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Abstract 

 
We estimate and test different continuous-time short-rate models for the UK. The 

preferred model encompasses both the “level effect” of Chan, Karolyi, Longstaff and Sanders 

(1992a) and the conditional heteroskedasticity effect of GARCH type models. Our findings 

suggest that including a GARCH effect in the specification of the conditional variance, almost 

halves the dependence of volatility on rate levels. We also find weak evidence of mean-reversion 

and volatility asymmetries in the stochastic behavior of rates. Extensive diagnostic tests suggest 

that the Constant Elasticity of Variance model of Cox (1975), with an added GARCH effect, 

provides a reliable description of short-rate dynamics. We demonstrate that the most important 

feature in short-rate modeling is the correct specification of the conditional variance of changes in 

rates; suggesting that the conditional mean characterization is of second order. 
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I. Introduction 
Models of the term structure of interest rates are widely used in pricing interest rate 

derivatives and instruments with embedded options, such as callable bonds and mortgage-backed 

securities. Many such models are based on the simplifying assumption that changes in the entire 

term structure are driven by changes in a single underlying random factor, often taken to be the 

“short” or “instantaneous” rate of interest. Therefore, these term structure models are called 

“Single-Factor Models”. 

In this study, we provide an analysis of the short-term interest rate in the UK covering a 

20 years period. The study’s contribution is to add to the literature in this area by examining 

different proposed single-factor models and extending them in order to capture time-varying 

volatility dynamics. We provide the first application of a time-varying volatility version of 

Nowman (1997) exact discrete model, and compare it with the extended version of the Chan et. 

al. (1992a, hereafter CKLS) discrete approximation, proposed by Brenner et.al. (1996, hereafter 

BHK). The study compares the performance of the various models using an extended set of 

diagnostic and prediction tests in and out of sample. 

The models commence with the generalized diffusion process proposed by CKLS which 

nests, trough parameters restrictions, many of the traditional term structure models.
1
 These are 

continuous time models in which volatility is parameterized only as a function of interest rate 

levels; we refer to them as “Level Models”.
2
 

The study then examines the class of models which incorporates persistence in volatility 

dynamics, such as the GARCH and GJR-GARCH models.
3
 The analysis then extends these 

models to incorporate both levels and time-varying volatility dynamics as proposed by BHK; we 

refer to them as “Level-News Models”. Finally, we extend the CKLS nested models in order to 

incorporate time-varying volatility dynamics, and propose a new version of single factor model 

that appears to account for UK interest rates dynamics reliably.   

The question about which model best captures the dynamics of the short-term rate is an 

empirical issue that has been widely addressed for the “Level Models”, but very little research has 

been done regarding the “Level-News Models”.
4
 Furthermore, empirical tests have tended to 

analyze either “Level Models” or GARCH models, but very few studies provide a comparison of 

these two classes of models. Moreover, the few existing tests comparing different classes of 

models within a nested framework are heavily biased towards the US market.
5
 In this sense, we 

add to the international literature evidence arising from a variety of models in the UK.   

The rest of the study is organized as follows. Chapter II reviews the relevant literature. 

Chapter III discusses the econometric approach. Chapter IV presents the data set used. Chapter V 

reports empirical results and their interpretation. Finally, Chapter VI concludes. 

 

 

 

 

 

 

                                                 
1
 See section 2.1 for a detailed outline of the CKLS nested models. 

2
 For a discussion of continuous time processes see Hull, John (2003) “Options, Futures and Other 

Derivatives”. Fifth edition, Chapters 11 and 23. 
3
 See Engle (1982), Bollerslev (1986), Engle and Bollerslev (1986), and Glosten, Jagannathan and Runkle 

(1993). 
4
 See for example, Chan et.al. (1992a, 1992b), Nowman (1997), Byers and Nowman (1998). 

5
 See for example, BHK, Andersen and Lund (1997), Koedijk et.al. (1992), and Bali (2003). 
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II. Literature Review 

2.1. The CKLS Nested Models 
CKLS seminal paper nested into one “unrestricted” stochastic differential equation 

(SDE), several well-known single-factor models of the short-rate. CKLS SDE is 

   dZrdtrdr γσβα ++= )(                                                  (1) 

where r is the short-term interest rate at time t, α  and β  are the parameters that describe the 

conditional mean of changes in rates, σ  is the volatility of the interest rate, γ  measures the 

sensitivity of the volatility of rates on the level of rates (elasticity parameter), and Z is a Brownian 

motion.
6
  

The stochastic process (1) implies that changes in interest rates have a drift rate of 

)( rβα + and a variance rate of )( 22 γσ r . Therefore, we can see that the conditional mean and 

variance of changes in the short-term rate depend on the level of r. By definition, 0>α and 

0<β , and we can rewrite (1) as 

   dZrdtrdr
γσ

β

α
β ++−−= )(                                               (2) 

The model implies that the long-run mean of interest rates is 
β

α
− , and that the speed of 

mean reversion towards the long-run mean is given by β . The more negative the β  is, the faster 

r responds to deviations from the long-run mean.
7
 

The SDE given in (1) defines a broad class of interest rate processes. Several short-rate 

models can be obtained from (1) by placing the appropriate restrictions on the parameters 

α , β ,σ  and γ . These nested models and the corresponding parameter restrictions are 

summarized in Table 2.1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
6
 A Brownian motion is a continuous-time stochastic process with the properties that between any two 

dates s and t (s > t), the increment Zs – Zt has a normal distribution with mean zero and variance of s – t and 

the increment is independent of the value of the process at all dates prior to t. 
7
 For example, if β = -0.9, it will take 1/0.9 = 1.11 periods for the short-rate to revert towards the long-run 

mean. 

Model Name Model Specification α β σ γ

Merton (1973) d r = α d t + σ d Z    0 0

Vasicek (1977) d r = (α + βr) d t + σ d Z  0

Cox et.al. (1985) d r = (α + βr) d t + σ r
0.5 

d Z 0.5

Dothan (1978) d r = σ r d Z 0 0 1

GBM (1973) d r = βr d t + σ r d Z 0 1

Brennan-Schwartz (1980) d r = (α + βr) d t + σ r d Z 1

Cox et.al. (1980) d r = σ r
1.5 

d Z 0 0 1.5

CEV (1975) d r = βr d t + σ r
γ
 d Z 0

with appropriate parameter restrictions within the unrestricted model

d r = (α + βr) d t + σ r
γ
 d Z

TABLE 2.1.1

Parameter Restrictions Imposed by Alternative Models of

The Short-Term Interest Rate
Alternative models of the short-term riskless rate of interest r can be nested 
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CKLS nested models correspond to the “Level Models”. These models differ in how they 

parameterize expected changes and volatilities of interest rates; in particular, they differ in how 

they assume expected changes and volatilities of interest rates are related to their levels. These 

models implicitly assume that the conditional volatility of interest rates is a function of the level 

of rates, and the strength of the relation between volatility and levels of rates is given by the 

elasticity parameter γ .
8
  

For example, the models of Merton (1973) and Vasicek (1977) assume γ  = 0, therefore 

the volatility is not related to the level of rates and rates have a constant volatility (i.e. 

Homoskedastic Models). Cox et.al. (1985, hereafter CIR-SR) assumes that the volatility of rates 

responds proportionally to the square root of their levels (γ  = 0.5). The models of Dothan (1978), 

the Geometric Brownian Motion (GBM) - used in the option pricing formula of Black and 

Scholes (1973) - , and Brennan and Schwartz (1980) propose characterizations in which the 

volatility responds directly to rate levels (γ  = 1). Cox et.al. (1980, hereafter CIR-VR) assumes γ  

= 1.5. Finally, the constant elasticity of variance model (hereafter CEV) introduced by Cox 

(1975), does not impose any restrictions on γ . Whether the assumptions of these “Level Models” 

are realistic or not is an empirical issue that is surveyed in the next section.   

 

2.2. Empirical Evidence on “Level Models” 

The right hand side of (1) has two parts. The first is the conditional mean of changes in 

interest rates with a drift rate of )( rβα + , and the second is the conditional volatility of rate 

changes with a variance rate of )( 22 γσ r . Although some controversy has emerged regarding the 

appropriate functional form of the drift in (1), most studies focus their attention on the ability of 

each model to capture the volatility of interest rates.
9
 The reason for this is that volatility is a key 

variable governing the value of contingent claims such as interest rate options; moreover, optimal 

hedging strategies for risk-averse investors depend critically on the volatility. In this sense, given 

that the functional form of the drift has been catalogued of second order in explaining interest rate 

dynamics, the present study focuses on the correct specification of the volatility.
10

  

CKLS conclude that the models that best describe the dynamics of interest rates are those 

that allow the conditional volatility of rate changes to be highly dependent on the level of rates. 

Their γ  estimate was 1.5. Therefore, at least for the US, commonly used models such as Vasicek 

(1977) and CIR-SR (1985) perform poorly relative to less well-known models such as Dothan 

(1978) and CIR-VR (1980). CKLS pointed out that the critical parameter in capturing interest rate 

dynamics was γ , and that evidence of a mean reversion, measured by the β  parameter, was at 

best weak. Moreover, Chan et.al. (1992b) found in an application to Japan that, in spite of the 

relatively low volatility of rates, the dependence of the conditional volatility on rate levels was 

stronger than in the US with a γ  estimate of 2.44. Overall, the general conclusion was that 

models assuming 1<γ  perform poorly when compared with models suggesting 1>γ .  

An international study by Tse (1995) applied the CKLS framework to eleven countries 

and showed that the conditional volatility of interest rates can be very sensitive to their levels 

                                                 
8
 This has been catalogued as the “level effect” in the literature. For example, if γ = 1.5, it implies that a 1% 

increase in levels of rates will mean a 1.5% increase in volatility of rates during that observation period. (At 

higher γ, the volatility is more sensitive to interest rate levels). 
9
 See for example, Ait-Sahalia (1996), Stanton (1997) and Conley et.al.(1997). For a discussion on whether 

the correct functional form of the drift rate in interest rate processes should be linear or not. 
10

 See Nowman (1997). 
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(high γ ), as in the cases of France, Holland and the USA. However, other countries like Canada, 

Italy, Switzerland and the UK exhibit low elasticities of the variance to the level of rates (low γ ). 

Therefore, the Vasicek model may be preferred for these countries. For Australia, Belgium, 

Germany and Japan, they found a moderate elasticity of variance, suggesting that there was no 

clear-cut statistical evidence for the choice between the CIR-SR model and the GBM. Another 

international study by Dahlquist (1996) found that in the unrestricted model (1), the value of γ  

was less than one for all the countries studied except for Sweden, where the value of γ  was 1.15. 

And the hypothesis of constant variance (γ  = 0) could not be rejected for Germany and the UK. 

Dahlquist generally advocates the Brennan-Schwartz (1980) model for Denmark and Sweden, 

and the Vasicek (1977) and CIR-SR models for Germany and the UK respectively. Nowman 

(1997) also finds support for the CIR-SR model in British interest rate, reporting an insignificant 

value for γ  of only 0.29, but Nowman confirms the CKLS result for the US with a γ  estimate of 

1.36.
11

  

Evidence for Australia has been provided by Gray (1996) who found a γ  estimate of 

about 1.5. His findings have been supported by Brailsford and Maheswaran (1998) who obtain a 

γ  estimate of 1.7 and conclude that models allowing volatility to be highly sensitive to rate levels 

perform the best in Australia. Nowman (1998), using Euro-Currency interest rate series and an 

alternative econometric approach based on maximum likelihood estimation, found γ  estimates of 

1.05 and 0.98 for US and Japan respectively; these estimates contrast with CKLS and Chan 

et.al.(1992b) results. More recently, Nowman (2002) using four alternative time-series for Japan 

obtained estimates of γ  ranging from 0.06 to 0.35 and suggests a low elasticity. These mixed 

results suggest that the estimates are sensitive to the data series and the estimation method used. 

Also, Nowman (1998) finds that France and Italy exhibit high elasticity of variance with γ  

estimates of 2.8 and 2.2 respectively. Mc Manus and Watt (1999) provided evidence for Canada 

and US, their γ  estimates were 0.44 and 1.53 respectively and they support previous findings of 

Tse (1995) and CKLS.  

 Finally, Hiraki and Takezwa (1997) extended the analysis over a range of maturities 

varying from seven days to twelve months in Japan, and found that volatility is sensitive to the 

levels of rates with the same strength across maturities; reporting γ  estimates of 0.4 and 0.5 for 

weekly and biweekly data respectively. However, Byers and Nowman (1998) in an application to 

the UK and the US found that the strength of the elasticity was different across maturities; in 

particular, they suggest that the elasticity is weaker as maturity increases, with γ  estimates 

ranging from 1.8 to 1.3 in the UK, and from 1.95 to 1.16 in the US. 

In general, evidence suggests that the conditional volatility of changes in interest rates is 

sensitive to the level of rates. However, the strength of this relationship appears to be country 

specific. For example, most studies agree that elasticity is high for the US )1( >γ . Canada 

exhibits consistent evidence suggesting low elasticity of variance )5.0( <γ . The UK exhibits 

mixed results, while most of the studies suggest low elasticity, Byers and Nowman (1998) found 

a high elasticity.  

 In Japan, Chan et.al. (1992b) found a high elasticity while Tse (1995) and Nowman 

(1998) found a moderate elasticity, but Hiraki and Takezwa (1997) and Nowman (2002) suggest 

low elasticities. The same controversy arises from Australia, for which Gray (1996) and 

                                                 
11

 Nowman (1997) used the same data set for the US as in the CKLS study. However, he proposed an 

alternative discrete approximation discussed later in the text. 
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Brailsford and Maheswaran (1998) using weekly and daily data respectively found high 

elasticities. However, Tse (1995) using monthly data found a moderate elasticity. These mixed 

results suggest that the elasticity estimates are highly sensitive to the interest rate series and data 

frequency used in the empirical application. Results for Italy found high elasticity using 

maximum likelihood estimation (ML) and low elasticity using generalized methods of moments 

estimation (GMM), suggesting that estimates could be very sensitive to the econometric approach 

used.    

In short, the empirical evidence on “Level Models” supports a relationship between the 

volatility of rates and the level of rates. However, this dependence appears to be country specific. 

Moreover, estimates of elasticity parameters might be sensitive to the interest rate series, data 

frequency and econometric techniques applied in empirical work. But is it correct to allow 

volatility of the short-rate to vary only with the level of the short-rate? Does this assumption is 

very restrictive or holds empirically? This issue is explored in the next section.  

 

2.3. Incorporating Time-Varying Volatility in Short-Rate Dynamics 
 So far we have discussed the properties and empirical evidence about “Level Models”. 

However, these models have been generally criticized for their restrictive assumptions about the 

behavior of volatility.
12

 For instance, a high value of γ  
implies a high degree of sensitivity to the 

level of interest rates yet periods of high interest rates but relative stability have been observed in 

various markets.
13

 Similarly, periods of low interest rates but relatively high volatility have also 

been observed.
14

 These observations contradict the basic assumption of volatility being solely 

determined by the level of rates. Further, BHK point out that volatility is restricted to be a 

function of only the level of interest rates, yet in practice news arrival is likely to have a 

significant impact on movements in rates. 

 In order to capture this “news effect”, GARCH models have been applied to interest rates 

data as follows 

 
11 ++ ++=− tttt rrr εβα       1+tε ~ ),0( 2

1+tN σ                                 
 (3) 

22

10

2

1 ttt bσεαασ ++=+                                                   
 (4) 

this model is the GARCH (1,1), in which this period’s volatility is a function of last period’s 

unexpected news and conditional volatility. The model can still capture mean reversion in the 

series by including rt as a regressor. The conditional heteroskedasticity captures leptokurtosis in 

the unconditional distribution of interest rates. However, the major problem with fitting GARCH 

models to short-term interest rate data is t hat the estimated parameters often imply an explosive 

volatility process such that the conditional variance process )( 2

1+tσ  is not covariance-stationary. 

These conditions are met when the sum of the conditional variance parameters )( 1 b+α  
exceed 

unity (with 00 >α ). For example, Engle et.al. (1987) find 1)( 1 >+ bα , Hong (1988) finds 

073.1)( 1 =+ bα , Engle et.al. (1990) find 0096.1)( 1 =+ bα , BHK find 0011.1)( 1 =+ bα , 

Koedijk et.al. (1997) find 14.1)( 1 =+ bα and Bali (2003) finds 048.1)( 1 =+ bα ; all for US. 

Given these results, it appears that GARCH modeling for interest rate dynamics is not the most 

appropriate representation. Also, this kind of models completely ignores the “level effect” 

(discussed in the previous section) that has been found significant in explaining volatility of 

interest rates. Finally, GARCH models permit negative interest rates.  

                                                 
12

 See Engle and Ng (1993a) 
13

 For example, the period between 1983 and 1984 in the US. 
14

 For example, the period between 1992 and early 1993 in the US. 
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 In this sense, BHK developed a model which incorporates the effects of both levels and 

information shocks. They introduce a time-varying parameter model which nests both the “Level 

Models” (as in equation 1) and the GARCH model (as in equations 3 and 4). This class of models 

is called “Level-News Models”. The model specification is 

                        
11 ++ ++=− tttt rrr εβα                          (5) 

0)( 1 =+tE ε
     

γσε 22

1

2

1 )( ttt rE ++ =                                             (6) 

22

10

2

1 ttt bσεαασ ++=+
                                                     (7) 

the model incorporates volatility conditioned on both the level of interest rates and a GARCH 

process.
15

 Information shocks will enter the system through the lagged squared error term )( 2

tε  

which flows through to have an impact on volatility. The model collapses to the “Level Models” 

as in equation (1) when the conditional variance equation (7) is a constant, i.e., when 01 == bα . 

Similarly, when 0=γ  then the model collapses to the GARCH process as in equations (3)-(4). 

 Following the work of Nelson (1991), Engle and Ng (1993b) and Glosten et.al. (1993), 

BHK allow for an asymmetry between negative and positive shocks in volatility through 

modifying the conditional variance specification given in (7) to include an asymmetric term. The 

alternative conditional variance specification is given by 
22

2

2

10

2

1 ttttt bσηεαεαασ +++=+                                           
 (8) 

where: 1=tη  if 0<tε , and 0=tη
 
otherwise, the parameter 

2α  in (8) is a measure of the 

difference in the slope coefficient between negative and non-negative shocks. In equation (8), if 

02 >α  and statistically significant then negative shocks have a larger impact on volatility than 

positive shocks. 

 BHK showed that, at least for the US, the dependence of interest rates volatility on levels 

has been exaggerated in the literature. Their findings contrast with CKLS conclusion that, “the 

relation between interest rate volatility and the level of rates is the most important feature of any 

dynamic model of the short-term risk less rate” (p.1217). By comparing “Level Models” with 

“Level-News Models” they found that, while the “level effect” is important, adequately modeling 

the volatility parameter as a function of unexpected news is equally important. They showed that 

the estimates of γ  in “Level-News Models” are lower than the γ  estimates in “Level Models”. 

Also, they suggest that “Level-News Models” provide a better description of volatility in interest 

rates. Therefore, they conclude that “Level Models” are misspecified in the way they model 

volatility. In this sense, the new class of “Level-News Models” appeared to be a potentially 

fruitful path by which to improve “Level Models” and capture adequately interest rate dynamics. 

The findings of BHK for the US have been supported in similar studies by Andersen and Lund 

(1997) and Koedijk et.al. (1997). These studies arrive to the same conclusions as BHK.  

 Brailsford and Maheswaran (1998) applied the BHK framework to Australia and support 

the view that allowing GARCH effects in interest rate modeling, reduces significantly the impact 

of the “level effect”. They also find that “Level-News Models” are superior in capturing the 

dynamics of the volatility process. Their findings encourage the great potential of this relatively 

new class of models. 

 Recently, Bali (2003) applied the BHK framework to the US and assessed forecasting 

power of “Level-News Models”. His findings suggest that “Level-News Models” outperform 

“Level Models” in forecasting volatility of interest rate changes. Moreover, using Monte Carlo 

                                                 
15

 Note that the “Level-News Models” are single-factor models, because only one source of uncertainty, rt, 

appears in the mean equation (5) and this same source of uncertainty drives the GARCH behavior of the 

parameter σ2
t+1.                                                   
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simulations for yields of three and six month zero-coupon bonds, he found that incorporating the 

level and news effects in volatility improves the pricing performance of the interest rate models. 

Therefore, it appears that “Level-News Models” are not only better in fitting historical data and 

forecasting the volatility of rates, but also in pricing financial instruments. These encouraging 

results for the US motivate further research on this type of models in non US countries. 

 

III. The Econometric Approach 

3.1. The Estimation Method 
 Following BHK and Nowman (1997), maximum likelihood estimation (ML), which 

assumes a conditional normal distribution of error terms, is used. The utilization of ML instead of 

a distribution-free estimator such as the generalized method of moments (GMM) of Hansen 

(1982), is justified by three main reasons. First, as BHK suggest, statistical tests based on ML 

estimators tend to be more powerful than tests based on GMM estimators.
16

 This might be 

potentially important in small samples. Second, Broze et.al. (1995) proved in their proposition 3.3 

that the GMM estimator is not well behaved when 1>γ . Empirical evidence for the UK is 

mixed, with some studies suggesting a low elasticity of variance with 5.0<γ , while Byers and 

Nowman (1998) found high elasticity with 1>γ . Therefore, using ML avoids the possibility of 

using a not well behaved estimator. Third, Nowman (1997) showed that the ML estimator is more 

efficient than the GMM estimator, permitting us to perform more precise estimations and tests.
17

 

 

3.2. The Short-Rate Models 
The discrete approximation of the continuous-time process (1) used in CKLS and BHK is 

 

11 ++ ++=− tttt rrr εβα
         

0)( 1 =+tE ε                                      (9)         

 

where 
1+tε  is the innovation or information shock at time t+1, and E(·) is the conditional 

expectations operator. We should note that the discretized process in (9) is only an approximation 

of the continuous-time specification in (1). The reason is that changes in rates are measured over 

discrete intervals of time and we use discrete data to estimate a model settled in continuous-time. 

Therefore, the “temporal aggregation bias”, described in Grossman et.al. (1987) arises. However, 

the amount of approximation error introduced can be shown to be of second order importance if 

rate changes are measured over short periods of time.
18

 

 Alternatively, instead of using the CKLS discrete approximation (9), Nowman (1997) 

derived an exact discrete model for estimating the SDE (1).
19

 This exact ML estimator has the 

potential to reduce the “temporal aggregation bias”. The model specification is 

 

11 )1( ++ +−+= ttt erer ε
β

α ββ            0)( =stE εε         )( st ≠                      (10) 

 

 

                                                 
16

 We understand by poor power properties, that hypothesis tests under reject the null when in fact it is 

false. Therefore, an adequate power implies not rejecting the null in concordance with the probability of 

committing error type II adopted for the test.   
17

 We understand by efficiency, that an estimator exhibits minimum variance. 
18

 See Campbell (1986) and CKLS. 
19

 See Appendix I for a mathematical derivation of Nowman’s exact discrete model. 
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Now, from Nowman’s exact discrete model (10), we estimate the relevant parameters by 

assuming the following conditional variances, 
1

2

1 )( ++ = tt hE ε , specifications: 

Model 1: (CKLS) 

γβ

β

σ
ε 22

2

1

2

1 )1(
2

)( ttt rehE −== ++
                                          (11) 

Model 2: (GARCH) 

tttt bhhE ++== ++
2

101

2

1 )( εααε                                            (12) 

Model 3: (GJR-GARCH) 

tttttt bhhE +++== ++ ηεαεααε 2

2

2

101

2

1 )(                                    (13) 

where: 1=tη
 
if 0<tε , and 0=tη

 
otherwise. 

Model 4: (BHK1) 

γβ

β

σ
ε 22

2

1
1

2

1 )1(
2

)( t
t

tt rehE −== +
++

                                         (14) 

22

10

2

1 ttt bσεαασ ++=+                                               
  (15) 

Model 5: (BHK2) 

γβ

β

σ
ε 22

2

1
1

2

1 )1(
2

)( t
t

tt rehE −== +
++

                                        (16) 

                        22

2

2

10

2

1 ttttt bσηεαεαασ +++=+                                         
 (17) 

where: 1=tη
 
if 0<tε , and 0=tη

 
otherwise. 

Model 1 embodies the assumption that it mimics the continuous-time model in (1). The 

specification closely parallels the continuous-time dynamics of (1) since it allows the variance of 

interest rate changes to depend directly on the level of the interest rate; this is the CKLS model 

that belongs to the “Level Models” class. 

 Model 2 is the well-known GARCH (1,1) model that accounts for time-varying volatility 

driven by the parameters 
1α  and b. Model 3 is the GJR-GARCH model that is obtained by 

including an asymmetric term in the conditional variance specification; the parameter 
2α  

measures the differential impact between positive and negative shocks. If 
2α  is found positive 

and statistically significant, it will imply that bad news have a greater impact on rates volatility 

than good news.   

 Model 4 is the first type of “Level-News Models” analyzed; it combines the “level effect” 

and the “news effect” by including time-varying volatility in the specification. We will refer to 

this model as the BHK1 model. Finally, Model 5 adds an asymmetric term in the conditional 

variance specification and nests all of the previous models. Consequently, it provides an ideal 

vehicle for model comparisons. The relative importance of the level of interest rates versus 

information shocks can be evaluated by imposing suitable parameter restrictions in the 

coefficients of Model 5 (called BHK2 model). For example, setting 
2α = 0 produces the BHK1 

model. Alternatively, setting 
1α  = 

2α  = b = 0 produces the CKLS model. Setting γ  = 0 yields 

the GJR-GARCH model. Furthermore, all of the CKLS nested models can also be obtained from 

the BHK2 model by imposing the appropriate parameter restrictions illustrated in Table 3.2.1 
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As we can appreciate, BHK2 is the “unrestricted” model from which all evaluations of 

the competing models can be obtained. BHK1, CKLS, GJR-GARCH, GARCH and all of the 

CKLS nested models are restricted versions of BHK2. 

 

3.3. The Diagnostic Tests 
The models we estimate are evaluated with the likelihood ratio test statistic, the 

Bergstrom’s (1990) “S” statistic and the Ljung-Box (1978) “Q” statistic. In addition, we use the 

Wooldridge’s (1990) Conditional Moment Test which allow us to identify possible sources of 

misspecification in the competing models. In general, the null of this test states that the model is 

correctly specified regarding the source of misspecification being tested. Our sources of 

misspecification for the conditional moment tests will be the lagged interest rate level, 

λ1,t = rt                                                                   (18) 

this moment will identify short-rate models that misrepresent the dependence of volatility on 

interest rate levels. 

 The second indicator is 

    λ2,t =  εt ηt                                                               (19) 

where ηt = 1 if εt < 0, and ηt = 0 otherwise. In the same way, this moment will identify models 

misrepresenting the asymmetric response of volatility to news. 

 The third set of indicators focuses on serial correlation in squared standardized residuals, 

λ3,t =  vt                                                                 (20) 

λ4,t = vt-1                                                                (21) 

λ5,t = vt-2                                                                (22) 

λ6,t = vt-3                                                                (23) 

Model α β γ α0 α1 α2 b

BHK1 0

CKLS 0 0 0

GJR-GARCH 0

GARCH 0 0

Merton    0 0 0 0 0

Vasicek 0 0 0 0

CIR SR 0.5 0 0 0

Dothan 0 0 1 0 0 0

GBM 0 1 0 0 0

Brennan-Schwartz 1 0 0 0

CIR VR 0 0 1.5 0 0 0

CEV 0 0 0 0

TABLE 3.2.1

Parameter Restrictions Imposed by Alternative 

Models of The Short-Term Interest Rate
Alternative models of the short-term riskless

rate of interest r  can be nested with appropriate

parameter restrictions within the unrestricted model BHK2

σ
2

t+1 = α0 + α1 ε
2

t + α2 ε
2

t ηt + b σ
2

t 

rt+1 = e
β
rt + α/β (e

β
−1) + εt+1               E(εtεs) = 0   (t≠s)

E(ε
2
t+1) = ht+1 = σ

2
t+1/2β (e

2β
−1) rt

2γ                                          
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here, the misspecification indicators are lagged values of the generalized residuals.
20

 These 

moments test for remaining GARCH effects in the models.
21

  

 

3.4. Forecasting Ability Test   
To evaluate the volatility forecasting ability of the competing models, we proxy for the 

“true” or ex-post volatility as the absolute value of changes in interest rate via 

ttt rr −= ++ 11ν                                                           (24) 

then, we use the models’ parameter estimates and conditional volatility specifications to construct 

a one step-ahead forecast of volatility, 1
ˆ

+th , for each observation in the sample and for 22 

observations out of sample. Using these, we calculate two mean squared forecast errors measures, 

one for observations in-sample and another for the out-of-sample observations. The mean-square-

forecast error is 

MSFE = ( )
21

0

11
ˆ

1
∑

−

=

++ −
K

t

tt h
K

ν                                                (25) 

where K is equal to the sample size for the in-sample measure, and 22 for the out-of-sample 

measure. Finally, we compute the proportion of the variance of absolute rate changes that can be 

explained by the models` conditional volatility estimates, denoted by R
2
 and given by 

( )∑
−

=
++ −

−=
1

0

2

11

2

1
1

K

t

tt
K

MSFE
R

νν

                                                (26) 

We compute two R
2
 measures, one for in-sample and another for the out-sample volatility 

forecasting ability. 

 

IV. The Data 
 The short-term interest rate used in this study is the one-month Euro-Currency rate on 

UK currency deposits (middle rate) obtained from Datastream
TM

. We use weekly data on a 

Wednesday to avoid missing observations and any week-day effect. The data cover the period 

from June 1983 to January 2003 giving a total of 1023 observations. 

 Table 4.1 reports descriptive statistics. It displays the mean, standard deviation, and first 

six autocorrelations of the rate and change in rates. We also report the augmented Dickey-Fuller 

(ADF) statistic of Said and Dickey (1984) for the presence of a unit root. The average level of the 

rates is 8.48% with a standard deviation of 3.2% on an annual basis. The autocorrelations for the 

level fall off slowly and those of the first differences are small and not systematically positive or 

negative. The ADF statistic does not reject the null hypothesis of a unit root at the 5% 

significance level for the rates, but it does for the first differences, which suggests that the series 

is integrated of order one (difference stationary series.). 

 

  

                                                 
20

 Generalized residuals are functions of the data and the model parameters which are constructed to have 

zero conditional expectation if the model is correctly specified. In our case, if the variance equation of a 

competing model is correctly specified, we would expect E(ε2
t+1 – ht+1 | ωt) = 0, where ωt is the information 

set available at time t. Hence, vt = ε2
t – ht, will be our generalized residual. 

21
 See BHK for a didactic explanation about the process of the Conditional Moment Test of Wooldridge 

(1990).  
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Means, standard deviations, and autocorrelations of weekly 1-month UK Euro-Currency rates and first differences are computed from June 1983 to 

January 2003.The variable r(t) denotes the 1-month UK Euro-Currency rate and ∆ r(t) is the weekly change. ρj  denotes the autocorrelation coefficient

of order j. N represents the number of observations used. ADF denotes the Augemented Dickey-Fuller  unit root statistic with a 5 percent critical value 

of -3.417.

Standard

Variable N Mean Deviation ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ADF

r(t) 1023 8.482% 3.199% 0.997 0.994 0.991 0.987 0.984 0.980 -2.423

∆ r(t) 1022 -0.005% 0.257% -0.074 0.063 0.073 -0.017 0.003 0.080 -10.4

TABLE 4.1.

Summary Statistics

 
 

In addition, we also collect 22 weekly observations out of sample, which will be used to 

asses volatility forecasting ability. These observations are from 22 January 2003 to 18 June 2003. 

 

V. Empirical Results 

5.1. Estimation Results and Model Comparisons 
 Table 5.1.1 reports maximum likelihood parameter estimates and diagnostic tests for the 

CKLS, GARCH, GJR-GARCH, BHK1 and BHK2 models estimated with the Nowman (1997) 

exact discrete model.  

 The models presented in Table 5.1.1, with exception of the GARCH model, exhibit an 

insignificant drift parameter (α ). Also, mean reversion does not appear to be an important 

feature for UK interest rates dynamics. Even though, in most instances, the sign is the correct one, 

β  is statistically indistinguishable from zero.
22

 

 This is important, given that most theoretical models of interest rates place strong 

emphasis on the mean reversion feature. From an economic viewpoint, mean reversion makes 

sense. When, for example, interest rates are high, economic activity and the demand for loans 

decline. This will put downward pressure on interest rates. The exact opposite happens when 

interest rates are low. Empirically, however, it turns out that this feature is not of particular 

consequence. Therefore, this initial finding suggests that any significant differences between the 

alternative models are caused by how they treat volatility.  

 As in Byers and Nowman (1998), estimates from the CKLS model suggest a high 

dependence of the volatility on the level of rates, with a γ  estimate of 1.5386.
23

 So, for the UK, 

the variance of unexpected interest rate changes is proportional to the cube of the level of interest 

rates. As a result, the CKLS model implies that as interest rates increase, volatility increases 

dramatically. The GARCH model, on the other hand, does not permit volatility to depend on 

interest rate levels, but instead allows volatility to change as news hit the market.
24

 Therefore, in 

this model, no apparent relationship between the conditional volatility and the level of rates 

exists. In fact, the correlation between rate levels and GARCH volatility is only 0.311, while the 

correlation between rate levels and the CKLS volatility is 0.993.  Notice, however, that the 

GARCH model exhibits an explosive behavior of the conditional variance, as 
1α + b = 1.2453, 

both parameters being statistically significant.  This  finding  is  consistent  with  previous  studies  

 

                                                 
22

 Mean reversion exists if β < 0, so a test for mean reversion is a test of whether β = 0 against the 

alternative that β < 0. However, under the null of no mean reversion, rt+1 has a stochastic trend, implying 

that the usual t-test is inappropriate.  
23

 This estimate is not statistically different from the 1.5 estimate of CKLS. 
24

 Since GARCH models assume γ = 0, no relation between the volatility and the level of rates is observed.  
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CKLS GARCH GJR-GARCH BHK1 BHK2

Panel 1.

α 0.0002 0.0483 -0.0416 -0.0001 0.0011

(0.991) (<0.001)** (0.175) (0.99) (0.932)

β -0.0005 -0.0089 0.0067 -0.0004 -0.0004

(0.859) (<0.001)** (0.099) (0.817) (0.837)

α0 0.0001 0.0025 0.0022 0.0002 0.0002

(0.013)* (<0.001)** (<0.001)** (0.007)** (<0.001)**

α1 0.6152 0.7578 0.021 0.028

(<0.001)** (0.315) (<0.001)** (0.146)

α2 0.1902 -0.0209

(0.81) (0.351)

b 0.6301 0.5494 0.5637 0.5471

(<0.001)** (<0.001)** (<0.001)** (<0.001)**

γ 1.5386 0.7759 0.7983

[ Standard Error ] [ 0.134 ] [ 0.091 ] [ 0.036 ]

(<0.001)** (<0.001)** (<0.001)**

Panel 2.

LL 169.6 236.41 245.42 303.57 309.03

χ2
(# restrictions) 278.85 145.23 127.22 10.92

(<0.001)** (<0.001)** (<0.001)** (<0.001)**

S  (εt/ht
0.5) 21.69 24.07 22.19 15.64 15.47

(0.041)* (0.02)* (0.036)* (0.209) (0.217)

Q  (εt/ht
0.5) 22.06 19.27 11.61 16.39 15.84

(0.037)* (0.082) (0.071) (0.174) (0.199)

Q  (ε
2
t/ht) 26.09 4.3 4.01 5.67 6.21

(0.01)** (0.977) (0.983) (0.932) (0.905)

Rate Level (λ1) 4.215 0.0002 0.001 0.091 0.107

(0.04)* (0.988) (0.979) (0.763) (0.744)

Asymmetry (λ2) 0.014 0.0003 0.0005 0.028 0.002

(0.905) (0.986) (0.983) (0.867) (0.964)

GARCH (λ3 −λ6) 17.357 0.002 0.001 0.201 0.088

(0.002)** (0.999) (0.999) (0.995) (0.999)

R
2
(in-sample) 0.247 0.288 0.274 0.285 0.293

R
2
(out-sample) 0.42 0.31 0.291 0.358 0.396

where: ηt = 1 if εt < 0, else ηt = 0. P-values are in parentheses.(*Significant at the 5% level, **Significant at the 1%level.)

Panel 2 reports: log-likelihood values (LL); log-likelihood ratio tests of the alternative models against the "unrestricted" BHK2;

Bergstrom’s (1990) S tests for up to twelfth order serial correlation in standardized residuals (S  (εt/ht
0.5

)); Ljung-Box tests for 

up to twelfth order serial correlation in standardized and squared standardized residuals (Q  (εt/ht
0.5

)andQ  (ε
2
t/ht),respectively); 

λ1-λ6 are a set of Wooldridge’s (1990) conditional moment tests discussed in the text; the R
2
 measures of volatility forecasting

ability in- and out-of-sample. P-values are in parentheses. (*Significant at the 5% level, **Significant at the 1%level.)

TABLE 5.1.1

Statistical Models of the Short-Term Interest Rate:

Gaussian Estimation Using Nowman (1997) Exact Discrete Model

Weekly 1-Month UK Euro-Currency Rates, 15/06/1983 - 15/01/2003 

Columns 1, 2, 3, 4 and 5 of Panel 1 report the maximum likelihood estimates of the model,

(3)                                                        σ
2

t+1 = α0 + α1 ε
2
t + α2 ε

2
t ηt + b σ

2
t                   

(1)                                       rt+1 = e
β
rt + α/β (e

β
−1) + εt+1               E(εtεs) = 0   (t≠s)

(2)                                                         E(ε
2
t+1) = ht+1 = σ

2
t+1/2β (e

2β
−1) rt

2γ                                          
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trying to fit GARCH models to interest rate series, and supports the inappropriateness of this type 

of models for interest rates.
25

 

 By augmenting the conditional variance specification of the GARCH model with an 

asymmetric term, we obtain a GJR-GARCH. The β  estimate suggests that mean reversion is 

insignificant. The lagged information shocks parameter (
1α ) increases from 0.6152 in the 

GARCH model to 0.7578 in the GJR-GARCH model, but it becomes insignificant. This means 

that including an asymmetric term increases the impact of lagged information shocks, but makes 

it statistically indistinguishable from zero. Moreover, the asymmetry coefficient (
2α ) is also 

insignificant, suggesting that the inclusion of it in the conditional variance specification is not 

only irrelevant, but also distorts the effect of information shocks that was previously found 

significant. An insignificant 
2α  coefficient also suggests that asymmetric response of interest 

rates volatility to news in the UK is, at best, weak. The lagged conditional variance parameter (b) 

remains statistically significant, but its value drops from 0.6301 to 0.5494. In short, we can imply 

that significant estimates of the GARCH parameters 
1α  and b, suggest that information shocks 

play a major role in the determination of the conditional variance for UK interest rates. Likewise, 

serial correlation in the conditional variances is an important feature of the volatility process.  

We have seen that both, the level effect (measured by γ ) and the GARCH effect 

(measured by 
1α  and b) are statistically significant. However, the relative significance of these 

effects is an important question that can be addressed by considering the gains in terms of the 

value of the log-likelihood between the CKLS and the GARCH models.
26

 Calculated changes in 

the log-likelihood are positive and substantial, from 169.6 in CKLS to 236.41 in GARCH, and 

245.42 in GJR-GARCH. This suggests that GARCH models provide a better fit than CKLS. 

Further useful insights can be gained from Figure 5.1.1, which graphs ex-post volatility 

(measured by the absolute value of changes in rates), along with the conditional volatilities from 

the CKLS and the GARCH models.  
Figure 5.1.1 

Weekly 1-Month UK Euro-Currency Rates Volatility June 1983 - January 2003
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Figure 5.1.1. Volatility forecasts using the CKLS and GARCH models: This figure displays the time–series plot of the ex-post 

volatility, which is measured as the absolute value of weekly changes in the one-month UK Euro-Currency interest rates, and the 

volatility forecast, which is the square root of the conditional variance implied by the estimates of the CKLS and GARCH models 

from June 1983 to January 2003. 

 

                                                 
25

 See Engle et.al. (1987), Hong (1988), Engle et.al. (1990), BHK, Koedijk et.al. (1997), and Bali (2003). 
26

 This is not a formal test since CKLS and GARCH models are not nested. 
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From Figure 5.1.1, we can observe that CKLS misrepresents realized volatility. In 

contrast, GARCH tracks realized volatility much better. From this, if one had to choose a model 

for the pricing of interest rate derivative securities, GARCH would be a better candidate. This 

provides evidence against models that rely exclusively on interest rate levels such as the CKLS. 

However, before we advocate any competing model for the short-rate, we must take care about 

the misspecification tests provided in Panel 2 of Table 5.1.1. First, if the model is correctly 

specified, the standardized residuals should have zero mean and unit variance, being serially 

uncorrelated. Also, a correctly specified model, should account for serial correlation in second 

moments, which are measured by the squared standardized residuals. As we can appreciate, for 

the CKLS model, the Bergstrom (S) test rejects the null that serial correlations up to the twelfth 

lag in standardized residuals are jointly zero; this is confirmed by the Ljung-Box (Q) test. Also, 

the Q test for up to twelfth order serial correlation in squared standardized residuals, suggests that 

the model fails to account fully for time variation in second moments. Moreover, the 

Wooldridge’s conditional moment tests (CM) for rate levels (
1λ ) indicates that the CKLS model 

fails to capture the dependence of volatility on levels, with a p-value of 0.04. This observation is 

surprising, since the CKLS model is supposed to capture the level effect, but it appears that 

ignoring GARCH effects causes a misspecification in the conditional volatility that leads to 

failure in adequately capturing the relationship between volatility and the level of rates. Finally, 

the CM test for remaining GARCH effects (
63 λλ − ), suggests that CKLS fails to capture the 

serial correlation in conditional variances. 

 CM tests on the GARCH and GJR-GARCH models reveal that both of them capture the 

level effect (
1λ ) and the GARCH effect (

63 λλ − ). However, they fail to capture the serial 

correlation in standardized residuals, evidenced by the S tests which are significant, rejecting the 

null of white noise. We should note, however, that the CM tests for the asymmetry effect (
2λ ), 

reveal that all of the models regardless on whether they incorporate an asymmetric term in their 

conditional volatility specifications, adequately account for asymmetries in interest rates 

dynamics. This is not surprising since we have found earlier that the asymmetric term in the GJR-

GARCH model was insignificant; suggesting a weak asymmetric response of interest rates 

volatility in the UK. Evidence until now suggests that both, pure level models (the CKLS) and 

pure time-varying volatility models (the GARCH models) are misspecified in the way they model 

volatility of interest rates for the UK. Therefore, our results suggest that models incorporating 

both the dependence of volatility on levels and serial correlations in conditional variances may be 

superior to either the levels or GARCH models.                

 Results for the BHK1 and BHK2 models are presented in the last two columns of Table 

5.1.1. Consider first the BHK1 model. Conditional volatilities are plotted in Figure 5.1.2. next 

page. These estimated volatilities seem to track realized volatility better than the CKLS model. 

 In the BHK1 model, the variance process differs from both the CKLS and the GARCH 

processes. The GARCH parameters, 
1α  and b, are independently and jointly significantly 

different from zero, implying that the volatility parameter (σ ) is time varying. Similarly, γ  is 

highly significant, implying that the variance is an increasing function of levels. In fact, the 

correlation between the conditional volatility and the interest rate level is 0.447, which lies 

between the 0.311 of the GARCH model and the 0.993 of the CKLS model. Also, this model 

passes all of the volatility-related misspecification tests. It captures the dependence of volatility 

on levels (
1λ ), the asymmetric response of volatility to news (

2λ ), the GARCH effect (
63 λλ − ) 

and the serial correlation in standardized and squared standardized residuals; evidenced by 

insignificant CM, S and Q tests. This shows that BHK1 is statistically preferable to both the 

CKLS and GARCH models.  
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 Figure 5.1.2 

ACTUAL BHK1

Weekly 1-Month UK Euro-Currency Rates Volatility June 1983-January 2003

1983 1985 1987 1989 1991 1993 1995 1997 1999 2001
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Figure 5.1.2. Volatility forecast using the BHK1 model: This figure displays the time–series plot of the ex-post volatility, which is 

measured as the absolute value of weekly changes in the one-month UK Euro-Currency interest rates, and the volatility forecast, 

which is the square root of the conditional variance implied by the estimates of the BHK1 model from June 1983 to January 2003. 

 

An important observation is that 
1α  has dropped substantially compared to the GARCH 

and GJR-GARCH models; causing 
1α  + b to drop from 1.2453 in the GARCH model, to 0.5847 

in BHK1. Implying that, in contrast to the GARCH model, the conditional variance process is 

finite and stationary.
27

 Therefore, common findings in the literature of explosive conditional 

variance processes could be due in part, a consequence of a misspecification error caused by 

ignoring the relationship between volatility and rate levels.
28

 Another interesting observation is 

that the γ  estimate has dropped substantially from 1.5386 in the CKLS model, to 0.7759 in 

BHK1. This implies that extant findings of a high dependence of volatility on rate levels have 

been caused by a misspecification error, originated by ignoring the GARCH effect. Our findings 

suggest that, at least for the UK, the combination of level and news effects is important to fully 

capture the dynamic behavior of interest rates. Recall that the CKLS model fails to capture the 

dependence between volatility and rate levels, but after including the GARCH component - as in 

the BHK1 model - this dependence is fully captured with a γ  estimate of almost half. This 

implies that ignoring GARCH effects overstates the value of γ  and causes misspecification 

errors in short-rate models. Moreover, our γ  estimate in the BHK1 model is statistically different 

from either 0.5 or 1. This suggests that, at least for the UK, time-varying volatility versions of 

theoretical models such as the CIR-SR that assumes γ  = 0.5 or the Dothan (1978), GBM, and 

Brennan-Schwartz (1980) models which assume γ  = 1, may not be reliable. It could be, however, 

                                                 
27

 This is only a conjecture since in the BHK1 model volatility persistence is no longer measured by α1 + b. 

Now volatility is a function of both the volatility parameter, σ2
t, and interest rate levels. 

28
 See Engle et.al. (1987), Hong (1988), and Engle et.al. (1990) for findings of explosive behaviors in 

conditional variances processes when fitting GARCH models to interest rates series. 

Weekly 1-Month UK Euro-Currency Rates Volatility June 1983 – January 2003 

____________________________________________________________________ 
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that a time-varying volatility version of the CEV model (which leaves γ  free), performs well for 

the UK. Our findings contrast with BHK results for the US in which they find - in the BHK1 

model - a γ  estimate of 0.459, not significantly different from 0.5, advocating an extended 

version of the CIR-SR model. 

 We now extend BHK1 in order to incorporate an asymmetric term; this yields BHK2 

model, presented in the last column of Table 5.1.1. While BHK2 statistically dominates BHK1 

(the likelihood ratio test χ2
 evidences a rejection of BHK1 against BHK2), most of the results 

discussed for BHK1 are unaffected. The model also passes all of the volatility-related 

misspecification tests. We should note, however, that the asymmetry coefficient, 
2α , is 

insignificant; implying again a weak asymmetric effect of interest rates volatility in the UK. 

Perhaps more important, the γ  
estimate is similar to the BHK1 estimate. It rises slightly to 

0.7983, but it is still statistically different from either 0.5 or 1; again some statistical evidence in 

support of a time-varying volatility version of the CEV model for the UK. 

 

5.2. The CKLS Nested Models  
We now turn our analysis to the CKLS nested models.

29
 Parameter estimates and 

diagnostic tests are presented in Table 5.2.1. A common feature between the eight well-known 

nested models is that the mean equation parameters (α  and β ) are insignificant; suggesting 

again that any difference between the short-rate models will be given by the stochastic 

specification of the conditional variance. Firstly, we should note that all of these models are 

rejected against the “unrestricted” BHK2 by the likelihood ratio test (χ2
); implying that the 

imposed restrictions are not valid. Secondly, the S and Q tests for standardized residuals show 

that models assuming a γ  parameter of either less or more than one, fail to account for the serial 

correlation in residuals; rejecting the null hypothesis of white noise. Moreover, all of the models 

fail to account for the serial correlation in second moments; as evidenced by the significant Q 

tests for squared standardized residuals.  Also,  all  of  them  - except  for  the  Dothan  model -  

fail  to capture the dependence between volatility and rate levels (
1λ ); with significant CM tests. 

None of these models account for the GARCH effect in interest rates volatility (
63 λλ − ), 

but all of them account for the asymmetric effect (
2λ ). Another interesting observation is that the 

CEV model, which leaves the γ  parameter free but imposes the restriction of α = 0, reaches a γ  
estimate of 1.5384. This estimate in very similar to the CKLS model estimate of 1.5386; implying 

that the inclusion or not of α , the drift parameter, in the model does not affect the estimates of 

γ . 

In short, evidence from the well-known CKLS nested models, confirms our findings that 

failure to account for the GARCH effect in the stochastic behavior of interest rates, originates 

diverse sources of misspecifications. However, the asymmetric effect is still captured without 

including a GARCH or Asymmetric GARCH term in the conditional variance specifications. This 

confirms our intuition that no asymmetric response of interest rates volatility to news in the UK 

exists or is at best weak.     

 

 

 

 

 

                                                 
29

 Note that all of these models belong to the “Level Models” class. 
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Merton Vasicek CIR SR Dothan GBM Brennan- CIR VR CEV

Panel 1. Schwartz

α -0.0054 0.0141 0.0071 0.0024

(0.517) (0.646) (0.773) (0.877)

β -0.0023 -0.0015 -0.0005 -0.0008 -0.0005

(0.33) (0.695) (0.488) (0.711) (0.602)

α0 0.0661 0.0662 0.0066 0.0007 0.0007 0.0007 0.0001 0.0001

(<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)** (0.014)*

α1

α2

b

γ 0.5 1 1 1 1.5 1.5384

[ Standard Error ] [ 0.079 ]

(<0.001)**

Panel 2.

LL -62.11 -61.69 56.09 136.68 136.86 136.88 156.14 169.6

χ2
(# restrictions) 742.28 741.44 505.88 344.7 344.33 344.31 305.78 278.85

(<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)**

S  (εt/ht
0.5) 28.05 28.07 23.27 20.2 20.06 20.14 33.33 21.68

(0.005)** (0.005)** (0.026)* (0.064) (0.066) (0.065) (<0.001)** (0.041)*

Q  (εt/ht
0.5) 28.36 28.37 23.58 20.4 20.4 20.46 21.77 22.05

(0.005)** (0.005)** (0.023)* (0.06) (0.06) (0.059) (0.04)* (0.037)*

Q  (ε
2
t/ht) 72.73 72.84 58.66 41.68 41.4 41.36 27.1 26.09

(<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)** (0.008)** (0.01)**

Rate Level (λ1) 8.803 5.131 12.462 0.979 10.542 6.938 5.425 5.015

(0.003)** (0.024)* (<0.001)** (0.322) (0.001)** (0.008)** (0.02)* (0.025)*

Asymmetry (λ2) 0.16 0.103 0.024 0.002 0.001 0.015 0.079 0.048

(0.69) (0.748) (0.878) (0.965) (0.975) (0.904) (0.78) (0.827)

GARCH (λ3 −λ6) 21.356 19.158 16.953 16.649 18.135 17.767 16.202 17.846

(<0.001)** (<0.001)** (0.002)** (0.002)** (0.001)** (0.001)** (0.003)** (0.001)**

R
2

(in-sample) 0.236 0.236 0.259 0.262 0.262 0.262 0.249 0.247

R
2

(out-sample) 0.401 0.401 0.407 0.413 0.413 0.413 0.42 0.42

(1)                                                            rt+1 = e
β
rt + α/β (e

β
−1) + εt+1               E(εtεs) = 0   (t≠s)

(2)                                                                              E(ε
2
t+1) = ht+1 = σ

2
t+1/2β (e

2β
−1) rt

2γ                                          

(3)                                                                              σ
2

t+1 = α0 + α1 ε
2
t + α2 ε

2
t ηt + b σ

2
t                   

where: ηt = 1 if εt < 0, else ηt = 0. P-values are in parentheses.(*Significant at the 5% level, **Significant at the 1%level.)

Panel 2 reports: log-likelihood values (LL); log-likelihood ratio tests of the alternative models against the "unrestricted" BHK2; Bergstrom’s (1990) S

tests for up to  twelfth  order serial  correlation in  standardized residuals  (S  (εt/ht
0.5

));  Ljung-Box  tests  for  up  to  twelfth  order  serial correlation

in  standardized  and  squared  standardized  residuals (Q  (εt/ht
0.5

)  and Q  (ε
2
t/ht), respectively);  λ1-λ6  are a  set  of  Wooldridge’s  (1990)  conditional

moment tests as discussed in the text; the R
2
 measures of volatility forecasting ability in- and out-of-sample. 

P-values are in parentheses. (*Significant at the 5% level, **Significant at the 1%level.)

Weekly 1-Month UK Euro-Currency Rates, 15/06/1983 - 15/01/2003 

Columns 1, 2, 3, 4, 5, 6, 7 and 8 of Panel 1 report the maximum likelihood estimates of the model,

TABLE 5.2.1

Statistical Models of the Short-Term Interest Rate:

Gaussian Estimation Using Nowman (1997) Exact Discrete Model
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5.3. An Alternative Measure of Model Performance 
 An alternative model evaluation criterion is the volatility forecasting power. The R

2
 

measures of forecasting ability are reported in the last two lines of the previous Tables. 

Surprisingly, the out-of-sample forecasting performance is better than the in-sample forecasting 

performance for all of the competing models. This observation is not expected; since the normal 

thing is a relatively lower out-of-sample forecasting ability. However, this could be due to the 

fact that during the out-of-sample period volatility has been relatively low compared with part of 

the in-sample period, especially the first half; this becomes evident from Figure 5.1.2. Therefore, 

the in-sample R
2
 measure is lower due to the greater volatility experimented during the sample 

period used for the estimation. 

As expected, the models accounting for the level and GARCH effects - like the BHK2 

and BHK1 - have the best volatility forecasting ability in-sample; and models assuming no 

relationship between volatility and either levels or information shocks - like the Merton or 

Vasicek models - perform the worst. But, rather surprisingly, when assessing the out-of-sample 

forecasting power a different picture emerges. While BHK2 and BHK1 have a relatively good 

performance, models suggesting a high dependence of volatility on rate levels and ignoring 

GARCH effects like the CKLS, CIR VR, and CEV (that were found to be misspecified and 

rejected against BHK2) perform the best. This could be specific to the out-of-sample evaluation 

period, during which interest rates have been relatively stable and spikes in volatility haven’t 

been observed. Therefore, from an out-of-sample perspective, level models may well account for 

the volatility dynamics by parameter zing them only as a function of rate levels. We should note, 

however, that during periods of relatively high volatility, models like BHK2 and BHK1 are 

expected to perform the best. In general, we can conclude that periods of low volatility can be 

well modeled by “Level Models”, but it should be safer to rely on “Level-News Models” as they 

have been found to be statistically superior. 

 

5.4. Extending the CKLS Nested Models 
 So far, our findings show that modeling the volatility of interest rates as a function of 

information shocks and levels is the most appropriate specification for short-rate dynamics in the 

UK. However, we have not been able to find any alternative to the BHK2 that, while 

incorporating news and level effects, offers a more parsimonious specification for short-rate 

dynamics. Remember that the only model correctly specified over the basis of volatility-related 

diagnostic tests was the BHK1, but it was rejected by the likelihood ratio test (χ2
). In this section, 

we explore whether there is an alternative model that offers a reliable description of interest rate 

dynamics in the UK. In addressing this question, we extend all of the CKLS nested models of 

Table 5.2.1 such that they additionally include GARCH effects in their conditional variances 

specifications.
30

  

 Table 5.4.1 reports parameter estimates and diagnostic tests for the extended models that, 

at least, passed all of the volatility-related tests. These models are the GJR-Dothan, GJR-GBM, 

G-GBM, GJR-Brennan-Schwartz, G-Brennan-Schwartz, GJR-CEV, G-CEV, and one new model 

assuming α = β = 0 while leaving all of the remaining parameters free, we will call it the NO-

DRIFT model.
31

  

                                                 
30

 The only model that was not extended is the Vasicek (1977), since an extension of this model in order to 

include time-varying volatility parameters will yield the GARCH model itself. 

 
31

 We call “GJR-MODEL NAME” to models extended with GARCH and Asymmetric effects. And “G-

MODEL NAME” to models extended with solely a GARCH effect. 



 20

GJR-Dothan GJR-GBM G-GBM GJR-Brennan G-Brennan GJR-CEV G-CEV NO-DRIFT

Panel 1. Schwartz Schwartz

α -0.0038 0.0032

(0.73) (0.761)

β -0.0003 -0.0006 0.0002 -0.001 -0.0002 -0.0004

(0.708) (0.302) (0.889) (0.528) (0.737) (0.468)

α0 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002

(<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)** (0.006)**

α1 0.0145 0.014 0.0075 0.0142 0.0075 0.0279 0.0209 0.0285

(<0.001)** (0.81) (0.012)** (<0.001)** (<0.001)** (0.178) (0.104) (0.002)**

α2 -0.0133 -0.0129 -0.0131 -0.0208 -0.0211

(<0.001)** (0.125) (<0.001)** (0.258) (<0.001)**

b 0.4711 0.4736 0.56 0.4733 0.5598 0.5465 0.5637 0.5469

(<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)** (<0.001)**

γ 1 1 1 1 1 0.7996 0.7763 0.7981

[ Standard Error ] [ 0.069 ] [ 0.063 ] [ 0.041 ]

(<0.001)** (<0.001)** (<0.001)**

Panel 2.

LL 305.88 305.99 298.1 306.06 298.15 309.02 303.57 308.94

χ2
(# restrictions) 6.29 6.08 21.86 5.94 21.76 0.01 10.92 0.17

(0.098) (0.048)* (<0.001)** (0.015)* (<0.001)** (0.92) (0.004)** (0.919)

S  (εt/ht
0.5) 16.36 15.79 18.73 15.72 18.91 15.44 15.64 15.88

(0.176) (0.201) (0.095) (0.204) (0.091) (0.218) (0.208) (0.197)

Q  (εt/ht
0.5) 16.26 16.06 19.65 15.98 19.79 15.82 16.39 15.96

(0.179) (0.189) (0.074) (0.192) (0.071) (0.199) (0.174) (0.193)

Q  (ε
2

t/ht) 9.12 9.06 7.08 9 7.07 6.21 5.67 6.21

(0.693) (0.697) (0.852) (0.703) (0.853) (0.905) (0.932) (0.905)

Rate Level (λ1) 1.956 0.114 0.171 0.124 0.194 0.111 0.084 2.474

(0.162) (0.735) (0.679) (0.725) (0.66) (0.738) (0.772) (0.116)

Asymmetry (λ2) 1.678 0.062 0.048 0.0005 0.051 0.039 0.041 3.499

(0.195) (0.801) (0.826) (0.982) (0.821) (0.843) (0.839) (0.061)

GARCH (λ3 −λ6) 0.624 0.001 0.02 0.061 0.304 0.0003 0.011 1.03

(0.96) (0.999) (0.999) (0.999) (0.989) (0.999) (0.999) (0.905)

R2
(in-sample) 0.289 0.29 0.284 0.29 0.284 0.293 0.285 0.292

R
2

(out-sample) 0.411 0.411 0.37 0.411 0.37 0.396 0.358 0.395

(1)                                                            rt+1 = e
β
rt + α/β (e

β
−1) + εt+1               E(εtεs) = 0   (t≠s)

(2)                                                                              E(ε
2

t+1) = ht+1 = σ
2
t+1/2β (e

2β
−1) rt

2γ                                          

(3)                                                                              σ
2
t+1 = α0 + α1 ε

2
t + α2 ε

2
t ηt + b σ

2
t                   

where: ηt = 1 if εt < 0, else ηt = 0. P-values are in parentheses.(*Significant at the 5% level, **Significant at the 1%level.)

Panel 2 reports: log-likelihood values (LL); log-likelihood ratio tests of the alternative models against the "unrestricted" BHK2; Bergstrom’s (1990) S

tests for up to  twelfth  order serial  correlation in  standardized residuals  (S  (εt/ht
0.5

));  Ljung-Box  tests  for  up  to  twelfth  order  serial correlation

in  standardized  and  squared  standardized  residuals (Q  (εt/ht
0.5

)  and Q  (ε
2

t/ht), respectively);  λ1-λ6  are a  set  of  Wooldridge’s  (1990)  conditional

moment tests as discussed in the text; the R
2
 measures of volatility forecasting ability in- and out-of-sample. 

P-values are in parentheses. (*Significant at the 5% level, **Significant at the 1%level.)

Columns 1, 2, 3, 4, 5, 6, 7 and 8 of Panel 1 report the maximum likelihood estimates of the model,

TABLE 5.4.1

Statistical Models of the Short-Term Interest Rate:

Weekly 1-Month UK Euro-Currency Rates, 15/06/1983 - 15/01/2003 

Gaussian Estimation Using Nowman (1997) Exact Discrete Model
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The first column of Table 5.4.1 reports the Dothan model augmented with GARCH and 

asymmetric terms. We should note that this model is not rejected against the BHK2 by the 

likelihood ratio test (χ2
), which implies that the restrictions imposed are valid. These restrictions 

are α = β = 0 and γ  = 1, three in total. The parameters in the model are highly significant. This 

supports the view that the conditional mean parameters (α  and β ) are of second order in 

explaining short-rate dynamics, and can easily be ignored. Also, we can argue that restricting γ  

to be 1, in combination with GARCH and asymmetric terms, adequately captures short-rate 

dynamics in the UK. The model accounts for serial correlation in standardized and squared 

standardized residuals, the level effect (
1λ ), the asymmetric effect (

2λ ) and the GARCH effect 

(
63 λλ − ).  

Columns 2 troughs 5 report the extended versions of the GBM and Brennan-Schwartz 

models. Although all of them pass the volatility-related diagnostic tests, they are rejected against 

the BHK2 by the likelihood ratio test (χ2
). We should note that all of these models assume γ =1, 

just as the GJR-Dothan that was not rejected, but the difference is that they add one or both of the 

conditional mean parameters α  and β . Therefore, we can imply that α  and β  are not only 

insignificant in explaining short-rate dynamics, but also they represent a source of 

misspecification when included in short-rate models; that leads to rejection of these models 

against the unrestricted BHK2. 

 Column 6 shows the GJR-CEV model. The only difference between this model and the 

BHK2 is that the former assumes α  = 0. We should note that the estimates from this model are 

almost the same as in BHK2, especially the γ  parameter with a value of 0.7996. Also, the log-

likelihood value is technically the same and the model is not rejected against BHK2, passing all 

the diagnostic tests. This confirms the intuition regarding the insignificance of the drift parameter, 

α , in explaining short-rate dynamics in the UK. Column 7 reports the G-CEV model. Although 

it passes the diagnostic tests, it is rejected against BHK2. This suggests that restricting jointly the 

drift term, α , and the asymmetric term, 
2α , to be zero is not appropriate. However, we should 

note that the γ  estimate of this model is qualitatively the same as the GJR-CEV, BHK2 and 

BHK1 models. 

 Finally, column 8 shows the NO-DRIFT model. This model passes all the diagnostic tests 

and is not rejected against BHK2. This implies that restricting the conditional mean parameters 

(α  and β ) to be both zero offers a reliable description of short-rate dynamics in the UK. This 

supports the insignificance of these two parameters and confirms the weak evidence of mean-

reversion documented in the literature.
32

 We should also note that the γ  estimate is again 

qualitatively the same as in BHK2, being statistically different from either 0.5 or 1. This suggests 

that the most reliable value for γ  in the UK is approximately 0.8, and that the CKLS model 

exaggerates the dependence of volatility on rate levels; evidenced by its estimate of 1.5386, 

which almost doubles the value of the most appropriate estimate given by 0.7983 in BHK2.  

 In short, it appears that the most reliable specification for short-rate dynamics in the UK 

is given by the combination of level and news effects. In addition, restrictions imposed on α  and 

β  parameters are valid, permitting us to reach more parsimonious and equally reliable models 

for the short-rate. This supports extant findings regarding weak evidence of mean reversion and 

enforces the view that interest rates volatility should not be modeled only as a function of the 

level of rates. 

                                                 
32

 See CKLS, BHK and Nowman (1997) for findings of weak mean-reversion in interest rate processes. 
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VI. Conclusion 
 In this study, we estimate and compare three classes of single-factor short-term interest 

rate models in the UK. In the first, volatility is only a function of interest rate levels. We call 

these “Level Models”. In the second, volatility is only a function of information shocks to the 

interest rate market. These are GARCH type models. In the third, volatility is a function of both 

rate levels and information shocks. We call these “Level-News Models”.   

 Our findings show that “Level Models” exaggerate the dependence of volatility on rate 

levels. They overstate the value of the parameter that measures the strength of this relation (γ ). 

Therefore, ignoring GARCH effects appears to cause an omitted variables problem that leads 

“Level Models”, such as the CKLS, to be misspecified. Moreover, Wooldridge’s (1990) 

conditional moment tests reveal that “Level Models” fail to capture both the dependence of 

volatility on rate levels, and the serial correlation in conditional variances. On the other hand, 

GARCH models produce estimates suggesting an explosive behavior of the conditional variance. 

Therefore, ignoring the “level effect” also causes an omitted variables problem that leads 

GARCH processes to be explosives. Furthermore, Bergstrom’s (1990) “S” tests reveal that 

GARCH models do not produce white noise standardized residuals; implying that they are 

misspecified.   

 We support the view that the combination of level and news effects yields the most 

appropriate description of the volatility of interest rates. This is evidenced by the “Level-News 

Models” that have been found to be correctly specified, capturing both the dependence of 

volatility on rate levels and the serial correlation in conditional variances. However, we disagree 

with the BHK statement that: “While the sensitivity of interest rate volatility to interest rate levels 

is important, adequately modeling volatility as a function of unexpected information shocks is 

equally important” (1996, p. 85). We show that GARCH models perform relatively better than 

“Level Models”, suggesting that modeling volatility as a function of unexpected information 

shocks is more important than modeling it only as a function of rate levels.  

 We obtain – in the “Level-News Models” – an estimate for the parameter that measures 

the sensitivity of interest rate volatility with respect to the interest rate level, γ , of about 0.8. This 

estimate is significantly different from either 0.5 or 1, which does not support extended versions 

of theoretical short-rate models that restrict γ  to be either 0.5 or 1. This contrasts with the results 

of BHK for US in which they find a γ  estimate of 0.459 (statistically insignificantly different 

from 0.5), and support a time-varying volatility version of the CIR-SR model. We find, however, 

that an extended version of the CEV model, that includes a GARCH effect in the conditional 

variance specification, produces a reliable description of short-rate dynamics in the UK. 

 We find that the parameter that measures the speed of mean reversion, β , is statistically 

indistinguishable from zero. This provides weak evidence of mean reversion in interest rates 

dynamics and is consistent with extant literature. 

 We obtain insignificant estimates for the parameter that measures the asymmetric 

response of volatility to news, 
2α ; implying that volatility asymmetries in UK interest rates are at 

most weak. Furthermore, conditional moment tests reveal that the asymmetric effect is adequately 

captured by all of the models tested, no matter if they include or not GARCH or asymmetric 

terms in their conditional variances specifications. This finding strongly supports the weak 

asymmetric response of volatility to news in the UK. 

 Finally, we propose a short-rate model which restricts the mean reversion parameter, β , 

and the drift parameter, α , to be both zero. The proposed model appears to be well specified and 

is not rejected against the “unrestricted” BHK2; providing a parsimonious and reliable description 

of short-rate dynamics for the UK. This suggests that the parameters that describe the conditional 
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mean of interest rate changes (α  and β ), are insignificant in capturing short-rate dynamics. 

Therefore, it appears that the most important feature in short-rate modeling is the correct 

specification of the conditional variance; leaving little relevance for the conditional mean 

characterization. 
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Appendix I: Derivation of Nowman (1997) Exact Discrete Model 

Consider the CKLS stochastic differential equation: 

        dr(t) = {α + βr(t)} dt + σ rγ
(t) dZ                                               (1) 

Now assume as an approximation to the true underlying moment given by equation (1) 

that over the interval [0 , T], r(t) satisfies the stochastic differential equation: 

  dr(t) = {α + βr(t)} dt + σ {r(t´- 1)}
γ
 dZ                                           (2) 

where t´ is the smallest integer greater than or equal to t. Nowman assumed that volatility changes 

at the beginning of a unit observation period and then remains constant trough the period until the 

next period. 

Now, by splitting integers in equation (2), it follows that r(t) satisfies the stochastic 

integral equation: 

r(t) – r(t´- 1) = [ ] ( ){ }
´ 1 ´ 1

( ) ´ 1 ( )
t t

t t
r s ds r t dZ s

γ
α β σ

− −
+ + −∫ ∫                     (3) 

for all t in [t´-1, t´] where 

t´-1 < t ≤ t´      and         [ ]
´ 1

( ) ` 1,
t

t
dZ s Z t t

−
= −∫                                (4) 

Under these assumptions, Nowman (1997) used the exact discrete model of Bergstrom 

(1984, Theorem 2) to obtain the discrete model corresponding to equation (3) given by 
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Comparison with the CKLS discrete approximation 

Note that we can get the CKLS approximation as a special case of Nowman’s exact 

discrete model derived in (5)-(7). 

Using a Taylor series expansion for e
β
 yields: e

β
 = 1 + β + 

!2

2β
 +…, and using only the 

first two terms of the Taylor series expansion to replace e
β
 in (5) we get: 

                          r(t) = (1 + β) r(t-1) + 
β

α
(1 + β −1) + εt                                      (8) 

                          r(t) = r(t-1) + β r(t-1) + α + εt                                            (9) 

                          r(t) - r(t-1) = α + β r(t-1) + εt                                           (10) 

Equation (10) is the CKLS discrete approximation. Following the same procedure for the 

conditional variance specification given in (7), we get: 
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Equation (11) is the conditional variance specification of CKLS discrete approximation. 


