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Time-Changed Lévy Processes and Option Pricing

Abstract

As is well known, the classic Black-Scholes option pricing model assumes that returns follow

Brownian motion. It is widely recognized that return processes differ from this benchmark in at

least three important ways. First, asset prices jump, leading to non-normal return innovations.

Second, return volatilities vary stochastically over time. Third, returns and their volatilities are

correlated, often negatively for equities. We propose thattime-changed Ĺevy processesbe used to

simultaneously address these three facets of the underlying asset return process. We show that our

framework encompasses almost all of the models proposed in the option pricing literature. Despite

the generality of our approach, we show that it is straightforward to select and test a particular

option pricing model through the use of characteristic function technology.

JEL Classification:G10, G12, G13.

Keywords:random time change; Ĺevy processes; characteristic functions; option pricing; exponen-

tial martingales; measure change.



1. Introduction

The shortest path between two results in the real domain passes through the complex do-

main.– Jacques Hadamard

It is widely recognized that the key to developing successful strategies for managing risk and pricing

assets is to parsimoniously describe the stochastic process governing asset dynamics. Brownian mo-

tion has emerged as the benchmark process for describing asset returns in continuous time. However,

many studies of the time series of asset returns and derivatives prices conclude that there are at least

three systematic and persistent departures from this benchmark for both the statistical and risk-neutral

process. First, asset prices jump, leading to non-normal return innovations. Second, return volatility

varies stochastically over time. Third, returns and their volatilities are correlated, often negatively for

equities.

The purpose of this paper is to explore the use oftime-changed Ĺevy processesas a way to

simultaneously and parsimoniously capture all three of these stylized facts. Roughly speaking, a Lévy

process is a continuous time stochastic process with stationary independent increments, analogous

to iid innovations in a discrete setting. Important examples of Lévy processes include the drifting

Brownian motion underlying the Black and Scholes (1973) model and the compound Poisson process

underlying the jump diffusion model of Merton (1976). While a Brownian motion generates normal

innovations, non-normal innovations can be generated by a pure jump Lévy process. To capture the

stylized evidence on stochastic volatility, we apply a stochastic time change to the Lévy process. This

amounts to stochastically altering the clock on which the Lévy process is run. Intuitively, one can regard

the original clock as the calendar time and the new random clock as the business time. A more active

business day implies a faster business clock. Randomness in business activity generates randomness

in volatility. To capture the correlation between returns and their volatilities, we let innovations in

the Lévy process be correlated with innovations in the random clock on which it is run. When this

correlation is negative, the clock tends to run faster when the Lévy process falls. This captures the

“leverage effect” first discussed by Black (1976).1

1The term “leverage effect” has become generic in describing the negative correlation between stock returns and their

volatilities. However, various other explanations have also been proposed in the economics literature, e.g., Haugen, Talmor,

and Torous (1991), Campbell and Hentschel (1992), Campbell and Kyle (1993), and Bekaert and Wu (2000).



Our proposal to use time-changed Lévy processes unifies two large strands of the vast option pricing

literature. The first strand follows Merton (1976) in using compound Poisson processes to model

jumps, and Heston (1993) in using a mean-reverting square root process to model stochastic volatility.

Prominent examples in this first strand of research include, among others, Andersen, Benzoni, and

Lund (2002), Bakshi, Cao, and Chen (1997), Bates (1996, 2000), and Pan (2002). All of these works

can be regarded as examples from the affine jump diffusion framework of Duffie, Pan, and Singleton

(2000), where the asset return and variance are driven by a finite number of potentially correlated state

variables. A Poisson-type jump component can be incorporated into any of these state variables. The

arrival rate can be an affine function of the state variables and hence can be stochastically time-varying.

Duffie, Pan, and Singleton (2000) illustrate how to value many state contingent claims in this affine

framework.

While the affine framework represents an important theoretical advance, a limitation arises due

to the exclusive use of compound Poisson processes to model jumps. These processes generate a

finite number of jumps within a finite time interval, and have accordingly been referred to as finite

activity jump processes. The observation that asset prices actually display many small jumps on a fine

time scale has lead to the development of a second strand of option pricing literature. This second

strand considers more general jump structures, which permit an infinite number of jumps to occur

within any finite time interval. Examples of infinite activity jump models include the inverse Gaussian

model of Barndorff-Nielsen (1998), the generalized hyperbolic class of Eberlein, Keller, and Prause

(1998), the variance-gamma (VG) model of Madan, Carr, and Chang (1998), the generalization of

VG in Carr, Geman, Madan, and Yor (2002), and the finite moment log-stable model of Carr and Wu

(2002). Empirical work by these authors is generally supportive of the use of infinite activity processes

as a way to model returns in a parsimonious way. The recognition that volatility is stochastic has lead

to further extensions of infinite activity Ĺevy models by Barndorff-Nielsen and Shephard (2001) and

by Carr, Geman, Madan, and Yor (2001). However, these models all assume that changes in volatility

are independent of asset returns, despite the well-documented evidence on the leverage effect.

The use of time-changed Lévy processes can extract the best features in the above two literature

streams since it generalizes both streams simultaneously. In particular, our framework generalizes the

affine Poisson jump-diffusion economy of Duffie, Pan, and Singleton (2000) by relaxing the affine
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requirement and by allowing more general specifications of the jump structure. We also generalize

the stochastic volatility Ĺevy models by letting changes in volatility be arbitrarily correlated with asset

returns. Hence, by regarding both literature streams from a more general perspective, we are able to

capture both high jump activity and the leverage effect.

Since the pioneering work of Heston (1993), both literature strands have focused on the use of

characteristic functions for understanding the proposed processes. The characteristic function is a

complex-valued function which is in a one-to-one correspondence with the probability density function.

It is well known that when the risk-neutral probability density function (PDF) of the underlying is

known in closed form, option prices can be obtained by a single integration of their payoff against this

PDF. Analogously, when the characteristic function of the underlying is known in closed form, option

prices can also be obtained by a single integration. The numerical valuation is sufficiently fast that a

wide variety of models can be tested empirically.

Bakshi and Madan (2000) provide an economic foundation for characteristic functions by consid-

ering complex exponentials as an alternative set of basis functions for spanning the payoff universe. In

this interpretation, the characteristic function is the price of a claim whose payoff is given by a sinusoid,

just as the risk neutral density is the price of a claim with a delta function payoff. For many interesting

random variables, the characteristic function is simpler analytically than the probability density func-

tion. Accordingly, this paper focusses on developing analytic expressions for the characteristic function

of a time-changed Ĺevy process.

The characteristic function of a random return is defined as the expected value of the complex

exponential of the return. When the return is given by a stochastic process evaluated on a stochastic

clock, deriving the characteristic function involves integrating over the two sources of randomness.

We show that the key to obtaining the characteristic function in our general setting is to employ the

powerful tool of a measure change. This measure change simplifies the expectation operation into an

integration over a single source of uncertainty, thereby reducing the problem to one that has already

been solved in the finance literature.

Measure changes have already seen wide application in option pricing theory. For example, mea-

sure changes are used to switch from statistical to risk-neutral measure, and they are further used to
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change numeraires to dramatically simplify calculations (see Margrabe (1978), Geman, El Karoui, and

Rochet (1995), Schroder (1999), Benninga, Björk, and Wiener (2001)). As an example of the latter

use, consider valuing an option on a foreign stock. A priori, there are two sources of risk, namely the

stock price in the foreign currency and the exchange rate. However, by valuing the option in the foreign

economy, the valuation problem reduces to taking the expected value over just the terminal stock price.

The same dimension reduction arises in our use of a measure change to determine the characteristic

function of a time-changed Ĺevy process. However, as the characteristic function is defined on the

complex plane, our new measure must also be complex-valued. The reason behind this result is ex-

plored in detail in the next section. The introduction of the effective use of a complex-valued measure

is the main methodological contribution of this paper. Besides providing a formal mathematical proof

of our main result, we deliberately select some familiar examples from the literature in order to confirm

the validity of our novel approach. We find that in every case, our approach agrees with the known

results previously obtained by solving partial differential equations.

In many respects, the sophistication of a field is measured by the extent to which it is willing to use

abstract methods to solve concrete problems. Complex analysis has been widely used for decades in

many fields outside of finance and is just beginning to see use inside the field. Just as the risk-neutral

measure effectively removes the complications arising from correlation between the pricing kernel and

the payoff, our use of a complex-valued measure removes the complications arising in determining

the characteristic function when there is correlation between the Lévy process and the random time.

Using the same logic that leads to the term risk-neutral measure, we refer to our new measure as the

leverage-neutralmeasure. Under the complex-valued leverage-neutral measure, the expectation can

be performed as if there is no leverage effect. Just as the effects of risk-aversion are embedded in

risk-neutral probabilities, leverage effects are embedded in our leverage-neutral measure.

Given the characteristic function of a stochastic process, Heston (1993) shows how to numerically

value standard European options by using Lévy’s inversion formula for the distribution function. By

analytically relating the Fourier transform of an option price to its characteristic function, Carr and

Madan (1999) show how the fast Fourier transform (FFT) can alternatively be used to speed up the

calculation. In contrast to Heston (1993), their approach uses generalized Fourier transforms, which

requires that the argument of the characteristic function be evaluated in a particular domain of the
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complex plane. In this paper, we extend the formulation in Carr and Madan (1999) to a wide variety of

contingent claims. Our work complements recent work on applying FFT technology to spread options

by Dempster and Hong (2000) and to Asian options by Benhamou (2000). We show that the choice

of domain for the argument of the characteristic function depends on the exact structure of the state-

contingent payoff. We identify the admissible domains for a wide variety of state-contingent claims,

thereby reaping the significant computational benefits of FFT technology for valuation and estimation.

The structure of the paper is as follows. The next section presents the fundamental theorem simpli-

fying the calculation of the characteristic function of the time-changed Lévy process. Section 3 shows

how time-changed Ĺevy processes can be used to model the uncertainty of the economy. Section 4

provides extensive examples of Lévy processes, random time changes, and feasible pairings of them.

Section 5 shows how FFT technology can be used to efficiently value many state-contingent claims

from knowledge of the characteristic function. Section 6 briefly summarizes the paper and suggests

avenues for future research.

2. Time-changed Ĺevy processes

Consider ad-dimensional real-valued stochastic process{Xt |t ≥ 0} with X0 = 0 defined on an under-

lying probability space(Ω,F ,P) endowed with a standard complete filtrationF = {Ft |t ≥ 0}. We

assume thatX is a Lévy process with respect to the filtrationF. That is,Xt is adapted toFt , the sample

paths ofX are right-continuous with left limits, andXu−Xt is independent ofFt and distributed as

Xu−t for 0≤ t < u. By the Ĺevy-Khintchine Theorem (see Bertoin (1996), page 12), the characteristic

function ofXt has the form,

φXt (θ)≡ E
[
eiθ>Xt

]
= e−tΨx(θ), t ≥ 0, (1)

where thecharacteristic exponentΨx(θ), θ ∈ Rd, is given by:

Ψx(θ)≡−iµ>θ+
1
2

θ>Σθ+
∫
Rd

0

(
1−eiθ>x + iθ>x1|x|<1

)
Π(dx). (2)
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The Lévy processX is specified by the vectorµ∈ Rd, the positive semi-definite matrixΣ on Rd×d,

and the Ĺevy measureΠ defined onRd
0 (Rd less zero). The triplet(µ,Σ,Π) is referred to as theLévy

characteristicsof X. Intuitively, the first member of the triplet describes the constant drift of the

process. The second member describes the constant covariance matrix of the continuous components

of the Lévy process. Finally, the third member of the triplet describes the jump structure. In particular,

the Lévy measureΠ describes the arrival rates for jumps of every possible size for each component of

X.

To value options, we extend the characteristic function parameterθ to the complex plane,θ ∈D ⊆

Cd, whereD is the set of values forθ for which the expectation in (1) is well defined. WhenφXt (θ)

is defined on the complex plane, it is referred to as thegeneralizedFourier transform (see Titchmarsh

(1975)).

Next, lett → Tt(t ≥ 0) be an increasing right-continuous process with left limits such that for each

fixed t, the random variableTt is a stopping timewith respect toF. Suppose, furthermore, thatTt is

finite P-a.s. for allt ≥ 0 and thatTt → ∞ ast → ∞. Then the family of stopping times{Tt} defines a

random time change. Without loss of generality, we further normalize the random time change so that

E [Tt ] = t. With this normalization, the family of stopping times is an unbiased reflection of calendar

time.

Finally, consider thed-dimensional processY obtained by evaluatingX atT, i.e.,

Yt ≡ XTt , t ≥ 0.

We propose that this process describe the underlying uncertainty of the economy. For example, in

the one dimensional case, we may takeY as describing the returns on the asset underlying an option.

Obviously, by specifying different Ĺevy characteristics forXt and different random processes forTt , we

can generate a plethora of stochastic processes from this setup.

In principle, the random timeTt can be modeled as a nondecreasing semimartingale,

Tt = αt +
∫ t

0

∫ ∞

0
yµ(dt,dy), (3)
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whereαt is the locally deterministic component andµ denotes the counting measure of the jumps of

the semimartingale. For simplicity, we suppress jumps in time and focus on a locally deterministic time

change. This simplification allows us to characterise the random time in terms of its local intensityv(t),

Tt = αt =
∫ t

0
v(s−)ds,

wherev(t) is the instantaneous (business) activity rate. Intuitively, one can regardt as the calendar

time andTt as the business time at calendar timet. A more active business day, captured by a higher

activity rate, generates higher volatility for the economy. The randomness in business activity generates

randomness in volatility. In particular, changes in the business activity rate can be correlated with

innovations inXt , due to leverage effects for example.

Note that althoughTt has been assumed to be continuous, the instantaneous activity rate process

v(t) can jump. However, it needs to be nonnegative in order thatTt not decrease. Also note that in

this paper, the term “volatility” is used generically to describe the uncertainty surrounding financial

activities in the underlying economy. It is not used as a statistical term for the standard deviation of

returns. In fact, whenXt is a Brownian motion, the activity rate is proportional to the instantaneous

variancerate of the Brownian motion. WhenXt is a pure jump Ĺevy process,v(t) is proportional to the

Lévy density of the jumps.

Many well known option pricing models arise as special cases of our framework. For example, the

stochastic volatility model of Heston (1993) can be generated by randomly time-changing a Brownian

motion and by specifying the activity rate as a mean-reverting square root process. The affine jump-

diffusion economy of Duffie, Pan, and Singleton (2000) can be generated when the jump components

in Xt are compound Poisson jumps and when the stochastic process for the activity ratev(t) satisfies the

affine constraints.2 Our framework allows more general jump structures in bothXt andvt . Furthermore,

the dynamics for the activity rate processvt does not need to be restricted to have an affine specification.

2The drift vector and covariance matrix of the diffusion are affine in the state vector[Xt ,vt ]>. When compound Poisson

jumps are present in the activity rate process, the Poisson intensity is also affine in the state vector.
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Since the time-changed processYt ≡ XTt is a stochastic process evaluated at a stochastic time, its

characteristic function involves expectations over two sources of randomness,

φYt (θ)≡ Eeiθ>XTt = E
[
E
[
eiθ>Xu|Tt = u

]]
. (4)

If the random timeTt is independent ofXt , the randomness due to the Lévy process can be integrated

out using equation (1),

φYt (θ) = Ee−TtΨx(θ) = LTt (Ψx(θ)). (5)

Thus under independence, the characteristic function ofYt is just the Laplace Transform ofTt evaluated

at the characteristic exponent ofX. Hence, the characteristic function ofYt can be expressed in closed

form if the characteristic exponentΨx(θ) of Xt and the Laplace transform forTt are both available

in closed form. In principle, the characteristic exponent can be computed from the Lévy-Khintchine

Theorem in (2). To obtain the Laplace transform in closed form, consider its specification in terms of

the activity ratevt ,

LTt (λ)≡ E

[
exp

(
−λ

∫ t

0
v(s−)ds

)]
.

This formulation arises in the bond pricing literature if we regardλv(t) as the instantaneous interest

rate. Furthermore, the instantaneous interest rate and the instantaneous activity rate are both required

to be nonnegative and can be modeled by similar processes. Thus, one can adopt the vast literature in

term structure modeling for the purpose of modeling the instantaneous activity ratev(t).

Our primary objective is to generalize the reduction in (5) of the characteristic function to a bond

pricing formula to the case where the Lévy process and time change are correlated. This generalization

would allow us to easily capture the well-known leverage effect. Before presenting the formal theorem

on this generalization, it is useful to consider the special case when the Lévy process has a symmetric

distribution about zero, e.g., a standard Brownian motion. The corresponding characteristic function of

such a symmetric Ĺevy process is real, so is its characteristic exponent. Now consider a time change on

this symmetric Ĺevy process. If the time change is independent of the Lévy innovation, the distribution

of the time changed process remains symmetric. Its characteristic function remains real and can be

solved via iterated expectation as in (4) and the bond pricing analog in (5).
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Alternatively, one can introduce asymmetry to the distribution of the time-changed Lévy process

by introducing correlation between the time change and the Lévy innovation. Then, the characteristic

function of this distribution must have a non-zero imaginary part due to the asymmetry. Our objective

is to generate this non-zero imaginary part while still using the bond pricing analog:

φYt (θ) = E

[
exp

(
−Ψx(θ)

∫ t

0
v(s)ds

)]
, (6)

where both the characteristic exponentΨx(θ) and the stochastic timeT are real valued. We achieve

this objective by taking the above expectation under a complex-valued measure. When the real-valued

random variables are averaged using complex weights rather than real ones, the resulting characteristic

function becomes complex-valued, as is required to correspond with an asymmetric distribution.

The following theorem shows that the use of a complex-valued measure is the key to determining

the characteristic function of the time-changed process. This theorem is the main contribution of this

paper. It shows that a complex-valued measure can be used to reduce the problem of finding the charac-

teristic function ofYt in the original economy into the problem of finding it in an artificial economy that

is devoid of the leverage effect. From (5), we see that this calculation in turn reduces to determining

the Laplace Transform of the random time in the leverage-neutral economy. As the Laplace transform

calculation itself reduces to a bond pricing formula, we can find characteristic functions for a wide

array of processes resulting from pairing Lévy processes with correlated time changes.

Theorem 1 The problem of finding the generalized Fourier transform of the time-changed Lévy process

Yt ≡ XTt under measure P reduces to the problem of finding the Laplace transform of the random time

under the complex-valued measure Q(θ), evaluated at the characteristic exponentΨx(θ) of Xt ,

φYt (θ)≡ E
[
eiθ>Yt

]
= Eθ

[
e−TtΨx(θ)

]
≡ Lθ

Tt
(Ψx(θ)) , (7)

where E[·] and Eθ[·] denote expectations under measures P and Q(θ), respectively. The new class of

complex-valued measures Q(θ) are absolutely continuous with respect to P and are defined by

dQ(θ)
dP

∣∣∣∣
t
≡Mt(θ),
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with

Mt(θ)≡ exp
(

iθ>Yt +TtΨx(θ)
)

, θ ∈D. (8)

Note that the last two equalities in (7) extend the notions of expected value and Laplace transform

beyond their usual domain. As indicated, the “expected value”Eθ [e−TtΨx(θ)
]

is to be computed under

the complex measureQ(θ) rather than the usual real one. Furthermore, the “Laplace Transform”Lθ
Tt

is

not the usual Laplace Transform ofTt due to the dependence of the measureQ on θ.3 The superscript

θ is used to indicate this extended Laplace Transform, which can still be interpreted as a bond pricing

formula.

To prove the theorem, we first need to prove thatMt(θ),θ∈D, defined in (8) is aP-martingale with

respect to the filtration generated by the process{(Yt ,Tt) : t ≥ 0}.

Lemma 1 For everyθ∈D, Mt(θ) in (8) is a complex-valued P-martingale with respect to the filtration

generated by the process{(Yt ,Tt) : t ≥ 0}.

Proof. First, define

Zt(θ)≡ exp
(

iθ>Xt + tΨx(θ)
)

. (9)

Given thatΨx(θ) is finite by definition,E [|Zt(θ)|] is finite since

E [|Zt(θ)|]≤ exp(tΨx(θ)) .

Now for 0≤ s< t,

E
[
eiθ>(Xt−Xs)+Ψx(θ)(t−s)|Fs

]
= e−Ψx(θ)(t−s)+Ψx(θ)(t−s) = 1.

Hence,Zt(θ) is a complex-valuedP-martingale with respect to{Ft |t ≥ 0}.

3We thank a referee for pointing this out.
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Next, for every fixedt ≥ 0, Tt is a stopping time which is finiteP-a.s. By the optional stopping

theorem,Mt(θ)≡ ZTt (θ) is also a complex-valued martingale with respect to the filtration generated by

the process{(Yt ,Tt) : t ≥ 0}.

Zt(θ) is the familiar Wald martingale.4 We extend the real-valued exponential family of martingales

defined on Ĺevy processes in (K̈uchler and Sørensen 1997, page 8) to the complex plane. Similarly,

Mt(θ) = ZTt (θ) can be regarded as a complex extension of the time-changed exponential martingale in

(Küchler and Sørensen 1997, page 230).

Given thatMt(θ) is a well-defined complex-valuedP-martingale, the proof of Theorem 1 is straight-

forward.

Proof. (Theorem 1)

E
[
eiθ>Yt

]
= E

[
eiθ>Yt+TtΨx(θ)−TtΨx(θ)

]
= E

[
Mt(θ)e−TtΨx(θ)

]
= Eθ

[
e−TtΨx(θ)

]
= Lθ

Tt
(Ψx(θ)) .

Our theorem generalizes the previous results on an independent time change to the case where the

Lévy process and the time change can be correlated. WhenTt is independent ofXt , our result reduces

to the previous one. The reason is thatTt follows the same process under the two measuresP and

Q(θ) and henceLTt ≡ Lθ
Tt

. In other words, if the original economy is devoid of the leverage effect,

no measure change is required. When the original economy does possess the leverage effect, our

complex-valued measure change simplifies the calculation by absorbing the effects of the correlation

into the measure. One can then perform the expectation under this new measure as if the economy is

devoid of the leverage effect. In analogy with the terminology underlying the risk-neutral measure, we

christen this new complex-valued measure as theleverage-neutral measure.

4See Harrison (1985), page 7, Karlin and Taylor (1975), page 243, and Bertoin (1996), page 40 for example.
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3. Asset Pricing under Time-Changed Ĺevy Processes

We use the time-changed Lévy process,Yt ≡ XTt , to model the uncertainty of the economy. In this

section, we illustrate how asset returns can be modeled as time-changed Lévy processes, how market

prices of risk can be defined on such processes, and how these definitions of risk premia link the

objective dynamics ofYt to its risk-neutral dynamics.

3.1. Asset price modeling

As one application, we can use the time-changed Lévy process as the driver of asset return processes.

Specifically, letSt denote the price at timet of an asset, e.g., a stock or a currency. Then, we can specify

the price process as an exponential affine function of the uncertaintyYt ,

St = S0eϑ>Yt , (10)

whereS0 denotes the price at time 0, which we assume is known and fixed. Letst ≡ ln(St/S0) denote

the log return of the asset. Then, by Theorem 1, the generalized Fourier transform ofst is given by

φst (u)≡ E
[
eiust
]
= E

[
eiuϑ>Yt

]
= φYt (uϑ) = Luϑ

Tt
(Ψx(uϑ)) . (11)

For option pricing, the asset price process is often specified directly under the risk-neutral measure,

under which the instantaneous rate of return on an asset is determined by no arbitrage. Formally, it can

be specified as,

St = S0e(r−q)teϑ>Yt , with E
[
eϑ>Yt

]
= 1, (12)

wherer is the continuously compounded riskless rate andq is the dividend yield in the case of a stock

and foreign interest rate in the case of a currency, both of which are assumed constant. To assure no

arbitrage, we restrict the specification of the time-changed Lévy processYt to guarantee that the last
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term is an exponential martingale under the risk-neutral measure. Alternatively, for an arbitraryYt , we

can replace the last termeϑ>Yt by the following Doléans-Dade exponential,

E
(

ϑ>Yt

)
= exp

(
ϑ>Yt +T>

t Ψx(−iϑ)
)

, (13)

which has mean one by Lemma 1. The generalized Fourier transform ofst under this specification can

also be derived via Theorem 1,

φst (u) ≡ E
[
eiust
]
= E

[
exp
(

iu(r−q)t + iuϑ>Yt + iuT>Ψx(−iϑ)
)]

= eiu(r−q)tLuϑ
Tt

(Ψx(uϑ)− iuΨx(−iϑ)) . (14)

3.2. Market price of risk

A current research trend is to perform integrated price series analysis of both derivative securities

and their underlying assets. A key objective of such an analysis is to identify how the market prices

different sources of risk. The literature has followed three different routes in analyzing market risk

premia. The first approach starts with a specification of a general equilibrium and utility functions for

agents. The functional form of the risk premia are derived from this equilibrium setting (see Bates

(1996, 2000)). The second approach starts with a specification of the pricing kernel and links the

pricing of the underlying asset and its derivatives via this pricing kernel. Under regularity conditions,

no arbitrage implies the existence of at least one such kernel (Duffie (1992)). Examples of this line of

research include Pan (2002) and Eraker (2001). The pricing kernel can be regarded as the reduced form

of some general equilibrium and hence is more flexible in terms of its specification. Finally, the third

approach takes flexibility to another level by nonparametrically estimating the pricing kernel under

each state. Specifically, this approach first estimates the conditional density of the asset price under

the objective measure using the time series data of the underlying asset returns, and then estimates the

conditional density under the risk-neutral measure using option prices. The pricing kernel under each

state is then given by the ratio of the two conditional densities. Examples along this line of research

include Carr, Geman, Madan, and Yor (2001) and Engle and Rosenberg (1997).
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When the sources of risk for an economy are governed by time-changed Lévy processes, the mea-

sure change from the objective measure to the risk-neutral measure can be conveniently defined by a set

of exponential martingales. Formally, letξt denote the pricing kernel, which relates future cash flows,

Ks,s∈ (t,T ], to today’s price,pt , by,

pt = E

[∫ T

t

ξsKsds
ξt

∣∣∣∣Ft

]
.

One can perform a multiplicative decomposition on the kernel,

ξt = exp

(
−

∫ t

0
rsds

)
·E (−γ(Yt)) , (15)

where the Doĺeans-Dade exponentialE (−γ(Yt)) can be interpreted as theRadon-Nikod́ym derivative,

which takes us from the objective measure to the risk neutral measure.γ(Yt) is anFt-adapted process

satisfying the usual regularity conditions and is often referred to as themarket price of riskfor the

uncertainty of the economy,Yt .

A particularly tractable specification for the market price of risk is given by the affine form,

γ(Yt) = γ>Yt , γ ∈D ⊂ Rd, (16)

whereD is a subset of thed-dimensional real space so thatE (−γ(Yt)) is well-defined. Then, the

Radon-Nikod́ym derivative is given by the class ofEsscher transforms. Measure changes under this

specification take extremely simple forms. In Appendix A, we identify the characteristics ofYt under

measure changes defined by Esscher transforms. Furthermore, measure changes expressible as Esscher

transforms are often supported by utility optimization (e.g., Keller (1997), Kallsen (1998)) or entropy

minimization problems (Chan (1999)). See Kallsen and Shiryaev (2000) for an excellent analysis on

measure changes defined by Esscher transforms and their economic underpinnings.
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4. Specification Analysis

Through extensive examples, this section addresses the issue of specifying the Lévy process, the activity

rate process, and the correlation between the two. For each Lévy process, we focus on the derivation

of its characteristic exponent; for each activity rate process, we focus on the derivation of the Laplace

transform of the random time; and finally, for each pairing of the two, we focus on the form of the

complex-valued measure change and the Laplace transform of the random time under this new measure.

By Theorem 1, a joint specification of the Lévy process and the activity rate process determines the

characteristic function of the time-changed Lévy process. Whenever possible, we link each example to

the existing literature to show how they can be arrived at from our general perspective. We also illustrate

how these different specifications can be combined to generate a plethora of tractable specifications for

the uncertainty of the economy.

4.1. The Ĺevy process and its characteristic exponent

Since a Ĺevy process is uniquely characterized by its triplet of Lévy characteristics(µ,Σ,Π), the Ĺevy

process is determined by individual specification of the components of this triplet. The first component

µ is the constant drift term. This component is often determined by no arbitrage or equilibrium pricing

relations and thus depends on the specification of the other two elements of the triplet. The second com-

ponentΣ denotes the constant covariance matrix of a vector diffusion martingale. The third component

is the Ĺevy measureΠ(dx), which controls the arrival rate of jumps of sizex. By definition, this third

jump component is orthogonal to the second diffusion component. Since the properties of a diffusion

component are well known, we will focus on the properties of the lesser known jump component.

A pure jump Ĺevy process can display either finite activity or infinite activity. In the former case,

the aggregate jump arrival rate is finite, while in the latter case, an infinite number of jumps can occur

in any finite time interval. Within the infinite activity category, the sample path of the jump process can

either exhibit finite variation or infinite variation. In the former case, the aggregate absolute distance

travelled by the process is finite, while in the latter case, it can be infinite over any finite time interval.

Hence, there are three types of jump processes in all. For each type, we discuss the defining properties
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and existing examples in the literature. For ease of notation, we focus on scalar processes and useπ(dx)

to denote the Ĺevy measure of such a scalar process.

4.1.1. Finite activity Ĺevy jumps

A pure jump Ĺevy process exhibits finite activity if the following integral is finite:

∫
R0

π(dx) = λ < ∞. (17)

Intuitively speaking, a finite activity jump process exhibits a finite number of jumps within any finite

time interval. The classical example of a finite activity jump process is thecompound Poisson jump

process of Merton (1976) (MJ). For such processes, the integral in (17) defines thePoisson intensity,

λ. Conditional on one jump occurring, the MJ model assumes that the jump magnitude is normally

distributed with meanα and varianceσ2
j . The Ĺevy measure of the MJ process is given by

π(dx) = λ
1√

2πσ2
j

exp

(
−(x−α)2

2σ2
j

)
dx. (18)

Obviously, one can choose any distribution,F(x), for the jump size under the compound Poisson

framework and obtain the following Ĺevy measure,

π(dx) = λdF(x).

The exact specification of the conditional jump distribution should be determined by the data. For

example, Kou (1999) assumes a double-exponential conditional distribution for the jump size. The

Lévy measure in this case is given by

π(dx) = λdF(x) = λ
1

2η
exp

(
−|x−k|

η

)
dx.
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In another example, Eraker, Johannes, and Polson (2000) and Eraker (2001) incorporate compound

Poisson jumps into the stochastic volatility process, assuming that volatility can only jump upward and

that the jump size is controlled by a one-sided exponential density. The Lévy measure is given by

π(dx) = λdF(x) = λ
1
η

exp

(
− x

η

)
dx, x > 0.

Based on theLévy-Khintchine formulain (2), the characteristic exponent corresponding to these

compound Poisson jump components is given by

Ψ(θ) =
∫

R0

(
1−eiθx

)
λdF(x) = λ(1−φ(θ)) , (19)

whereφ(θ) denotes the characteristic function of the jump size distributionF(x),

φ(x)≡
∫

R0

eiθxdF(x).

4.1.2. Infinite activity Ĺevy jumps

Unlike a finite activity jump process, aninfinite activityjump process can generate an infinite number

of jumps within any finite time interval. The integral of the Lévy measure in (17) is no longer finite.

Examples in this class include the normal inverse Gaussian (NIG) model of Barndorff-Nielsen (1998),

the generalized hyperbolic class of Eberlein, Keller, and Prause (1998), the variance gamma (VG)

model of Madan and Milne (1991) and Madan, Carr, and Chang (1998), its generalization to the CGMY

model of Carr, Geman, Madan, and Yor (2002), and the finite moment log-stable (LS) model of Carr

and Wu (2002).

We list the Ĺevy measures and characteristic exponents of each of these examples in Table 1. For

comparison, we also list the Lévy measures and characteristic exponents of the finite activity jump

examples. Finally, for completeness, we list the characteristic exponent of an arithmetic Brownian

motion, which is the only purely continuous Lévy process. Note that for the infinite activity pure jump

Lévy examples, the NIG model is a special case of the generalized hyperbolic class withλ = −1/2.
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Furthermore, under the following parameterization, the VG model can be regarded as a special case of

the CGMY model:

C = λ,G = µ−/ν−,M = µ+/ν+,Y = 1.

Finally, the LS model can also be regarded as a special case of CGMY withG = M = 0 and also with

C = 0 whenx > 0.

The sample paths of an infinite activity jump process exhibitfinite variationif the following integral

is finite: ∫
R0

(1∧|x|)π(dx) < ∞, (20)

andinfinite variationif the integral is infinite. Nevertheless, thequadratic variationhas to be finite for

the Lévy measure to be well-defined,

∫
R0

(1∧x2)π(dx) < ∞.

The sample paths of the generalized hyperbolic class exhibit finite variation. The sample paths of the

CGMY process exhibits finite variation whenY ≤ 1 and infinite variation whenY ∈ (1,2]. For the

quadratic variation to be finite, we needY ≤ 2.

4.2. The activity rate process and the Laplace transform

Given some specification of the Lévy process, the next step is to specify the random time. Since the

random time is given by the integral,Tt =
∫ t

0 v(s−)ds, we determine this random time by specifying the

activity rate processv(t). Given a process forv(t), the Laplace transform ofTt is given by,

LTt (λ)≡ E

[
exp

(
−λ

∫ t

0
v(s−)ds

)]
.

This formulation is analogous to the pricing formula for a zero coupon bond if we regardv(t) as the

“instantaneous interest rate.” In particular, both the instantaneous interest rate and the instantaneous

activity rate are required to be positive. We can therefore adopt existing interest rate models to model

the instantaneous activity ratev(t). In particular, we illustrate how to apply two of the most tractable
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classes of term structure models to the modeling of the activity rates and to the derivation of the Laplace

transform of the random time.

4.2.1. Affine activity rate models

Let Z be ak-dimensional Markov process, which starts atz0 and satisfies the following stochastic

differential equation:

dZt = µ(Zt)dt+σ(Zt)dWt +qdJ(γ(Zt)). (21)

Here,W is a k-dimensional Wiener process andJ is a Poisson jump component with intensityγ(Zt)

and random jump magnitudeq, characterized by its two-sided Laplace transformLq(·). Furthermore,

we require that thek×1 vectorµ(Zt) andk× k matrix σ(Zt) satisfy some technical conditions, such

that the stochastic differential equation has a strong solution. The instantaneous rate of activityv(t) is

assumed to be a function of the Markov processZt .

Definition 1 In affine activity rate models, the Laplace transform of the random time, Tt =
∫ t

0 v(s−)ds,

is an exponential-affine function of the Markov process Zt :

LTt (λ)≡ E
[
e−λTt

]
= exp

(
−b(t)>z0−c(t)

)
, (22)

whereb(t) ∈ Rk and c(t) is a scalar.

The following proposition presents conditions which are sufficient for (22) to hold.

Proposition 1 If the instantaneous activity rate v(t), the drift vector µ(Z), the diffusion covariance

matrixσ(Z)σ(Z)>, and the arrival rateγ(Z) of the Markov process are all affine in Z, then the Laplace

transformLTt (λ) is exponential-affine in z0.
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The above process and proposition generalize the original work of Duffie and Kan (1996) for the

affine term structure models of interest rates. The extension to compound Poisson-type jumps (with

time-varying Poisson jump intensity) is due to Duffie, Pan, and Singleton (2000). In particular, let

v(t) = b>v Zt +cv, bv ∈ Rk,cv ∈ R,

µ(Zt) = a−κZt , κ ∈ Rk×k,a∈ Rk,[
σ(Zt)σ(Zt)>

]
ii

= αi +β>i Zt , αi ∈ R,βi ∈ Rk,[
σ(Zt)σ(Zt)>

]
i j

= 0, i 6= j,

γ(Zt) = aγ +b>γ Zt , aγ ∈ R,bγ ∈ Rk.

Then the coefficients{b(t),c(t)} for the Laplace transform in (22) are determined by the following

ordinary differential equations:

b′(t) = λbv−κ>b(t)−βb(t)2/2−bγ (Lq(b(t))−1) ; (23)

c′(t) = λcv +b(t)>a−b(t)>αb(t)/2−aγ (Lq(b(t))−1) ,

with the boundary conditions:b(0) = 0, andc(0) = 0. Closed-form solutions for the coefficients exist

only under special cases, although they are easily computed numerically. A one-factor special case,

where an analytical solution is available, is the square-root model of Cox, Ingersoll, and Ross (1985)

for interest rates and Heston (1993) for stochastic volatility.

4.2.2. Affine activity rate models with more general jump specifications

Jumps in the above affine framework are confined to be finite activity compound Poisson type jumps.

The jump intensityγ can depend on the state vector and hence be time-varying. In a one factor setting,

we can adopt the following generalized version of the affine term structure model due to Filipovic
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(2001), which allows a more flexible jump specification. Formally, we can characterize the activity rate

processv(t) as a Feller process with generator,

A f (x) =
1
2

σ2x f ′′(x)+(a′−κx) f ′(x) (24)

+
∫

R+
0

(
f (x+y)− f (x)− f ′(x)(1∧y)

)
(m(dy)+xµ(dy)) ,

wherea′ = a+
∫
R+

0
(1∧y)m(dy) for some constant numbersσ,a∈ R+, κ ∈ R, and nonnegative Borel

measuresm(dy) andµ(dy) satisfying the following condition:

∫
R+

0

(1∧y)m(dy)+
∫

R+
0

(
1∧y2)µ(dy) < ∞. (25)

Note that the first line in (24) is due to the continuous part of the process and is equivalent to the

Cox, Ingersoll, and Ross (1985) or Heston (1993) specification. The second line is due to the jump

part of the process. All three components of the Lévy triplet depend linearly on the state variable x.

Such processes are known as (stochastically continuous) conservative CBI processes (continuous state

branching processes with immigration) and have been well studied by Kawazu and Watanabe (1971)

among others. The condition in (25) says that the jump component dictated by the measurem(dy)

has to exhibit finite variation, while the jump component dictated by the measureµ(dy) only needs to

exhibit finite quadratic variation. Hence, one can adopt any of the Lévy measure specifications in Table

1 for µ(dy), and any of the finite variation ones form(dy), with only one slight modification: arrival

rates of negative jumps need to be set to zero.

Under such a specification, the Laplace transform of the random time is exponential affine in the

current activity rate levelv0,

LTt (λ) = exp(−b(t)v0−c(t)) , (26)

with the coefficients[b(t),c(t)] given by the following ordinary differential equations:

b′(t) = λ−κb(t)− 1
2

σ2b(t)2 +
∫

R+
0

(
1−e−yb(t)−b(t)(1∧y)

)
µ(dy), (27)

c′(t) = ab(t)+
∫

R+
0

(
1−e−yb(t)

)
m(dy),

with the boundary conditions:b(0) = 0, andc(0) = 0.
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4.2.3. Quadratic activity rate models

In this subsection, we adopt the quadratic term structure model of Leippold and Wu (2002) for the

purpose of modeling the instantaneous activity rate.

Definition 2 In quadratic activity rate models, the Laplace transform of the random time is an

exponential-quadratic function of the Markov process Z if:

LTt (λ) = E

[
exp(−λ

∫ t

0
v(s)ds

]
= exp

[
−z>0 A(t)z0−b(t)> z0−c(t)

]
, (28)

with A(t) ∈ Rk×k, b(t) ∈ Rk, and c(t) ∈ R.

The following proposition presents the sufficient conditions for obtaining quadratic activity rate

models:

Proposition 2 If the instantaneous rate of activity v(t) is quadratic in Z, µ(Z) is affine in Z, and

σ(Z) = σ is a constant matrix, then the Laplace transform of the random timeLTt (λ) is exponential-

quadratic in Z.

The proof follows Leippold and Wu (2002). Formally, under non-degeneracy conditions and a

possible re-scaling and rotation of indices, we let

µ(Z) = −κZt , σ(Z) = I , κ, I ∈ Rk×k,

v(t) = Z>t AvZt +b>v Zt +cv, Av ∈ Rk×k,bv ∈ Rk,cv ∈ R.

For the Markov process to be stationary, we need all eigenvalues ofκ to be positive. Furthermore, a

sufficient condition forv(t) to be positive is to letAv be positive definite andcv > 1
4b>v Avbv. Given the
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above parameterization, the ordinary differential equations governing the coefficients in the Laplace

transform are given by

A′(t) = λAv−A(t)κ−κ>A(τ)−2A(t)2 ;

b′(t) = λbv−κb(t)−2A(t)>b(t) ; (29)

c′(t) = λcv + trA(t)−b(t)>b(t)/2,

subject to the boundary conditions:A(0) = 0, b(0) = 0, andc(0) = 0.

Table 2 summarizes the Laplace transform of the random time under the three classes of activity

rate processes. Obviously, any of these activity rate specifications can be combined with the Lévy

process specifications in Table 1 in forming a time-changed Lévy process.

4.3. Correlation and the leverage-neutral measure

The observed negative correlation between returns and their volatilities in the equity market is usually

referred to as the leverage effect. This leverage effect can be accommodated by allowing (negative)

correlations between increments in the Lévy process and increments in the activity rate process. Recall

that every purely continuous component is orthogonal to every pure jump component. Hence, if the

Lévy process is purely continuous, non-zero correlation can only be induced by a continuous compo-

nent in the activity rate process. Similarly, if the Lévy process is pure jump, non-zero correlation can

only be induced by a jump component in the activity rate process. Furthermore, if the pure jump Lévy

process has finite (resp. infinite) activity, non-zero correlation can only be induced by a finite (resp.

infinite) activity jump component in the activity rate process. We use examples to illustrate each case.

For each example, we demonstrate how to perform the complex-valued measure change using Propo-

sition 4 in Appendix A. We then derive the characteristic function of the time-changed Lévy process.

We deliberately select some familiar examples from the literature in order to confirm the validity of our

novel approach. We find that in every case, our approach accords with the known results previously

obtained by solving partial differential equations. To illustrate the versatility of our approach, we also

present an example that is new to the literature.
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4.3.1. Leverage via diffusions

Consider the case where the Lévy process is a standard Brownian motionXt =Wt , and the instantaneous

activity rate follows the mean-reverting square-root process of Heston (1993). The leverage effect can

be accommodated by negatively correlating the Brownian motion drivingXt and the Brownian motion

driving v(t). This setup is summarized by the following specification under measureP:

Xt = Wt ;

dv(t) = (a−κv(t))dt+η
√

v(t)dZt ;

E [dWtdZt ] = ρdt.

By Theorem 1, the characteristic function ofYt ≡ XTt can be represented as the Laplace transform ofTt

under a new complex-valued measureQ(θ):

φYt (θ)≡ E
[
eiθYt

]
= Lθ

Tt

(
1
2

θ2
)

,

whereθ2/2 is the characteristic exponent of the underlying Lévy processXt = Wt (see the first entry in

Table 1). The new measureQ(θ) is defined by the following exponential martingale,

dQ(θ)
dP

∣∣∣∣
t
= exp

(
iθYt +

1
2

θ2
∫ t

0
v(s)ds

)
.

A slight extension of Girsanov’s theorem to complex-valued measures implies that under measureQ(θ),

the diffusion part ofv(t) is unaltered, while the drift ofv(t) is adjusted to

µv(t)Q = a−κv(t)+ iθηρv(t) .
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Hence, under measureQ(θ), v(t) satisfies the conditions in (23) (see the first entry in Table 2) for the

affine class of activity rates with

bv = 1, cv = 0;

κQ = κ− iθηρ, aQ = a; (30)

α = 0, β = η2, γ = 0;

λ = Ψx(θ) = θ2/2.

Based on Proposition 1, the characteristic function ofYt is exponential-affine inv0,

φYt (θ) = exp(−b(t)v0−c(t)) ,

where the parameters[a(t),b(t)] are given by the ordinary differential equations in (23) with the sub-

stitutions given in (30). For this particular one-factor case, the ordinary differential equations can be

solved analytically,

b(t) =
−θ2

(
1−e−δt

)
(δ+κQ)+(δ−κQ)e−δt

;

c(t) =
−a
η2

[
2ln

(
2δ−

(
δ−κQ

)(
1−e−tδ))

2δ
+
(
δ−κQ) t] ,

whereδ2 = (κQ)2 +θ2η2.

4.3.2. Leverage via compound Poisson jumps

Consider the case where the Lévy processXt is a compound Poisson jump process,

Xt =
Nt

∑
j=1

q1
j ,

whereNt denotes the number of jumps within the time interval[0, t] and is governed by a Poisson

distribution with a constant arrival rate ofγ. The conditional jump sizeq1
j is assumed to be iid.
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To incorporate the leverage effect, we assume that the activity ratev(t) also has a compound Poisson

jump component and that the arrival rate of jumps is controlled by the same Poisson distribution,

v(t) =
∫ t

0
(a−κv(s))ds+

NTt

∑
j=1

q2
j ,

whereq2
j denotes the jump size inv(t) conditional on a jump occurring. We incorporate a linear mean-

reverting drift to capture the persistence of volatility, but the presence or absence of it is irrelevant to

our analysis. Since the jumps inX and inv are governed by the same Poisson process, they jump at

the same time. Note thatNt becomesNTt after time change. Conditional on a jump event occurring,

we assume that the jump sizes of the two processesq ≡
[
q1,q2

]>
have a correlated joint distribution

F(dq). Let φ(u) denote the joint characteristic function ofq.

Then, by Theorem 1, we have

φYt (θ) = Lθ
Tt

(Ψx (θ)) ,

where the characteristic exponent forXt is (equation 19),

Ψx (θ) = λ(1−φ1(θ)) ,

whereφ1(θ) ≡ E
[
eiθq1

]
denotes the marginal characteristic function ofq1. The new measureQ(θ) is

hence given by
dQ(θ)

dP

∣∣∣∣
t
= exp(iθYt +Ψx(θ)Tt) .

Straightforward application of Girsanov’s theorem extended to complex measure implies that

FQ(dq) = eiθq1
F(dq).

The marginal characteristic function ofq2 underQ(θ) is φQ
2 (b) = φ([θ;b]). Other parameters inv(t) re-

main the same under the measure change. Hence, the process describingv(t) remains in the affine class
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underQ(θ). The characteristic function ofYt is therefore exponential-affine inv0 and the coefficients

are given by the solutions to the ordinary differential equations:

b′(t) = Ψx(θ)−κb(t)+ γ(1−φ([θ;−ib(t)])) ;

c′(t) = ab(t),

with b(0) = c(0) = 0. The above ordinary differential equations are directly adopted from (23) with

λ = Ψx(θ), cv = α = aγ = η = 0, bv = 1, bγ = γ.

4.3.3. Leverage via infinite activity jumps

This example is new to the literature. Consider the log-stable (LS) model of Carr and Wu (2002) as the

underlying Ĺevy process,

Xt = Lα,−1
t ,

whereLα,−1
t denotes a standard Lévyα-stable motion with tail indexα ∈ (1,2] and maximum negative

skewness. Note that this process not only exhibits infinite activity, but also exhibits infinite variation.

To accommodate the leverage effect, we assume that the activity rate is driven by the same Lévy

α-stable motion. SinceLα,−1
t only allows negative jumps while the activity rate must be positive, we in-

corporate its mirror image,Lα,1
t into the activity rate process. Hence, whenever there is a negative jump

of absolute sizex in Xt , there is a simultaneous positive jump of proportional size inv(t). Specifically,

the activity rate process solves the following stochastic differential equation,

dv(t) = (a−κv(t))dt+β1/αdLα,1
Tt

, (31)

which is uniquely characterized by its generator,

A f (v) = (a− (κ+δ)v) f ′ (v)+βv
∫

R+
0

(
f (v+y)− f (v)− f ′ (v)(1∧y)

)
µ(dy), (32)

where

µ(dx) = c|y|−α−1dy, c =−sec
πα
2

1
Γ(−α)

, δ =
c

α−1
.
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The parameter constraints onc andδ are imposed in order to generate a standardizedα-stable Ĺevy

motion with zero mean and unit dispersion. This is an special exmaple of the CBI process in (24).

From Table 1, we obtain the characteristic exponent of thisα-stable Ĺevy motion,

Ψx(θ) =−(iθ)α sec
πα
2

, Im (θ) < 0.

The leverage-neutral measureQ(θ) is then defined by

dQ(θ)
dP

∣∣∣∣
t
= exp

(
iθLα,−1

Tt
+Ψx(θ)Tt

)
.

Under this new measure, we have

πθ(dx) = eiθπ(dx),

δθ = δ−
∫

R+
0

(
1−eiθx

)
(1∧x)π(dx).

Then, the Laplace transform ofTt under measureQ(θ) is given by

Lθ
Tt

(Ψx (θ)) = exp(−b(t)v0−c(t)) (33)

where

b′(t) = ψx(θ)−
(

κ+δθ
)

b(t)+β
∫

R+
0

(
1−e−b(t)x−b(t)(1∧x)

)
πθ(dx)

= ψx(θ)−κb(t)+sec
πα
2

β
[
(b(t)+ iθ)α− (iθ)α] ;

c′(t) = ab(t),

By Theorem 1, (33) represents the characteristic function ofYt ≡ XTt . Note that this example converges

to the diffusion example, after some reparameterizations, whenα approaches two. In particular, the

stable motion becomes a Brownian motion atα = 2.
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5. Valuing State-contingent Claims

Given the generalized Fourier transform of the state vectorYt or the returnst defined in (10) and (12),

many state contingent claims can be valued efficiently via the FFT. Formally, consider a European-style

state-contingent claim with the general payoff structure at maturity,

ΠY(k;a,b,ϑ,c) =
(

a+beϑ>Yt

)
1c>Yt≤k, (34)

whereY ≡ XTt is thed-dimensional time-changed Lévy process. For example, if we assume that the

price of an asset is given bySt = S0exp(ϑ>Yt) as in (10), the payoff of a European call with strike

price K is given byΠ(− lnK/S0;−K,S0,ϑ,−ϑ), the payoff of a European put with strike priceK is

given byΠ(lnK/S0;K,−S0,ϑ,ϑ), that of a covered call is max[St ,K] = Π(− lnK/S0;0,S0,ϑ,−ϑ)+

Π(lnK/S0;K,0,0,ϑ), and finally, the payoff of a binary call is given byΠ(− lnK/S0;1,0,0,−ϑ). We

can therefore write the payoffs of many European-style contingent claims in the form of (34) or a linear

combination of it.

Let G(k;a,b,ϑ,c) denote the initial price of a state-contingent claim with the payoff in (34). For

simplicity, we focus on determining the initial forward price of the claim and hence:

G(k;a,b,ϑ,c) = EΠY(k;a,b,ϑ,c), (35)

where the expectation is taken under the forward measure. Note that we drop the maturity argumentt

as no confusion shall occur. We now show that the priceG can be obtained by an extension of the FFT

method of Carr and Madan (1999). For this purpose, letG(z;a,b,ϑ,c) denote the generalized Fourier

transform ofG(k;a,b,ϑ,c) defined as,

G(z;a,b,ϑ,c)≡
∫ ∞

−∞
eizkG(k;a,b,ϑ,c)dk, z∈ C ⊆ C. (36)

Note that the transform parameter has been extended to the complex plane, asC denotes the complex

domain ofz whereG(z;a,b,ϑ,c) is well-defined.
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Proposition 3 The generalized Fourier transform of the price G(k;a,b,ϑ,c) defined in (36), when

well-defined, is given by,

G(z;a,b,ϑ,c) =
i
z
(aφY(zc)+bφY(zc− iϑ)) .

The result is obtained via integration by parts,

G(z;a,b,ϑ,c) = G(k;a,b,ϑ,c)
eizk

iz

∣∣∣∣+∞

−∞
− 1

iz

∫ ∞

−∞
eizydG(k;a,b,ϑ,c)

=
i
z
(aφY(zc)+bφY(zc− iϑ)) .

The second line is obtained by applying Fubini’s theorem and applying the result on the Fourier trans-

form of aDirac function. Furthermore, since limk→∞ G(k;a,b,ϑ,c) = G0 6= 0, the limit term is well-

defined and vanishes only when Imz > 0. Therefore, the extension of the Fourier transform to the

complex domain is necessary for it to be well-defined. In general, the admissible domainC of z de-

pends on the exact payoff structure of the contingent claim. Table 3 present the generalized Fourier

transforms of various contingent claims and their respective admissible domains onz. These domains

are derived by integrating by parts and by checking the boundary conditions asy→±∞.

Letz= zr + izi , wherezr andzi denote, respectively the real and imaginary part ofz. LetG(z;a,b,ϑ,c)

denote the generalized Fourier transform of some contingent claim pricing functionG(k), which can be

in any of the forms presented in Table 3. Given thatG(z;a,b,ϑ,c) is well-defined, the corresponding

contingent claim pricing functionG(k) is obtained via the inversion formula:

G(k) =
1
2

∫ izi+∞

izi−∞
e−izkG(z;a,b,ϑ,c)dz.

The integration is performed along a straight line in the complexz-plane parallel to the real axis.zi can

be chosen to be any real number satisfying the restriction in Table 3. The integral can also be written

as

G(k) =
ezik

π

∫ ∞

0
e−izr kϕ(zr + izi)dzr ,
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which can be approximated on a finite interval by

G(k)≈G∗(k) =
ezik

π

N−1

∑
k=0

e−izr ( j)kϕ(zr( j)+ izi)∆zr , (37)

wherezr( j) are the nodes ofzr and∆zr is the spacing between nodes. Recall that the FFT is an efficient

algorithm for computing the discrete Fourier coefficients. The discrete Fourier transform is a mapping

of f = ( f0, ..., fN−1)> on the vector of Fourier coefficientsd = (d0, ...,dN−1)>, such that

d j =
1
N

N−1

∑
k=0

fke
− jk 2π

N i , j = 0,1, ...,N−1. (38)

FFT allows the efficient calculation ofd if N is an even number, sayN = 2m, m∈ N. The algorithm

reduces the number of multiplications in the requiredN summations from an order of 22m to that of

m2m−1, a very considerable reduction. By a suitable choice of∆zr and a discretization scheme fork,

we can cast the approximation in the form of (38) to take advantage of the computational efficiency of

the FFT. For more details on the discretization scheme, see Carr and Madan (1999), who implement

the FFT algorithm on the pricing of a European call.

6. Summary and Future Research

In this paper, we proposed a general option pricing framework that unifies the vast option pricing

literature and captures the three key pieces of stylized evidence on financial securities: (1) jumps, (2)

stochastic volatility, and (3) leverage effect. Under our framework, the uncertainty of the economy is

governed by a time-changed Lévy process. The underlying Lévy process provides a flexible framework

for generating jumps; the random time change captures stochastic volatility; and the leverage effect is

introduced through the correlation between the Lévy innovation and the time change. Furthermore,

by employing a complex-valued measure change, we can reduce the calculation of the characteristic

function for a time-changed Ĺevy process into the calculation of the Laplace transform of the random

time, which can then be solved under many instances via an analogy to the bond pricing literature.

For many choices of Ĺevy processes and random times, we obtain the characteristic function in closed

form and price contingent claims via an efficient FFT method. A primary direction for future research
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is to investigate the empirical performance of the large variety of new option pricing models generated

by this framework. Another line of research is to explore other applications of the complex-valued

measure in the frequency domain.
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Appendix A. Measure Changes of Time-Changed Ĺevy Process Under Es-

scher Transforms

Monroe (1978) proves that every semimartingaleYt can be written as a time-changed Brownian motion, where

the random timeTt is a positive and increasing semimartingale. As an implication, every semimartingale can

also be written as a time-changed Lévy process,Yt ≡ XTt . Furthermore, every semimartingaleYt , starting at zero

(Y0 = 0), can be uniquely represented in the form

Yt = αt +Yc
t +

∫ t

0

∫
|y|>1

ydµ+
∫ t

0

∫
|y|≤1

yd(µ−ν), (A1)

whereαt is a finite, increasing process adapted toFt , Yc
t is a continuous martingale,µ is the counting measure

of the semimartingale andν is its compensator. Letβ = 〈Yc
t ,Yc

t 〉 denote the quadratic variation ofYc
t . The triplet

(α,β,ν) is uniquely determined byYt and measureP. Hence, the components of this triplet are called thelocal

characteristicsof the semimartingaleYt with respect toP (see Jacod and Shiryaev, 1987). For a Lévy process

with Lévy characteristics(µ,Σ,Π), the local characteristics are given by(µt,Σt,Π(dx)dt).

Now consider measure changes defined by Esscher transforms of the time-changed Lévy process:

dP(ϑ)
dP

∣∣∣∣
t
= E

(
γ>XTt

)
.

The next proposition expresses the local characteristics ofYt ≡XTt underP(ϑ) in terms of the Ĺevy characteristics

of Xt underP.

Proposition 4 Suppose Tt is X-continuous, i.e., X is constant on all intervals[Tu−,Tu], u > 0. Then the local

characteristics of the process Y under P(ϑ) are given by

νϑ(dt,dx) = dTt−eϑ>xΠ(dx),

βϑ = ΣTt−,

αϑ =
(

µ+Σϑ−
∫
|x|<1

x
(

1−eϑ>x
)

Π(dx)
)

Tt−,

where(µ,Σ,Π) are the Ĺevy characteristics of Xt .

The proof of this proposition can found in Küchler and Sørensen (1997), page 230. We repeat it here for the

reader’s convenience.
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Proof. The characteristic component ofX under the new measureP(ϑ) is given by

Ψϑ
x (θ) = Ψx(θ+ϑ)−Ψx(ϑ). (A2)

The Lévy characteristics ofX underP(v) follows directly from (A2):

Πϑ(dx) = eϑ>xΠ(dx),

Σϑ = Σ,

µϑ = µ+Σϑ−
∫
|x|<1

x
(

1−eϑ>x
)

Π(dx).

Under the assumption of the theorem, the local characteristics ofY are found from those ofX by applying the

random time transformation{Tt−}, using the results found in Chapter 10.1 of Jacod (1979).
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Table 1
Lévy Measures and Characteristic Exponents

Entries summarize the Lévy measure and its corresponding characteristic exponent for each Lévy com-
ponent specification.

Lévy Lévy Measures Characteristic Exponent
Components π(dx)/dx Ψ(θ)

Pure Continuous Ĺevy component

µt+σWt — −iµθ+ 1
2σ2θ

Finite Activity Pure Jump Ĺevy components

Merton (76) λ 1√
2πσ2

j

exp

(
− (x−α)2

2σ2
j

)
λ
(

1−eiθα− 1
2σ2

j θ
)

Kou (99) λ 1
2η exp

(
− |x−k|

η

)
λ
(

1−eiθk 1−η2

1+θ2η2

)
Eraker (2001) λ 1

η exp
(
− x

η

)
λ
(

1− 1
1−iθη

)
Infinite Activity Pure Jump Ĺevy components

NIG eβx δα
π|x|K1(α|x|) −δ

[√
α2−β2−

√
α2− (β+ iθ)2

]
Hyperbolic eβx

|x|

[∫ ∞
0

e−
√

2y+α2|x|

π2y
(

J2
|λ|(δ

√
2y)+Y2

|λ|(δ
√

2y)
)dy − ln

[ √
α2−β2√

α2−(β+iθ)2

]λ
[

Kλ

(
δ
√

α2−(β+iθ)2
)

Kλ

(
δ
√

α2−β2
)
]

+1λ≥0λe−α|x|)
CGMY

{
Ce−G|x||x|−Y−1, x < 0,

Ce−M|x||x|−Y−1, x > 0
CΓ(−Y)

[
MY− (M− iθ)Y +G− (G+ iθ)Y

]
VG µ2

±
v±

exp
(
− µ±

v±
|x|
)

|x| λ ln
(

1− iuα+ 1
2σ2

j u
2
)

(µ± =
√

α2

4λ2 +
σ2

j

2 ±
α
2λ ,v± = µ2

±/λ)
LS c|x|−α−1, x < 0 −cΓ(−α)(iθ)α
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Table 2
Activity Rate Processes and Laplace Transforms of the Random Time

Under each class of activity rate processes, the entries summarize the specification of the activity rate
and the corresponding Laplace transform of the random time.

Activity Rate Specification Laplace Transform
v(t) LTt (λ)≡ E

[
e−λTt

]
Affine: Duffie, Pan, Singleton (2000)

v(t) = b>v Zt +cv,
µ(Zt) = a−κZt ,[

σ(Zt)σ(Zt)>
]

ii = αi +β>i Zt ,[
σ(Zt)σ(Zt)>

]
i j = 0, i 6= j,

γ(Zt) = aγ +b>γ Zt .

exp
(
−b(t)>z0−c(t)

)
,

b′(t) = λbv−κ>b(t)− 1
2βb(t)2

−bγ (Lq(b(t))−1) ,
c′(t) = λcv +b(t)>a− 1

2b(t)>αb(t)
−aγ (Lq(b(t))−1) ,

b(0) = 0, c(0) = 0.

Generalized Affine: Filipovic (2001)

A f (x) = 1
2σ2x f ′′(x)+(a′−κx) f ′(x)

+
∫
R+

0
( f (x+y)− f (x)+ f ′(x)(1∧y))

(m(dy)+xµ(dy)) ,
a′ = a+

∫
R+

0
(1∧y)m(dy),∫

R+
0

[
(1∧y)m(dy)+

(
1∧y2

)
µ(dy)

]
< ∞.

exp(−b(t)v0−c(t)) ,
b′(t) = λ−κb(t)− 1

2σ2b(t)2

+
∫
R+

0

(
1−e−yb(t)−b(t)(1∧y)

)
µ(dy),

c′(t) = ab(t)+
∫
R+

0

(
1−e−yb(t)

)
m(dy),

b(0) = c(0) = 0.

Quadratic: Leippold and Wu (2002)

µ(Z) = −κZ, σ(Z) = I ,
v(t) = Z>t AvZt +b>v Zt +cv.

exp
[
−z>0 A(t)z0−b(t)> z0−c(t)

]
,

A′(t) = λAv−A(t)κ−κ>A(τ)−2A(t)2 ,

b′(t) = λbv−κb(t)−2A(t)>b(t) ,
c′(t) = λcv + trA(t)−b(t)>b(t)/2,
A(0) = 0,b(0) = 0,c(0) = 0.
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Table 3
Fourier Transforms of Various Contingent Claims

(α,β,a,b are real constants withα < β.)

Contingent Generalized transform Restrictions
Claim −izϕ(z) on Imz

G(k;a,b,ϑ,c) aφY(zc)+bφY(zc− iϑ) (0,∞)

G(−k;a,b,ϑ,c) aφY(−zc)+bφY(−zc− iϑ) (−∞,0)

eαkG(k;a,b,ϑ,c) aφY((z− iα)c)+bφY((z− iα)c− iϑ) (α,∞)

eβkG(−k;a,b,ϑ,c) aφY(−(z− iβ)c)+bφY(−(z− iβ)c− iϑ) (−∞,β)

eαkG(k;a1,b1,ϑ1,c1) a1φY((z− iα)c1)+b1φY((z− iα)c1− iϑ1)
+eβkG(−k;a2,b2,ϑ2,c2) +a2φY(−(z− iβ)c2)+b2φY(−(z− iβ)c2− iϑ2) (α,β)
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