d[X]^{\left(i_{p}\right)} d[X]^{(n+m-i-j)}$.

[^10]:    ${ }^{25}$ We point out that the continuity and finite variation assumption on $A_{i}$ can be relaxed to $\left[A_{i}, M\right]=0$ at the expense of left limits in the expressions. We also note that this is really an ordinary calculus result.

