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ABSTRACT

In this article we present new results for the pricing of arithmetic Asian options within a Black-Scholes context.

To derive these results we make extensive use of the local scale invariance that exists in the theory of contingent

claim pricing. This allows us to derive, in a natural way, a simple PDE for the price of arithmetic Asians options.

In the case of European average strike options, a proper choice of numeraire reduces the dimension of this PDE

to one, leading to a PDE similar to the one derived by Rogers and Shi. We solve this PDE, finding a Laplace-

transform representation for the price of average strike options, both seasoned and unseasoned. This extends the

results of Geman and Yor, who discussed the case of average price options. Next we use symmetry arguments

to show that prices of average strike and average price options can be expressed in terms of each other. Finally

we show, again using symmetries, that plain vanilla options on stocks paying known cash dividends are closely

related to arithmetic Asians, so that all the new techniques can be directly applied to this case.
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1. Introduction

Options with a payoff-function which depends on the average of some underlying, a.k.a. Asian-type
option have a multitude of applications in finance. They find applications for example in currency-
based contracts, interest rates and commodities. In the following we will consider a setting where stock
prices are modeled by geometric Brownian motions. Depending on the type of averaging the analytic
price of such a contract is easy or difficult to compute. Geometric averaging leads to simple expressions
for the prices [HN99b]. Arithmetic averaging however is a highly non-trivial exercise and one has to
rely on either approximations [TW91], partially analytic [GY93] or numerical solutions [Cur94, RS95].
In Ref. [RS95] a simple PDE was derived and bounds on prices of an average price option were derived.
These bounds have been improved in Ref. [Tho99].

In this article we provide an alternative approach to derive (partially) analytic solutions of Asian-type
contracts with arithmetic averaging. Using the fundamental notion of a local scale invariance [HN99a,
HN99b] we derive a general PDE for a (European) Asian-type contract with arithmetic averaging.
This result is then linked to the PDE derived by Rogers and Shi [RS95] and we proceed by solving
the Laplace-transform of the solution of this PDE for the case of an average strike put, both for the
unseasoned and seasoned case. This extends the results of Geman and Yor, which gave the solution for
average price options. Next we show that the local scale invariance allows one to identify the average
strike call and average price put by substitution of the proper parameters. This is a new result. Finally
we consider the problem of a vanilla option on a stock which pays known cash dividends. Again the
local scale symmetry allows one to relate the value of such a contract to that of arithmetic average
options.
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2. Homogeneity and contingent claim pricing

In previous papers [HN99a, HN99b] we have shown that a fundamental property of any properly
defined market of tradables1 is that the price of any claim depending on other tradables in the market
should be a homogeneous2 function of degree one of these same tradables. This property is nothing
but a consequence of the simple fact that prices of tradables are only defined with respect to each
other. Let us review some of the content of Ref. [HN99a]. Assume that we have a market of n + 1
basic tradables with prices xµ (µ = 0, . . . , n) at time t. The price of any tradable in this market with a
payoff depending on the prices of these basic tradables should satisfy the following scaling symmetry:

V (λx, t) = λV (x, t)

which automatically implies3 (Euler)

V (x, t) = xµ∂xµV (x, t)

where ∂/∂xµ ≡ ∂xµ . This is a universal property, independent of the choice of dynamics. We use this
fundamental property to derive a general PDE, giving the price of such a claim in a world where the
dynamics of the tradables are driven by k independent standard Brownian motions, as follows4

dxµ(t) = xµ(t)
(
σµ(x, t)·dW (t)+αµ(x, t)dt

)
, (no sum)

Consistency requires that both σµ and αµ are homogeneous functions of degree zero in the tradables,
i.e. they should only depend on ratios of prices of tradables. Note that we do not specify the
numeraire in terms of which the drift and volatility are expressed. This choice is irrelevant for the
pricing problem, as we will see. Applying Itô to V (x, t) we get

dV (x, t) = ∂xµV (x, t)dxµ+LV (x, t)dt

where

LV (x, t) ≡
(
∂t+

1
2
σµ(x, t) ·σν(x, t)xµxν∂xµ∂xν

)
V

So, if V (x, t) solves LV = 0 with the payoff at maturity as boundary condition V (x, T ) = f(x), then
we immediately have a replicating self-financing trading strategy because of the homogeneity property.
We will drop the distinction between such derived and basic quantities and always refer to them as
tradables. Note that we do not have to use any change of measure to arrive at this result, by keeping
the symmetry explicit. Drifts are irrelevant for the derivation of the claim price. Only the requirement
of uniqueness of the solution, i.e. no arbitrage, leads to constraints on the drifts terms if deterministic
relations exist between the various tradables [HN99a].

2.1 Symmetries of the PDE
The scale invariance of the claim price is inherited by the PDE via an invariance of the solutions of
the PDE under a simultaneous shift of all volatility-functions by an arbitrary function λ(x, t)

σµ(x, t)→ σµ(x, t)−λ(x, t) (2.1)
1Tradables are objects which are trivially self-financing: it doesn’t cost nor yield money to keep a fixed amount of

them. Examples are stocks and bonds. Note that money is not a tradable, unless the interest rate is zero.
2A function f(x0, . . . , xn) is called homogeneous of degree r if f(ax0, . . . , axn) = arf(x0, . . . , xn). Homogeneous

functions of degree r satisfy the following property (Euler):
∑n
µ=0 xµ

∂
∂xµ

f(x0, . . . , xn) = rf(x0, . . . , xn)
3We make use of Einsteins summation convention: repeated indices in products are implicitly summed over, unless

stated otherwise.
4Both the σµ and dW are vectors, the dot denotes an inner-product w.r.t. the k driving diffusions.
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Indeed, if V is solves LV = 0, then it also solves(
∂t+

1
2

(σµ(x, t)−λ(x, t))·(σν(x, t)−λ(x, t))xµxν∂xµ∂xν

)
V = 0

This can easily be checked by noting that for homogeneous functions of degree 1 we have

xµ∂xµ∂xνV = 0

This ensures that terms involving the λ drop out of the PDE. (Note that this equation gives interesting
relations between the various Γ’s of the claim). From this it follows that V itself must be invariant
under the substitution defined by Eq. 2.1. This corresponds to the freedom of choice of a numeraire.
It just states that volatility is a relative concept. Price functions should not depend on the choice of
a numeraire.

2.2 The algorithm
To price contingent claims we start out with a basic set of tradables. Using these tradables we may
construct new, derived, tradables, whose price-process V depends upon the basic tradables. Of course,
these new tradables should be solutions to the basic PDE, LV = 0. Their payoff functions serve as
boundary conditions. (Note that prices of basic tradables trivially satisfy the PDE, by construction).
If the derived tradables are constructed in this way, we can use them just like any other tradable. In
particular, we can use them as underlying tradables, in terms of which the price of yet other derivative
claims can be expressed (and so on...) In fact, this is a fundamental property that any correctly defined
market should posses. It amounts to a proper choice of coordinates to describe the economy.

The general approach to the pricing of a path-dependent claim in our formalism can be described as
follows.

1. The payoff is written in terms of tradable objects.

2. A PDE is derived for the claim price with respect to these tradables.

3. The PDE is solved.

4. Possible consistency check: the solution should be invariant under the substitution Eq. 2.1
(numeraire independence).

2.3 Generalized put-call symmetries
As an example of the strength of this symmetry, and to show the natural embedding in our formalism,
consider an economy with two tradables with prices denoted by x1,2 and dynamics given by (i = 1, 2)

dxi(t) = xi(t)σi(x1, x2, t) ·dW (t)+ . . . (no sum)

It is easy to see that under certain conditions there should be a generalized put-call symmetry. Any
claim with payoff f(x1, x2) at maturity and price V (x1, x2, t) should satisfy(

∂t+
1
2
|σ(x1, x2, t)|2x2

1∂
2
x1

)
V = 0

where σ(x1, x2, t) ≡ σ1(x1, x2, t)− σ2(x1, x2, t). Homogeneity implies that it also solves(
∂t+

1
2
|σ(x1, x2, t)|2x2

2∂
2
x2

)
V = 0
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Therefore, if |σ(x1, x2, t)|2 = |σ(x2, x1, t)|2, this PDE can be rewritten as(
∂t+

1
2
|σ(x2, x1, t)|2x2

2∂
2
x2

)
V = 0

and we see that V (x2, x1, t) with payoff f(x2, x1) is a solution, too. This is nothing but a generalized
put-call symmetry. In the first case x2 acts as numeraire, in the second case x1 takes over this role.
The usual put-call symmetry follows if we take a constant σ and let x1, x2 represent a stock and a
bond respectively.

2.4 Lognormal asset prices
In an economy with lognormal distributed asset-prices

dxµ(t) = xµ(t)σµ(t) ·dW (t)+ . . . (no sum)

it is possible to write down a very elegant formula for European-type claims, as was shown in
Ref. [HN99a]

V (x0, . . . , xn, t) =
∫
V (x0φ(z−θ0), . . . , xnφ(z−θn), T )dmz (2.2)

with

φ(z) =
1(√
2π
)m exp

(
−1

2

m∑
i=1

z2
i

)
The θµ are m-dimensional vectors, which follow from a singular value decomposition of the covariance
matrix Σµν of rank m ≤ k:

Σµν ≡
∫ T

t

σµ(u) ·σν(u)du = θµ ·θν

3. Arithmetic Asians

In this section we will consider the pricing of Arithmetic Asian options. Since this is the only type of
Asian options that we will look at, we will omit the word ’Arithmetic’ in the sequel. Note that parts
of this material already appeared in Ref. [HN99b]. A fundamental building block in the construction
of a European Asian option, expiring at time T , is a tradable which at time T represents the value
of a stock at an earlier time s. But to define this, we must first agree how to translate value through
time. For this, we need a reference asset. A convenient choice is to take a bond P (t, T ) (or P (t) for
short), which matures at time T , as reference. Then we can define

Ys(t) =

{
S(t) t < s
S(s)
P (s)P (t) t ≥ s

In words, this is a portfolio where one starts out with a stock, and converts it into a bond at time
t = s. It is trivially self-financing. To set the stage, we will assume that the interest rate has constant
value r, as is usual in the Black-Scholes context (stochastic interest rates are much harder to handle,
see Ref. [HN99b]). In that case the bond with maturity T has value e−r(T−t) when expressed in the
currency in which it is nominated (say dollars). Consequently, an amount e−r(T−s) of the tradable
Ys will have a dollar value at time T which is equal to the dollar value of the stock at time s. We
will also assume that the contracts are initiated at time t = 0, unless stated otherwise. Note that for
t ∈ [0, T ] we have

S(t) = YT (t)

P (t) =
P (0)
S(0)

Y0(t)
(3.1)
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3.1 Discretely sampled Asians
The main reason for introducing the objects Ys(t) is that they constitute a natural basis of tradables in
which prices and payoffs of arithmetic Asians can be expressed. For example, the payoff of a discretely
sampled average price call (APC) can be written as(∑

i

w(ti)Yti(T )−KP (T )

)+

=

((∑
i

w(ti)
S(ti)
P (ti)

−K
)
P (T )

)+

where {ti} is a set of sample times, w(ti) are corresponding weights, and K is the strike. We use
the notation (·)+ for max(·, 0). Observe that the payoff explicitly contains P (T ) = 1$ to make it
homogeneous of degree one in the tradables. In a similar way, the payoff of an average strike put
(ASP) becomes(∑

i

w(ti)Yti(T )− kS(T )

)+

where k is a (generalized) strike. In view of Eqs. 3.1, we see that both options are in fact instances of
a more general discrete Asian option, which is defined by the payoff

V ({ti}, w, T ) =

(∑
i

w(ti)Yti(T )

)+

(3.2)

3.2 Valuation by multiple integrals
In this section we want to calculate the value of the generalized option defined by Eq. 3.2, at the time
the contract is initiated, i.e. t = 0. This value is known as its unseasoned value. Without loss of
generality, we will assume that there are N + 1 sample times, satisfying 0 = t0 < t1 < · · · < tN−1 <
tN = T . If we take the bond as numeraire, and assume that the stock price follows a lognormal price
process

dS(t) = σS(t)dW (t) + · · ·
then it is easy to derive that the tradables Ys(t) satisfy

dYs(t) = 1t<sσYs(t)dW (t)+ · · ·
where 1t<s is the indicator function. It equals one when t < s and zero otherwise. So the Ys(t) also
follow lognormal price processes with a time dependent volatility, and we can directly use the results
of section 2.4. The first step is to calculate the variance-covariance matrix of the tradables

Σij = σ2

∫ T

0

1t<ti1t<tjdt = σ2 min(ti, tj)

The rank of this matrix is N . A singular value decomposition Σij = θi · θj is given by

θ0 = (0, . . . , 0︸ ︷︷ ︸
N

), θi = (β1, . . . , βi, 0, . . . , 0︸ ︷︷ ︸
N−i

)

and the βi are defined by

βi = σ
√
ti − ti−1

The value of the unseasoned option can now be written as an N -dimensional integral (here z =
(z1, . . . , zN))

V ({ti}, w, 0) = S(0)
∫
dNz

(
N∑
i=0

w(ti)φ(z − θi)
)+

(3.3)

where we used the fact that Ys(0) = S(0) for all 0 ≤ s ≤ T . This is in fact a Feynman-Kac formula.
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3.3 An interesting duality
In this section, we will again calculate the unseasoned value of the option in Eq. 3.2, but this time we
take the stock as numeraire. This corresponds to a shift of σ in all volatility functions. We find that
Ys(t) now satisfies

dYs(t) = 1t>sσYs(t)dW (t)+ · · ·

In this case the variance-covariance matrix becomes

Σ̂ij = σ2

∫ T

0

1t>ti1t>tjdt = σ2 min(T −ti, T −tj)

and a singular value decomposition Σ̂ij = θ̂i · θ̂j is given by

θ̂i = (0, . . . , 0︸ ︷︷ ︸
i

, βi+1, . . . , βN ), θ̂N = (0, . . . , 0︸ ︷︷ ︸
N

)

So an alternative expression for the price of the option is

V ({ti}, w, 0) = S(0)
∫
dNz

(
N∑
i=0

w(ti)φ(z − θ̂i)
)+

However, if we compare this result with Eq. 3.3, we see that it could also be interpreted as the value
of an option with payoff(

N∑
i=0

w(ti)YT−ti(T )

)+

In other words, two options which are related by the following substitution in their payoff

Yt(T )↔ YT−t(T ) (3.4)

have the same value at t = 0. We will call this T-duality (T from Time-reversal). It is a very
interesting symmetry operation because, in view of Eqs. 3.1, we can use it to relate the values of
unseasoned average strike and average price options. We will come back to this point in section 3.6.
Note that Eq. 3.4 takes a simple form by virtue of the fact that we are working in a basis of tradables.

3.4 A PDE approach
In this section we consider a PDE approach to the pricing of Asian options. We derive a very general
PDE, which can be related to the one that is usually found in the literature. Our PDE, however, has
the advantage of being manifestly numeraire independent by virtue of the fact that it is expressed
in a basis of tradables. It can be used to price both American and European style options, but we
will focus on the European case here. We will come back to American Asians in future work. The
basic idea in the derivation of the PDE is, instead of introducing a tradable for each sample date, to
introduce one new tradable S̄(t), which is a weighted sum over Ys(t) (obviously, a sum of tradables is
again a tradable). This allows us to consider continuously sampled Asians in a proper way. Also

S̄(t) =
∫ T

0

w(s)Ys(t)ds ≡ φ(t)S(t)+A(t)P (t)

where A(t) is proportional to the running average

A(t) =
∫ t

0

w(s)
S(s)
P (s)

ds
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and

φ(t) =
∫ T

t

w(s)ds ←→ w(t) = −∂tφ(t), φ(T ) = 0

Of course this approach also incorporates discretely sampled Asians. In that case, w(t) will be a sum
of Dirac delta-functions and φ(t) will be a piecewise constant function, making jumps at sample dates.
If we choose the bond P (t) as numeraire, and assume that S(t) satisfies

dS(t) = σS(t)dW (t) + · · ·

then it is obvious that the new tradable S̄(t) satisfies

dS̄(t) = φ(t)σS(t)dW (t)+ · · ·

This straightforwardly leads to the following PDE for options which depend on S̄, S and P(
∂t +

1
2
σ2S2(∂S + φ∂S̄)2

)
V = 0 (3.5)

If we perform a change of variables in the PDE, eliminating S̄ in favor of A, we find(
∂t + w

S

P
∂A +

1
2
σ2S2∂2

S

)
V = 0

which is closer to the usual formulation. However, since A(t) does not correspond to the value of a
tradable object, this form of the PDE looses the manifest symmetry.

3.5 Analytical solutions
In this section we derive a Laplace transform representation for prices of average strike options in the
case that sampling is continuous with an exponential weight function. This is in fact the counterpart
of the calculation of Geman and Yor [GY93] for the price of average price options, although they used
entirely different methods to derive it. The results for average strike options turn out to be somewhat
more involved, mainly because there is no simple relation between prices of seasoned and unseasoned
options, while a simple relation does exist in the case of average price options, as we will see. Now,
by definition, the payoff of an average strike option is defined in terms of S̄ and S only, P does not
appear. For example, the payoff of an ASP is given by

(S̄(T )− kS(T ))+ (3.6)

Because of this fact, it is natural to choose S as numeraire. Dropping the derivative w.r.t. P , the
PDE then reduces to(

∂t +
1
2
σ2(S̄ − φS)2∂2

S̄

)
V = 0

Next, introduce x ≡ S̄/S and set V̂ (x, t) ≡ V/S. This reduces the dimension of the PDE by one(
∂t +

1
2
σ2(x− φ)2∂2

x

)
V̂ = 0

The resulting PDE is closely related to the one found by Rogers and Shi [RS95]. In fact, they can be
transformed into each other by a variable change y = x− φ. But our derivation of the PDE seems to
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be more natural: working in a basis of tradables guides us in the right direction. At this point, we
will make the specific choice of an exponential weight function

w(t) =
e−γ(T−t)

T

Remember that if the interest rate is constant and equal to r, then the choice γ = r leads to an equally
weighted average in terms of the dollar price of the stock. We now find

φ(t) =
1− e−γ(T−t)

γT

A change of variables is now in place

τ ≡ T−t, z ≡ 2e−γτ

σ2T (x− φ)
=

2Se−γτ

σ2TAP
, s ≡ σ2τ, κ ≡ γ

σ2

This transforms the PDE to(
−∂s +

(
(κ+ 1)z − 1

2
z2

)
∂z +

1
2
z2∂2

z

)
V̂ = 0

A Laplace-transform with respect to s yields(
−λ+

(
(κ+ 1)z − 1

2
z2

)
∂z +

1
2
z2∂2

z

)
u = −f(z)

where u(z, λ) is the transformed function, and f(z) = V̂ (z, T ) denotes the payoff at maturity. Next,
let us define

u ≡ e 1
2 zz−κ−1w

Then w satisfies(
∂2
z −

1
4

+
(κ+ 1)
z

+
(1

4 − µ2)
z2

)
w = −2e−

1
2 zzκ−1f(z) (3.7)

where we introduced

µ ≡
√(

κ+ 1
2

)2 + 2λ

The homogeneous part of Eq. 3.7 is Whittaker’s equation, and its solutions are the Whittaker functions
Mκ+1,µ(z) and Wκ+1,µ(z) (see appendix). To solve Eq. 3.7 we will make use of a Green’s function
approach. A Green’s function with proper behaviour at the boundaries is given by

G(x, y) =
1
Q

(
Mκ+1,µ(x)Wκ+1,µ(y)1x<y+Wκ+1,µ(x)Mκ+1,µ(y)1x>y

)
where Q is the Wronskian of the two solutions

Q = Wκ+1,µ(z)∂zMκ+1,µ(z)−Mκ+1,µ(z)∂zWκ+1,µ(z) =
Γ(1 + 2µ)

Γ(− 1
2 − κ+ µ)

In terms of this, the solution can be written as

u(z, λ) = 2e
1
2 zz−κ−1

∫ ∞
0

G(x, z)e−
1
2xxκ−1f(x)dx
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The ASP payoff defined in Eq. 3.6 corresponds to the choice

f(z) =
(

2
σ2Tz

− k
)+

= k
(a
z
− 1
)+

, a ≡ 2
σ2kT

Inserting this in the integral, we find that the solution falls apart in two ranges, z < a and z ≥ a
(or, equivalently, e−γτkS < AP and e−γτkS ≥ AP ). For details of this calculation we refer to the
appendix. In the former case, we find

u(z, λ) =
2ke

z−a
2 z−κ−1aκΓ(− 1

2 − κ+ µ)
Γ(1 + 2µ)

Wκ−1,µ(a)Mκ+1,µ(z)

+
2k
(
z
(
(κ− 1

2 )2 − µ2
)

+ a
(
z −

(
(κ+ 1

2 )2 − µ2
)))

z
(
(κ− 1

2 )2 − µ2
)(

(κ+ 1
2 )2 − µ2

)
The second term is exactly the Laplace transform of x− k. In the latter case we find

u(z, λ) =
2ke

z−a
2 z−κ−1aκΓ(− 1

2 − κ+ µ)
(− 1

2 + κ+ µ)(1
2 + κ+ µ)Γ(1 + 2µ)

Mκ−1,µ(a)Wκ+1,µ(z)

Therefore, the solution can be written as

VASP(k, γ, t, T ) =
{
kS(t)I1 + S̄(t)− kS(t) e−γτkS < AP
kS(t)I2 e−γτkS ≥ AP

where I1 and I2 are defined by inverse Laplace-transforms

I1 ≡
e
z−a

2 z−κ−1aκ

πi

∫ ρ+i∞

ρ−i∞

Γ(− 1
2 − κ+ µ)Wκ−1,µ(a)Mκ+1,µ(z)eλs

Γ(1 + 2µ)
dλ

I2 ≡
e
z−a

2 z−κ−1aκ

πi

∫ ρ+i∞

ρ−i∞

Γ(− 1
2 − κ+ µ)Mκ−1,µ(a)Wκ+1,µ(z)eλs

(− 1
2 + κ+ µ)(1

2 + κ+ µ)Γ(1 + 2µ)
dλ

where ρ is an arbitrary constant chosen so that the contour of integration lies to the right of all
singularities in the integrand. These integrals can be evaluated numerically [AW95, Sha98]. Note that
the value of an average strike call (ASC) follows simply from put-call parity, that is, we use(

S̄(T )−kS(T )
)+

−
(
kS(T )−S̄(T )

)+

= S̄(T )−kS(T )

and find

VASC(k, γ, t, T ) =
{
kS(t)I1 e−γτkS < AP
kS(t)I2 − S̄(t) + kS(t) e−γτkS ≥ AP

The expression for the value of the ASP at t = 0, i.e. its unseasoned value, simplifies considerably. In
this case z →∞ and s = σ2T = 2/(ak), and we find

VASP(k, γ, 0, T ) = kS(0)
e−

a
2 aκ

πi

∫ ρ+i∞

ρ−i∞

Γ(− 1
2 − κ+ µ)Mκ−1,µ(a) exp(2λ

ak )
(− 1

2 + κ+ µ)(1
2 + κ+ µ)Γ(1 + 2µ)

dλ
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3.6 T-duality and average price options
In this section we will use the T-duality, found in section 3.3, to relate prices of unseasoned average
strike and average price options. We will focus on the case where the weight function is exponential.
To indicate the weight function used in the definition of S̄, we use a subscript γ, i.e. we define

S̄γ(t) =
1
T

∫ T

0

e−γ(T−s)Ys(t)ds

It is a straightforward calculation to see that the action of the duality Eq. 3.4 (remark: we use a
continuum limit of this result) on the tradables S̄γ , S and P is given by

S̄γ(T )↔ e−γT S̄−γ(T )

S(T )↔ S(0)
P (0)

P (T )

Applying this to the payoff of an average price call gives

(S̄γ(T )−KP (T ))+↔ e−γT
(
S̄−γ(T )− KP (0)

e−γTS(0)
S(T )

)+

i.e., it transforms it into the payoff of an ASP. Therefore we see that the unseasoned value of an APC
can be expressed as

VAPC(K, γ, 0, T ) = e−γTVASP

(
KP (0)
e−γTS(0)

,−γ, 0, T
)

Similarly, we obtain the value of an unseasoned average price put (APP)

VAPP(K, γ, 0, T ) = e−γTVASC

(
KP (0)
e−γTS(0)

,−γ, 0, T
)

In this way, we actually reproduce the well known results by Geman and Yor [GY93].

3.7 On seasoned Asians
It is a well-known fact that the price of a seasoned average price option can be expressed in terms of
the price of an unseasoned average price option with a different strike. Let us look at the mechanism
behind this. We consider an exponentially weighted, continuously sampled Asian with a total lifetime
of M , expiring at time T (so it is initiated at time T −M < 0) and we are interested in its price at
t = 0. As before, the payoff of such an option can be expressed in terms of tradables S, P and

S̄γ,M(t) =
1
M

∫ T

T−M
e−γ(T−s)Ys(t)ds

where we explicitly show the longer sample period in the definition by the subscript M . Now if
t ∈ [0, T ] we can write

S̄γ,M(t) =
T S̄γ(t)
M

+
P (t)
M

∫ 0

T−M
e−γ(T−s) S(s)

P (s)
ds ≡ T S̄γ(t) +AP (t)

M
(3.8)

where A is proportional to the average over the time period up to t = 0. Substituting this in the
payoff of an APC, we get(

S̄γ,M(T )−KP (T )
)+

=
T

M

(
S̄γ(T )−K̂P (T )

)+
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with

K̂ =
MK −A

T

This shows that the value of the seasoned APC that we are considering can be expressed in terms of
the value of an unseasoned APC with a modified strike as

T

M
VAPC(K̂, γ, 0, T )

Of course, the same trick also works for average price puts. Note that it is possible for the strike K̂
to become negative. In that case, the option becomes trivial. One might wonder what happens if we
substitute Eq. 3.8 in the payoff of an ASC. It turns out that in that case, things do not combine in a
nice way. Indeed, we find(

kS(T )−S̄γ,M(T )
)+

=
(
MkS(t)− T S̄γ(T )−AP (T )

M

)+

(3.9)

Fortunately, we already have an expression for the value of a seasoned ASC. So we can use the formula
in reverse, to price options with a payoff given by the RHS of Eq. 3.9. This will turn out to be useful
in the next section.

4. Cash-dividend

It is well known in the literature how to price options on a stock paying a known dividend yield.
However, in many cases it is more realistic to assume that the cash amount of the dividend rather
than the yield is known in advance. This makes the pricing problem considerably harder. In this
section we show that the problem is equivalent to the pricing of Asian options. In fact, we show that
their prices are connected by the put-call symmetries of section 2.3. This allows us to use all the
techniques for the valuation of Asian options in the context of options involving cash-dividend. The
setting is as follows. We assume that the stock follows geometric Brownian motion between dividend
payments, with fixed volatility σ (taking the bond as numeraire). Dividends are paid at a set of
discrete times {ti}, i = 1, 2, 3, . . ., 0 < t1 < t2 < · · · and are expressed in units of the bond δ(ti)P .
Since we will be interested in options with maturity T , we will use a bond with this same maturity.
We assume that the interest rate is fixed and equal to r, so the bond has dollar value e−r(T−t). By
Si(t) we mean the price of the stock between ti and ti+1, in other words

S(t) = Si(t), for ti ≤ t < ti+1

So at t = t1 a portfolio consisting of 1 stock becomes

S0 → δ(t1)P +S1

In order to avoid arbitrage, we assume that the left-hand side equals the right-hand side at t1. This
can be used to extend the definition of S0 to all t < t2 as follows

S(t) = S1(t) =
(

1− δ(t1)P (t1)
S0(t1)

)
S0(t), t1 ≤ t < t2

Note that S0, by construction, does not make a jump at t1. In fact, S0 corresponds to the value of
the self-financing portfolio that one gets by directly reinvesting the cash-dividend payment into the
stock again. So S0 is a tradable object. We can repeat the process for the dividend payment at t2

S1 → δ(t2)P +S2
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Again, S2 can be expressed in terms of S0, extending the definition of S0 to all t < t3

S(t) = S2(t) =
(

1− δ(t2)P (t2)
S1(t2)

)
S1(t) =

(
1− δ(t1)P (t1)

S0(t1)
− δ(t2)P (t2)

S0(t2)

)
S0(t), t2 ≤ t < t3

By repeating this process, we find that the value of a portfolio V which we get by starting with one
stock at t = 0 and holding it, together with all its cumulative dividends up to time t (note that this
portfolio is also a tradable object, while the stock by itself is not) is given by

V (t) = S(t)+
∑
ti≤t

δ(ti)P (t) =

1−
∑
ti≤t

δ(ti)P (ti)
S0(ti)

S0(t)+
∑
ti≤t

δ(ti)P (t)

where S0 just follows a lognormal price process. Now if we consider a European option of the stock
with maturity T , we can define the cumulative dividends up to maturity as follows

C(t) ≡
∑
ti≤T

δ(ti)P (t)

Using this we can write

V (t) = S0(t)+C(t)− P̄ (t), t ≤ T

where

P̄ (t) ≡
∑

t<ti≤T
δ(ti)P (t)+

∑
ti≤t

δ(ti)P (ti)
S0(ti)

S0(t)

In terms of these new tradables, we can write

S(T ) = S0(T )− P̄ (T )

Now the connection with Asian option becomes clear. They can be transformed into each other by
the exchange of S0 and P , i.e. by using put-call symmetry. In fact, we can introduce tradable objects,
similar to the Ys(t), as follows

Xs(t) =

{
P (t) t ≤ s
P (s)
S0(s)S0(t) t ≥ s

In terms of these, we can write

P̄ (t) =
∑
ti≤T

δ(ti)Xti(t)

Again, for t ∈ [0, T ], we have

P (t) = XT (t)

S0(t) =
S(0)
P (0)

X0(t)
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Therefore we see that the payoff of a plain vanilla option on a stock paying cash dividends takes the
general form(∑

i

δ(ti)Xti(T )

)+

with certain weights δ. Taking S0(t) as numeraire, we see that the tradables Xs(t) satisfy

dXs(t) = 1t<sσXs(t)dW (t)+ · · ·

and we can use the integral approach described in section 3.2 to price the option. Alternatively we
can use a PDE approach, i.e. we generalize the definition of P̄ as follows, cf. the steps in 3.4,

P̄ (t) =
∫ T

0

δ(s)Xs(t)ds = φ(t)P (t)+A(t)S0(t)

A PDE which describes the price process of an option depending on S0, P and P̄ (this class includes
plain vanilla options on stocks paying cash-dividends) can now easily be derived (just take the stock
as numeraire)(

∂t +
1
2
σ2P 2(∂P + φ∂P̄ )2

)
V = 0

It is instructive to consider a call option on a stock which pays a continuous stream of cash dividends,
with exponential weights. One can use this as an approximation to the value of an option where the
underlying stock pays a long stream of discrete cash dividends. So let us define

P̄γ(t) ≡ 1
T

∫ T

0

e−γ(T−s)Xs(t)ds

The natural choice is γ = −r, which corresponds to a constant dividend stream in terms of dollars.
The payoff of a plain vanilla call becomes(

S(T )−KP (T )
)+

→
(
S0−δT P̄−r(T )−KP (T )

)+

where δ parametrizes the dividend stream. We will from now on omit the subscript from the S0. By
exchanging S and P , exploiting put-call symmetry, we get(

P (T )− δT S̄−r(T )−KS(T )
)+

which is the payoff of some Asian option. In fact, by using T-duality, the payoff can be related to one
that corresponds to a seasoned average strike call (see Eq. 3.9)(

P (0)
S(0)

S(T )− δT erT S̄r(T )− S(0)
P (0)

KP (T )
)+

and we can use the analytical results that we derived for this type of option to write down the price
of this instrument.
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5. Conclusion and outlook

In this article we have shown the power of symmetries to derive prices of complex exotic options.
We focused on arithmetic average options in a Black-Scholes setting. By choosing an appropriate
basis of tradables, i.e. self-financing portfolios, it becomes a straightforward matter to write down
the governing PDE for the option price. We then proceed to derive the Laplace-transformed price of
a European average strike option. This result extends the result of Geman and Yor [GY93] for the
average price option. Next we show the power of the underlying symmetry, by showing the equiva-
lence of the unseasoned arithmetic average strike and price options after a suitable transformation of
parameters. Seasoned options can be treated in a similar way. Finally we exploit the symmetry in the
problem to show that vanilla options on stocks paying cash dividends are equivalent, after suitable
transformations, to arithmetic Asian options, thus providing a method to price these type of options.

Let us remark that the present discussion carries over without too much changes to the case of basket
options and swaptions. We will discuss this in future work. Also we did not discuss the case of an
arithmetic Asian option with early-exercise features. This is however simple to implement and we will
come back to this in a future work.

Appendix A: Whittaker functions

In this appendix we enumerate some useful properties of Whittaker functions. More information can
be found in e.g. [AS64, PBM86]. The Whittaker functions Mκ,µ(z) and Wκ,µ(z) are solutions to
Whittaker’s PDE(

∂2
z −

1
4

+
κ

z
+

(1
4 − µ2)
z2

)
f = 0

These functions are defined as

Mκ,µ(z) = e−
1
2 zzµ+ 1

2 1F1(1
2 +µ−κ, 1+2µ, z)

where the confluent hypergeometric function is given by

1F1(a, b, z) =
Γ(b)
Γ(a)

∞∑
n=0

Γ(a+ n)zn

Γ(b+ n)n!

and

Wκ,µ(z) = e−
1
2 zzµ+ 1

2 Ψ(1
2 +µ−κ, 1+2µ, z)

where Ψ is the Tricomi function

Ψ(a, b, z) =
1

Γ(a)

∫ ∞
0

e−ztta−1(1+ t)b−a−1dt

There are the following interesting relations

Wκ,µ(z) =
Γ(−2µ)

Γ(1
2 − µ− κ)

Mκ,µ(z)+
Γ(2µ)

Γ(1
2 + µ− κ)

Mκ,−µ(z)

z−µ−
1
2Mκ,µ(z) = (−z)−µ−

1
2M−κ,µ(−z)
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To evaluate the price of the ASP we made use of the following definite integrals∫
e−

1
2 zzκ−1Wκ+1,µ(z)dz = −e− 1

2 zzκWκ,µ(z)∫
e−

1
2 zzκ−2Wκ+1,µ(z)dz = e−

1
2 zzκ−1(Wκ−1,µ(z)−Wκ,µ(z))∫

e−
1
2 zzκ−1Mκ+1,µ(z)dz =

e−
1
2 zzκ

Γ(3
2 + κ+ µ)

Γ(1
2 + κ+ µ)Mκ,µ(z)∫

e−
1
2 zzκ−2Mκ+1,µ(z)dz =

e−
1
2 zzκ−1

Γ(3
2 + κ+ µ)

×

×(Γ(1
2 + κ+ µ)Mκ,µ(z) + Γ(− 1

2 + κ+ µ)Mκ−1,µ(z))

To calculate its unseasoned value, we recall the asymptotic behaviour of Wκ,µ(z)

Wκ,µ(z) ∼ e− 1
2 zzκ, z →∞
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