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Abstract

In this paper we propose and computationally demonstrate a synthetic protective 

put strategy for real options. Specifically, we deal with the problem of deferral 

option when an outright deferral is not permissible due to competitive pressures. 

We demonstrate that in such a situation an appropriate strategy would be to 

invest in the new project in phases rather than doing it all at once. By setting the 

owner’s equity in the project equal to the price of a call option on the value of the 

project, we set up the replicating portfolio for a protective put on the project. Our 

method is a logical extension of the financial protective put in the real options 

scenario and is rather simple and practicable for businesses to adopt and apply. 
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Problem definition

In the parlance of real options, a deferral option comprises of a right to defer the 

start of a business unit or commencement of a particular project. These are quite 

realistic in situations where competition is not a crucial issue – e.g. when the 

business enterprise in question enjoys a certain degree of monopoly power in the 

market. With an option to defer the start of a project say for a year, a business 

enterprise would choose to invest in that project only if conditions turned out to 

be favorable at the end of the year – otherwise it would choose not to. The cost 

of developing the project could be viewed as the exercise price of the embedded 

call option on the value of the project and the risk associated with the nature of 

returns from that particular type of a project could be viewed as the underlying 

source of uncertainty. Following the marketed asset disclaimer (MAD) convention 

in real options analysis, the present value of the project without an option to defer

may be used as the initial value of the underlying risky asset when pricing the

deferral option (Copeland and Antikarov, 2001).  

In an arbitrage-free world, the deferral option can be priced as any other real 

option using a risk neutral valuation approach. Moreover, all the theoretical 

underpinnings of the basic pricing scheme for financial options can be also 

applied to real options as the value that an investor receives from a risky project

can follow a random walk (a Gauss-Wiener stochastic process) even though 

project cash flows may not follow a random walk (Bhattacharya, 1978). This is 

because when the current value of a project incorporates all information about 



expected future cash flows from the project, any changes in the current value 

result from changes in the expectations of future cash flows that are necessarily 

random (Samuelson, 1965). Random shocks to the expected cash flows will be 

reflected as random movements in the investor’s wealth and in the returns from 

the project. Since the value of the project may be shown to follow a Gauss-

Wiener stochastic process, it can be modeled as a recombining binomial tree. As 

the number of binomial trials per period tends to infinity, the binomial process 

approaches the Gauss-Wiener stochastic process as the limiting distribution.

Mathematically it is possible to prove that the net present value (NPV) of a 

project that can be deferred, when valued using real options analysis, is greater 

than the maximum of the alternative values that are obtained using the traditional 

discounted cash flow (DCF) techniques (Copeland, Weston and Shastri, 2005).

That is to say; a traditional DCF technique, if used to evaluate the project with an 

option to defer, would systematically undervalue its NPV as it would fail to take 

into account the element of managerial flexibility afforded by the deferral option. 

The price of the embedded call option gives a better measure of the project’s 

NPV as it gives the requisite value weighting to this element of managerial 

flexibility i.e. the right to choose to invest in the project only when it was 

economically favorable to do so  (Dixit and Pindyck, 1994).



However what happens when a deferral is too much of a luxury to afford given 

that the industry in which the business enterprise is operating is extremely 

competitive? One of the most appropriate examples is the restaurant industry. 

The business enterprise would have to go ahead and invest right now lest it 

frittered away an opportunity of staying ahead of the competition. However in 

doing so it would expose itself to a downside risk in the event that conditions 

turned out to be economically unfavorable for the project. In such a case one 

strategy that would certainly hold financial merit is that of using a protective put. 

In its simplest form, the business enterprise could try and borrow at the lowest 

possible borrowing rate of interest and "buy" a protective put on the project with 

the borrowings. In real terms the protective put would give the business 

enterprise a right to hand over the project to a potential buyer (“writer” of the put 

option) at cost in case it eventually turned out to be an uneconomical investment. 

With the protective put in place, in the worst-case scenario, the business 

enterprise would end up exercising the put option and closing off the debt with 

the proceeds. In the best-case scenario, the put option would not be exercised 

and it would expire worthless. The business enterprise would be able to harvest 

the excess value of the project after paying off the debt. 

However the obvious problem would be finding a suitable potential buyer for the 

project i.e. someone who is willing to “write” such an option in exchange for an 



acceptable “premium”.  In this paper we develop and demonstrate a simple 

computational strategy by which a synthetic call option could be engineered to 

replicate the payoff from the protective put, along very similar lines as one would 

take in replicating a protective put on a financial asset like a stock or a future. 

Computational methodology

Our proposed computational approach of synthetically designing a real protective 

put rests fundamentally on the assumption that the put option is European. Being 

such, a hypothetical portfolio consisting of a borrowing at the risk-less rate and 

investment of the proceeds in the project and a put option thereon would, due to 

the application of the put-call parity, have a payoff same as that of an European

call option on the value of the project (i.e. the project with an embedded option to 

defer). Mathematically this boils down to the following equation:

(Vt + Pt) – X e {-r (T-t)} = Ct

Here Vt is the net present value of the project (without an option to defer), Pt is 

the price of the put option at time t, X is the exercise price (i.e. cost of the 

project), r is the risk-less rate of return, T is the terminal date on which the 

business enterprise must take the decision as to whether or not it wants to invest 

in the project and Ct is the price of the call option on the value of the project (i.e. 

the project with an embedded option to defer).



In the worst-case scenario, on the LHS the business enterprise would end up 

exercising the put and closing off the debt with the proceeds. On the RHS, the 

call would expire useless. In the best-case scenario, on the LHS the put would 

expire worthless and the on the RHS the call would have a payoff equal to the 

value of the project minus the debt payback (Rubinstein and Leland, 1995).

In terms of a project where deferral is allowed, the usual NPV evaluation 

procedure using ROA simply calculates the fair price of the embedded call option 

on the value of the project. This involves only the RHS of the put-call relationship. 

However the same analytical approach may be reverse-engineered to work from 

the LHS of the put-call parity relationship as well; and may offer a particularly 

interesting and reasonably practicable solution in cases where a complete 

deferral is not possible due to extremely intense competition. We assume that 

there is an opportunity of starting off small and scaling up when conditions are 

favorable and scaling down when conditions are unfavorable. As already 

observed, a restaurant chain is probably a rather appropriate example. 

The proposed solution approach is surprisingly simple as it is a straightforward 

application of the LHS of the put-call parity relationship. The LHS of the put-call 

parity relationship may actually be viewed as a synthetic protective put. If viewed 

as such, it is the same as investing in the project and at the same time holding a 

put option thereon akin to a standard portfolio insurance strategy involving a 

financial asset such as a stock portfolio.



In the context of a capital budgeting decision the solution then is to simply keep 

investing an amount in the project that equals its NPV i.e. equal to the fair value 

of the call option. If the option value goes up the project will have to be upscaled, 

if it goes down the project will have to be downscaled. This investment strategy 

would work (albeit to a limited extent) even when there are "limits" to the extent 

to which a project can be upscaled or downscaled. It is however implicitly 

assumed that the firm can procure funds for the project (when upscaling) and re-

apply funds elsewhere (when downscaling) at the same rate i.e. the firm's 

weighted average cost of capital equals the project's opportunity cost  of capital. 

The cost of borrowings should theoretically be the risk-free rate. However in real 

life it is not possible for a business enterprise to borrow at a “risk-free” rate given 

that it would employ the borrowed funds in an inherently risky business project. 

But a protective put portfolio consisting of an investment in the project as well as 

a put thereon is by definition, protected from downside risk. Therefore, if the 

lending institution can be adequately satisfied that the borrowed funds would be 

employed in “acquiring” a portfolio that is theoretically risk-free, the business 

enterprise should certainly be able to procure the borrowings at the lowest cost.

We formulate a discrete time model with origin time t = 0 and terminal time T = 1. 

We assume the possibility of taking a bank loan Bt (equivalent to issuing in a 

zero-coupon bond). The interest rate is r ≥ 0, i.e. B1 = B0 e (rT) = B0 e
r. The project 

has only one node at time 0 with present value V0, and two nodes at time 1, with 



present values V1
 (+) and V1

 (-) such that V1
 (+) > V1

 (-). There are probabilities p and 

(1- p) for the PV of the project to move to V1
 (+) or V1

 (-) respectively. We further 

assumed that e (-rT) V1
(-) < V0 < e (-rT) V1

(+). If this relationship does not hold, then 

it would imply an arbitrage opportunity which cannot exist in a perfect market.

The business enterprise is able to employ the borrowed funds in the project and 

thereby acquires a portfolio whose value is given by I0 = kV0 + k′ B0 which means 

that at time t = 0 it invests k amount in the project and has a bank loan to the 

tune of k′. The vector [k, k′] is the strategy vector at time t = 0. Then, at time T = 1

the portfolio will cost I1 = kV1 + k′B1 which equals kV1
(+) + k′B0 e

r with probability 

p and kV1
(-) + k′B0 e

r with probability 1 – p. The expected value of this random 

variable is given by the following equation (Rendleman and Bartter, 1979): 

                                        E (I1) = k {V1
 (+) p + V1

 (-) (1 – p)} + k′B0 e
r

Now, to imitate the call option, one needs to construct a portfolio which has the 

same payoff as the call option on the value of the project i.e. the portfolio will 

mimic or replicate the call. A strike price X = Cost of project > 0 is fixed for the

call option. The exercise price must satisfy the relationship V (-) < X < V (+). The 

expiry is at t = T. The problem is to find such a vector (k, k′) such that the payoff 

of this portfolio is (V1 – X). If we find such a vector it will constitute a synthetic call

which will replicate the payoff from our call option on the value of the project if it 

had an embedded deferral option. Hence their prices coincide i.e. we get C0 = I0.



To find the strategy vector (k, k′), the Cox-Ross-Rubinstein one-step model

requires us to solve the following system of linear equations:

                    kV1
 (+) + k′B0 e

r = V1
(+) – X; and 

kV1
 (-) + k′B0 e

r = 0

The solution to the above system gives the synthetic call which is equivalent to 

our one-period call option on the project. The value of the call option at time t = 0 

is C0 = I0 = kV0 + k′B0 with the strategy vector (k, k′). Solving the above system 

yields (k, k′) as k = [V1 
(+) – X] / [V1

 (+) – V1
 (-)] and k′ = [-kV1

 (-)] / B0 e
r (Cox, Ross 

and Rubinstein, 1979).

Then a dynamic synthetic real protective put strategy would simply involve

making an investment equal to C0 at the onset. The call option payoff would have 

to be synthetically replicated by I0 = kV0 + k′B0 with kV0 representing the part of 

the total project cost that have to be invested at the onset and (X0 - kV0) 

representing the part that is “deferred”. At t = Tj, the whole process is re-enacted 

with the new exercise price being X1 = (X0 - C0). The routine is repeated till such 

time as Vj < Xj and terminates when Vj  Xj. At that point j =1 (Xj)  X0. In the next 

section we give a numerical illustration of our proposed computational approach.



Numerical illustration

The computational scheme:

Step 1: Compute the NPV of the project as the price of a call option on the value 

of the project at t = 0 using the Cox-Ross-Rubenstein one-step binomial process. 

Use the NPV of the project calculated by the traditional DCF technique as V0 and 

the variance of the returns from the project as the volatility. The cost of 

development of the project is the exercise price X0 and T – t = 1. The risk-free 

rate is proxied by the lowest-cost borrowing rate available to the business.

Step 2: C0 is the NPV of the project (price of the call option on the value of the 

project) as calculated in the previous step. Conversely, a portfolio with a current 

dollar value of C0e
r at T – t = 1 will decay to a value of C0 at T – t = 0, C0 = I0 = 

kV0 + k′ B0 is multiplied with er on both LHS and RHS to get the actual amount to 

be invested in the synthetic put portfolio at t = 0. Therefore the actual dollar 

amount to be invested in the project at t = 0 is C0e
r out of which kV0e

r is the 

“current equity” and (X – kV0e
r) is the “deferred equity”. The actual dollar amount 

of debt at t = 0 is k'B0e
r. The “deferred” investment is to the tune of (X0 – C0e

r) 

(Kester, 1984).

Step 3: If C0 < 0, the “put option” is exercised i.e. the project is liquidated and the 

debt is paid off with the proceeds. If C0 > 0 and V1  X1, the process terminates 

with the balance amount X1 being invested in full in the project. Else if C0 > 0 and



X1 = (X0 – C0) > V1, re-enact Step 1 with X1 as the exercise price after making 

adjustments to the project value and volatility estimates if such is necessitated by 

changed business conditions.  

Repeat the steps till such time as Xj > Vj. The process terminates when Xj  Vj. At 

that point the balance funds are invested into the project and j =1 (Xj) = X0.

Numerical results:

We illustrate our proposed computational scheme with a simple numerical 

example. The basic input data for the problem are supplied in the following table:

Particulars Million $

Present value of whole project 1.43

Best-case value 2.00

Worst-case value 1.00

Exercise price 1.50

Lowest-cost borrowing rate 5%

Probability of best-case scenario 0.50

Probability of worst-case scenario 0.50
Table I: Input data (j = 0)

The expected value of the project is obtained as (Best-case value x 0.5) + 

(Worst-case value x 0.5). The cost of the project is same as its expected value. 

The present value of the project is obtained by dividing the expected value of the 

project by e5%.  The probability of best-case scenario and the probability of worst-

case scenario at each step have been set equal at 0.50 so as to maximize the 

element of uncertainty (by maximizing the entropy of the outcomes). The 

computational scheme has been implemented on a customized MS-Excel 



spreadsheet running a VBA routine. The numerical results are summarized in the 

following tables:

With protective put: Portfolio Debt Equity �Equity

At T - t = 1 0.750000 0.500000 0.250000 -
Best-case at T - t = 0 0.951229 0.475615 0.475615 0.225615

Worst-case at T - t = 0 0.475615 0.475615 0.000000 -0.250000

Without protective put: Investment Equity �Equity

Best-case at T - t = 0 1.500000 1.902459 0.402459
Worst-case at T - t = 0 1.500000 0.951229 -0.548771

Table II: Iteration j = 0

Present value of project $0.71
Best-case $1.00
Worst-case $0.50
Exercise price $0.75
Lowest borrowing/lending rate 5.00%
Probability of best-case scenario 0.50
Probability of worst-case scenario 0.50

Table III: Input data (j = 1)

Table IV: Iteration j = 1

With protective put: Portfolio Debt Equity Δ Equity

At T - t = 1 0.375000 0.250000 0.125000 -
Best-case at T - t = 0 0.475615 0.237807 0.237807 0.112807

Worst-case at T - t = 0 0.237807 0.237807 0.000000 -0.125000

Without protective put: Investment Equity Δ Equity

Best-case at T - t = 0 0.750000 0.951229 0.201229

Worst-case at T - t = 0 0.750000 0.475615 -0.274385



Present value of project $0.36
Best-case $0.50
Worst-case $0.25
Exercise price 0.3750
Lowest borrowing/lending rate 5.00%
Probability of best-case scenario 0.50
Probability of worst-case scenario 0.50

Table V: Input data (j = 2)

With protective put: Portfolio Debt Equity Δ Equity

At T - t = 1 0.187500 0.125000 0.062500 -
Best-case at T - t = 0 0.237807 0.118904 0.118904 0.056404

Worst-case at T - t = 0 0.118904 0.118904 0.000000 -0.062500

Without protective put: Investment Equity Δ Equity
-

Best-case at T - t = 0 0.375000 0.475615 0.100615
Worst-case at T - t = 0 0.750000 0.237807 -0.512193

Table VI: Iteration j = 2

Present value of project $0.18
Best-case $0.25
Worst-case $0.125
Exercise price $0.19
Lowest borrowing/lending rate 5.00%
Probability of best-case scenario 0.50
Probability of worst-case scenario 0.50

Table VII: Input data (j = 3)

With protective put: Portfolio Debt Equity Δ Equity

At T - t = 1 0.093750 0.062500 0.031250 -
Best-case at T - t = 0 0.118904 0.059452 0.059452 0.028202

Worst-case at T - t = 0 0.059452 0.059452 0.000000 -0.031250

Without protective put: Investment Equity Δ Equity

Best-case at T - t = 0 0.187500 0.237807 0.050307
Worst-case at T - t = 0 0.187500 0.118904 -0.068596

Table VIII: Iteration j = 3



Present value of project 0.0892
Best-case 0.1250
Worst-case 0.0625
Exercise price 0.0938
Lowest borrowing/lending rate 5.00%
Probability of best-case scenario 0.50
Probability of worst-case scenario 0.50

Table IX: Input data (j = 4)

With protective put: Portfolio Debt Equity Δ Equity

At T - t = 1 0.046875 0.031250 0.015625 -
Best-case at T - t = 0 0.059452 0.029726 0.029726 0.014101

Worst-case at T - t = 0 0.029726 0.029726 0.000000 -0.015625

Without protective put: Investment Equity Δ Equity

Best-case at T - t = 0 0.093800 0.118904 0.025104
Worst-case at T - t = 0 0.093800 0.059452 -0.034348

Table X: Iteration j = 4

Table XI: Input data (j = 5)

With protective put: Portfolio Debt Equity ΔEquity
�

At T - t = 1 0.023438 0.015625 0.007813 -
Best-case at T - t = 0 0.029726 0.014863 0.014863 0.007050

Worst-case at T - t = 0 0.014863 0.014863 0.000000 -0.007813

Without protective put: Investment Equity Equity
�

Best-case at T - t = 0 0.046900 0.059452 0.012552
Worst-case at T - t = 0 0.046900 0.029726 -0.017174

Table XII: Iteration j = 5

Present value of project 0.0446
Best-case 0.0625
Worst-case 0.03125
Exercise price 0.0469
Lowest borrowing/lending rate 5.00%
Probability of best-case scenario 0.50
Probability of worst-case scenario 0.50



Table XIII: Input data (j = 6)

With protective put: Portfolio Debt Equity Equity
�

At T - t = 1 0.011719 0.007813 0.003906 -
Best-case at T - t = 0 0.014863 0.007431 0.007431 0.003525

Worst-case at T - t = 0 0.007431 0.007431 0.000000 -0.003906

Without protective 
put: Investment Equity Equity

�
Best-case at T - t = 0 0.023438 0.029726 0.006288

Worst-case at T - t = 0 0.023438 0.014863 -0.008575
Table XIV: Iteration j = 6

Present value of project 0.011147
Best-case 0.015625
Worst-case 0.007813
Exercise price 0.007813
Lowest borrowing/lending rate 0.050000
Probability of best-case scenario 0.50
Probability of worst-case scenario 0.50

Table XV: Final position (j = 7)

Conclusion

As the dollar investment in the project doesn’t change from j = 6 to j = 7, the 

process should be terminated at this point. The business enterprise may choose 

to invest the balance funds in the project at this stage (given that C0 ≥ 0) as the 

gap between the exercise price and the present value of the project has almost 

been reduced to zero (it is around $571.53 at this point). The following table and 

graph shows the upscaling of the project over time with a synthetic protective put.

Present value of project 0.022294

Best-case 0.031250

Worst-case 0.015625

Exercise price 0.023438

Lowest borrowing/lending rate 0.050000

Probability of best-case scenario 0.50

Probability of worst-case scenario 0.50



j C0 Dollar investment Cumulative dollar investment
0 0.237807 0.750000 0.750000
1 0.118904 0.375000 1.125000
2 0.059452 0.187500 1.312500
3 0.029726 0.093750 1.406250
4 0.014863 0.046875 1.453125
5 0.007431 0.023438 1.476563
6 0.007431 0.011719 1.488281
7 0.003716 0.011719 1.500000

Table XVI: Upscaling of the project with a synthetic protective put

0.000000

0.500000

1.000000

1.500000

Call option price
Dollar investment
Cumulative dollar investment

Figure I: Upscaling of the project with a synthetic protective put

The above numerical example illustrates that using a synthetic protective put 

strategy in a manner as outlined above, a business enterprise can choose to 

invest in a project in phases rather than doing it all at once; when it cannot defer 

the commencement of the project outright due to the pressures of competition. 

In the numerical example, the input data were chosen so as to make the 

outcome consistent with the law of diminishing marginal returns on investment. 



To the best of the author’s knowledge, the proposed synthetic proposed put 

strategy in a real options scenario is unique although it is a commonplace risk 

management tool when managing a financial portfolio of stocks or futures.  The 

computational procedure of working the hedging scheme is quite simple and 

applicable in practical situations. An obvious direction of future research would 

be extending this portfolio insurance concept to include American options as well. 
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