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Time-Changed Levy Processes and Option Pricing

Abstract

As is well known, the classic Black-Scholes option pricing model assumes that returns follow
Brownian motion. It is widely recognized that return processes differ from this benchmark in at
least three important ways. First, asset prices jump, leading to non-normal return innovations.
Second, return volatilities vary stochastically over time. Third, returns and their volatilities are
correlated, often negatively for equities. We propose tina¢-changed évy processelse used to
simultaneously address these three facets of the underlying asset return process. We show that our
framework encompasses almost all of the models proposed in the option pricing literature. Despite
the generality of our approach, we show that it is straightforward to select and test a particular

option pricing model through the use of characteristic function technology.
JEL ClassificationG10, G12, G13.

Keywords:random time change;avy processes; characteristic functions; option pricing; exponen-

tial martingales; measure change.



1. Introduction

The shortest path between two results in the real domain passes through the complex do-

main.— Jacques Hadamard

Itis widely recognized that the key to developing successful strategies for managing risk and pricing
assets is to parsimoniously describe the stochastic process governing asset dynamics. Brownian mo-
tion has emerged as the benchmark process for describing asset returns in continuous time. However,
many studies of the time series of asset returns and derivatives prices conclude that there are at least
three systematic and persistent departures from this benchmark for both the statistical and risk-neutral
process. First, asset prices jump, leading to non-normal return innovations. Second, return volatility
varies stochastically over time. Third, returns and their volatilities are correlated, often negatively for

equities.

The purpose of this paper is to explore the usdimie-changed Levy processess a way to
simultaneously and parsimoniously capture all three of these stylized facts. Roughly spealéag, a L
process is a continuous time stochastic process with stationary independent increments, analogous
to iid innovations in a discrete setting. Important examples @fyLprocesses include the drifting
Brownian motion underlying the Black and Scholes (1973) model and the compound Poisson process
underlying the jump diffusion model of Merton (1976). While a Brownian motion generates normal
innovations, non-normal innovations can be generated by a pure jéwpprocess. To capture the
stylized evidence on stochastic volatility, we apply a stochastic time change t@wyeptocess. This
amounts to stochastically altering the clock on which teeyprocess is run. Intuitively, one can regard
the original clock as the calendar time and the new random clock as the business time. A more active
business day implies a faster business clock. Randomness in business activity generates randomness
in volatility. To capture the correlation between returns and their volatilities, we let innovations in
the Lévy process be correlated with innovations in the random clock on which it is run. When this
correlation is negative, the clock tends to run faster when #heylprocess falls. This captures the

“leverage effect” first discussed by Black (l9ﬁ3).

IThe term “leverage effect” has become generic in describing the negative correlation between stock returns and their
volatilities. However, various other explanations have also been proposed in the economics literature, e.g., Haugen, Talmor,
and Torous (1991), Campbell and Hentschel (1992), Campbell and Kyle (1993), and Bekaert and Wu (2000).



Our proposal to use time-change@My processes unifies two large strands of the vast option pricing
literature. The first strand follows Merton (1976) in using compound Poisson processes to model
jumps, and Heston (1993) in using a mean-reverting square root process to model stochastic volatility.
Prominent examples in this first strand of research include, among others, Andersen, Benzoni, and
Lund (2002), Bakshi, Cao, and Chen (1997), Bates (1996, 2000), and Pan (2002). All of these works
can be regarded as examples from the affine jump diffusion framework of Duffie, Pan, and Singleton
(2000), where the asset return and variance are driven by a finite number of potentially correlated state
variables. A Poisson-type jump component can be incorporated into any of these state variables. The
arrival rate can be an affine function of the state variables and hence can be stochastically time-varying.
Duffie, Pan, and Singleton (2000) illustrate how to value many state contingent claims in this affine

framework.

While the affine framework represents an important theoretical advance, a limitation arises due
to the exclusive use of compound Poisson processes to model jumps. These processes generate a
finite number of jumps within a finite time interval, and have accordingly been referred to as finite
activity jump processes. The observation that asset prices actually display many small jumps on a fine
time scale has lead to the development of a second strand of option pricing literature. This second
strand considers more general jump structures, which permit an infinite number of jumps to occur
within any finite time interval. Examples of infinite activity jump models include the inverse Gaussian
model of Barndorff-Nielsen (1998), the generalized hyperbolic class of Eberlein, Keller, and Prause
(1998), the variance-gamma (VG) model of Madan, Carr, and Chang (1998), the generalization of
VG in Carr, Geman, Madan, and Yor (2002), and the finite moment log-stable model of Carr and Wu
(2002). Empirical work by these authors is generally supportive of the use of infinite activity processes
as a way to model returns in a parsimonious way. The recognition that volatility is stochastic has lead
to further extensions of infinite activity@dvy models by Barndorff-Nielsen and Shephard (2001) and
by Carr, Geman, Madan, and Yor (2001). However, these models all assume that changes in volatility

are independent of asset returns, despite the well-documented evidence on the leverage effect.

The use of time-changedélry processes can extract the best features in the above two literature
streams since it generalizes both streams simultaneously. In particular, our framework generalizes the

affine Poisson jump-diffusion economy of Duffie, Pan, and Singleton (2000) by relaxing the affine



requirement and by allowing more general specifications of the jump structure. We also generalize
the stochastic volatility vy models by letting changes in volatility be arbitrarily correlated with asset
returns. Hence, by regarding both literature streams from a more general perspective, we are able to

capture both high jump activity and the leverage effect.

Since the pioneering work of Heston (1993), both literature strands have focused on the use of
characteristic functions for understanding the proposed processes. The characteristic function is a
complex-valued function which is in a one-to-one correspondence with the probability density function.

It is well known that when the risk-neutral probability density function (PDF) of the underlying is
known in closed form, option prices can be obtained by a single integration of their payoff against this
PDF. Analogously, when the characteristic function of the underlying is known in closed form, option
prices can also be obtained by a single integration. The numerical valuation is sufficiently fast that a

wide variety of models can be tested empirically.

Bakshi and Madan (2000) provide an economic foundation for characteristic functions by consid-
ering complex exponentials as an alternative set of basis functions for spanning the payoff universe. In
this interpretation, the characteristic function is the price of a claim whose payoff is given by a sinusoid,
just as the risk neutral density is the price of a claim with a delta function payoff. For many interesting
random variables, the characteristic function is simpler analytically than the probability density func-
tion. Accordingly, this paper focusses on developing analytic expressions for the characteristic function

of a time-changed &vy process.

The characteristic function of a random return is defined as the expected value of the complex
exponential of the return. When the return is given by a stochastic process evaluated on a stochastic
clock, deriving the characteristic function involves integrating over the two sources of randomness.
We show that the key to obtaining the characteristic function in our general setting is to employ the
powerful tool of a measure change. This measure change simplifies the expectation operation into an
integration over a single source of uncertainty, thereby reducing the problem to one that has already

been solved in the finance literature.

Measure changes have already seen wide application in option pricing theory. For example, mea-

sure changes are used to switch from statistical to risk-neutral measure, and they are further used to



change numeraires to dramatically simplify calculations (see Margrabe (1978), Geman, El Karoui, and
Rochet (1995), Schroder (1999), Benningahr®j and Wiener (2001)). As an example of the latter

use, consider valuing an option on a foreign stock. A priori, there are two sources of risk, namely the
stock price in the foreign currency and the exchange rate. However, by valuing the option in the foreign

economy, the valuation problem reduces to taking the expected value over just the terminal stock price.

The same dimension reduction arises in our use of a measure change to determine the characteristic
function of a time-changedévy process. However, as the characteristic function is defined on the
complex plane, our new measure must also be complex-valued. The reason behind this result is ex-
plored in detail in the next section. The introduction of the effective use of a complex-valued measure
is the main methodological contribution of this paper. Besides providing a formal mathematical proof
of our main result, we deliberately select some familiar examples from the literature in order to confirm
the validity of our novel approach. We find that in every case, our approach agrees with the known

results previously obtained by solving partial differential equations.

In many respects, the sophistication of a field is measured by the extent to which it is willing to use
abstract methods to solve concrete problems. Complex analysis has been widely used for decades in
many fields outside of finance and is just beginning to see use inside the field. Just as the risk-neutral
measure effectively removes the complications arising from correlation between the pricing kernel and
the payoff, our use of a complex-valued measure removes the complications arising in determining
the characteristic function when there is correlation between &wy process and the random time.

Using the same logic that leads to the term risk-neutral measure, we refer to our new measure as the
leverage-neutralmeasure. Under the complex-valued leverage-neutral measure, the expectation can
be performed as if there is no leverage effect. Just as the effects of risk-aversion are embedded in

risk-neutral probabilities, leverage effects are embedded in our leverage-neutral measure.

Given the characteristic function of a stochastic process, Heston (1993) shows how to numerically
value standard European options by usir&yy’s inversion formula for the distribution function. By
analytically relating the Fourier transform of an option price to its characteristic function, Carr and
Madan (1999) show how the fast Fourier transform (FFT) can alternatively be used to speed up the
calculation. In contrast to Heston (1993), their approach uses generalized Fourier transforms, which

requires that the argument of the characteristic function be evaluated in a particular domain of the



complex plane. In this paper, we extend the formulation in Carr and Madan (1999) to a wide variety of
contingent claims. Our work complements recent work on applying FFT technology to spread options
by Dempster and Hong (2000) and to Asian options by Benhamou (2000). We show that the choice
of domain for the argument of the characteristic function depends on the exact structure of the state-
contingent payoff. We identify the admissible domains for a wide variety of state-contingent claims,

thereby reaping the significant computational benefits of FFT technology for valuation and estimation.

The structure of the paper is as follows. The next section presents the fundamental theorem simpli-
fying the calculation of the characteristic function of the time-chang&g/lprocess. Sectigr) 3 shows
how time-changed &vy processes can be used to model the uncertainty of the economy. $éction 4
provides extensive examples oé\y processes, random time changes, and feasible pairings of them.
Section b shows how FFT technology can be used to efficiently value many state-contingent claims
from knowledge of the characteristic function. Secfipn 6 briefly summarizes the paper and suggests

avenues for future research.

2. Time-changed Levy processes

Consider a-dimensional real-valued stochastic procéxgt > 0} with Xy = 0 defined on an under-
lying probability spacgQ, ¥,P) endowed with a standard complete filtratibn= { % |t > 0}. We
assume thaX is a Lévy process with respect to the filtratibn That is,X; is adapted tgFk, the sample
paths ofX are right-continuous with left limits, an®, — X is independent off; and distributed as
Xu_t for 0 <t < u. By the Levy-Khintchine Theorem (see Bertoin (1996), page 12), the characteristic

function of X; has the form,
@ (0) = E [é‘”{} _et®) >0 1)
where thecharacteristic exponeny(0), 6 € RY, is given by:

W(0) = —in 0+ %eTze + /Rg (1€ 410711 ) M(dX) )



The Lévy processX is specified by the vectqr € RY, the positive semi-definite matrix on R4*9,

and the levy measurdl defined onRg (RY less zero). The triplet, =, 1) is referred to as theévy
characteristicsof X. Intuitively, the first member of the triplet describes the constant drift of the
process. The second member describes the constant covariance matrix of the continuous components
of the Lévy process. Finally, the third member of the triplet describes the jump structure. In particular,
the Lévy measurél describes the arrival rates for jumps of every possible size for each component of

X.

To value options, we extend the characteristic function pararfiétethe complex plané € D C
CY, where® is the set of values fo for which the expectation il’[kl) is well defined. Whex(0)
is defined on the complex plane, it is referred to asgeeralized-ourier transform (see Titchmarsh
(1975)).

Next, lett — T;(t > 0) be an increasing right-continuous process with left limits such that for each
fixedt, the random variabl@; is astopping timewith respect td-. Suppose, furthermore, thatis
finite P-a.s. for allt > 0 and thafl; — o ast — c. Then the family of stopping time§T; } defines a
random time changeéWithout loss of generality, we further normalize the random time change so that
E [T:] = t. With this normalization, the family of stopping times is an unbiased reflection of calendar

time.

Finally, consider thel-dimensional procesé obtained by evaluating atT, i.e.,
=Xy, t>0.

We propose that this process describe the underlying uncertainty of the economy. For example, in
the one dimensional case, we may takas describing the returns on the asset underlying an option.
Obviously, by specifying different&vy characteristics foX; and different random processes Torwe

can generate a plethora of stochastic processes from this setup.

In principle, the random tim& can be modeled as a nondecreasing semimartingale,

t 0



whereq; is the locally deterministic component apdienotes the counting measure of the jumps of
the semimartingale. For simplicity, we suppress jumps in time and focus on a locally deterministic time

change. This simplification allows us to characterise the random time in terms of its local in€nsity
t
T=0a¢= / v(s_)ds,
0

wherev(t) is theinstantaneous (business) activity ratmtuitively, one can regartlas the calendar

time andT; as the business time at calendar timé more active business day, captured by a higher
activity rate, generates higher volatility for the economy. The randomness in business activity generates
randomness in volatility. In particular, changes in the business activity rate can be correlated with

innovations inX;, due to leverage effects for example.

Note that althougf; has been assumed to be continuous, the instantaneous activity rate process
v(t) can jump. However, it needs to be nonnegative in order Thabt decrease. Also note that in
this paper, the term “volatility” is used generically to describe the uncertainty surrounding financial
activities in the underlying economy. It is not used as a statistical term for the standard deviation of
returns. In fact, wherx; is a Brownian motion, the activity rate is proportional to the instantaneous
variancerate of the Brownian motion. WheX is a pure jump Evy processy(t) is proportional to the

Lévy density of the jumps.

Many well known option pricing models arise as special cases of our framework. For example, the
stochastic volatility model of Heston (1993) can be generated by randomly time-changing a Brownian
motion and by specifying the activity rate as a mean-reverting square root process. The affine jump-
diffusion economy of Duffie, Pan, and Singleton (2000) can be generated when the jump components
in X; are compound Poisson jumps and when the stochastic process for the actiwity)rastisfies the
affine constraint@.Our framework allows more general jump structures in bgthndv;. Furthermore,

the dynamics for the activity rate procagsloes not need to be restricted to have an affine specification.

2The drift vector and covariance matrix of the diffusion are affine in the state vpter] ". When compound Poisson
jumps are present in the activity rate process, the Poisson intensity is also affine in the state vector.



Since the time-changed procegs= Xy, is a stochastic process evaluated at a stochastic time, its

characteristic function involves expectations over two sources of randomness,
9((6) = Ed? X =E[E [°7T = u]]. (4)

If the random timeT; is independent oX;, the randomness due to thé\y process can be integrated
out using equatiorj {1),
@ (8) = Ee "0 = L7 (Wy(8)). (5)

Thus under independence, the characteristic functidhisfiust the Laplace Transform @f evaluated
at the characteristic exponentXf Hence, the characteristic functiongfcan be expressed in closed
form if the characteristic exponehity(0) of X and the Laplace transform fdg are both available
in closed form. In principle, the characteristic exponent can be computed frometheKhintchine

Theorem in[(R). To obtain the Laplace transform in closed form, consider its specification in terms of

Lr(A\) =E [exp(—)\/otv(s)dsﬂ .

This formulation arises in the bond pricing literature if we reghw(t) as the instantaneous interest

the activity ratev,

rate. Furthermore, the instantaneous interest rate and the instantaneous activity rate are both required
to be nonnegative and can be modeled by similar processes. Thus, one can adopt the vast literature in

term structure modeling for the purpose of modeling the instantaneous activitytrate

Our primary objective is to generalize the reductiorin (5) of the characteristic function to a bond
pricing formula to the case where thé\y process and time change are correlated. This generalization
would allow us to easily capture the well-known leverage effect. Before presenting the formal theorem
on this generalization, it is useful to consider the special case wheréthedrocess has a symmetric
distribution about zero, e.g., a standard Brownian motion. The corresponding characteristic function of
such a symmetric &vy process is real, so is its characteristic exponent. Now consider a time change on
this symmetric évy process. If the time change is independent of gwxylinnovation, the distribution
of the time changed process remains symmetric. Its characteristic function remains real and can be

solved via iterated expectation as[if (4) and the bond pricing analpg in (5).



Alternatively, one can introduce asymmetry to the distribution of the time-changey jirocess
by introducing correlation between the time change and #glinnovation. Then, the characteristic
function of this distribution must have a non-zero imaginary part due to the asymmetry. Our objective

is to generate this non-zero imaginary part while still using the bond pricing analog:

04(0) ~ € [exp(—x(0) [ w9ds)] . ©)

where both the characteristic expon&#8) and the stochastic timé are real valued. We achieve
this objective by taking the above expectation under a complex-valued measure. When the real-valued
random variables are averaged using complex weights rather than real ones, the resulting characteristic

function becomes complex-valued, as is required to correspond with an asymmetric distribution.

The following theorem shows that the use of a complex-valued measure is the key to determining
the characteristic function of the time-changed process. This theorem is the main contribution of this
paper. It shows that a complex-valued measure can be used to reduce the problem of finding the charac-
teristic function ofY; in the original economy into the problem of finding it in an artificial economy that
is devoid of the leverage effect. Frofr] (5), we see that this calculation in turn reduces to determining
the Laplace Transform of the random time in the leverage-neutral economy. As the Laplace transform
calculation itself reduces to a bond pricing formula, we can find characteristic functions for a wide

array of processes resulting from pairingMy processes with correlated time changes.

Theorem 1 The problem of finding the generalized Fourier transform of the time-changeddrocess
Y; = X7, under measure P reduces to the problem of finding the Laplace transform of the random time

under the complex-valued measurgdQ evaluated at the characteristic expon&i(0) of X,

9(6)=E [¢°7] —E° [ O] = £ (we(9)), (7)

where E.] and E°[.] denote expectations under measures P an@)Qespectively. The new class of

complex-valued measureg@) are absolutely continuous with respect to P and are defined by

dQ(6)
dP




with
M¢(8) = exp(iewt +Tth(e)) , BeD. 8)

Note that the last two equalities in (7) extend the notions of expected value and Laplace transform
beyond their usual domain. As indicated, the “expected valifge *x(®)] is to be computed under
the complex measur@(0) rather than the usual real one. Furthermore, the “Laplace Transfb?-tri‘s’
not the usual Laplace Transform §fdue to the dependence of the measren Gl’f] The superscript
0 is used to indicate this extended Laplace Transform, which can still be interpreted as a bond pricing

formula.

To prove the theorem, we first need to prove &), 6 € D, defined in[(B) is #-martingale with
respect to the filtration generated by the prodess T;) : t > 0}.

Lemma 1 For everyd € D, M(8) in (8) is a complex-valued P-martingale with respect to the filtration

generated by the proce$sY;, T;) : t > 0}.

Proof. First, define

Z(8) = exp(ieTX[ +th(e)) . 9)

Given that,(0) is finite by definition E [|Z;(0)|] is finite since
E[|2:(6)[] < exp(t¥x(6)).
Now for 0<s<t,

E [éeT(xt—xs>+wx<e><t—s)| 7] = (O -9+Wu(8)(t-5) _ 1

Hence Z (8) is a complex-value@®-martingale with respect to%|t > 0}.

SWe thank a referee for pointing this out.
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Next, for every fixed > 0O, T; is a stopping time which is finit®-a.s. By the optional stopping
theoremM;(0) = Z7,(0) is also a complex-valued martingale with respect to the filtration generated by

the procesg(Y;,T;) :t >0}. m

Z;(0) is the familiar Wald martingaI.We extend the real-valued exponential family of martingales
defined on [evy processes in (#chler and Sgrensen 1997, page 8) to the complex plane. Similarly,
M;(B) = Z7,(8) can be regarded as a complex extension of the time-changed exponential martingale in

(Kuchler and Sgrensen 1997, page 230).

Given thatVi; (0) is a well-defined complex-valudémartingale, the proof of Theorqﬂw 1is straight-

forward.

Proof. (Theoren L

E[eieTYt} — E[eieTYt-Fl'th(e)—'l'Nx(e)}

— E[M(0)e ™ O] —E°[e O] - 2 (y(0)).

Our theorem generalizes the previous results on an independent time change to the case where the
Lévy process and the time change can be correlated. Whsrnndependent oX;, our result reduces
to the previous one. The reason is tfafollows the same process under the two measBresd
Q(6) and henceLr, = L?t In other words, if the original economy is devoid of the leverage effect,
no measure change is required. When the original economy does possess the leverage effect, our
complex-valued measure change simplifies the calculation by absorbing the effects of the correlation
into the measure. One can then perform the expectation under this new measure as if the economy is
devoid of the leverage effect. In analogy with the terminology underlying the risk-neutral measure, we

christen this new complex-valued measure addiierage-neutral measure

4See Harrison (1985), page 7, Karlin and Taylor (1975), page 243, and Bertoin (1996), page 40 for example.
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3. Asset Pricing under Time-Changed levy Processes

We use the time-changeckly processy; = X, to model the uncertainty of the economy. In this
section, we illustrate how asset returns can be modeled as time-chaagegrocesses, how market
prices of risk can be defined on such processes, and how these definitions of risk premia link the

objective dynamics of; to its risk-neutral dynamics.

3.1. Asset price modeling

As one application, we can use the time-changedyprocess as the driver of asset return processes.
Specifically, let§ denote the price at tinteof an asset, e.g., a stock or a currency. Then, we can specify

the price process as an exponential affine function of the uncertginty
S =% (10)

whereS) denotes the price at time 0, which we assume is known and fixedy Eeln (S /S) denote

the log return of the asset. Then, by Theorem 1, the generalized Fourier transferns gifen by

@ () =E[e"] =E [é“ﬂt} = Gy (UB) = LI (W (D). (11)

For option pricing, the asset price process is often specified directly under the risk-neutral measure,
under which the instantaneous rate of return on an asset is determined by no arbitrage. Formally, it can
be specified as,

S =Se NS with E [e”} —1, (12)

wherer is the continuously compounded riskless rate qimlthe dividend yield in the case of a stock
and foreign interest rate in the case of a currency, both of which are assumed constant. To assure no

arbitrage, we restrict the specification of the time-changedylproces¥; to guarantee that the last

12



term is an exponential martingale under the risk-neutral measure. Alternatively, for an amjitiaey

can replace the last tered ™ by the following Doléans-Dade exponential
£ (sTvt) - exp(swt +TJqJX(—ia)), (13)

which has mean one by Lemma 1. The generalized Fourier transfoagnuiedler this specification can

also be derived via Theorem 1,

o) = E[ei“ﬂ:E[exp(iu(r—q)t+iu8TYt+iuTTqJX(—i8)ﬂ
= UL (W (D) — iuWy(-i9)). (14)

3.2. Market price of risk

A current research trend is to perform integrated price series analysis of both derivative securities
and their underlying assets. A key objective of such an analysis is to identify how the market prices
different sources of risk. The literature has followed three different routes in analyzing market risk
premia. The first approach starts with a specification of a general equilibrium and utility functions for
agents. The functional form of the risk premia are derived from this equilibrium setting (see Bates
(1996, 2000)). The second approach starts with a specification of the pricing kernel and links the
pricing of the underlying asset and its derivatives via this pricing kernel. Under regularity conditions,
no arbitrage implies the existence of at least one such kernel (Duffie (1992)). Examples of this line of
research include Pan (2002) and Eraker (2001). The pricing kernel can be regarded as the reduced form
of some general equilibrium and hence is more flexible in terms of its specification. Finally, the third
approach takes flexibility to another level by nonparametrically estimating the pricing kernel under
each state. Specifically, this approach first estimates the conditional density of the asset price under
the objective measure using the time series data of the underlying asset returns, and then estimates the
conditional density under the risk-neutral measure using option prices. The pricing kernel under each
state is then given by the ratio of the two conditional densities. Examples along this line of research

include Carr, Geman, Madan, and Yor (2001) and Engle and Rosenberg (1997).
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When the sources of risk for an economy are governed by time-charggdpkocesses, the mea-
sure change from the objective measure to the risk-neutral measure can be conveniently defined by a set
of exponential martingales. Formally, itdenote the pricing kernel, which relates future cash flows,

Ks,S€ (t,7], to today’s pricep, by,

T ¢Ksds
h=FE [/t 3

|
One can perform a multiplicative decomposition on the kernel,

& = exp(— /ot rsds> “E(-YM)), (15)

where the Datans-Dade exponentid@l (—y(Y;)) can be interpreted as tiiRadon-Niko§im derivative
which takes us from the objective measure to the risk neutral meagifeis an %-adapted process
satisfying the usual regularity conditions and is often referred to asntiréet price of riskfor the

uncertainty of the economy;.

A particularly tractable specification for the market price of risk is given by the affine form,
YY) =v'%, yeDCRY (16)

where D is a subset of thel-dimensional real space so that(—y(Y;)) is well-defined. Then, the
Radon-Nikogm derivative is given by the class &sscher transformsMeasure changes under this
specification take extremely simple forms. In Apper{dix A, we identify the characteristi¢suofier

measure changes defined by Esscher transforms. Furthermore, measure changes expressible as Esscher
transforms are often supported by utility optimization (e.g., Keller (1997), Kallsen (1998)) or entropy
minimization problems (Chan (1999)). See Kallsen and Shiryaev (2000) for an excellent analysis on

measure changes defined by Esscher transforms and their economic underpinnings.
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4. Specification Analysis

Through extensive examples, this section addresses the issue of specifyiggyhmdcess, the activity

rate process, and the correlation between the two. For e@eh firocess, we focus on the derivation

of its characteristic exponent; for each activity rate process, we focus on the derivation of the Laplace
transform of the random time; and finally, for each pairing of the two, we focus on the form of the
complex-valued measure change and the Laplace transform of the random time under this new measure.
By Theorem 1, a joint specification of thely process and the activity rate process determines the
characteristic function of the time-changeeMy process. Whenever possible, we link each example to

the existing literature to show how they can be arrived at from our general perspective. We also illustrate
how these different specifications can be combined to generate a plethora of tractable specifications for

the uncertainty of the economy.

4.1. The levy process and its characteristic exponent

Since a levy process is uniquely characterized by its triplet &%y characteristic§, Z, 1), the Levy

process is determined by individual specification of the components of this triplet. The first component
lis the constant drift term. This component is often determined by no arbitrage or equilibrium pricing
relations and thus depends on the specification of the other two elements of the triplet. The second com-
ponentz denotes the constant covariance matrix of a vector diffusion martingale. The third component
is the Levy measuré€l(dx), which controls the arrival rate of jumps of sizeBy definition, this third

jump component is orthogonal to the second diffusion component. Since the properties of a diffusion

component are well known, we will focus on the properties of the lesser known jump component.

A pure jump Levy process can display either finite activity or infinite activity. In the former case,
the aggregate jump arrival rate is finite, while in the latter case, an infinite number of jumps can occur
in any finite time interval. Within the infinite activity category, the sample path of the jump process can
either exhibit finite variation or infinite variation. In the former case, the aggregate absolute distance
travelled by the process is finite, while in the latter case, it can be infinite over any finite time interval.

Hence, there are three types of jump processes in all. For each type, we discuss the defining properties
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and existing examples in the literature. For ease of notation, we focus on scalar processesihd use

to denote the vy measure of such a scalar process.

4.1.1. Finite activity vy jumps
A pure jump Lévy process exhibits finite activity if the following integral is finite:

/ m(dx) = A < o, (17)
Ro

Intuitively speaking, a finite activity jump process exhibits a finite humber of jumps within any finite
time interval. The classical example of a finite activity jump process ictmepound Poisson jump
process of Merton (1976) (MJ). For such processes, the integial]in (17) definésigsen intensity

A. Conditional on one jump occurring, the MJ model assumes that the jump magnitude is normally

distributed with meait and variancerjz. The Levy measure of the MJ process is given by

(dx) = A

02
! exp(— (x ‘;‘) )dx (18)
\/21o? 207
Obviously, one can choose any distributidn(x), for the jump size under the compound Poisson
framework and obtain the followingédvy measure,

1(dx) = AdF(X).

The exact specification of the conditional jump distribution should be determined by the data. For
example, Kou (1999) assumes a double-exponential conditional distribution for the jump size. The

Lévy measure in this case is given by

n(dx) = AdF(x) = )\Zln exp(— |XH k|> dx
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In another example, Eraker, Johannes, and Polson (2000) and Eraker (2001) incorporate compound
Poisson jumps into the stochastic volatility process, assuming that volatility can only jump upward and

that the jump size is controlled by a one-sided exponential density. &g rheasure is given by

m(dx) = AdF(x) = Aiexp(—z) dx, x>0.

Based on thé évy-Khintchine formulan (2), the characteristic exponent corresponding to these

compound Poisson jump components is given by

W(e) = /R (1-€%)AdF(9) =A(1-90)). (19)

where@(0) denotes the characteristic function of the jump size distribuipr),

o(x) = / ddF (x).

Ro
4.1.2. Infinite activity Bvy jumps

Unlike a finite activity jump process, anfinite activityjump process can generate an infinite number

of jumps within any finite time interval. The integral of théky measure ir{ (17) is no longer finite.
Examples in this class include the normal inverse Gaussian (NIG) model of Barndorff-Nielsen (1998),
the generalized hyperbolic class of Eberlein, Keller, and Prause (1998), the variance gamma (VG)
model of Madan and Milne (1991) and Madan, Carr, and Chang (1998), its generalization to the CGMY
model of Carr, Geman, Madan, and Yor (2002), and the finite moment log-stable (LS) model of Carr

and Wu (2002).

We list the Levy measures and characteristic exponents of each of these examples [ Table 1. For
comparison, we also list theélvy measures and characteristic exponents of the finite activity jump
examples. Finally, for completeness, we list the characteristic exponent of an arithmetic Brownian
motion, which is the only purely continuougly process. Note that for the infinite activity pure jump

Lévy examples, the NIG model is a special case of the generalized hyperbolic clags=witii/2.
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Furthermore, under the following parameterization, the VG model can be regarded as a special case of
the CGMY model:
C=AG=p /v, M=p /v, Y=1

Finally, the LS model can also be regarded as a special case of CGMYGwitM = 0 and also with

C=0whenx> 0.
The sample paths of an infinite activity jump process exfiitite variationif the following integral
is finite:
/ (LA [X) TH(dX) < o, (20)
Ro

andinfinite variationif the integral is infinite. Nevertheless, tqeadratic variationhas to be finite for

the Lévy measure to be well-defined,

/Ro(l/\xz)n(dx) < oo,

The sample paths of the generalized hyperbolic class exhibit finite variation. The sample paths of the
CGMY process exhibits finite variation whéh< 1 and infinite variation whely € (1,2]. For the

guadratic variation to be finite, we ne¥d 2.

4.2. The activity rate process and the Laplace transform

Given some specification of thetly process, the next step is to specify the random time. Since the
random time is given by the integrdl,= fé v(s_)ds we determine this random time by specifying the

activity rate process(t). Given a process for(t), the Laplace transform & is given by,

Lr(A\) =E [exp(—)\/otv(s)dsﬂ .

This formulation is analogous to the pricing formula for a zero coupon bond if we reggrds the
“instantaneous interest rate.” In particular, both the instantaneous interest rate and the instantaneous
activity rate are required to be positive. We can therefore adopt existing interest rate models to model

the instantaneous activity rawt). In particular, we illustrate how to apply two of the most tractable
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classes of term structure models to the modeling of the activity rates and to the derivation of the Laplace

transform of the random time.

4.2.1. Affine activity rate models

Let Z be ak-dimensional Markov process, which startszgtand satisfies the following stochastic

differential equation:

dZ = W(Z)dt+0(Z)dW +qdIV(Z)). (21)

Here,W is ak-dimensional Wiener process adds a Poisson jump component with intensy;)
and random jump magnitudg characterized by its two-sided Laplace transfaig(-). Furthermore,
we require that thé x 1 vectorp(Z;) andk x k matrix o(Z;) satisfy some technical conditions, such
that the stochastic differential equation has a strong solution. The instantaneous rate of\gt}iisty

assumed to be a function of the Markov procéss

Definition 1 In affine activity rate models the Laplace transform of the random time,:Tjg v(s_)ds,

is an exponential-affine function of the Markov process Z
L1\ =E [e*”t} = exp(—b(t)Tzo - c(t)) , (22)
whereb(t) € R* and dt) is a scalar.
The following proposition presents conditions which are sufficien{for (22) to hold.

Proposition 1 If the instantaneous activity rate(ty, the drift vector |iZ), the diffusion covariance
matrixa(Z)o(Z)", and the arrival ratey(Z) of the Markov process are all affine in Z, then the Laplace

transformZy, (M) is exponential-affine inpz
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The above process and proposition generalize the original work of Duffie and Kan (1996) for the
affine term structure models of interest rates. The extension to compound Poisson-type jumps (with

time-varying Poisson jump intensity) is due to Duffie, Pan, and Singleton (2000). In particular, let

vit) = blZ+c, byeRc eR,

WZ) = a—kZ, keR¥KaeRK
[O(Zt)o(zt)T} = o +PBZ, o €R,B R
0z)o(z)7] = 0 i#i,

Y(Z) = a+byZ, aeRbeR

Then the coefficientgb(t),c(t)} for the Laplace transform ifj (22) are determined by the following

ordinary differential equations:

b/(t) = Aby,—K'b(t)— Bb(t)2/2— by (Lg(b(t) —1); (23)
¢(t) = Acy+b(t) a—b(t) ab(t)/2-ay(Ly(b(t) - 1),

with the boundary conditiond(0) = 0, andc(0) = 0. Closed-form solutions for the coefficients exist
only under special cases, although they are easily computed numerically. A one-factor special case,
where an analytical solution is available, is the square-root model of Cox, Ingersoll, and Ross (1985)

for interest rates and Heston (1993) for stochastic volatility.

4.2.2. Affine activity rate models with more general jump specifications

Jumps in the above affine framework are confined to be finite activity compound Poisson type jumps.
The jump intensityy can depend on the state vector and hence be time-varying. In a one factor setting,

we can adopt the following generalized version of the affine term structure model due to Filipovic
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(2001), which allows a more flexible jump specification. Formally, we can characterize the activity rate

process/(t) as a Feller process with generator,

af(x) = %O'ZXfN(X)—l-(a/—KX)f/(X) (24)
+ L (f(x+y) = F(x) = F'(x) (1AY)) (m(dy) +xp(dy)),

wherea = a+ ng (1Ay)m(dy) for some constant numbessa € R™, k € R, and nonnegative Borel

measuresn(dy) andp(dy) satisfying the following condition:

/+ (1ny)m(dy) +/+ (1AY?) p(dy) < 0. (25)
R R{

0

Note that the first line in[(34) is due to the continuous part of the process and is equivalent to the
Cox, Ingersoll, and Ross (1985) or Heston (1993) specification. The second line is due to the jump
part of the process. All three components of thevy triplet depend linearly on the state variable x.

Such processes are known as (stochastically continuous) conservative CBI processes (continuous state
branching processes with immigration) and have been well studied by Kawazu and Watanabe (1971)
among others. The condition ih (25) says that the jump component dictated by the nmaédyjre

has to exhibit finite variation, while the jump component dictated by the measdy only needs to

exhibit finite quadratic variation. Hence, one can adopt any of &wyImeasure specifications in Table

[ for p(dy), and any of the finite variation ones for(dy), with only one slight modification: arrival

rates of negative jumps need to be set to zero.

Under such a specification, the Laplace transform of the random time is exponential affine in the
current activity rate levelp,
Ly (A) = exp(—b(t)vo—c(t)), (26)

with the coefficientgb(t), c(t)] given by the following ordinary differential equations:

b(t) = A—xb(t) - +/ — e _p(t)(1Ay) ) (dy), (27)

dt) = ab(t)+ (1—e’yb()>m(dy),

Rg
with the boundary conditiond(0) = 0, andc(0) = 0.
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4.2.3. Quadratic activity rate models

In this subsection, we adopt the quadratic term structure model of Leippold and Wu (2002) for the

purpose of modeling the instantaneous activity rate.

Definition 2 In quadratic activity rate models, the Laplace transform of the random time is an

exponential-quadratic function of the Markov process Z if:
t
£40) =€ [exp(- [ wigds] —exp[-BADD-bO) %~ o). (28)
0

with A(t) € R®*K b(t) e R¥, and qt) € R.

The following proposition presents the sufficient conditions for obtaining quadratic activity rate

models:

Proposition 2 If the instantaneous rate of activity(ty is quadratic in Z, |iZ) is affine in Z, and
0(Z) = o is a constant matrix, then the Laplace transform of the random tif@\) is exponential-

quadratic in Z.

The proof follows Leippold and Wu (2002). Formally, under non-degeneracy conditions and a

possible re-scaling and rotation of indices, we let

WzZ) = —kZ, o(Z)=I1, k,IeR"K

vit) = ZTAZ+blZ +c, A eR¥*b,eRKc eR.

For the Markov process to be stationary, we need all eigenvaluedambe positive. Furthermore, a

sufficient condition fon(t) to be positive is to led, be positive definite and, > %bJA\,bV. Given the
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above parameterization, the ordinary differential equations governing the coefficients in the Laplace

transform are given by

At) = M —At)K—K A(T)—2A(1)%;
b'(t) = Aby—kb(t)—2A(t) b(t); (29)
d(t) = Acy+trA(t) —b(t) b(t)/2,

subject to the boundary condition&{0) = 0, b(0) = 0, andc(0) = 0.

Table[2 summarizes the Laplace transform of the random time under the three classes of activity
rate processes. Obviously, any of these activity rate specifications can be combined wiévyhe L

process specifications in Talple 1 in forming a time-chang®dylprocess.

4.3. Correlation and the leverage-neutral measure

The observed negative correlation between returns and their volatilities in the equity market is usually
referred to as the leverage effect. This leverage effect can be accommodated by allowing (negative)
correlations between increments in thevly process and increments in the activity rate process. Recall
that every purely continuous component is orthogonal to every pure jump component. Hence, if the
Lévy process is purely continuous, non-zero correlation can only be induced by a continuous compo-
nent in the activity rate process. Similarly, if thé\y process is pure jump, non-zero correlation can
only be induced by a jump component in the activity rate process. Furthermore, if the puregusnp L
process has finite (resp. infinite) activity, non-zero correlation can only be induced by a finite (resp.
infinite) activity jump component in the activity rate process. We use examples to illustrate each case.
For each example, we demonstrate how to perform the complex-valued measure change using Propo-
sition[4 in Appendi{ A. We then derive the characteristic function of the time-changeyl frrocess.

We deliberately select some familiar examples from the literature in order to confirm the validity of our
novel approach. We find that in every case, our approach accords with the known results previously
obtained by solving partial differential equations. To illustrate the versatility of our approach, we also

present an example that is new to the literature.
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4.3.1. Leverage via diffusions

Consider the case where thewy process is a standard Brownian motige- W, and the instantaneous
activity rate follows the mean-reverting square-root process of Heston (1993). The leverage effect can
be accommodated by negatively correlating the Brownian motion driXirmgnd the Brownian motion

driving v(t). This setup is summarized by the following specification under med&sure

X = W
dv(t) = (a—kv(t))dt+n/v({t)dz;
E[dWdz] = pdt.

By Theorem 1, the characteristic function¥f= Xy, can be represented as the Laplace transforii of

under a new complex-valued meas@®):

i 1
o= [o"] -2 (39)
where8?/2 is the characteristic exponent of the underlyirgyy process = W (see the first entry in

Table[1). The new measu€¥6) is defined by the following exponential martingale,

dQ(e)

dP

t
:exp(ieYtJrlez/ v(s)ds).
t 2 Jo

A slight extension of Girsanov’s theorem to complex-valued measures implies that under ni@sure

the diffusion part of/(t) is unaltered, while the drift of () is adjusted to

() = a—kv(t)+ionpv(t).
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Hence, under measu€@0), v(t) satisfies the conditions ifi (23) (see the first entry in Table 2) for the

affine class of activity rates with

by = 1, o =0

kK® = k—ifnp, a=a; (30)
a = 0, B=n% y=0;

A = Wy (6)=6%/2.

Based on Propositidr] 1, the characteristic functiol é&§ exponential-affine ing,

@ (8) = exp(—b(t)vo—c(t)),

where the parametefa(t), b(t)] are given by the ordinary differential equations|in|(23) with the sub-
stitutions given in[(30). For this particular one-factor case, the ordinary differential equations can be
solved analytically,

P(1-e¥)
(0+KQ) + (8—kQ)e 3’

(26— (8—kQ) (1—e1?))
20

+(8-kt],

—a
whered? = (k?)2 +62n2.

4.3.2. Leverage via compound Poisson jumps

Consider the case where thé\y process is a compound Poisson jump process,

xt—M i
—;QJ‘,

whereN; denotes the number of jumps within the time interf@t] and is governed by a Poisson

distribution with a constant arrival rate uf The conditional jump siij1 is assumed to be iid.
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To incorporate the leverage effect, we assume that the activity(tat@lso has a compound Poisson
jump component and that the arrival rate of jumps is controlled by the same Poisson distribution,

N

v(t) = /Ot (a—kv(s))ds+ lequ,

wherqu? denotes the jump size irt) conditional on a jump occurring. We incorporate a linear mean-
reverting drift to capture the persistence of volatility, but the presence or absence of it is irrelevant to
our analysis. Since the jumps ¥iand inv are governed by the same Poisson process, they jump at
the same time. Note th& becomed\y, after time change. Conditional on a jump event occurring,
we assume that the jump sizes of the two procee]gf_'s{ql,qz]T have a correlated joint distribution

F(dqg). Let@(u) denote the joint characteristic functionaepf

Then, by Theorern|1, we have
@ (8) = LT (Wx(8)),

where the characteristic exponent ¥ris (equatior 19),

Wx(0) =A(1-.(9)),

where@,(6) = E [e‘eﬂ denotes the marginal characteristic functiorghf The new measur@(0) is

hence given by
dQ(6)

TN t = exp(i6Y; + Wx(8)T).

Straightforward application of Girsanov’s theorem extended to complex measure implies that
FO(da) = €% F(da).

The marginal characteristic function gf underQ(8) is cpg(b) = @([6; b]). Other parameters w(t) re-

main the same under the measure change. Hence, the process des@rjbEmains in the affine class
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underQ(0). The characteristic function & is therefore exponential-affine iy and the coefficients

are given by the solutions to the ordinary differential equations:

b(t) = Wx(6)—kb(t)+y(1-q([6;—ib(t)]));
cd(t) = ab(t),

with b(0) = ¢(0) = 0. The above ordinary differential equations are directly adopted (23) with

4.3.3. Leverage via infinite activity jumps

This example is new to the literature. Consider the log-stable (LS) model of Carr and Wu (2002) as the
underlying Levy process,
X =L

WhereLto"*1 denotes a standarclzy a-stable motion with tail index € (1,2] and maximum negative

skewness. Note that this process not only exhibits infinite activity, but also exhibits infinite variation.

To accommodate the leverage effect, we assume that the activity rate is driven by the&same L
o-stable motion. Sincla-f"_1 only allows negative jumps while the activity rate must be positive, we in-
corporate its mirror imageh,f"1 into the activity rate process. Hence, whenever there is a negative jump
of absolute siz& in X;, there is a simultaneous positive jump of proportional sizgih Specifically,

the activity rate process solves the following stochastic differential equation,
dv(t) = (a—kv(t))dt+pYedLE", (31)
which is uniquely characterized by its generator,

af(v) = (a—(K+5)V)f’(V)+BV/R+(f(V+Y)—f(V)—f’(V)(lAY))IJ(dy), (32)

0

where

H(dx) =cly| % dy, c=—sec—
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The parameter constraints grandd are imposed in order to generate a standardizsthble levy

motion with zero mean and unit dispersion. This is an special exmaple of the CBI prodess in (24).

From Tablé L, we obtain the characteristic exponent ofakssable l&vy motion,

W, (6) = — (i0)° sec%, Im (8) < 0.

The leverage-neutral measupéd) is then defined by

dQ(®)
dpP

_ exp(ieL%’_l + LIJX(B)Tt> .
t

Under this new measure, we have

dx) = €°mdx),
5 = 5- (1-@"”) (LAX) TI(dx).
Ry

Then, the Laplace transform &f under measur€(0) is given by
L3 (Wx(8)) = exp(—b(t)vo—c(t)) (33)

where

b(t) = (O (k+) b(t)+[3/]R<+ (1€ —bit) (1A%)) (¥

—  Wy(8) —Kb(t) +sec%3 [(b(t) +i6)% — (i6)°]
c(t) = abt),

By Theorem 1,[(33) represents the characteristic functiof =fXy,. Note that this example converges
to the diffusion example, after some reparameterizations, whapproaches two. In particular, the

stable motion becomes a Brownian motiomat 2.
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5. Valuing State-contingent Claims

Given the generalized Fourier transform of the state vegtor the returrg defined in[(ID) and (12),
many state contingent claims can be valued efficiently via the FFT. Formally, consider a European-style

state-contingent claim with the general payoff structure at maturity,
My(kab,9,c) = (a+ bé”“) Toryko (34)

whereY = Xy, is thed-dimensional time-changedélry process. For example, if we assume that the
price of an asset is given I = Sexp(® 'Y;) as in ), the payoff of a European call with strike
priceK is given bylN(—InK/S; —K, S,9,—3), the payoff of a European put with strike priseis

given byMN(InK/S; K, —S,9,9), that of a covered call is m@&, K] = M(—InK/$;0,S,9,—9) +
N(InK/S;K,0,0,9), and finally, the payoff of a binary call is given By{—InK/S;1,0,0,—9). We

can therefore write the payoffs of many European-style contingent claims in the fdrnj of (34) or a linear

combination of it.

Let G(k;a,b,9,c) denote the initial price of a state-contingent claim with the payoff in (34). For

simplicity, we focus on determining the initial forward price of the claim and hence:
G(k;a,b,9,c) = ENy(k;a,b,39,c), (35)

where the expectation is taken under the forward measure. Note that we drop the maturity atgument
as no confusion shall occur. We now show that the pdamn be obtained by an extension of the FFT
method of Carr and Madan (1999). For this purposeglgt a,b,9,c) denote the generalized Fourier

transform ofG(k; a, b, 9, c) defined as,

G(zab,9,c)= /w é%G(kab,9,¢c)dk  zeCCC. (36)

—00

Note that the transform parameter has been extended to the complex plahéemstes the complex

domain ofzwhereG(z a,b,9,c) is well-defined.
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Proposition 3 The generalized Fourier transform of the pricgkGa, b, 9,c) defined in|(3p), when

well-defined, is given by,

G(zab,d,c)= i—z(a(p{(zc) + boy (zc—19)).

The result is obtained via integration by parts,

+o0

izk [
¢ —;/ d94G(k:a,b,9,¢)

G(zab,d,c) = G(k;a,b,ﬁ,c)€

= i—z(a(p{(zc)+b(p{(zc—i8)).

The second line is obtained by applying Fubini’s theorem and applying the result on the Fourier trans-
form of aDirac function. Furthermore, since lim. G(k;a,b,9,¢c) = Go # 0, the limit term is well-
defined and vanishes only when im- 0. Therefore, the extension of the Fourier transform to the
complex domain is necessary for it to be well-defined. In general, the admissible dgnoéinde-

pends on the exact payoff structure of the contingent claim. Table 3 present the generalized Fourier
transforms of various contingent claims and their respective admissible domandoese domains

are derived by integrating by parts and by checking the boundary conditigns-asco.

Letz=z +iz, wherez andz denote, respectively the real and imaginary part det G(z a,b,9,¢)
denote the generalized Fourier transform of some contingent claim pricing fugtioywhich can be
in any of the forms presented in Ta@]e 3. Given thdr, a,b, 9, c) is well-defined, the corresponding
contingent claim pricing functio®(k) is obtained via the inversion formula:

1 iZj+00

- E izi—o0

G(K) e '%G(za,b,9,c)dz
The integration is performed along a straight line in the complpbane parallel to the real axig.can
be chosen to be any real number satisfying the restriction in Table 3. The integral can also be written
as
ezik

G(k) = n/oweiszq)(zr +iz)dz,
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which can be approximated on a finite interval by

6K ~ G (k) = & S e m kg (2 () 4 iz) A 37
(k) ~ ()—?kée d(z(j)+iz) Dz, (37)

wherez (j) are the nodes &f andAz is the spacing between nodes. Recall that the FFT is an efficient
algorithm for computing the discrete Fourier coefficients. The discrete Fourier transform is a mapping

of f = (fo,..., fn_1) " on the vector of Fourier coefficients= (do, ...,dny_1) ", such that

1 N—-1

=0

fie ¥ j=0,1,..,N—1 (38)

FFT allows the efficient calculation af if N is an even number, sdy = 2™, me N. The algorithm
reduces the number of multiplications in the requiddummations from an order of2 to that of

m2™-1 a very considerable reduction. By a suitable choicAzfand a discretization scheme fiar

we can cast the approximation in the form|[of|(38) to take advantage of the computational efficiency of
the FFT. For more details on the discretization scheme, see Carr and Madan (1999), who implement

the FFT algorithm on the pricing of a European call.

6. Summary and Future Research

In this paper, we proposed a general option pricing framework that unifies the vast option pricing
literature and captures the three key pieces of stylized evidence on financial securities: (1) jumps, (2)
stochastic volatility, and (3) leverage effect. Under our framework, the uncertainty of the economy is
governed by a time-change@\y process. The underlyinglky process provides a flexible framework

for generating jumps; the random time change captures stochastic volatility; and the leverage effect is
introduced through the correlation between thevy innovation and the time change. Furthermore,

by employing a complex-valued measure change, we can reduce the calculation of the characteristic
function for a time-changedévy process into the calculation of the Laplace transform of the random
time, which can then be solved under many instances via an analogy to the bond pricing literature.
For many choices of &vy processes and random times, we obtain the characteristic function in closed

form and price contingent claims via an efficient FFT method. A primary direction for future research
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is to investigate the empirical performance of the large variety of new option pricing models generated
by this framework. Another line of research is to explore other applications of the complex-valued

measure in the frequency domain.
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Appendix A. Measure Changes of Time-Changed évy Process Under Es-

scher Transforms

Monroe (1978) proves that every semimartingglean be written as a time-changed Brownian motion, where
the random timé€T; is a positive and increasing semimartingale. As an implication, every semimartingale can
also be written as a time-changeé\y processY; = Xy,. Furthermore, every semimartingde starting at zero

(Yo = 0), can be uniquely represented in the form

t t
Yt:at+Yf+// ydu+// yd(p—v), (A1)
0 Jiy>1 0 Jyl<1

whereaq; is a finite, increasing process adaptedApY;® is a continuous martingalg,is the counting measure
of the semimartingale andis its compensator. L = (Y, Y®) denote the quadratic variation4f. The triplet
(a,B,v) is uniquely determined by, and measur®. Hence, the components of this triplet are calledltdual
characteristicsof the semimartingal®; with respect tdP (see Jacod and Shiryaev, 1987). Forévy process

with Lévy characteristicy, X, ), the local characteristics are given fyt, Zt, [(dx)dt).

Now consider measure changes defined by Esscher transforms of the time-chamgeddcess:

t =E (yTth> .

The next proposition expresses the local characteristigés=oXy, underP(3) in terms of the [evy characteristics
of X underP.

Proposition 4 Suppose (Tis X-continuous, i.e., X is constant on all interv@ilg_, Ty], u> 0. Then the local

characteristics of the process Y und€of are given by

Vit dx) = dT € *n(dx),
B® = Im,
a® = (p+zs x(leﬁTX)n(dx)>Tt,
[x|<1

where(, Z, M) are the levy characteristics of X

The proof of this proposition can found inlikhler and Sgrensen (1997), page 230. We repeat it here for the

reader’s convenience.
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Proof. The characteristic componentXfunder the new measuR¥?d) is given by
W5 () = Wx(B+9) — Wx(®). (A2)

The Lévy characteristics ok underP(v) follows directly from [A32):

Nodx) = & *n(dx),
9 = 5,
W= utEs- x(l—eﬁTX)n(dx).
JIx <1

Under the assumption of the theorem, the local characteristigsapé found from those ok by applying the

random time transformatiofil;_ }, using the results found in Chapter 10.1 of Jacod (19809).
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Table 1
L évy Measures and Characteristic Exponents

Entries summarize thelvy measure and its corresponding characteristic exponent for éaglchm-
ponent specification.

Lévy Lévy Measures Characteristic Exponent
Components  1i(dx)/dx Y(6)

Pure Continuous &vy component
Mt -+ oW — —ip6+ 1020

Merton (76)

Finite Activity Pure Jump &vy components

(x—a)? _ 6a—1o%0
)\\/ﬁexp< 207 ) )\(1 g2 J)

[x—K| ok 1—
Kou (99) )\ﬁexp<—T) A1-¢ 1+92n2)
Eraker (2001) A%exp(—%) A 1—m
Infinite Activity Pure Jump &vy components
NIG eBXT?“;‘ L(alx)) —5[\/0(2—[32 \<a2 (B+10) }
: —v/2y+02)x N Ka (5 a —([3+|9)2>
Hyperbolic € d —In
P 5 | o ey (% (6v2) 1 BuB) [\/a2—<6+i9>2} [ i (8v/a?-?)
+1>oMe” a‘x‘)
Ce CM|x—-1 x<o0, v oy oy
CGMY { Ce M1 x50 Cr(=Y) [MY — (M —i8)Y +G— (G+i6)"]
VG b exp(_lxx> An (1-iva + Jo2?)
2
(e =/ 2+ 3 £ 5.V =1E/N)
LS cx7*1 x<o0 —cl (—a) (i8)”
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Table 2
Activity Rate Processes and Laplace Transforms of the Random Time

Under each class of activity rate processes, the entries summarize the specification of the activity rate
and the corresponding Laplace transform of the random time.

Activity Rate Specification Laplace Transform
v(t) Lr,(\) =E [eT]

Affine: Duffie, Pan, Singleton (2000)

= b
) = e (1) =bAt(>VLq—(b(§>)<t I)%Bb(t)z
T = o +Bf —y A
i A S ;s
i ) ’ _ t)) —
VZ) = a-+bZ. ) ag(jgg})% &
Generalized Affine: Filipovic (2001)
Af(x) = 0% 1" (x) + (a — kx) f'(x) exp(—b(t)vo—c(t)),
+ Jpg (F(x+y) = £00 + (%) (1AY)) b/(t) = A —kb(t) — 302b(t)?
(m(dy) +xp(dy)), + fpg (12U —b(t)(1AY)) u(dy),
a =a+ g (LAY)m(dy), c/(t) = ab(t) + fr; (1—eY™*V) m(dy),
Jrg [(XAy)ym(dy) + (1AY?) p(dy)] < oo b(0) = ¢(0) =0.
Quadratic: Leippold and Wu (2002)
exp| -z AN 2-b(1) - c(t)].
WZ) = —KkZ, o(Z)=I, A(t) =M — A1) K—KTA(T) = 2A(1)%,
V) = ZTAZ+b]Z +c. ’( Ab, —Kb(t) —2A(t) "b(t),

)=
)=
c(t)= 7\cv+trA() b(t)"b(t)/2,
0) = 0,b(0) = 0,(0) = 0.
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Table 3
Fourier Transforms of Various Contingent Claims

(a,B,a,b are real constants with < 3.)

Contingent Generalized transform Restrictions
Claim —iz(2) on Imz
G(k;a,b,9,c) aQy (zc) + by (zc—i9) (0,0)
G(—k;a,b,9,c) agy (—zc) + by (—zc—i9) (—00,0)
e"G(k;a,b,9,c) agy ((z—ia)c) +bey ((z—ia)c—id) (a,00)
eG(—k;a,b,9,c) agy(—(z—ip)c) + bey (—(z—iB)c—i9) (—o0,B)
e*kG(k; ag, by, 91,¢1) a1 @y ((z—ia)cy) + by ((z—ia)cy —i94)

+ePG(—k;ap,b2,92,02)  +axpy (—(z—iB)c2) + by (—(z—iB)c2—i92)  (a,P)
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