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What Type of Process Underlies Options?

A Simple Robust Test

ABSTRACT

We develop a simple robust test for the presence of continuous and discontinuous (jump) com-

ponents in the price of an asset underlying an option. Our test examines the prices of at-the-money

and out-of-the-money options as the option maturity approaches zero. We show that these prices

converge to zero at speeds which depend upon whether the sample path of the underlying asset

price process is purely continuous, purely discontinuous, or a mixture of both. By applying the test

to S&P 500 index options data, we conclude that the sample path behavior of this index contains

both a continuous component and a jump component. In particular, we find that while the pres-

ence of the jump component varies strongly over time, the presence of the continuous component is

constantly felt. We investigate the implications of the evidence for parametric model specifications.

JEL CLASSIFICATION CODES: G12, G13, C52.

KEY WORDS: Jumps; continuous martingale; option pricing; Lévy density; double tails; local time.



In continuous time finance, the asset price process is almost always modeled as a semimartingale

(Delbaen and Schachermayer (1994)). By definition, every semimartingale can be uniquely decom-

posed into two components: a predictable component and a martingale component. Intuitively speak-

ing, this decomposition amounts to decomposing every increment of the process into a conditional

forecast and an innovation. In general, the innovation (martingale) component can either be a purely

continuous martingale (henceforth PC), a pure jump martingale (henceforth PJ), or a combination of

both (henceforth CJ). While the traditional modeling effort has mainly focused on purely continuous

processes, growing attention has been given to pure jump processes and combinations of continuous

and jump processes. Examples include, among others, Aı̈t-Sahalia, Wang, and Yared (2001), Andersen,

Benzoni, and Lund (2002), Bates (1991), Duffie, Pan, and Singleton (2000), and Merton (1976).

Despite the important implications for asset pricing and for risk management, it remains an open

question as to which of the three types of martingales drives the price movement of an asset. Most

recently, Äıt-Sahalia (2002) refines our understanding of the answer to this question. By applying the

concept of total positivity, Äıt-Sahalia (2002) shows that the cross second derivative of the transition

density of a one-factor diffusion process has to be positive at all states and at all sampling intervals. He

constructs a diffusion criterion based on such a property and applies the test to the risk-neutral transition

density of the S&P 500 index implied from observed option prices. The test rejects the hypothesis that

the index follows a one factor diffusion process. However, since the test is constructed under the one-

factor Markovian setting, his diffusion criterion could also be violated if the index follows a continuous

sample path, but is not Markovian in itself. For example, in the presence of stochastic volatility, the

single factor Markovian property is violated and thus the criterion can be violated even if the asset price

follows a continuous sample path. Indeed, the presence of stochastic volatility in asset returns is well

documented. See, for example, Bakshi, Cao, and Chen (1997), Bates (1996, 2000), Ding and Granger

(1996), and Pan (2002).

This article proposes a procedure for identifying the nature of the martingale component under a

much more general setting. In particular, the price process can be non-Markovian and can be driven by

multiple factors such as stochastic volatilities. Our test does not look directly at the transition density



Table I
Behavior of Short-Maturity Options

Model Type OTM Options ATM Options

PC O(e−1/T) O(
√

T)
PJ O(T) O(T p), p∈ (0,1]
CJ O(T) O(T p), p∈ (0,1/2]

nor at the sample path of the asset price. Instead, the test examines the prices of at-the-money (ATM)

and out-of-the-money (OTM) options on the asset as the option maturity approaches zero. While the

prices of all ATM and OTM options converge to zero as time to maturity decreases, our theoretical

work shows that the speed of convergence differs across the three model types (PC, PJ, and CJ) and the

two moneyness modes (ATM and OTM). This speed of convergence is described conveniently using

Landau’s notation, so thatf = O(g) implies limsup( f/g) < ∞. Table I summarizes our theoretical

results regarding the speed with which an option’s premium approaches zero as time to maturityT

vanishes.

The table indicates that OTM option prices converge to zero at an exponential rate,O(e−1/T), in the

case of a purely continuous sample path (PC), but are dominated by a linear convergence rate,O(T),

in the presence of jumps. The table also shows that ATM option prices approach zero at a particular

speed,O(
√

T), in the case of a purely continuous sample path. In contrast, ATM option prices can

approach zero at a range of speeds in the case of a pure jump process (PJ). If the jump process has

sample paths with finite variation, e.g., a compound Poisson process with a possibly random jump

size and potentially time-varying (but finite) jump intensity, the powerp in the table is one. However,

if the jump process has sample paths of infinite variation, the order of convergence can be anything

between zero and one. In the case of a combination of both continuous and discontinuous sample paths

(CJ), the convergence rate is dominated by the component with the slowest convergence to zero. Thus,

observations of the convergence rates of option prices to zero can potentially be used to distinguish the

type of the martingale component of the underlying asset price process.
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The different decay speeds experienced by option premiums are most easily visualized by a graph.

In this paper, we focus on a graph which plots the log of the ratio of option prices to maturity against log

maturity. We christen such a graph as theterm decay plot. The division of option prices by maturity

is used to visually contrast orderO(T) behavior from subO(T) and superO(T) behavior. For OTM

options, the asymptotic behavior of the term decay plots (as maturity approaches zero) determines

whether or not jumps are being priced into options. In particular, an asymptotic slope of0 for the OTM

term decay plot implies the existence of a jump component, while an asymptotic slope of positive

infinity is consistent with a purely continuous sample path. For ATM options, an asymptotic slope of0

would imply a pure jump process with finite variation. An asymptotic slope of−0.5 implies that either

the sample path has a continuous component, or that the jump component exhibits infinite variation (or

both). An asymptotic slope of any other value implies the existence of an infinite variation pure jump

process, which can also be masking a continuous component if the asymptotic slope is below−0.5,

eg.,−0.6.

The theoretical results in Table I are based on the asymptotic properties of option prices as the

option maturity approaches zero. To determine at what maturity range we can observe the asymptotic

behaviors, we simulate several parametric models under each of the three process types. For all models

simulated, we find that the theoretical asymptotic behavior is always experienced by options maturing

within 20 days. In some cases, the asymptotic behavior is experienced over a much longer term. For

example, for ATM options in models with a continuous martingale component, the asymptotic behavior

is experienced by options maturing within a year. Options with maturities from one week to one year

are readily available and liquid for many underlying assets such as stocks, stock indices, currencies,

bonds, etc. Thus, the types of the sample paths of these assets can readily be tested using market prices

of their respective options.

We apply the test to S&P 500 index options by estimating the term decay plots at different money-

ness levels for more than one year’s worth of daily closing quotes. We find that the sample path of the

index contains both a continuous and discontinuous martingale components. In particular, we find that

while the presence of the jump component varies strongly over time, the presence of the continuous
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component is constantly felt. We investigate the implications of the evidence for parametric model

specifications.

Our theoretical framework and our proposed test focus on the risk-neutral dynamics of an under-

lying asset. However, under no arbitrage, thetype of process found under a risk-neutral measure is

preserved under a measure change to the statistical measure. Hence, our findings have implications for

both pricing and risk management. More specifically, our findings indicate that risk measurement and

management should be conducted under the assumption that the real world process has both continuous

and discontinuous martingale components, with the relative weight of the two components varying over

time.

Our test presents interesting contrasts to the test proposed by Aı̈t-Sahalia (2002). First, Äıt-Sahalia

(2002) tests whether the underlying asset follows a one-factor (Markovian) diffusion process or not;

our test is designed to identify the presence of a jump component and/or a continuous component and

is not confined to a one factor or Markovian set-up. Second, Aı̈t-Sahalia (2002) looks at the transition

density acrossall potential states at anyfixed time horizon. In contrast, our test looks at the option

price behavioracross maturities at fixed moneyness (states). Hence, the two tests complement each

other by focusing on different dimensions of the information set.

The remainder of this paper is organized as follows. The next section develops our theoretical re-

sults underlying Table I. Section II simulates popular model candidates under each of three model types

and analyzes at which maturity options can be characterized by their asymptotic behaviors. Section III

applies the test to S&P 500 index options. Section IV concludes.

I. Theory of Short Maturity Option Pricing

A. Assumptions and Notation

We assume frictionless markets and no arbitrage. Then, under a risk-neutral measureQ, the return on

an asset can be modeled as a superposition of a predictable drift component and a martingale. The
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drift component is determined by no arbitrage. The martingale component can further be decomposed

canonically into two orthogonal components: a purely continuous martingale and a purely discontinu-

ous martingale (Jacod and Shiryaev (1987), page 84).

To fix notation, letSt denote the spot price of an asset at timet ∈ [0,T ], whereT is some arbitrarily

distant horizon. No arbitrage implies that there exists a risk-neutral probability measureQ defined

on a probability space(Ω,F ,Q) such that the spot price solves the following stochastic differential

equation,

dSt/St− = (r−q)dt+σtdWt +
Z

R0
(ex−1) [µ(dx,dt)−νt(x)dxdt] , t ∈ [0,T ], (1)

starting at some fixed and known valueS0 > 0. In (1),St− denotes the asset price at timet just prior to a

jump,R0 denotes the real line excluding zero,r andq are, respectively, the continuously compounded

risk free rate and dividend yield,Wt is aQ standard Brownian motion, and the random measureµ(dx,dt)

counts the number of jumps of sizex in the asset price at timet. The process{νt(x),x∈R0, t ∈ [0,T ]}
compensates the jump processJt ≡

R t
0

R
R0 (ex−1)µ(dx,ds), so that the last term in (1) is the increment

of aQ-pure jump martingale.1 νt(x) is often referred to as thecompensatoror thelocal densityof the

jumps. Thus, equation (1) models the price change as the sum of a risk-neutral drift and two martingale

components: a purely continuous martingale and a purely discontinuous (jump) martingale.

To avoid the notational complication of truncation functions, we assume that the jump process

exhibits finite variation, Z

R0
(|x|∧1)νt(x)dx< ∞, t ∈ [0,T ].

We later relax this assumption and discuss the case of infinite variation jump processes separately. By

adding the time subscripts toσt andνt(x), we allow both to be stochastic and predictable with respect

to the filtrationFt . To satisfy limited liability, we assume the two stochastic processes to be such that

1The processνt(x) must have the following properties (see Prokhorov and Shiryaev (1998)),

ν0(x) = 0, νt(0) = 0,

Z

R0

(
|x|2∧1

)
νt(x)dx< ∞, t ∈ [0,T ].
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the asset priceSt is always nonnegative and absorbing at the origin. We further assume that the explicit

time dependence ofσt andνt has a leading term of order zero.

In principle, we can also allow the interest rate and dividend yield to be stochastic. Nevertheless,

given their lesser role in option pricing, we confine both to be constant over time with little loss of

generality. Then, the forward price of the asset at a fixed maturity dateT, Ft = Ste(r−q)(T−t), is a

Q-martingale with the following dynamics,

dFt/Ft− = σtdWt +
Z

R0
(ex−1) [µ(dx,dt)−νt(x)dxdt] , t ∈ [0,T ], (2)

whereFt− denotes the pre-jump forward price at timet. It proves convenient to represent our theoretical

results in terms of the forward price.

B. Time Value Decomposition

Consider a European call option with strike priceK and maturityT. Let timet = 0 denote the valuation

date and letC0(K,T) denote the time0 price of the call option. LetTV0(K,T) denote the call option’s

time value, which is defined as

TV0(K,T)≡C0(K,T)−e−rT (F0−K)+,

whereF0 = S0e(r−q)T is the time-0 forward price of the asset. The time value of a put option can be

defined analogously. Obviously, the option price and time value coincide with each other for ATM and

OTM options (K ≥ F0 for call options andK ≤ F0 for put options) as they possess zero intrinsic value.

Also, put-call parity implies that European put options and call options of the same strike and maturity

have the same time value.

The main theoretical result of the paper comes from the following theorem, which decomposes

the time value of a European option into two parts: the contribution from the continuous martingale

component and that from the purely discontinuous martingale component.
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Theorem 1 For an asset price process characterized by (1), the time value of a European option on

such an asset can be decomposed into two parts:

TV0(K,T) = e−rT
Z T

0

[
1
2

q(K, t−)K2E0
[
σ2

t |Ft− = K
]
+E0 [Ft−νo

t (k)]
]

dt, (3)

whereE0 [·] denotes expectation under the risk-neutral measureQ conditional on filtrationF0, q(K, t−)

denotes theQ-probability density function ofFt− evaluated atFt− = K, andνo
t (k) is thedouble tail of

the local densitydefined as,

νo
t (k)≡





R ∞
k (ex−ek)νt(x)dx if k > 0

1
2

R
R0 |ex−1|νt(x)dx if k = 0,

R k
−∞

(
ek−ex

)
νt(x)dx if k < 0

k≡ lnK/Ft−. (4)

Note that the first part of the time value is related to the quadratic variation of the diffusion component,

while the second part is a function of the compensator of the jump component. Also note that, when

k = 0, the double tailvt(0) is finite only for finite variation jumps. Nevertheless,vt(k) is finite for all

jump types as long as|k| is strictly bounded away from zero. The proof of the theorem follows from a

decomposition of the terminal payoff function via the application of the Meyer-Tanaka formula (See,

for example, Protter (1990), page 165), which extends Itô’s lemma to functions that are not necessarily

twice differentiable. We then take expectations to obtain the option value.

Proof. We start with a European call option on the asset with strikeK and maturityT. The terminal

payoff of such an option is given by,

(ST −K)+ = (FT −K)+. (5)

By the Meyer-Tanaka formula, the terminal payoff function in (5) can be decomposed as

(FT −K)+ = (F0−K)+ +
Z T

0
1(Ft− > K)dFt +

1
2

Z T

0
F2

t−σ2
t δ(Ft−−K)dt (6)
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+
Z T

0

Z

R0

[
1(Ft− ≤ K)(Ft−ex−K)+ +1(Ft− > K)(K−Ft−ex)+]

µ(dx,dt),

whereδ(·) denotes adirac density.

Taking expectations on both sides of (6) under measureQ, we have

erTC0(K,T) = (F0−K)+ +
1
2

Z T

0
E0

[
F2

t−σ2
t δ(Ft−−K)

]
dt (7)

+
Z T

0
E0

Z

R0

[
1(Ft− ≤ K)(Ft−ex−K)+ +1(Ft− > K)(K−Ft−ex)+]

νt(x)dxdt.

Note that the expectation of the second term in (6),
R T

0 1(Ft− > K)dFt , is zero by the martingale property

of Ft . Also note that we replace the random measureµ(dx,dt) in the jump term by its conditional

expected value (compensator)νt(x)dxdt via the law of iterated expectations.

We further factor outFt− from the jump term in (7) and represent the term as a function ofk≡
lnK/Ft−, the moneyness of the option just prior to any jump at timet. Then, equation (3) follows after

the following substitutions and rearrangements,

E0
[
F2

t−σ2
t δ(Ft−−K)

]
= q(K, t−)K2E0

[
σ2

t |Ft− = K
]
;

TV0(K,T) = C0(K,T)−e−rT (F0−K);

ν0
t (k) =

Z

R0

[
1(k≥ 0)

(
ex−ek

)+
+1(k < 0)

(
ek−ex

)+
]

νt(x)dx.

Finally, since a European put option has the same time value as a European call option with the same

strike and maturity, equation (3) applies to both puts and calls.

The compensating processνt( j) can be interpreted as the probability per unit time of a jump of size

j at timet. More precisely,

lim
4T↓0

Q{lnFt+4T − lnFt− ∈ dx}
4T

→ νt(x)dx, (8)
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where→ denotes vague convergence on{|x|> ε} for every fixedε > 0 (see Bertoin (1996), page 39).

We labelνo
t (k) as the double tail because it can also be written as the tail of the tail of the local density,

νo
t (k) =





R ∞
k ei R ∞

i νt(x)dxdi if k > 0

1
2

R ∞
0 ei R ∞

i νt(x)dxdi+ 1
2

R 0
−∞ ei R i

−∞ νt(x)dxdi if k = 0
R k
−∞ ei R i

−∞ νt(x)dxdi if k < 0

.

As a corollary, the theorem also tells us the maturity derivative of ATM and OTM options.

Corollary 1 The maturity derivative of an at or out-of-the money option can be decomposed into three

parts:

∂
∂T

TV0(K,T) = e−rT 1
2

q(K,T−)K2E0
[
σ2

T |FT− = K
]
+e−rTE0Ft−νo

t (k)− rTV0(K,T). (9)

This expression is often called the forward equation for option prices. Andersen and Andreasen (1999)

arrive at a similar result under the assumption of the Poisson jump model of Merton (1976).

C. Short Maturity Behavior

This section considers the asymptotic behavior of ATM and OTM option prices as maturity approaches

zero (i.e.T ↓ 0). We first derive the asymptotic behavior based on Theorem 1, under the assumption

that the jump component exhibits finite variation. We then consider the special case of infinite variation

jumps.

C.1. Continuous Martingale and Finite Variation Jumps

The following proposition is a direct result of Theorem 1.

Proposition 1 As maturity approaches zero, option prices converge to zero at rates which depend upon

both the moneyness and the type of the underlying price process. OTM option prices converge to zero
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at the rate ofO(e−1/T) in the case of a purely continuous process and at the rate ofO(T) in the

presence of a jump component. ATM option prices converge to zero at the rate ofO(
√

T) in the purely

continuous case and at the rate ofO(T) in the case of pure finite variation jump. The convergence rate

is dominated by the lower order of the two in the case of a mixture process.

Proof. As T ↓ 0, equation (3) implies that the time value of an option can be approximated as

TV0(K,T)∼ T

[
1
2

q(K,T−)K2σ2
0 +F0νo

0(k)
]
, (10)

wheref ∼ g implieslim( f/g) = 1. We drop the interest rate discounting terme−rT because it converges

to one asT ↓ 0. We also drop the expectation operations onσ2
t andνo

t , given that both are predictable

with respect to the filtrationFt .

We first consider OTM options (K 6= F0). In the case of a purely continuous process (νo
0 = 0), the

time value reduces to

TV0(K,T)∼ T
1
2

q(K,T)K2σ2
0.

Hence, the order of decay depends on the density functionq(K,T). But asT ↓ 0, all diffusion processes

behave like a standard Brownian motion (see Varadhan (1967)). The probability density function ap-

proaches the following Gaussian density,

q(K,T)∼ 1√
2πTF0σ0

exp

(
−(F0−K)2

2F2
0 σ2

0T

)
, K 6= F0.

Therefore, asymptotically, the time value decays at an exponential rate in this purely continuous case,

TV0(K,T)∼
√

TK2σ0

2
√

2πF0
exp

(
−(F0−K)2

2F2
0 σ2

0T

)
∼
√

TO(e−1/T), (11)

whereO(·) denotes the order of the decay in terms of maturity. In the case of a pure jump process

(σ2
0 = 0), the time value reduces to

TV0(K,T)∼ TF0νo
0(k)∼O(T).
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In the mixture case, the decay rate is dominated by that of the jump component,O(T).

For ATM options (K = F0), the time value formula in (10) still holds. But the probability density

functionq(K,T) is reduced to2

q(K,F)∼ 1√
2πTF0σ0

, K = F0.

The decay rate implied by a purely continuous process is thereforeO(
√

T). In the case of a pure finite

variation jump process, the asymptotic rate ofO(T) still holds.

C.2. Infinite Variation Jumps

Theorem 1 and hence Proposition 1 are derived under the assumption that the jump martingale compo-

nent, if it is present, exhibits finite variation. In particular, the at-the-money double tailνo
t (0) in (4) is

finite only under the assumption of finite variation,

Z

R0
(|x|∧1)νt(x)dx< ∞, t ∈ [0,T ].

The following proposition considers the asymptotic behavior of option prices when the underlying asset

price process follows a pure infinite variation jump process.

Proposition 2 Suppose that the underlying asset price process is driven by a pure jump martingale

with infinite variation. Then, ATM option prices can converge to zero at a range of speeds,O(T p),

where the orderp∈ (0,1). OTM options converge to zero at the rate ofO(T), the same as the case with

finite variation jumps.

Table I summarizes the results in Propositions 1 and 2.

Proof. For OTM options, i.e., for moneyness|k| = | ln(K/F0)| strictly bounded away from zero,

the double tailvo
0(k) in (4) is well-defined even if the jump process exhibits infinite variation. Thus, the

2Brenner and Subrahmanyam (1988) derive a similar result under the Black-Scholes setting.
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orderO(T) decay rate for finite variation jumps proved in Proposition 1 extends to infinite variation

jumps.

For ATM options, the double tailνo
t (0) in (4) is not well-defined for jump processes with infinite

variation. We re-define the ATM double tailνo
t (0) as

νo
t (0) =

1
2

Z

R0

∣∣ex−1−x1|x|<1

∣∣νt(x)dx, (12)

where the truncation is needed to keep the double tail finite. But the truncated small jumps also induce

a different order of time dependence. In particular,

lim
T↓0

Z T

0
E0

Z

|x|<1
|x|νt(x)dxdt= lim

T↓0

Z

|x|<1
|x|Q{

∆ lnFt∈(0,T] ∈ dx
}∼O(T p), p∈ (0,1), (13)

where∆ lnFt∈(0,T] denotes the jumps inlnF during the periodt ∈ (0,T]. The fact that
R
|x|<1 |x|ν(x)dx=

∞ for infinite variation jumps implies the orderp is smaller than one. The requirement that time value

increases with maturity demands that the orderp be positive. TheO(T p) decay rate induced by the

small jumps dominates theO(T) decay rate induced by large jumps for ATM options.

The behavior of infinite variation jump martingales can be further illustrated via the classical exam-

ple of anα-stable Ĺevy motion. In particular, the finite moment log stable (LS) model of Carr and Wu

(2002) uses theα-stable Ĺevy motion with maximum negative skewness as the martingale component

of the risk-neutral process for asset prices,

dSt/St− = (r−q)dt+σdLα,−1
t , t ∈ [0,T ],α ∈ (1,2),σ > 0, (14)

where the incrementdLα,β
t has anα-stable distribution with zero drift, dispersion ofdt1/α, and a skew-

ness parameterβ: Lα(0,dt1/α,β). Settingβ = −1 in the LS model guarantees the existence of a

martingale measure and the finiteness of call option values.
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A key feature of theα-stable Ĺevy motion is itsself-similarproperty: Lα,β
t andt1/αLα,β

1 possess

the same distribution. Based on this property, we prove the following asymptotic behavior for ATM

options under the LS model.3

Proposition 3 Under the LS model in (14), ATM option prices converge to zero at the rate ofO
(
T1/α)

.

Proof. Based on (14), the forward priceFT is an exponential martingale,

FT = F0eµT+σLα,−1
T = F0eµT+σT1/αLα,−1

1 ,

whereµ = σα secπα
2 is a convexity adjustment term, which is finite only when theα-stable motion

exhibits maximum negative skewness. The second equality is obtained by the self-similar property of

theα-stable Ĺevy motion.

Now consider the value of an ATM call option (K = F0),

TV0(F0,T) = E0
[
(FT −F0)

+]
= F0E0

[(
eµT+σT1/αLα,−1

1 −1
)+

]

= F0

Z ∞

− µ
σ T1−1/α

(
eµT+σT1/αx−1

)
q(x)dx,

whereq(x) denotes the probability density function of a standardizedα-stable random variable with

zero mean and unit dispersion.

By Taylor expansion, one can show that

lim
T↓0

exp
(
µT+σT1/αx

)−1

T1/α → σx.

Hence,

lim
T↓0

TV0(F0,T)
T1/α → F0σ

Z ∞

0
xq(x)dx< ∞.

Therefore, ATM option prices converge to zero at the rate ofO
(
T1/α)

.

3We thank Xiong Chen for much of this proposition.
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An α-stable Ĺevy motion is fully characterized by its Lévy measure,

ν(x) = c±x−α−1, (15)

wherec+ andc− apply to the cases ofx> 0 andx< 0 respectively. The maximum negative skewness in

the LS model is achieved by settingc+ = 0 and hence by only allowing negative jumps. The admissible

domain of the tail indexα for anα-stable motion isα∈ (0,2]. The LS model restricts thatα > 1 so that

the return has the support of the whole real line. Anα-stable Ĺevy motion exhibits infinite variation

whenα > 1 because the following integral is not finite,

Z

R0
(|x|∧1)x−α−1dx= ∞.

Nevertheless, to maintain finite quadratic variation, i.e.,

Z

R0

(|x|2∧1
)

x−α−1dx< ∞,

the tail indexα cannot be greater than two. Therefore, the LS model can generate a range of con-

vergence speeds for ATM options,O(T p), for p∈ (1/2,1). As α approaches two, theα-stable Ĺevy

motion degenerates into a (continuous) Brownian motion and the asymptotic decay rate approaches

O(
√

T).

We thus obtain very different behaviors for the short-term values of options as we vary thetypeof

the underlying asset price process. For OTM options, as maturity approaches zero, the decay rate of the

jump component,O(T), dominates the decay rate of the continuous martingale component,O
(
e−1/T

)
,

since for smallT, e−1/T << T. Thus, should the decay rate of OTM option values beO(T), we can

conclude that there exists a jump component in the underlying asset price dynamics. We can then

determine the existence of an infinite variation component (a continuous process or infinite variation

jump) from the short maturity behavior of ATM options. If the observed decay rate for ATM options is

alsoO(T), we can conclude that the underlying process is a pure jump process with finite variation. On

14



the other hand, if the observed decay rate is of orderO(
√

T), there may exist a continuous martingale

component and/or a jump component with infinite variation.

Now, suppose that the actual behavior of the underlying has a jump component, and that market-

makers price options by inserting an implied volatility into the pure diffusion Black-Scholes formula.

The assumption that the actual price process has jump components implies that the OTM option values

decay asO(T). From (11), we see that for OTM option values to decay at this rate, the implied volatility

must approach infinity at rate
√

TO(e1/T) as the maturity approaches zero. The fact that market-makers

often abandon the use of implied volatility for OTM options at short maturities suggests that jumps are

priced into options at short maturities. Our empirical work in Section III confirms this conjecture.

This last point also brings us back to one of our assumptions: although we allowat andνt to be

stochastic, we do assume that the leading term in the time expansion is of order zero. As a counter

example, suppose that we modify the Black-Scholes model by allowing the volatility to vary over time

at the previously conjectured rate
√

TO(e1/T). Then, the OTM option values would decay asO(T) even

though the underlying price process is a purely continuous process. However, the explosive nature of

models like this excludes themselves from our consideration.

II. Simulation of Popular Models

The different asymptotic behaviors for ATM and OTM options under different models can be best

captured by a graph ofln(P/T) versusln(T), whereP denotes the prices of ATM or OTM options and

T denotes maturity. We christen this graph as aterm decay plot. Proposition 1 implies that as time

to maturity approaches zero, the term decay plot for ATM options exhibits either a flat line in case of

a finite variation pure jump model or a downward sloping straight line in the presence of a continuous

martingale component or an infinite variation jump component. On the other hand, a similar plot for

OTM options exhibits either a flat line in the presence of jumps or an upward sloping concave curve in

the case of a purely continuous process.
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In this section, we simulate the behavior of several popular model candidates under each of the

model types. We focus on when the asymptotic behavior of options will become transparent from the

term decay plot. Since we intend to apply the test to the S&P 500 index options market, the parameters

of each simulated model are chosen to approximate the behavior of S&P 500 index options. In all of the

simulation analysis, we set the interest rate and dividend yield constant at the empirically determined

averages ofr = 5.96% and q = 1.31%.4 We focus on the behavior of OTM and ATM put values

because in practice OTM put options are more liquid than OTM calls in the S&P 500 index options

market. For each model, we compute put option prices at four moneyness levels:k = ln(K/F) = 0,

−3.07%, −6.14%, and−9.20%, and at a range of maturities:lnT = [−4,0] with an equal interval

of 0.2. This maturity range corresponds to option maturities from five business days to one year. We

analyze the term decay plots over this maturity range at each of the four moneyness levels. In particular,

to assess the slope and curvature of these term decay plots,5 we perform a second order polynomial fit

to the plots,

ln(P/T) = a(lnT)2 +b(lnT)+c.

Then, the slope of the plot at a certain maturityT is given by2aln(T)+b and the curvature is given by

2a. Table II reports the slope and curvature estimates of the term decay plots for all simulated models.6

The slopes are measured at the short end of the maturity:lnT =−4. The second order polynomial fits

the simulated term decay plots well, with R-squares for all simulated plots greater than0.97.

4While choosing an interest rate and dividend yield close to data average mimics better the behavior of the S&P 500 index

options, our experimentation shows that setting both to zero generates almost the same qualitative shape for the term decay

plots.
5We thank an anonymous referee for pointing out that the curvature of the term decay plot also contains valuable infor-

mation.
6To save space, we only report the estimates on term decay plots at moneynessk = 0 andk =−9.20%.
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A. Purely Continuous Processes (PC)

We consider two candidates for purely continuous processes: one is the benchmark model of Black and

Scholes (1973); the other is its stochastic volatility extension by Heston (1993). The Black-Scholes

model leads to a geometric Brownian motion for the stock price under the risk-neutral measureQ,

dSt = (r−q)Stdt+σStdWt ,

with constant instantaneous volatilityσ. Heston (1993) allows the volatility to be stochastic and as-

sumes that the instantaneous variance ratev = σ2 follows a square-root process under measureQ,

dvt = κ(θ−vt)dt+
√

βvtdZt , (16)

whereZt is another standard Brownian motion withE [dWtdZt ] = ρdt. The option pricing formula

for the Black-Scholes model is well-known. Option prices under the stochastic volatility model of

Heston (1993) can be efficiently computed via the FFT method of Carr and Madan (1999), given the

characteristic function of the log price relativesT = ln(ST/S0),

φ(u)≡ E0
[
eiusT

]
= exp[iu(r−q)T−b(T)v0−c(T)] ,

wherev0 is the current level of the instantaneous variance rate and the coefficients{b(T),c(T)} are the

following functions of maturityT,

b(T) =
2δ

(
1−e−ηT

)

2η− (η−κ∗)(1−e−ηT)
;

c(T) =
κθ
β

[
2ln

(
1− η−κ∗

2η
(
1−e−ηT))

+(η−κ∗)T
]
,

with

η =
√

(κ∗)2 +2βδ, κ∗ = κ− iu
√

βρ, δ =
(
iu+u2)/2.
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Figure 1. The Term Decay Plots Under Purely Continuous Processes
Lines are log put option prices over maturity plotted against log maturity. Option prices are computed
from, in the left panel, the Black-Scholes model withσ = 27.4% and, in the right panel, the Heston
(1993) model withθ = 0.0348,κ = 1.15,β = 0.1521,ρ = −0.64,v0 = θ. We further assume spot
priceS= 100, interest rater = 5.96%, and dividend yieldq = 1.31%. In each panel, the moneyness
k = ln(K/F) is, from top to bottom,0 (solid line),−3.07%(dashed line),−6.14%(dash-dotted line),
and−9.20%(dotted line).

Figure 1 depicts the term decay plots under the two purely continuous (PC) models. The volatility

σ, in the Black-Scholes model is set to 27.4%, a number close to the average of the implied volatility

quotes on S&P 500 index options in our sample period. The parameters for the Heston (1993) model are

adopted from the estimates in Bakshi, Cao, and Chen (1997), who also calibrate the model to S&P 500

index options. The term decay plots of the two PC models exhibit very similar behaviors. In particular,

the plots for ATM options look like straight lines for both models as the term varies from five days to

one year. Panel A of Table II reports the slope and curvature estimates of these term decay plots. The

plots for ATM options show very little curvature (−0.003 and−0.018) for the two PC models, and

their short-maturity slope estimates (−0.497and−0.493) are close to the asymptotic theoretical value

of −1/2. Thus, for purely continuous processes, regardless of whether stochastic volatility is present

or not, the term decay plot for ATM options converges to its asymptotic behavior of a straight line at

relatively long and hence readily observable maturities.

On the other hand, the term decay plots for OTM options are all upward sloping and concave, as

expected from the asymptotic decay rate ofO(e−1/T) for continuous models. This behavior, particularly
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the upward sloping curve at short maturities, is more obvious for options deeper out of the money. The

estimates in Table II confirm this observation. At moneynessln(K/F) = −9.2%, the term decay

plots for both PC model exhibit strong concavity, with curvature estimates at−0.713 and−1.092.

Furthermore, the short-maturity slope estimates are large and positive,1.988 for the Black-Scholes

model and3.158for the Heston (1993) model.

B. Pure Jump Processes (PJ)

Under pure jump processes, OTM options converge to zero at the rate ofO(T) as time to maturity

approaches zero. Hence, the term decay plot should converge to a flat line at short maturities. In

contrast, the decay rate of ATM options depends upon whether the sample path of the jump process

exhibits finite or infinite variation. In this subsection, we simulate two pure jump models, one with

finite variation and the other with infinite variation. For the finite variation jump type, we simulate

the most popular jump model, the compound Poisson jump model of Merton (1976) (MJ). While we

recognize that MJ is usually implemented with a diffusion component, we investigate here the behavior

of the pure jump version of his model. Under MJ, the arrival rate of jumps is controlled by a Poisson

distribution with a constant and finite intensityλ. Conditional on one jump occurring, we assume that

the size of the jump in the log price is drawn from a normal distribution with meanµj and varianceσ2
j .

For the infinite variation jump type, we simulate the finite moment log stable (LS) model of Carr and

Wu (2002) as described in (14). The driver of the process is anα-stable Ĺevy motion with maximum

negative skewness. The characteristic functions of the log returns under the two pure jump models are,

φMJ(u) = exp
[
iu

(
r−q−λ

(
eµj+ 1

2σ2
j −1

))
T +λ

(
eiuµj− 1

2u2σ2
j −1

)
T

]
;

φLS(u) = exp
[
iu

(
r−q+σ2sec

πα
2

)
T−T (iuσ)α sec

πα
2

]
.

Figure 2 depicts the term decay plots implied by the two pure jump models at four different mon-

eyness levels. Parameters are chosen to fit the general features of the S&P 500 index options.7 The

7The parameters are adopted (but rounded off) from estimates in Carr and Wu (2002).
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Figure 2. The Term Decay Plots Under Purely Discontinuous Processes
Lines are log put option prices over maturity plotted against log maturity. Option prices are implied
by the MJ model in the left panel and the LS model in the right panel. The model parameters are
set to: λ = 2,µj = −0.10,σ j = 0.13 for MJ, andσ = 0.15,α = 1.5 for LS. We further assume spot
priceS= 100, interest rater = 5.96%, and dividend yieldq = 1.31%. In each panel, the moneyness
k = ln(K/F) is, from top to bottom,0 (solid line),−3.07%(dashed line),−6.14%(dash-dotted line),
and−9.20%(dotted line).

term decay plots for OTM options are similar under both jump types and converge to their asymptotic

behavior of a flat line as maturity falls within a month. As shown under panel B of Table II, for OTM

options with moneynessln(K/F) =−9.2%, the short-maturity slope estimates for the term decay plots

under both models are close to the asymptotic value of zero:0.027for MJ, and0.085for LS . The two

plots also exhibit little curvature:−0.096for MJ and−0.068for LS.

In contrast, the term decay plots for ATM options exhibit distinct behaviors under the two types

of pure jump processes. Under the finite variation MJ model, the ATM term decay plot flattens out

as maturity falls within a month, similar to that for OTM options. The plot exhibits small concavity,

with a curvature estimate of−0.155, and the short-maturity slope estimate is0.086, very close to zero.

On the other hand, under the infinite variation LS model, the ATM term decay plot cannot be visually

distinguished from a straight line, similar to the behavior of a purely continuous process. The curvature

estimate is very close to zero at−0.017, and the short-maturity slope estimate is−0.357, much closer

to the asymptotic rate of a continuous component (−0.5), than to the asymptotic rate of finite variation

jumps (0). According to Proposition 3, under the LS model, the theoretical asymptotic decay rate for

20



−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
2

2.5

3

3.5

4

4.5

Log Maturity in Years

Lo
g 

O
pt

io
n 

P
ric

es
 O

ve
r M

at
ur

ity

ATM: k=0

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−4

−3

−2

−1

0

1

2

3

Log Maturity in Years

Lo
g 

O
pt

io
n 

P
ric

es
 O

ve
r M

at
ur

ity

OTM: k= −9.20%

Figure 3. The Behavior of Option Prices Under the LS Model
Lines are log put option prices over maturity plotted against log maturity under the LS model of Carr
and Wu (2002) with:S= 100, r = 5.96%,q = 1.31%,σ = 15%andα equals, respectively,1.2 (solid
line), 1.5 (dashed line),1.9 (dash-dotted line), and2 (dotted line). The moneynessk = ln(K/F) is 0
(ATM) in the left panel and−9.20%in the right panel.

the ATM term decay plot is1/α− 1. Given that we setα = 1.5, the theoretical asymptotic rate is

−0.333.

While one can easily distinguish the ATM option behavior implied by a purely continuous process

from a pure jump process with finite variation, the differences are not as easily discerned if the jump

process also exhibits infinite variation. Furthermore, the infinite variation pure jump LS model degen-

erates into a pure diffusion model (the Black-Scholes model) as the tail indexα approaches2. Figure

3 further illustrates how, under the LS model, the behaviors of ATM and OTM option prices change

at different values for the tail indexα. As shown in the left panel, all the plots for the ATM options

look like straight lines: the curvature estimates are all close to zero. Furthermore, the short-maturity

slope estimates, as reported in panel C of Table II, become closer to the asymptotic value of−0.5 of

a continuous martingale as the tail index approaches two: The estimates are−0.241,−0.357,−0.474,

and−0.498for α = 1.2,1.5,1.9,2, respectively.8

8The corresponding theoretical asymptotic values are, respectively,−0.167,−0.333,−0.474, and−0.5.
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For OTM options (k = −9.20%, right panel in Figure 3), the distinction between a continuous

(α = 2, dotted line) and a jump (α < 2) process looks more obvious. The short-maturity slope estimates

are small at0.044, 0.085, and0.605 for α = 1.2,1.5,1.9, but increase to3.255 asα = 2. Similarly,

the curvature estimates of the plots are also small (−0.068, −0.068, and−0.170) whenα < 2 but are

much larger (−1.098) whenα = 2. Whenα increases from 1.9 to 2, the behaviors of the OTM options

change dramatically.

C. Combined Continuous Jump Processes (CJ)

To each of the two pure jump models (MJ and LS) with the parameters in Figure 2, we add a continu-

ous (diffusion) component with a constant instantaneous volatility of 14%, which is about half of the

average of the implied volatility quotes. The behavior of the combined models (MJD and LSD) are

illustrated in Figure 4. The dominance of the diffusion component on the short maturity behavior of

the ATM options is obvious, especially for models with finite variation jumps. For both models, the

term decay plots for ATM options look more or less like straight lines. The curvature estimates of the

ATM term decay plots for both models are close to zero:−0.019for MJD and−0.005for LSD (Panel

D, Table II). Nevertheless, the short-maturity slope estimates for the plots are both smaller in absolute

values than the asymptotic slope of the diffusion component (−0.5). They are−0.347 for the MJD

model and−0.452for the LSD model. Hence, although the diffusion component is more dominating

in the behavior of ATM options, the role of the jump component is still visible.

As the short maturity behavior of the OTM options are dominated by the jump component, the term

decay plots for OTM options are very similar to those observed in Figure 2. The slope and curvature

estimates of the plots for the MJ model and the MJD model are very close. Nevertheless, the diffusion

component seems to have a visible impact on the OTM term decay plots under the LSD model. Under

moneynessln(K/F) = −9.2%, incorporating a diffusion component makes the short maturity slope

estimate slightly more positive from0.085for LS to 0.369for LSD, and makes the curvature estimate

slightly more neative from−0.068for LS to−0.163for LSD. Furthermore, simulation exercises (not
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Figure 4. Term Decay Plots Under Mixture Models
Lines are log put option prices over maturity plotted against log maturity. Option prices are implied
by a mixture of a diffusion component with a constant instantaneous volatility of 14% and a jump
component. The jump component is MJ in the left panel and LS in the right panel with parameters the
same as in Figure 2. In each panel, the moneynessk = ln(K/F) is, from top to bottom,0 (solid line),
−3.07%(dashed line),−6.14%(dash-dotted line), and−9.20%(dotted line).

reported) also indicates that the exact shape of the term decay plots are also affected by the relative

magnitude of the two components.

In summary, as time to maturity approaches zero for OTM options, their price behavior is dom-

inated by the presence of a jump component. This asymptotic dominance can be visually identified

from options with maturities of 20 days or less. Thus, we can readily identify the presence of jumps

in the underlying asset price movement from the short maturity behavior of OTM option prices. In

addition, the short maturity behavior of the ATM options provides further information on the existence

of an infinite variation component (from either a continuous or discontinuous process). The asymptotic

dominance of this component on the behavior of ATM options becomes apparent as the option maturity

falls within one year.
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III. The Term Decay Plots for S&P 500 Index Options

We now turn to analyzing the behavior of the term decay plots for S&P 500 index options, from which

we infer the type of process the index follows.

A. Data and Estimation

The data on S&P 500 index options are obtained from an options market maker. The data set contains

the market maker’s daily closing bid and ask price and implied volatility quotes on out-of-the-money

options on S&P 500 index spots across all strikes,K, and maturities,T, from April 6th, 1999 to May

31st, 2000 (290 business days). The data set also includes the matching daily closing futures pricesF ,

spot index levelsS, and interest ratesr corresponding to each option quote. We apply the following

filters to the data: (1) the time to maturity is greater than five business days; (2) the bid option price is

strictly positive; (3) the ask price is no less than the bid price. After applying these filters, we also plot

the mid implied volatility for each day and maturity against strike prices to visually check for obvious

outliers. After removing these outliers, we have 62,950 option quotes left over a period of 290 business

days. From this data, we construct term decay plots for S&P 500 index options and test the type of

process the index follows.

We filter out very short maturities contracts and zero-bid contracts to minimize the impact of mi-

crostructure effects on the quotes. Our visual plot-by-plot inspection further removes the potential

impact of data outliers. A potential concern of short maturity options is the synchronicity between op-

tion quotes and the underlying index levels. This issue is partially removed in our data set as the market

maker also provides a matching implied volatility quote for each option, which, in general, does not

vary as much with the underlying spot level as the option price does. In converting implied volatilities

to option prices, we further normalize the option price as percentages of the underlying futures price.

This normalization makes the term decay plots less sensitive to the underlying price movement, thus

facilitating intertemporal comparison.
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For ease of comparison with the simulated models, we construct the term decay plots for S&P

500 index options under the same moneyness levels as those in the simulation plots (Figures 1 to 4):

k = ln(K/F) = 0%, −3.07%, −6.14%, and−9.20%. However, the observed options do not always

correspond to these moneyness. In particular, since the forward priceF is varying every day while the

strike pricesK are fixed, the moneynessk = ln(K/F) are varying over time. Thus, we need to inter-

polate across strike prices to obtain option prices at these fixed moneyness levels. For the interpolation

to work with sufficient precision, we require that at each day and maturity, we have at least five option

quotes. We do not extrapolate. Visual inspection indicates that at each date and maturity, the quotes

are so close to each other along the moneyness line that interpolation can be done with little error,

irrespective of the interpolation method. For the reported results, we use spline interpolation on put

option prices across moneynessk at each maturity and date. We have also experimented with several

different interpolation schemes and on different spaces. The results are almost identical.

Given the interpolated option prices at each fixed moneyness level, we construct a smoothed term

decay plot at each of the four fixed moneyness at each date by fitting a simple second order polynomial

function,

ln(P/T) = a(lnT)2 +b(lnT)+c,

with P being the put option price (mid-quote) as a percentage of the underlying futures price andT

being the maturity. As discussed in the simulation section, this second-order polynomial fitting presents

convenient estimates for the slope and curvature of the term decay plots. To estimate the smoothed term

decay plot, we further require that there are at least five distinct maturities at each date and drop those

days with smaller cross sections. Of the whole sample, 284 days satisfies this criterion.

Furthermore, since the second-order polynomial fits all the simulated term decay plots very well,

the goodness-of-fit on the data provides another criterion on the quality, and synchronicity in particular,

of the real data: we would have more confidence on the quality of the data if the data points mostly lie

on a smooth second-order polynomial curve. We find that, on most days, the second-order polynomial

fits the data well. The average R-square for all the fittings is 0.98. Nevertheless, visual inspection

identifies a few days when some maturities deviate significantly from a smoothed term decay curve.
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The R-squares at these days are low as a result. We suspect that these days are more likely to have data

measurement errors. We hence use the R-square as yet another criterion to filter the data: we drop any

days when any one of the four polynomial regressions (at different moneyness) has a R-square less than

0.80. Finally, we have 273 days left, with an averageR2 of 0.99. After all these filtering, we believe

that the impact of microstructure effects on our analysis is minimal. Armed with these smoothed term

decay plots, we analyze the underlying process followed by the S&P 500 index.

B. Is There a Jump Component?

The key indicator of a jump component lies in the slope of the term decay plot for OTM options as the

option maturity falls within a month or so. A jump component exists if the term decay plot flattens out

(slope approaching zero) as maturity nears.

Figure 5 depicts the two typical shapes of the term decay plots for S&P 500 index options on April

9th, 1999 (the left panel) and on May 3rd, 2000 (the right panel). The plots follow the same convention

as in the simulations (Figures 1, 2, and 4). They represent the two extreme cases that are experienced

over the whole sample period. The term decay plots on April 9th, 1999 (left panel) match the shapes

generated from a purely continuous process: while the ATM term decay plot looks like a straight line,

the OTM term decay plots exhibit strong conacvity and positive slopes at short maturities. The short

maturity slope estimates (atlnT =−4) are, from top to bottom,−0.377, 1.670, 2.458, and3.725, and

the curvature estimates,−0.027, −0.574, −0.783, and−1.100, corresponding to moneyness levels

of k = 0, −3.07%, −6.14%, and−9.20%, respectively. The strongly negative curvature estimates

and strongly positive short-maturity slope estimates for OTM options are indicative of an asymptotic

O(e−1/T) decay rate. Hence, the term decay plots on April 9th, 1999 (left panel) reveal little sign of a

jump component.

In contrast, the impacts of a jump component are vividly shown in the term decay plots on May

3rd, 2000 (right panel). The OTM term decay plots obviously flatten out at short maturities. The short

maturity slope estimates are, from top to bottom,−0.604, −0.300, −0.116, and0.133, corresponding

to moneyness levels ofk = 0, −3.07%, −6.14%, and−9.20%, respectively. While the ATM term
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Figure 5. Typical Term Decay Plots for S&P 500 Index Options
Circles represent data while lines represent quadratic fits. The left panel depicts the term decay plots
of S&P 500 index options on April 9th, 1999. The right panel depicts that on May 3rd, 2000. In each
panel, the four lines, from top to bottom, represent moneyness levels atk= lnK/F = 0 (solid),−3.07%
(dashed),−6.14%(dash-dotted), and−9.20%(dotted).

decay plot is strongly negatively sloped, the OTM plots all have short-maturity slopes close to zero.

The curvature estimates for the four term decay plots are all very small, from−0.07 to 0.01.

On other days, the term decay plots fall between the two extreme cases. Figure 6 illustrates the

different shapes of the term decay plots for ATM options (left panel) and for OTM options (right panel,

k =−9.2%). Most of the term decay plots for ATM options are strongly negatively sloped, indicating

the dominance of an infinite variation component. Furthermore, the majority of the plots for OTM

options exhibit some concavity and slightly positive slope at short maturities, indicating the existence

of a jump component, possibly interacting with a continuous component. Overall, the existence of

a jump component in the movement of S&P 500 index levels seems to vary significantly over time.

Sometimes, its presence is strongly felt in the options market; while at other times its impact is almost

non-existent.
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Figure 6. Daily Term Decay Plots for S&P 500 Index Options
Lines represent smoothed daily term decay plots fox S&P 500 index options from April 6th, 1999 to
May 31st, 2000. The smoothing is performed based on second-order polynomial fits. The left panel
depicts the term decay plots for ATM options (k = 0). The right panel depicts the term decay plots for
OTM options withk =−9.2%.

C. Is There a Continuous Component?

When a continuous martingale component is present, the infinite variation required of it can have

a strong impact on the term behavior of ATM option premia. When only a continuous martingale

component is present, the term decay plots of ATM options are straight lines with an asymptotic slope of

−0.5. However, since this behavior can also be generated by an infinite variation pure jump component,

we need to interpret the term decay plots for ATM options with care. Nevertheless, various pieces of

evidence suggest the existence of a continuous martingale component in the S&P 500 index movement.

The first piece of evidence comes from the term decay plots for ATM options in the left panel of

Figure 6. Most of the plots are strongly negatively sloped and look like straight lines. This is strong

evidence on the presence of an infinite variation component, which can either a continuous martingale

or an infinite variation pure jump process.

The second piece of evidence comes from days such as April 9th, 1999 (left panel, Figure 5), when

the presence of a jump component can hardly be detected. For such days, while we cannot identify the

presence of a jump component from the OTM options, the presence of an infinite variation component
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is obvious in the ATM options premia. If there does not exist a jump component, the infinite variation

component must be a purely continuous process.

Combining the two pieces of evidence together, we conclude that while the presence of a jump

component is varying strongly over time, the continuous component has a more steady presence in the

options data.

D. Time Varying Term Decay and Stochastic Volatility

Figures fig:dailytail and 6 indicate that the daily term decay plots can take on very different shapes.

It is important to understand whether such daily variations come from data noise (e.g. microstructure

effects) or underly some fundamental movement in the underlying index process. We investigate this

issue by analyzing the time series properties of the term decay plots.

Figure 7 draws the time series plots for the slope (left panel) and curvature (right panel) estimates on

the term decay plots for both ATM options and OTM options (ln(K/F) =−9.2%). We observe that for

ATM options (solid lines), the short-maturity slope estimates (left panel) fluctuate around−0.5 while

the curvature estimates (right panel) fluctuate around zero. Hence, the presence of an infinite variation

component is strongly and constantly felt. On the other hand, the slope and curvature estimates for

the OTM term decay plots (dashed lines) are much more volatile. In particular, during the first couple

of days (April 8th and 9th, 1999) of the sample, the OTM term decay plots exhibit strongly positive

slopes and strong negative curvatures, indicating that option prices are approaching to zero at a rate

much faster thanO(T). The decay rate is more in line withO(e−1/T), which is the rate implied by

a pure continuous process. Indeed, the slope and curvature estimates are so large in magnitude and

so far away from the majority estimates of the whole sample that they look like outliers. But further

inspection of the data indicates that they are not outliers, but robust data points. In particular, we also

find that, during the first two days of our sample, the implied volatility curves at short maturities are

essentially flat. Only at relatively long maturities does a skewed pattern in volatility shows up. This is

consistent with the implication of pure continuous models with stochastic volatilities, e.g. Heston (93),
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Figure 7. The Slope an Curvature of the Term Decay Plots for S&P 500 Index Options
Lines in the left panel are the time series slope estimates of the term decay plots at five business day
maturity while lines in the right panel are the time series of curvature estimates of the term decay plots.
The estimates are based on a quadratic polynomial fit of the data at each day and moneyness. The solid
lines represent the estimates on ATM term decay plots (k = 0) while the dashed lines are estimates for
OTM plots (k =−9.20%).

but not with models with a significant presence of a jump component. Our term decay plot reaches the

same conclusion.

Nevertheless, the presence of a jump component is evident in days that follows, as the slopes

estimates become much smaller, although still positive. The curvature estimates also become much

less negative. When we move closer to April 2000, both the slope and the curvature estimates of the

OTM term decay plots move very close to zero, implying that the jump component begins to dominate.

Furthermore, the temporal patterns of the slope and curvature estimates indicate that the variations are

not totally due to purely random noise such as measurement errors, but are indicators of systematic

variation in the underlying, such as the presence of stochastic volatility.

Table III reports the summary statistics of these slope and curvature estimates. For ATM options,

the sample mean of the slope estimates is−0.413, slightly lower than implied by a continuous com-

ponent. The sample mean of the curvature is−0.021, very close to zero and hence confirming the

observations of negatively sloped near-straight lines. For OTM options atln(K/F) = −9.2%, the

mean slope estimate is1.266, and the curvature estimate is−0.366, showing the combined effect of
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both a jump component and a continuous component. Furthermore, consistent with the observation

from the time series plots, the slope and curvature estimates for the OTM plots are much more volatile

than that for the ATM plots. Nevertheless, these fluctuations are not purely random noise, but show

significant persistence, as indicated by the moderate first order autocorrelations (from 0.422 to 0.589)

on the slope and curvature estimates.

The systematic variation of the slope and curvature estimates for the term decay plots points to

the presence of stochastic volatility. Depending upon the exact specification, stochastic volatility can

generate variations in the term decay plots in different ways. First, given a stationary volatility process,

a shock to the volatility level has a larger impact on the short term options than on the long term options.

Thus, with an increase in volatility, short-term option prices increase more than long-term option prices

do. What this does to the term decay plot is three folds: (1) the overall term decay plot shifts upward;

(2) the short-maturity slope of the plot declines, i.e., it becomes less positive or more negative; and

(3) the concavity of the plot declines as the curvature estimate becomes less negative or more positive.

Thus, holding everything else constant, these three effects will generate a negative correlation between

the volatility level and the slope estimate and a positive correlation between volatility and the curvature

of the term decay plot.

Nevertheless, stochastic volatility specifications can not only vary the overall volatility level of an

asset return, but can also vary the relative composition of its components, say, a jump component and a

purely continuous component. The variation of the relative composition of these two components will

have yet another impact on the term decay plot. For example, when the volatility level increases, if the

relative component of the jump component declines, then two opposite effects will be imposed on the

slope of the term decay plot for OTM options. On the one hand, the volatility level increase raises the

short end of the term decay plot and makes the slope of the plot less positive. On the other hand, the

declining of the jump component makes the diffusion component become the dominating component

and hence the slope of the OTM plot more positive. Obviously, such an effect will reduce or even

nullify the negative correlation between the volatility level and the slope of the OTM term decay plots.

This conflicting impacts, however, will not be observed on the ATM term decay plots because both
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increasing volatility level and increasing the relative composition of the diffusion component make the

ATM term decay plot more negatively sloped. The correlation between the volatility level and the ATM

term decay slopes may become even more negative.

The jump-diffusion and stochastic volatility model applied in Bakshi, Cao, and Chen (1997) and

Bates (1996) falls within this category. The model incorporates three components into the underlying

price process: jumps (MJ), diffusion, and stochastic volatility. In both papers, stochastic volatility is

generated through the instantaneous variance of the diffusion component,vt , which is allowed to follow

the square root process of Heston (1993). The arrival rate (λ) of the Poisson jump component, however,

is assumed to be constant over time. Therefore, under such specifications, asvt increases, the relative

composition of the jump component declines.

In the last row of Table III, we report the correlations of the slope and curvature estimates of the term

decay plots with the volatility level. The volatility level is proxyed by the ATM implied volatility at the

short maturity:lnT =−4. ATM implied volatility at each maturity is obtained via spline interpolation

across moneyness. We then fit a second-order polynomial to the ATM implied volatilities (IV ) across

log maturities (lnT),

IV = a(lnT)2 +b(lnT)+c.

The fitting is reasonably well with an average R-square of0.92. The correlations of the volatility level

with the term decay slopes are strongly negative, while that with the curvature are strongly positive.

Furthermore, the negative correlation between volatility and slopes are stronger for ATM options than

for OTM options. Such evidence is qualitatively compatible with the specification in Bakshi, Cao, and

Chen (1997) and Bates (1996).

More recently, Bates (2000) and Pan (2002), among others, allow the arrival rate of the Poisson

process to be an affine function of the instantaneous variance of the diffusion component:λt = a+

bvt ,a,b∈ R+ and hence the arrival rate of the Poisson jump is also allowed to be stochastically time

varying. Depending on the magnitude of loadingb on the volatility factor, this model can generate

either positive or negative correlations between the volatility level and the relative composition of the
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jump component. Thus, the model is even more flexible in generating the correlations observed in the

data.

Nevertheless, under all these specifications, the continuous component can totally disappear as

vt → 0, while the jump component has a constant presence. In the former case, the jump intensityλ

is constant over time; in the latter case, the intensity has a constant component,a. The evidence on

the term decay plots, however, seems to argue the other way around: while we do observe the jump

component disappearing on some days, the presence of a continuous component is constantly felt.

Thus, for model design, it seems that a simple role reversal would better capture the evidence from

our term decay plots. That is, one can let the arrival rate of the Poisson jump component,λt , follow a

mean reverting square root process, while the instantaneous variance of the diffusion component can

be specified as an affine function of the Poisson intensity:vt = a+ bλt ,a,b∈ R+. This role reversal

implies that while the arrival rate of the Poisson process can disappear, the diffusion component always

has a constant presence.

Of course, there is no reason that the arrival rate of the Poisson process and the instantaneous

variance of the diffusion component should be driven by the same stochastic process. They may very

well be driven by separate stochastic forces. Such a specification would also accommodate our evidence

and could potentially generate better performance for option pricing. For future research, it is intriguing

to investigate the option pricing performance of these alternative specifications against traditional ones.

IV. Concluding Remarks

We provide a simple test for the nature of the price process of an asset underlying an option. In

particular, we map the short maturity behavior of option prices to the type of process the underlying

asset price follows. Our analysis of S&P 500 index options indicates that there are both continuous

and jump components in the underlying index process. In particular, we find that while the presence of

the jump component varies strongly over time, the presence of the continuous component is constantly
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felt. These observations have interesting implications for specifications of the underlying price process,

which can be further explored in future research.
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Table II
Slope and Curvature of Simulated Term Decay Plots

Entries report the slope and curvature estimates (standard errors in parentheses) from simulated term
decay plots based on a second order polynomial fit:

ln(P/T) = a(lnT)2 +b(lnT)+c,

whereP andT denote, respectively, the put option price and the maturity of the option. The polynomial
fitting is performed on simulated prices at the log maturity range oflnT = [−4 : 0], with an equal
interval of0.2. Based on the estimates for the polynomial coefficients[a,b], the slope of the curve is
2alnT + b and the curvature,2a. We evaluate the slope at the short end of the maturity:lnT = −4.
Also reported is the R-square (R2) of each polynomial fitting.

lnK/F = 0 lnK/F =−9.2%

Model slope Curvature R2 slope Curvature R2

A. Pure Continuous Models

BS -0.497 -0.003 1.000 1.988 -0.713 0.976
( 0.000 ) ( 0.000 ) — ( 0.092 ) ( 0.044 ) —

Heston -0.493 -0.018 1.000 3.158 -1.092 0.979
( 0.001 ) ( 0.000 ) — ( 0.142 ) ( 0.069 ) —

B. Pure Jump Models

MJ 0.086 -0.155 0.997 0.027 -0.096 0.999
( 0.012 ) ( 0.006 ) — ( 0.004 ) ( 0.002 ) —

LS -0.357 -0.017 1.000 0.085 -0.068 0.973
( 0.001 ) ( 0.000 ) — ( 0.009 ) ( 0.004 ) —

LS (α) C. Impact of Tail Index under LS Model

1.2 -0.241 -0.034 1.000 0.044 -0.068 0.997
( 0.001 ) ( 0.001 ) — ( 0.004 ) ( 0.002 ) —

1.5 -0.357 -0.017 1.000 0.085 -0.068 0.973
( 0.001 ) ( 0.000 ) — ( 0.009 ) ( 0.004 ) —

1.9 -0.474 -0.005 1.000 0.605 -0.170 0.973
( 0.001 ) ( 0.000 ) — ( 0.040 ) ( 0.019 ) —

2.0 -0.498 -0.003 1.000 3.255 -1.098 0.980
( 0.000 ) ( 0.000 ) — ( 0.149 ) ( 0.072 ) —

D. Mixture Models

MJD -0.347 -0.019 1.000 0.042 -0.065 0.993
( 0.005 ) ( 0.002 ) — ( 0.007 ) ( 0.003 ) —

LSD -0.452 -0.005 1.000 0.369 -0.163 0.972
( 0.001 ) ( 0.000 ) — ( 0.014 ) ( 0.007 ) —
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Table III
Slope and Curvature of the Term Decay Plots on S&P 500 Index Options

Entries report the summary statistics on the slope and curvature estimates from the smoothed term
decay plots on S&P 500 index options. The smoothing is based on a second order polynomial fit,

ln(P/T) = a(lnT)2 +b(lnT)+c,

whereP andT denote, respectively, the put option price (as percentages of the underlying futures price
level) and the maturity of the option. Based on the estimates for the polynomial coefficients, the slope
of the term decay plot is2alnT +b and the curvature,2a. We evaluate the slope at the short end of the
maturity: lnT = −4. The data are daily from April 6th, 1999 to May 31st, 2000, 273 business days.
“Mean, Std, Auto, Skewness, Kurtosis” denote, respectively, the sample average, standard deviation,
first order autocorrelation, skewness, and excess kurtosis of the estimates. The last row,Corr(·, IV ),
measures the correlations of these slope and curvature estimates with the volatility level, which is
proxyed by the smoothed ATM implied volatility at short maturity:lnT =−4.

lnK/F = 0 lnK/F =−9.2%

Stats Slope Curvature Slope Curvature

Mean -0.413 -0.021 1.266 -0.366
Std 0.114 0.032 0.441 0.128
Auto 0.506 0.422 0.586 0.559
Skewness 0.131 -0.199 0.569 -0.484
Kurtosis -0.102 -0.293 4.846 4.598
Corr(·, IV ) -0.749 0.540 -0.584 0.515
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