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Abstract

Price series that are 21.5 years long for six agricultural futures markets, corn,

soybeans, wheat, hogs, coffee and sugar, possess characteristics consistent with nonlinear

dynamics.  Three nonlinear models, ARCH, long memory and chaos, are able to produce

these symptoms.  Using daily, weekly and monthly data for the six markets, each of these

models is tested against the martingale difference null, one-by-one.  Standard ARCH tests

suggest that all series might contain ARCH effects, but further diagnostics show that the

series are not ARCH processes, failing to reject the null.  A long-memory technique, the

AFIMA model, fails to find long-memory structures in the data, except for sugar.  This

allows chaos analysis to be applied directly to the raw data.  Carefully specifying phase

space, and utilizing correlation dimension and Lyapunov exponent together, the

remaining five price series are found to be chaotic processes.



Long Agricultural Futures Prices:  ARCH, Long Memory,
or Chaos Processes?

1. INTRODUCTION

It is not uncommon that agricultural futures prices, like many other financial series: (1) are

distributed nonnormally with the fat tails (Taylor 1986, Yang and Brorsen 1993), (2) possess

autocorrelations that decay to zero very slowly, even for a very long time period (Taylor 1986),

and (3) seem to have non-periodic cycles.  Recently, three newly developed nonlinear models, i.e.,

autoregressive conditional heteroscedasticity (ARCH) process and its variants, long memory, and

chaos, demonstrate good power to capture these characteristics.1

Often in agricultural futures markets, a large price change is followed by another large

change, and a small change is followed by another small change.  The volatility of markets is not

constant over time.  It also is observed that in futures trading the variance of prices will often

increase as a contract gets closer to the maturity time.  Commercial users trade more actively on

those contracts which are nearby maturity due to more available information (Leuthold et al.

1989, p.10).  This may suggest an ARCH process. A process with ARCH errors can be stationary

with constant mean and finite and fixed variance, though its conditional variance is time

dependent.  Such processes often have fat tails in distributions and spikes in movements.  Many

empirical studies have found ARCH and its variants in financial markets.

A long-memory structure is a process characterized by long-term dependence and

nonperiodic cycles (Fang et al. 1994).2  The ARCH model considers that the nonlinear structure

                                               
1 From now on, “an ARCH model” refers to the autoregressive conditional heteroscedasticity process and its

variants.  “ARCH” will be used in a broad sense.

2 See Beran (1994, p. 42) for a formal definition.
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of a given series comes from the time-dependent conditional variance.  In a long-memory process,

the nonlinearity is the result of accumulated long-term dependence.  Though these two models

argue irregular price movements are an endogenous phenomenon of a market, they are stochastic

models.

In contrast to ARCH and long-memory processes, chaos represents the stochastic

behavior generated by deterministic systems (Tsonis 1992, p.3; Medio 1992, p.4). A chaotic series

is called a nonlinear, dynamic, and deterministic process.3  Though a chaotic orbit is generated by

a deterministic model, the observed behavior can be described only by probability for two reasons:

(1) a chaotic system is very sensitive to the starting point and coefficients, an error in starting

point/coefficients will be accumulated exponentially, and (2) “disorders” or “disasters” will

happen when the changes are accumulated to a certain point.  The observed dynamics look like

random processes, and conventional econometric methods tend to conclude they are random

walks.  However, they are the products of deterministic systems.4

The primary objective of this study is to conduct tests on prices from agricultural futures

markets to see if their behavior can be characterized as chaotic processes.  In empirical studies, it

is not hard to find evidence to argue that the price series with random appearance might be

nonlinear dynamic.  But, the difficulty is to tell what kind of nonlinear dynamics.  Common

practice to distinguish chaos system from other nonlinear systems is to use other nonlinear models

to filter data before pursuing chaos analysis, but, the simulations have proved that linear and

nonlinear filters will distort potential chaotic structures.  As shown later, most futures price series

                                               
3 See Brock (1986) for a formal definition of a chaos system.

4 As a good example, Cunningham (1993) applied the augmented Dickey-Fuller tests to a series generated by a
very simple chaotic logistic model, and the null hypothesis, that a unit root is present, could not be rejected.
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of this study are neither ARCH nor long-memory processes, providing a unique opportunity for

conducting more robust chaos tests.

At the same time, many empirical chaos studies contain other methodological

shortcomings, such as misuse of the BDS (Brock, Dechert, Schienlman 1987) test and arbitrary

specification of the parameters for chaos estimation.  This study corrects those mistakes and

advances chaos methodology.

 The next section reviews chaos literature. The third section presents the data and discusses

its distribution, stationarity, and structure of autocorrelations, conducts ARCH tests, and tests the

long memory of the price data series.  The fourth section conducts chaos empirical analysis.  The

last section summarizes and discusses the significance and implications of the research.

2. PREVIOUS EMPIRICAL STUDIES

Many applications of chaos theory have been made in the studies of financial markets.  For

example, Scheinkman and LeBaron (1989) and Hsieh (1991) analyzed stock markets, and Peters

(1991) and Vaidyanathan and Krehbiel (1992) investigated S&P 500 index.  The literature is

growing very fast.  This review concentrates on all available known empirical research on

commodity prices which have direct relevance to the present study.

Concerning the predictability of assets prices, Frank and Stengos (1989) used the

correlation dimension (CD) and the Kolmogorov entropy5 to analyze the rates of return of gold

and silver prices for the period 1974 to 1986 at the frequencies of daily, weekly, and biweekly.6

First, ARCH structures were identified in the series.  Analyzing the residuals of the ARCH

                                               
5 The definition of Kolmogorov entropy is very closely related to that of the Lyapunov exponent which is used in

this study.  They both measure the locally-diverging rate of a given series.

6  In this study as well as in other studies discussed in this section, the time periods for different commodities are
not always the same.  A table showing the exact time period for each commodity in each study is available
from the authors.  Only the longest time period is mentioned here.
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models, the study found the CD increases from values between 1 and 2 to values between 6 and 7

when the embedding dimension rises from 5,10, 15, until 25.  At the same time, in the cases of

computer generated numbers and reshuffled ARCH residuals, the CD increases from values

between 2 and 4 to values between 11 and 14.  Also, the Kolmogorov entropies are positive for

all the series concerned.  The study concluded that evidence of chaos had been found, which

implies that asset price changes can be predicted in a very short period but not in a long run.

DeCoster et al. (1992) were concerned with the issue of whether there exists a chaotic

structure in the behavior of futures prices.  They investigated daily futures prices of silver, copper,

sugar, and coffee for a period of about 20 years up to 1989.  The CD analysis was the major tool

of the study.  When the embedding dimension increases from 4 to 40, for the residuals of ARCH

processes, the CD increases from values between 1 and 3 to values between 12 and 15.  The fact

that the estimated CD values are always lower than those of shuffled data indicates the presence

of chaos.

There is one common problem for both studies of Frank and Stengos (1989), and

DeCoster et al. (1992).  According to the chaos theory as discussed later,  the estimates of the CD

for a chaotic system will saturate at a certain value as the embedding dimension rises.  However,

in their studies the estimates of the CD keep on increasing as the embedding dimension rises.  No

saturation in the estimated CD’s was observed.

Puzzled by the fact that no countercyclical production response has been made to earn

extra profits in the pork market, though pork cycles were observed, Chavas and Holt (1991)

suspected this has to do with chaos, since chaos produces nonperiodic cycles which can be

observed but not predicted.

Chavas and Holt worked on the ratios of pork to corn quarterly prices from 1910 to 1984.

GARCH structures were found in the series.  They applied the BDS test to and calculated the
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Lyapunov exponent (LE) for the residuals of GARCH processes, and found some evidence of

chaos, which confirms their initial suspicion that because of chaos, market agents are not able to

take actions to exploit profitable opportunities.

A particular problem with the Chavas and Holt (1991) study is the constructed phase

space.  In chaos theory, investigation of orbits is conducted in the dynamics of the phase space,

i.e., the orbit is being examined in the different phase spaces with varying embedding dimensions

to reveal chaotic properties of the data.  However, only a single phase space with the embedding

dimension 40 was constructed in Chavas and Holt (1991) study, on which the BDS test and the

LE estimation were made.

Streips (1995) followed Chavas and Holt (1991) to search for the solution to the problem

of the persistent hog price cycle.  He analyzed the monthly hog-corn price ratios for the period

1910-1994 and confirmed the chaos findings of Chavas and Holt (1991).  While he did not report

how the phase space was constructed, he found by using the Poincare section that the chaotic

structure of the hog-corn price ratios is very similar to a known chaotic function used for

modeling the measles epidemics.  This suggested existence of chaos, and argues that the

complexity of chaos prevents traders from taking advantage of the persistent hog price cycle.

To search for the underlying generating processes in the futures markets of the S&P 500

index and soybeans, Blank (1991) estimated the CD and the LE and conducted the BDS test on

the residuals of GARCH models since GARCH structures had been identified in these series.  All

the results were consistent with the existence of chaos.

Cromwell and Labys (1993) examined the monthly price behavior of sugar, coffee, cocoa,

tea, and wheat from 1960-1992.  It was found that an ARCH or GARCH model can represent

well the nonlinearity of the series for sugar, coffee, cocoa, and tea, but not for wheat.  The

nonlinear dynamics is still visible in the residuals of a GARCH process of wheat.  The estimates of
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the CD and the largest LE suggest that chaos is responsible for this remaining nonlinear dynamics

in the wheat market.  Except for the two problems discussed shortly about filters and the phase

space, the research procedures of Blank (1991) and Cromwell and Labys (1993) are generally

sound.

Yang and Brorsen (1992, 1993) analyzed nonlinear dynamics of daily cash and futures

prices for some agricultural commodities (corn, soybeans, wheat, etc.) as well as some metals for

the period of 1979-1988.  Both studies suggested that GARCH rather than chaotic structures

were the explanation of nonlinear dynamics existing in the series.  The limitations of their

conclusions regarding to GARCH effects will be discussed in section 3.  Here, their research

procedures of the chaos process are of concern.

In Yang and Brorsen’s (1992, 1993) chaos research, only the CD analysis was adopted to

examine the existence of chaotic structures.  The estimated CD increases from values between 3

and 4 to values between 6 and 8 when the embedding dimension increases from 4 to 6 and finally

to 8.  Then, the conclusion was made that no chaos had been found.  Unfortunately, the spread of

the embedding dimension is too limited to allow for a reliable conclusion about whether the CD

will saturate.

For example, both Frank and Stengos (1989) and Yang and Brorsen (1992, 1993) worked

on silver and gold markets for the similar time period.  In Frank and Stengos’ analysis, when the

embedding dimension goes from 5 to 25 in increments of 5, the CD saturates at values from 6 to

7.  Then, chaos was concluded.  In Yang and Brorsen’s (1992, 1993) case, the estimated CD for

daily silver and gold series reaches values between 5 to 8 when the embedding dimension goes to

8.  It may be the case that when the embedding dimension goes beyond 8, the values of CD will

stabilize.  So the range of the embedding dimensions in Yang and Brorsen’s study is too small.

As discussed later, the reliable phase space has to have the embedding dimension, p, as
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p U≥ +2 1  where U is the correlation dimension of the series under study.  Yang and Brorsen’s

analysis probably violated this rule.

Kohzadi and Boyd (1995) used the R/S analysis and the BDS test to detect the chaotic

structure in monthly cash cattle prices from 1922 to 1990.7  They found the evidence of chaos.

This is a weak study, since the R/S analysis and the BDS test can not lead to the conclusive

evidence of the presence of chaos.  More thorough analyses of the CD and the LE should have

been pursued.

There are two major concerns about the above empirical studies.  First, all researchers

filtered their data by either linear or nonlinear models, in most cases by ARCH-type models, then,

conducted the chaos analysis on the residuals.  The question is whether chaotic properties of the

process are invariant to such transformations.  Second, as discussed later, several important

parameters of the phase space need to be set when conducting chaos research.  However, most

empirical studies did not discuss how these parameters were set.

Chen (1993) found that the correlation dimension is not invariant to a smooth coordinate

transformation.  The transformation of a moving average model introduces random noise into the

original data, and may erase the fractal structure underlying the process.  An autoregressive

transformation will make the estimation of correlation dimension questionable since the

probability density of the phase space has been changed.  According to Chen, this was not

addressed by Brock (1986) when Brock proved that linear filters would not change the

dimensionally of the raw data.8

Nonlinear filters may also cause problems for chaos studies.  Hsieh’s (1991) Monte Carlo

simulations showed that when the BDS test is applied to examine the residuals of GARCH and

                                               
7 R/S analysis is defined later in the paper.
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EGARCH processes, the null hypothesis is rejected too infrequently, the asymptotic distribution

of the BDS test does not approximate the finite sample distribution well.  This implies that

nonlinear filters may at least alter the probability density of the phase space if not the

dimensionality of the raw data.

None of the above studies reported how the phase space was constructed.  When

constructing phase space Y(p,q)t to evaluate the correlation dimension, the embedding dimension

p should increase as required.  The time lag between the orbits of the phase space, q, is defined by

q=G/p, where G is the average length of non-periodic cycle of the data.  Two mistakes could be

made here. First, q is assumed arbitrarily; second q is fixed and is not the function of p.  These

two mistakes weaken the robustness of the chaos analysis.  None of the above studies reported

how these parameters had been determined.  This study demonstrates more appropriate

procedures.

In a word, using linear and nonlinear filters and not specifying the relevant parameters are

two major shortcomings of the previous empirical research.  The former makes it difficult to

identify chaotic structures even when they exist; the latter makes the conclusion doubtful

regarding having found or not found chaos.

3. DATA AND DATA CHARACTERISTICS

3.1 DATA SOURCES AND TRANSFORMATION

The futures prices of corn, soybeans, wheat, hogs, sugar, and coffee are selected.

Choosing these six commodities covers different aspects of agricultural markets.  Hogs as a

livestock commodity are nonstorable, the other five are storable.  Coffee has long

production/adjustment periods, the other five have short ones.  To the U. S. market, coffee and

                                                                                                                                                      
8 Some empirical studies referred to this Brock study as the justification for using various filters.
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sugar are mainly import goods, while the other four commodities are domestically produced and

exports are important.  Government policies and regulations have varying effects on these six

commodity markets.

Nearby contracts are used to construct long time series.9  Table 3-1 reports the contracts

used for each commodity, as well as the markets where the prices were recorded.

The time period covers from January 1, 1974 to June 31, 1995. The beginning point of the

data was set so as to avoid the collapse of Bretton Wood System in early 1970’s.  For each

commodity, daily, weekly, and monthly prices are investigated.  The monthly data are the prices

of the last day of every month, the weekly data are the Friday prices of every week, the daily

prices are closing prices of every trading day.  The price series of three time frequencies for a

given commodity essentially describe the same market.  However, since chaos, long-memory and

ARCH models are newly-growing fields of investigation, there are some aspects of these

processes which remain unclear, and applying a method to the same market but at different time

frequencies will help derive robust conclusions.

Table 3-1. Description of the Data

                                               
9 Geiss (1995) discusses the biasness the various methods of constructing long future prices can create.  In this

study, the same empirical analysis of ARCH, long memory, and chaos have been applied to the three major
transformations: differences, log differences, and the rate of returns.  In general, the results remain
unchanged with respect to the three transformations.   The nonlinear models discussed in this study are not
very sensitive to these specific data transformation procedures.
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Commodity Market1 Contracts Used
Daily
Observations

Weekly
Observations

Monthly
Observations

Corn CBOT March, May, July, September,
December

5422 1122 258

Wheat CBOT March, May, July, September,
December

5422 1122 258

Soybeans CBOT January, March, May, July, August,
September, November

5422 1122 258

Hogs CME February, April,  May, July, August,
October,  December

5428 1122 258

Coffee CSCE March, May, July, September,
December

5383 1122 258

Sugar CSCE March, May, July, September,
October

5383 1122 258

1: CBOT: Chicago Board of Trade, CME, Chicago Mercantile Exchange, CSCE: Coffee, Sugar and Cocoa
Exchange (New York).

Analyzing daily futures prices often creates a problem: the existence of limits for daily

price changes, based on the closing market price of the previous day.  Such series are truncated

and that might distort nonlinear modeling.  However, the analysis on the daily series is still

necessary because of the following. (1) It seems that such a truncation has no significant impacts

on the nonlinear dynamics of concern.  Yang and Brorsen (1992 and 1993) utilized nonlinear

modeling procedures on both cash and futures prices of corn, soybeans, and wheat for the similar

time period, and the results were not significantly different.10  (2) The daily prices of sugar and

coffee used for this study contain few daily limits, or are essentially untruncated, and later

comparisons between these two markets and the other four will show little or no affect on the

results due to truncation.  (3) Weekly and monthly series are analyzed for each market as well,

and they provide the results of untruncated series for each market.  (4) The truncation is the fact

of these markets, and the results of analyzing daily series allow interpretation from truncated

markets.  (5)  No other known nonlinear modeling on daily future prices has transformed the data

                                               
10 Cash prices are not subject to the same daily price limits.
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to avoid the effects of daily limits.  The present study follows the same practice so that

comparisons can be made between the results of this and other studies.

Heteroskedasticity is expected if examining a lifetime price series of a single contract since

the variance of prices often increase as a contract gets closer to its maturity.  However, if a price

series is constructed by various nearby contracts and each contract contributes only the section of

prices when it is heavily traded, over a long time period, such as 21.5 years in this study, the

“maturity effect” as such might be avoided.  Nevertheless, the question of whether the variances

of the data are time-dependent remains for further investigation.

Constructing a price series of nearby contracts has one problem, the price “jumps” when

changing contracts.  This study adopts a specific “roll-over” procedure to avoid the jumps.  When

switching contracts, on the last day of the old contract, the difference between the old contract

price and the new contract price is observed.11  Then, all prices of the new contract are adjusted

by this difference.  For a 21.5 year series, many adjustments of this kind will be taken and in some

cases prices even become negative.  However, such data remain suitable for analysis because price

changes are unaffected by the sign.  Most importantly, unrealistic “jumps” are avoided.

3.2 NORMALITY

Table 3-2 reports descriptive statistics for all eighteen series under consideration.  All

means are not statistically different from zero if the standard deviation could be used to produce t-

ratios.12  However, such a standard t test could not be conducted because the unconditional

distributions of all series, except hogs, are nonnormal--skewed and leptokurtic, as discussed

below.

                                               
11 Contracts are rolled forward on the last trading day of the month preceding delivery month.

12 The series studied here are price changes, not the rate of returns.  The fact that the means of the series of price
changes are equal to zero only implies that price level has not changed over the period under the study.
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The coefficients of skewness g1 and excess kurtosis g2 quantify the deviation from a

normal distribution and are defined by Smillie (1966).  g1 and g2  are standard normal distributions

with the mean of zero.  Jarque and Bera (1980) developed an O statistic with a χ2 distribution to

summarize the deviation from a normal distribution.

Except for the hog series, the remaining fifteen series are far from normal distributions, the

coefficients of skewness and kurtosis are strongly statistically significant and indicate that the

distributions of the price change series are skewed and have fat tails.13  Jarque-Bera’s χ2  statistics,

which summarizes the deviation of the third and fourth moments from the parameters of a normal

distribution, are strongly significant as a result. The significant deviation from normality can be a

symptom of nonlinear dynamics (Fang et al. 1994).

Table 3-2. Descriptive Statistics of Price Changes

Mean1 St. Dev2 g1

(t-ratio)
g2

(t-ratio)

O

Monthly
Corn -1.58 17.95 1.31

(8.73)
8.22

(27.43)
765.9

Soybeans -3.80 54.22 0.66
(4.13)

7.46
(24.86)

587.7

Wheat -2.14 25.16 -0.52
(-3.46)

3.08
(10.27)

107.8

Hogs 0.24 3.43 -0.22
(-1.47)

0.50
(1.66)

4.49

Coffee 0.94 15.30 1.11
(7.33)

4.29
(14.3)

239.6

Sugar -0.13 2.25 0.68
(4.53)

10.18
(33.9)

1081

Weekly
Corn -0.317 7.62 0.14

(2.00)
4.89

(33.49)
1108.9

Soybeans -0.798 24.31 -0.32
(-4.45)

5.08
(34.79)

1215.3

Wheat -0.437 11.65 0.143
(1.96)

4.28
(29.31)

837.3

Hogs 0.062 1.46 -0.045 0.38 6.96

                                                                                                                                                      

13 This result differs from that of Taylor (1986) who found that the rate of return of 13 daily agricultural futures
prices (corn, cocoa, coffee, sugar and wool) are approximately symmetric, though they have high kurtosis.
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(-0.62) (2.53)
Coffee 0.21 7.06 1.13

(17.94)
13.82

(94.56)
9079

Sugar -0.02 1.08 -0.52
(-7.43)

14.38
(98.22)

9620

Daily
Corn -0.070 3.378 -0.072

(-2.18)
3.30

(50.06)
2464.3

Soybeans -0.171 10.28 -0.171
(-5.27)

2.89
(43.82)

1910.1

Wheat -0.100 5.44 -0.002
(-0.06)

2.92
(44.24)

1920.6

Hogs 0.011 0.68 -0.044
(-1.33)

-0.133
(-2.21)

5.83

Coffee -0.046 3.10 1.098
(33.27)

21.022
(318.5)

99984

Sugar -0.005 0.49 -0.415
(-12.57)

11.207
(169.8)

28262

Critical Value 5% sig. 1.96 1.96 3.84

1: The units for corn, soybeans, and wheat are cents per bushel, for hogs, coffee and sugar are cents per pound.
2: St. Dev: Standard deviation.

Across the time frequencies, daily data are further away from normal distributions than

weekly and monthly data.  Across the commodities, the deviation of coffee and sugar from a

normal distribution are more severe than that of corn, wheat, and soybeans.  Hog data are close to

normal distributions at all three time frequencies, presumably due to nonstorability of hogs and

that hog futures prices demonstrate more independence than those of storables.

3.3 STATIONARITY

Besides normality, another important property of data is stationarity.  Of concern here is

covariance stationarity or weak stationarity.  To test the stationarity of a time series Yt, the

conventional augmented Dickey-Fuller τ test is used.  However, since the price change series

analyzed here likely contain heteroscedasticity, Phillips and Perron (1988) semi-parametric test

which allows for serial correlation and heteroscedasticity is also used.

Table 3-3. The Augmented Dickey-Fuller (ττ) and Phillips-Perron (Z) Tests

Corn Soybeans Wheat Hog Coffee Sugar

τ Z τ Z τ Z τ Z τ Z τ Z
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Monthly -7.58 -16.3 -8.38 -16.7 -6.56 -13.9 -7.94 -16.2 -6.98 -14.9 -7.12 -11.3
Weekly -13.3 -31.9 -13.3 -33.5 -12.4 -33.9 -13.5 -30.2 -13.6 -34.2 -11.8 -30.3
Daily -23.4 -69.8 -23.7 -69.8 -23.4 -73.7 -22.1 -73.5 -21.6 -69.5 -23.9 -69.4

The critical value at 5% significance is 2.86.  The nulls are that the coefficient equals zero.

The results from Table 3-3 show that all the series are stationary, do not contain unit

roots.  Phillips-Perron Z statistics, which relaxes the assumption that error terms have to be white

noise, are usually more than twice as large as the Dickey-Fuller τ statistics.

The magnitude and τ‘s and Z’s  are similar for all commodities for a given time frequency.

The hog series, which looked more stationary than others, do not carry larger calculated statistics.

For a given commodity, high time frequency series are more “stationary” than low time frequency

series.

3.4 STRUCTURE OF AUTOCORRELATIONS

For a linear time series model, typically an autoregressive integrated moving average

(ARIMA(p,d,q)) process, the patterns of autocorrelations and partial autocorrelations could

indicate the plausible structure of the model.  At the same time,  this kind of information is also

very important for modeling nonlinear dynamics.  In Taylor’s (1986) study, the long lasting

autocorrelations of the data suggest that the processes are nonlinear with time-varying variances.

The basic property of a long-memory process is that the dependence between the two distant

observations is still visible.  As Barnett and Chen (1988) and Chen (1993) demonstrated, many

chaotic processes have long lasting autocorrelations though any individual one is not significant.

For six series of daily price changes, 200 autocorrelations and partial autocorrelations

were estimated, i.e, j=1,...,200.  For six series of weekly price changes, j=1,...,100. For six series

of monthly price changes, j=1,..., 48.

Four features of the structures of partial autocorrelation and autocorrelations emerged for

all eighteen series.  First, the magnitude of autocorrelations and partial autocorrelations is very
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small.  In terms of absolute values, the largest of autocorrelations and partial autocorrelations are

about 0.06 for daily series, 0.10 for weekly series, and 0.20 for monthly series.  For conventional

linear models, this means the dependence among the elements is weak.

Second, the first autocorrelations and partial autocorrelations for all eighteen series are

not significantly larger than the rest of others, and in most cases, they are not even the largest.

The first several, usually the second, partial autocorrelations and autocorrelations slightly exceed

the significant boundary defined as 1/T0.5.  There are some partial autocorrelations and

autocorrelations at much later time lags that exceed the significant boundary to the same extent.

This indicates the dependence between nearby observations are not necessarily stronger than that

between distant observations,  or, the most recent market information is not necessarily more

useful than older information.

Third, there is no evidence that the magnitude of partial autocorrelations and

autocorrelations become small as the time lag, j, becomes large.  The number of lags chosen here

is large, yet the magnitude of partial autocorrelations and autocorrelations at the end of the above

time lag sequences are almost as large as those at the beginning.  Roughly it can be argued that

the importance of market information does not decay as the time the information was collected

spans.

Fourth, there are no clear patterns describing the fluctuation of partial autocorrelations

and autocorrelations.  No seasonal and other periodic cycles were observed.

3.5 THE ARCH TEST

All series for six commodity markets demonstrate uneven volatility over the whole sample

period.  In some time periods the series vary more dramatically than in other periods.  This implies

time-dependent conditional variances.  Most series are found non-normally distributed with

excessive skewness and kurtosis.  Even so, the unit root tests suggest unconditional mean and
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variance of the data are finite and constant.  The autocorrelation and partial autocorrelation

analysis shows that the short-term dependence is obviously weak, but the autocorrelations,

though they are very small, are very persistent.  All of these symptoms potentially suggest

nonlinear dynamics, as  Taylor (1986) argued.

ARCH theory admits the nonnormality of unconditional distribution of the data.  With the

assumption of normality of the conditional distribution, an ARCH-type structure could be built to

capture the time-dependent variances.  Using such a variance function as an input the maximum

likelihood estimates of mean become consistent and efficient.  Financial series are typically found

nonnormally distributed with the time-varying volatility.  Therefore, ARCH models have become

very popular in financial time series modeling.

To define an ARCH process, suppose a stochastic process Yt  is generated by an AR(p)

process:

Y Yt j t j t
j

P

= + +−
=

∑α α ε0
1

. (3.1)

There exists an information set, Ψt t tY Y− − −=1 1 2{ , ,.....}, such that:

ε t t N h| ~ ( , )Ψ −1 0 , (3.2)

where

ht i t i

i

k

= + −

=
∑θ θ ε0

2

1

(3.3)

with

θ0>0, θi ≥0, i=1,..k, (3.4)

to ensure the conditional variance is positive.  The process Yt is called AR(p) with

ARCH(k) errors.
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In equation (3.3), conditional variance of current error εεt  is an increasing function of the

magnitude of lagged errors, εt-i , i=1,...,k.  Hence, large errors (in terms of absolute values) tend

to be followed by large errors, and small errors followed by small errors. k determines the length

of time for which a shock persists in conditioning the variance of subsequent errors.  The larger

the value of k is, the longer a spiking period will last.  Therefore, those spikes might not be the

results of exogenous structural changes, but of the predictable nonlinear dependence.

The standard Lagrange Multiplier (LM) test is applied to all eighteen series to test whether

there are ARCH(1) effects in the processes.  Since ARCH(1) is the simplest structure of the

ARCH and its variants, if ARCH(1) exists, further investigation of more suitable ARCH

structures is encouraged. The LM test is conducted on the residuals of those AR models for

ARCH(1) effects.  Table 3-4 reports the results.

Table 3-4.  LM Tests of ARCH(1) Effects

Monthly Weekly Daily
Corn 10.7 145.5 952.6

Soybeans 20.1 116.1 941.9

Wheat 11.7 87.3 531.8

Hogs 4.9 7.7 60.8

Coffee 12.5 15.8 134.1

Sugar 7.7 54.2 857.9

Critical values(5%) 3.84 3.84 3.84

The null hypothesis is Yt  carries no ARCH.  The alternative is Yt carries ARCH.

The critical value is the χ2 distribution with 1 degree of freedom.  All calculated LM

statistics are larger than the critical value.  The null hypothesis has been rejected in all eighteen

cases.  And, the higher the time frequency is, the more the calculated LM statistics exceeds the

critical value.  Among these commodities, hogs are noticeably much less “ARCH” than others.
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The previous analysis of autocorrelation and partial autocorrelation of all eighteen series

indicated that short memory of the data is very weak and does not have clear patterns.  As a

preliminary effort, ARMA(1,1) is estimated for all eighteen series,14 i.e.

Y Yt t t t= + +− −α ε βε1 1 . (3.5)

ε σt N~ ( , )0 .

Since this study utilizes price differences, i.e., Yt is the series of price differences, the

above ARMA(1,1) is equivalent to ARIMA(1,1,1).  Further examination is pursued to determine

the autocorrelation and partial autocorrelations of ε2   in the equation (3.5) in order to specify k

and g of GARCH(k,g).  Following Box-Jenkins procedures, the autocorrelations of ε2  are

estimated to 24 lags and partial autocorrelations are estimated up to 12 lags.  Table 3-5 describes

the results.

For all eighteen series the magnitudes of autocorrelations and partial autocorrelations are

noticeable, the maximum is 0.43.  However except for monthly corn and soybean data, ε2  for

other 16 series decay to zero very slowly.  The autocorrelations and partial autocorrelations of

many ε2  series are still significant even at 24 or 12 time lags, this especially true for weekly and

daily series. And, most ε2  series do not have clear decay patterns, the values of autocorrelations

and partial autocorrelations exceed the significant-level boundary randomly.  As a reflection of

Table 3-5.  The Structures of Autocorrelation and Partial Autocorrelations of εε2   Series

No. of significant AC Largest AC (lag) No. of significant PAC Largest PAC (lag)
Monthly

Corn 1 0.14(1) 1 0.14(1)
Soybeans 2 0.28(1) 1 0.28(1)

Wheat unclear 0.21(3) unclear 0.20(3)
Hogs unclear 0.17(14) unclear 0.16(1)

Coffee unclear 0.22(1) unclear 0.22(1)

                                               
14 Similar procedure was also done by Fang et al. (1994).  Tthough no significant short-term dependence was

found in 2,527 daily currency futures prices, they still used AR(3) as a filter.
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Sugar unclear 0.42(3) unclear 0.38(3)
Weekly

Corn 7 0.40(1) 5 0.40(1)
Soybeans 11 0.31(1) 7 0.31(1)

Wheat unclear 0.29(1) unclear 0.29(1)
Hogs unclear 0.11(2) unclear 0.10(2)

Coffee unclear 0.41(2) unclear 0.41(1)
Sugar unclear 0.41(6) unclear 0.27(6)

Daily
Corn unclear 0.43(1) unclear 0.34(1)

Soybeans unclear 0.42(1) unclear 0.42(1)
Wheat unclear 0.32(3) unclear 0.32(3)

Hogs unclear 0.17(14) unclear 0.16(1)
Coffee unclear 0.34(9) unclear 0.29(9)
Sugar unclear 0.43(2, 3) unclear 0.40(1)

AC and PAC are autocorrrelation and partial autocorrelation, respectively.

this, for many ε2  series, the largest autocorrelations and partial autocorrelations are not

necessarily located at lag 1.  “Unclear” in Table 3-5 refers to either of the two or both situations:

within 24 or 12 time lags autocorrelations or partial autocorrelations do not decay to zero, or/and

autocorrelations and partial autocorrelations break significance boundaries randomly, and no

judgment could be made that whether autocorrelations and partial autocorrelations have

statistically decayed to zero.

This proposes a significant difficulty for specifying the structure of ARCH(k) or

GARCH(k,g).  For monthly corn and soybean data, GARCH(1,1) might be sufficient, but for

remaining sixteen series, no structures are suggested.  French et al. (1987) modeled 57 year

(1928-84) daily S&P stock index data with 15,369 observations, GARCH(2,2) was found proper.

For most financial data, GARCH(1,1) was sufficient (Bollerslev et al. 1992, Bera and Higgins

1995). The situation of the present data suggest that ARCH or GARCH is not a proper

intepretation of nonlinear dynamics contained in the series under study.15

                                               
15 It might be argued that wrongly-specified ARMA(1,1) is responsible for the unclear structure of the

autocorrelation and partial autocorrelations of ε2  series, since ARMA(1,1) has little explanatory power in all
cases.  The series might be pure ARCH or GARCH processes where the conditional mean is simply Yt=εt.
Accepting this reasoning, the structure of autocorrelation and partial autocorrelation of Y2  has been analyzed
(results are available upon request).  However, the situation described in Table 3-5 remains the same.
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3.6 LONG-MEMORY TEST

Autoregressive Fractally Integrated Moving Average (AFIMA) model is the newest

development in long-memory process studies. For an AFIMA(p,d,q) model:

Φ Ψ( )( ) ( )B B Y Bd
t t1− = ε , (3.6)

where 0<d<1 and typically 0<d<0.5,  Φ(B) and Ψ(B) are the polynomials of the order p

and q, respectively.  The specification of p and q will affect the maximum likelihood estimates

(MLE) of Φ(B) and Ψ(B).  By examining the structure of autocorrelations and partial

autocorrelations previously,  it was found for all eighteen series the short memory was very weak,

which suggests that both p and q should be specified as 0.  The estimation will be based on the

specification of AFIMA(0,d,0).  Estimates of d and standard deviations, as well as the values of

likelihood of the specifications are in Table 3-6.
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Table 3-6.  AFIMA Estimates of d

AFIMA Daily Weekly Monthly
D likelihood d Likelihood d likelihood

corn (0,d,0) 0.029 -14286 0.051 -3864 0.000 -1106
soybeans (0,d,0) 0.036 -20321 0.005 -5167 0.000 -1390
wheat (0,d,0) 0.000 -16874 0.020 -4342 0.052 -1192
hogs (0,d,0) 0.004 -5629 0.084 -2012 0.000 -681
coffee (0,d,0) 0.055 -13719 0.030 -3780 0.070 -1064
sugar (0,d,0) 0.050 -3738 0.104 -1664 0.231 -566

In AFIMA(0,d,0) specification, in all but two sugar cases, estimates of d are very close to

zero.  The magnitude of d estimates for weekly and monthly sugar series, 0.104 and 0.231,

respectively, are noticeable compared with the series of other markets, but the result of daily

sugar series is not different from those of daily series of other commodities, where d is close to 0.

When d=0, AFIMA(0,d,0) becomes

Yt t= ε ,

i. e., the series is white noise.  The AFIMA model tells that except for the sugar market,

the other five markets contain no long memory.

As a parametric statistical model, it is understandable that the AFIMA model might be

more sensitive to the noise in the data than to its sample size if the sample size has exceeded

certain thresholds.  In Table 3-6 for sugar series, the value of d decreases as time frequency

increases.  That no long memory was found in the daily series is likely due to the fact that it has

more noise than weekly and monthly series.

The interesting and important questions here are why the sugar market is different from

other markets and what are the implications of these differences.  The discussion on these

questions will be made in section 5 after all three underlying hypotheses have been tested.
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4. CHAOS TEST

The evidence reported above of nonnormal distributions, heteroscedasticity, and slowly-

decaying autocorrelation in the data suggests nonlinear dynamics.  The analysis in the previous

section indicates that ARCH and long-memory processes are not capable of accounting for the

possible nonlinear dependence in the data.  This provides a unique opportunity for chaos tests,

i.e., a chaos test can be conducted on the data directly without involving filters.

The correlation dimension (CD) is one of major tools in detecting the existence of chaos

by measuring the dimension of a strange attractor.  A pure stochastic process will spread all space

as evolving, but the movements of a chaotic system will be restricted by an attractor. The concept

of a attractor is central to chaos theory, most chaos modeling techniques are about the behavior of

orbits around attractors.  But, attractors are not unique to chaos systems,  a convergent linear

system might have a fixed point as its attractor, and a cointegrated system will have a linear

function as its attractor.  Also, a long-memory process might also have an attractor (Granger and

Terasvirta 1993).  Unique to chaotic processes is that attractors typically have noninteger

dimensions which are one of the sources for the random appearance of series.  However, because

of noise, there are exceptions, a few chaos systems may have integer attractors.

This property proposes a difficulty in using CD to detect chaos.  If the integer dimension

for an attractor is provided by the CD analysis, it is not clear whether the system is chaos.

Therefore, for testing the existence of chaos the CD analysis provides necessary but not sufficient

conditions.  On the one hand, the CD analysis should be complemented by other techniques, such

as the Lyapunov exponent (LE), and on the other hand, a chaos study must be combined with

other nonlinear dynamics analysis, such as long-memory and ARCH processes.16

                                               
16 This does not mean to use other nonlinear models as filters for the reasons discussed later.
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The LE measures local divergence or convergence of a pair of nearby orbits when the

orbits are around the attractor.  According to Wolf et al.’s (1985) algorithm, if the largest LE is

positive, the system is chaos.  However, a random walk exhibits divergence in any region of its

space, and the largest LE for a random walk will be positive.  Applying only the LE can not

distinguish a chaotic from a pure stochastic process.  This requires the support of the CD analysis.

Both CD and LE are nonparametric measurements, but the BDS statistic based on the CD

has a well-defined distribution and is used widely in empirical work.  Hsieh (1991) did extensive

Monte Carlo simulations to examine the ability of the BDS statistic to detect the departure from

identical independent distributions (IID) and obtained some very important results describing the

strengths and weaknesses of the BDS statistic.  Unfortunately, many applications of the BDS tests

have ignored these results.

Hsieh’s simulations showed  that the BDS statistic has good power to detect at least four

types of non-IID: linear dependence, nonstationarity, chaos, and nonlinear stochastic processes.

The rejection of IID by a BDS test does not provide direct evidence of chaos.  The process could

be any of other three processes.

For this reason, many empirical studies have applied the BDS test on the residuals of

ARIMA and ARCH-type filters.  Hsieh’s simulations showed that the asymptotic distribution of

the BDS statistic is well preserved when using linear as well as some nonlinear filters.  But,

ARCH-type filters distort the distribution of the BDS statistic, and no robust statistical inferences

can then be made.

It was also demonstrated by Hsieh that the BDS statistic is robust to lepkurtostic nonlinear

series, but when facing asymmetric nonlinear processes, the BDS statistic can not reject the IID

null hypothesis as frequently as it should.  The BDS statistic has troubles detecting nonlinear

processes with asymmetric distributions.
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Section 3 showed that the data examined here carries “strange” variances and can not be

represented by ARCH-type models.  Also, all eighteen series are nonlinear processes with

asymmetric distributions as reported in Table 3-2.  Therefore, the BDS test is not proper for the

present study.

4.1 THE CORRELATION DIMENSION ESTIMATION

The series of price differences of six commodities in this study contain no obvious linear

structures, though evidence of nonlinear processes are strong.  There are three nonlinear

structures examined as alternatives for the possible nonlinear processes: ARCH type, long

memory, and chaos.  In section 3, it was shown that ARCH models failed in explaining the

potential nonlinear structures.  The modeling practices of long-memory theory has concluded that,

except for sugar, the other five markets are not long-memory processes either.  This provides a

special stage for chaos tests, i.e., chaos analysis can be conducted directly on the data of these five

commodities rather than the residuals of filters.  The three sugar series are still analyzed for chaos

for comparison purposes.

4.1.1 Determining the Parameters for Estimating the CD

The correlation dimension (CD) is estimated by

d p C r r
p r

p( ) lim lim((ln ( )) / ln( )),=
→∞ →0

(4.1)

where, p is the dimension of phase space Y(p,q)t, and r is an arbitrary small number. Cp(r)

is called the correlation integral, which is defined as:

{ }C r i j M p q M p q r i T j T i j T Tp
T

i j p r p p( ) lim# ( , ): ( , ) ( , ) , , / ( ),= − < ≤ ≤ ≤ ≤ ≠ −
→∞

1 1 2 . (4.2)

In order to execute the estimations of (4.1) and (4.2), the phase space, Y(p,q)t , has to be

specified.  p, the embedding dimension, and q, the distance between the histories of the phase

space, are the two parameters that need to be determined.
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According to the Taken theorem, the embedding dimension of the phase space has to

satisfied the condition, p U≥ +2 1,  in order to obtain a robust estimation, where U is Hausdorf

dimension.  Practically, the Hausdorf dimension (U) will be approximated by the correlation

dimension (d).  The above rule of determining the minimum embedding dimension is changed as

p d≥ +2 1.  The task of the present study is to search for low-dimension chaos.  Usually, chaos

with a correlation dimension less than 5 is considered low-dimension chaos.  Suppose the

correlation dimension, d, is 5, according to p d≥ +2 1, the minimum requirement for the

embedding dimension, p, will be 11. Then, this study sets the embedding dimension from 1 to 40

in increments of 1.  That is enough for detecting low-dimension chaos.

None of the previously reviewed chaos empirical studies discussed the determination of q,

which should be G/p, where G is the average length of nonperiodic cycles of the series.  The

classical R/S analysis provides support in identifying the average length of nonperiodic periods

G.17

Another important parameter is the arbitrarily small number r in equations (4.1) and (4.2).

It was observed in the preliminary tests that the estimates of CD are quite sensitive to the values

of r.  In the empirical studies, r is supposed to be a series from a given small number to a much

smaller number, which is close to zero. If the minimum of r is set too close to zero, all correlation

integrals will be 0 as r goes from a given value to zero.  If the minimum of r is set too distant from

zero, all correlation integrals will be 1 as r goes from a given value to zero.   r should be set in

such a way that when the embedding dimension goes to infinite and r goes to 0, the correlation

integral could range from 0 to 1.

                                               
17 R/S refers to rescaled range analysis, and relates to the Hurst exponent (see Peters 1991).  R/S analysis is used in

the current study, but details will be reported elsewhere.
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After numerous experiments, Wolf et al. (1985) suggested the minimum r should be set as

10% of the range of the data, i.e. the distance between the minimum and maximum.  The present

study follows this rule of thumb.  Table 4-1 reports G and the minimum of r determined for the

present study, where G is suggested by the classical R/S analysis, and the minimum of r is directly

derived from the data.

Table 4-1. The Parameters of the Correlation Dimension Estimation

Daily Weekly Monthly
G minimum of r G minimum of r G Minimum of r

Corn 250 4.6 52 10 12 16.8
Soybeans 250 14 52 26.6 12 53.7
Wheat 250 6 52 13 12 21
Hogs 250 0.3 52 1.1 12 2.5
Coffee 100 7.1 28 10 8 11.8
Sugar 250 0.7 52 1.7 12 25

4.1.2 The Correlation Dimension Estimates

Using the parameters defined in Table 4-1, equations (4.1) and (4.2) are estimated for all

eighteen series.  There are two estimation steps:

First, the embedding dimension, p, is set from 1 to 40 in increments of 1.  For a given

embedding dimension p, r is allowed to go to zero (the minimum of r) from a given value.18  At

each r, the correlation integral, C(r), defined by equation (4.2), is estimated.  Then, regressing

log(C(r)) on log(r) produces the correlation dimension at the embedding dimension p, and is

denoted d(p).

Then, observe the changes of d(p) as p goes from 1 to 40 in increments of 1.  If d(p)

appears to reach a fixed value as p increases, the “saturated” value is the final measurement of the

                                               
18 The present calculation regime is adopted from Peters (1991), in which the “given value” equals 13 times the

minimum of r.
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correlation dimension, which could be evidence of chaos.  However, if d(p) also increases as p

rises from 1 to 40, there is no proof that a strange attractor exists, and unlikely that chaos exists.

The results are reported in Figure 4-1, which consists of eighteen panels.  Each of them

describes the results of CD estimates for each corresponding series.  The panels report the process

of d(p) as the embedding dimension p goes from 1 to 40.

According to chaos theory, two aspects need to be examined when looking at the

estimates of CD for a given series.  The first is to see if the CD’s saturate as the embedding

dimension goes to infinity.  Only the saturated CD values are considered final estimation of CD.

The second is to see the magnitude of the saturated CD’s.  Practically, high CD’s can not

distinguish between the deterministic and purely stochastic processes.  Low CD’s, typically less

than 5, interest economists since the chaos system with low CD’s have better chances to be

simulated.

As the embedding dimension goes from 1 to 40, for the six daily series the saturation of

the CD is not very obvious in most cases except for hogs, where the CD’s reach the peak at about

4 and then declines.  For the series of corn, soybean, and wheat, the growth pace of CD’s clearly

slows down.  The saturation is possible if the embedding dimension increases.19

For the six weekly prices, except coffee, the CD’s tend to saturate as the embedding

dimension goes from 1 to 40.  Again, the CD’s of hogs peaks at about 3.5 and then declines.  For

the six monthly series, except for sugar, the CD’s stabilize in the range between 2 and 3.  The

coffee, hog, and wheat series tend to decline after that.

The estimates of the sugar series are very interesting.  In the daily case, the CD

approaches 2.5. But in weekly and monthly cases where saturation is observed, the CD stabilizes

                                               
19  The embedding dimension stops at 40 because of the sample size.  Larger p requires very larger data sets.
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at integers of 2 and 1, respectively.  Because of the noise factor, it is likely that the estimates from

weekly and monthly series are more reliable.  Comparing with other five commodities, two

aspects are noticeable.   First, these saturated values are integer instead of noninteger of typical

chaotic processes.  This implies that the attractor for the sugar market, if there is any, is not

‘strange’ and is not a chaotic attractor.  Second, these values are the lowest among the six

commodities at each time frequency.  This might imply that the sugar market is less “noisy” than

other markets.

When the time frequency decreases, it is more likely to identify the correlation dimension.

This is related to the noise in the data.  Monthly data contain much less noise than daily data.  It is

advantageous for identifying chaos to have three series with different frequencies for the same

market.  Based on the above evidence, it could be suggested that all series except sugar contain

stranger attractors with fractal correlation dimensions.  Table 4-2 reports the approximated

correlation dimension estimates for the monthly and weekly series of coffee, corn, hogs, soybeans

and wheat.  The estimates for daily series were not ensured because of “saturation” problems.

The correlation dimensions of these five futures markets are about 2 to 4, which indicates low-

dimension chaos.

Table 4-2.  Approximated Correlation Dimension Estimates*

Monthly Weekly
Coffee 2.53 2.40
Corn 2.68 3.13
Hogs 2.84 3.58
Soybeans 2.37 2.84
Wheat 2.84 3.37
*The estimates are the averages of the five CD values located in “saturation region” in Figure 4-1.

However, the existence of low-dimension attractors is not a sufficient condition for the

existence of chaos.  Additional evidence needs to be searched for, the largest Lyaponuv exponent.
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4.2 LYAPUNOV EXPONENT ESTIMATION

The Lyapunov exponent (LE) is considered as one of most useful diagnostics for chaotic

systems.  Wolf et al. (1985, p.285) illustrated the intuition of the LE as follows:

“Lyapunov exponents are the average exponential rates of divergence or
convergence of nearby orbits in phase space.  Since nearby orbits correspond to
nearly identical states, exponential orbital divergence means that systems whose
initial differences we may not be able to resolve will soon behave quite differently -
predictive ability is rapidly lost.  Any system containing at least one positive
Lyapunov exponent is defined to be chaotic, with the magnitude of the exponent
reflecting the time scale on which system dynamics become unpredictable.”

As in the case of CD estimation, some parameters need to be determined before initiating

estimation.

4.2.1 Determining the Parameters for Estimating the LE

From Wolf et al. (1985), the largest Lyapunov exponent algorithm can be expressed as:

LE q L t L tj j
j

p

= +
=

∑( / ) ln( ( ) / ( ))'1 1
1

. (4.3)

The estimation is to be conduced in a phase space Y(p,q)t , where the embedding

dimension will be a constant, which should be the integer just larger than the actual correlation

dimension of the strange attractor.  Since the correlation dimensions for the monthly and weekly

series of the six commodities were estimated between 2 and 4, then p=4. For the daily data, the

correlation dimension estimates lie between 3 and 5.  But, considering the noise in the daily series,

assuming p=4 is also reasonable for LE estimation for daily series.  Once p is decided, q=G/p.  G,

the average length of nonperiodical cycles of a series, is also the distance between L’(t) and L(t).

G was reported in Table 4-1.

The LE measures the rate at which two nearby orbits from the same series locally diverge

away from each other.  However, if the distance between the two orbits at a certain point is too
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large, it might not be the local divergence that has been measured.  Similarly, if the distance

between the two orbits at a certain point is too small, the divergence being measured might just be

the effect of noise.  Therefore, a maximum (E) and a minimum (e) need to be set such that:

e L j L j E< + − <' ( ) ( )1 for any j=1,2,..p.

Following Wolf et al. (1985), E is set as the value which is 10% of the range of the series,

e is 10% of E.  Table 4-3 describes the parameters determined for eighteen series.

Table 4-3. The Parameters of Lyapunov Exponent Estimation

Daily Weekly Monthly
G q=G/p* E e G q=G/p* E e G q=G/p* E e

Corn 250 62 4.6 0.46 52 13 10 1 12 3 16.8 1.68
Soybeans 250 62 14 1.4 52 13 26.6 2.66 12 3 53.7 5.37
Wheat 250 62 6 0.6 52 13 13 1.3 12 3 21 2.1
Hogs 250 62 0.3 0.03 52 13 1.1 0.11 12 3 2.5 0.25
Coffee 100 25 7.1 0.71 28 7 10 1.0 8 2 11.8 1.18
Sugar 250 62 0.7 0.07 52 13 1.7 0.17 12 3 25 2.5

*p, the embedding dimension, is equal to 4.

4.2.2 The Lyapunov Exponent Estimates

When two nearby local orbits are chosen, their locally-diverging behavior is being

examined over time by equation (4.3).  When the LE is being estimated, a given series, Yt, will be

regrouped into a series of incremental segments S(i), i=1,2, ..., k.  S(i) is actually a segment of Yt,

the length of S(i) increases when i increases.  And at the end, S(k) will be the original series Yt as k

is large enough.  At each S(i) equation (4.3) is evaluated and a LE estimate is obtained.  The

equation will be re-evaluated as S(i) expands.

According to Wolf et al.’s (1985) algorithm, the largest LE could be identified only when

the values of LE’s saturate as S(i) expands. The saturated LE is the largest LE.  However, if no

saturation takes place, no chaos is found.  At the same time, chaos is implied only when the value

of the largest LE value is positive.  Similar to the correlation dimension estimation, the estimation
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of LE in this algorithm is looking for: (1) whether the series of LE estimates stabilizes as S(i)

expands, and (2) whether the saturated LE is positive.

Figure 4-2 reports the estimation of LE for all eighteen series.  The estimation for daily

series has two kinds of results, i.e., either there is no saturation of LE’s to emerge, or the

saturated LE is around 0.  Since this algorithm is sensitive to noise in the data and daily series

have more noise than weekly and monthly series, no solid results could be derived from the

estimates of daily series.  For a given commodity, the results of weekly and monthly series carry

more credibility.

For all the weekly series, except sugar, all commodities have saturated LE estimates and

all of them are greater than 0. Sugar’s estimates are above 0, but no stabilization is observed.

Similar results are generated from monthly series, the only difference here is that sugar’s estimates

did saturate, but the values are negative.

In the LE algorithm, only the sign of the largest LE matters.  The absolute values might be

very small.  For example, a well-known univariate chaotic process, Mackey-Glass model, has the

largest Lyapunov exponent of 0.0063 (Wolf et al. 1985, p. 289).

In order to show converging or diverging process of LE estimates as the series evolves,

the scale of vertical axis in each panel of Figure 4-2 varies.  According to these pictures, it is hard

to compare the largest LE’s among different series.  If averaging last five LE estimates for each

except the three sugar series, Table 4-4 shows the approximate of the largest LE estimates.
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Table 4-4.  Approximated Largest LE Estimates

Monthly Weekly Daily
Corn 0.00974 0.00112 -0.00028

Soybeans 0.00068 0.00018 0.00026

Wheat 0.00032 0.00322 -0.00022

Hogs 0.00490 0.00402 0.00180

Coffee 0.00156 0.00156 -0.00040

4.3 FINAL ANALYSIS

Since the data for five out of six commodities are neither typical GARCH nor long-

memory processes, chaos analysis can be applied directly to the raw data and avoid the distortion

caused by various linear and nonlinear filters.

Utilizing the classical R/S analysis, the various parameters for the correlation dimension

(CD) and the Lyapunov exponent (LE) study are carefully specified.  Following closely chaos

theory, the CD and LE are estimated for all six commodities.  The estimates of CD show that the

corn, soybean, wheat, hog, and coffee series carry strange attractors with low non-integer

dimensions.  The results of the LE analysis support this evidence of chaos, all weekly and monthly

series have positive LE’s.

The results from the CD and LE analyses are complementary.  A low noninteger

correlation dimension says, the series with random appearance does not move arbitrarily in every

direction and fulfills all space, instead, the series is “attracted” by a closed set as it evolves.  The

positive LE adds that though the series will surely be trapped by its strange attractor, it will not

converge to a fix set.  The series will continuously fluctuate around its attractor.

A larger CD means a more complicated attractor.  A larger LE indicates a more “chaotic”

orbit.  In the above chaos estimates, for a given commodity, if the estimated CD is large,

correspondingly a large LE seems to be the result.  For example, for weekly hog series, CD
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estimate is about 3.6, for weekly soybean series, about 2.8.  The LE was estimated for weekly

hog series as 0.00402, for weekly soybean series as 0.00018.  The correlation between the

estimates of the CD and the LE is positive.  For monthly data, this correlation coefficient is 0.27,

while for weekly series it is 0.71.  Figure 4-3 demonstrates this close weekly correlation.  Why the

correlation is lower for monthly data is a question for further research.

The conclusion of finding chaos in the five markets is based on the weekly and monthly

data.  The fact that the analyses on daily series did not suggest chaos is very likely due to the

noise in the data.  The truncation introduced by the daily limits is not expected to alter the

diagnostics of chaos significantly.  The CD reflects the directions of price movements, the daily

limit restricts the magnitude of price movements, but not direction.  The LE analysis concerns

only the sign of the largest LE and is to infer whether the series have local divergence.  The daily

limit is able to limit the magnitude of the local divergence, but can not change divergence into

convergence.  This might be the reason why some preliminary chaos analysis conducted on cash

and futures markets lead to similar results.

Section 3 concluded that the sugar market is more likely to be characterized by a long-

memory model.  Why is the sugar market different from the other five, or why are sugar series

long-memory processes and the other five markets chaotic systems?

A chaos model is a deterministic system but a long-memory model is a stochastic process.

A low-dimension chaos model explicitly suggests that there are several deterministic forces

shaping the price movements in markets, though the prices are not or nearly not predictable.  A

long-memory model can only imply that there is long-range dependence in markets, today’s price

is affected, or partially affected by the previous long price records.  This long memory could

either be the interactions of deterministic forces in the market or the effects of speculation, or

both.
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In world markets, sugar trade differs from the trade of the other five commodities in one

major way, i.e., more countries participate in sugar trade, and they are diversified in terms of

geographical locations and economic development levels.  Sugar trade is more competitive and

less likely to be dominated by one or a few superpowers.20  In contrast, international corn,

soybeans, wheat and coffee markets are dominated by a few major exporting and/or importing

countries.  However, live hogs are neither stored nor significantly traded internationally.

International Sugar Agreements have not been successful since the 1960’s in terms of

imposing quotas to restrict supply nor encouraging the release of stocks to increase supply.  While

sugar imports are relatively equally distributed among numerous countries, sugar exports come

from a relatively large group of countries (Abbott 1990, Lord 1996).  Since the late 1970’s, there

has been an emergence of a significant degree of potential world sugar production from many

countries, and an increasing proportion of world sugar consumption has been accounted for by

developing countries.  Price elasticities of supply and demand in the sugar market seem larger

than at least coffee (Harris 1987).

Given market structures, it is possible that the future prices of corn, soybeans, wheat,

hogs, and coffee are more subject to several deterministic elements, consistent with what is

suggested by the chaos analysis.21  In contrast, many factors possibly act within the sugar markets,

such that sugar futures prices may be more stochastic in the nature than the other future prices.

It was observed previously that the autocorrelations of all series analyzed here decay very

slowly in an irregular fashion.  The difference between sugar and the other five markets was

                                               
20 This argument benefited from discussions with Mr. Ron Lord, an economist of Economic Research Service,

United States Department of Agriculture.  According to Mr. Lord, The U.S.’s share in the world sugar market
has been around 5-7%. The sugar futures market is international in nature, and the U.S. domestic sugar
policy has impacts on the market, but the impacts are not substantial in most time periods.
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noticeable.  For the monthly and weekly series, the autocorrelations of sugar series decay slowly,

but fall into a boundary and approach zero after certain time lags.  However, the autocorrelations

of other five commodities never show the tendency toward zero. (This is not seen in daily series,

maybe due to noise effects.22)  This is consistent with chaos and long-memory theories.  A chaotic

system is a deterministic process, an innovation occurring at a given time point will last forever.

In contrast, an innovation in a long-memory process lasts very long, but not forever (the case of

sugar).

5. SUMMARY AND CONCLUSIONS

Many economic and financial theories suggest the existence of nonlinear dependence in

financial markets.  Chartists accumulate nonlinear price patterns and advise traders for profit

opportunities.  Simple statistical screening on financial series often finds long-lasting

autocorrelations and time-dependent variances, which are the symptoms of nonlinear dependence.

The question is what type of nonlinear relationships they are, if they really exist.

This study focused on agricultural futures markets and explored the possible nonlinear

relationships in the markets.  Three competing nonlinear models, i.e., ARCH, long memory, and

chaos were proposed.  The three models share some nonlinear symptoms but have distinct

generating mechanisms, and thus have totally different implications for understanding price

behavior.  Confusion on the relationships among these three nonlinear processes are common in

previous empirical work, and many methodological shortcomings and limitations have been

observed.  This study advanced research methods and procedures toward determining which

                                                                                                                                                      
21 It could be argued that those determinants of a chaotic system are dynamic processes themselves.  This could be

a topic for further research as a secondary-level question.  The present study analyzes the chaotic system with
the assumption that on average, or in the long run, these determinants behave like deterministic variables.

22  It might also due to the truncation introduced by the daily price limits.  But, it seems that such a truncation has
no obvious impacts on either ARCH, or long-memory, or chaos processes.
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model is most likely to explain the nonlinear dependence in the markets.  This study goes beyond

previous work by allowing these three models to compete with each other over the same data set.

5.1 FINDINGS

Price series that are 21.5 years long for six agricultural futures markets, corn, soybeans,

wheat, hogs, coffee, and sugar, exhibit time-varying volatility, carry long-range dependence, and

portray excessive skewness and kurtosis, though they are covariance stationary.23  This suggests

that the series contain nonlinear dynamics.

ARCH, long memory and chaos are the three nonlinear models that are able to produce

these symptoms.  Using each of these models as an alternative against the martingale difference

null, three competitive hypotheses are formed for testing.

Though standard ARCH tests suggest that all series might contain ARCH effects, further

diagnostics show that the series are not ARCH processes, since it has been found that the

autocorrelations of the variances of the data decay to zero very slowly as the time span increases,

and this is not a property of ARCH processes.  Illustrating estimation of GARCH (1,1) on all

series leads to the result that the unconditional second moments of the data are infinite.24

However, all parametric Dickey-Fuller tests, semi-parametric Phillips-Perron tests, and newly-

developed AFIMA models have convincingly concluded that the series are stationary with finite

means and variances.  In addition, all series exhibit obvious asymmetry that is out of the reach of

regular ARCH processes.  The martingale difference null can not be rejected by the ARCH model.

                                               
23 A process with heteroscedasticity can be stationary with finite and constant mean and variance (Bera and

Higgins 1995).

24 This study highlights the importance of unconditional moments of an ARCH process, often ignored in the
literature.  Unconditional moments help guide whether ARCH models fit the data.  Typical ARCH processes
have a zero unconditional third moment, implying symmetry.
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The newly-developed long-memory technique, i.e., the AFIMA model, is applied to test

the existence of long-memory process.  An AFIMA model is able to circumvent the problem of a

series containing a root very close to, but not exactly unity, by using a noninteger parameter.  It

was found that only the sugar market contains long-memory structures, the other five markets

appear as stochastic processes.

The failure of ARCH and long-memory processes allows chaos analysis to be applied

directly to the raw data.  It has been found that various linear and nonlinear filters could distort

potential chaotic structures in the data.  Unfortunately, many previous empirical studies used

ARCH-type models to filter the data first before pursuing a chaos test on the residuals of the

filter.

Using the average length of nonperiodic cycles produced by the classical R/S analysis as

an important input, the phase space is carefully specified for each series.  With this constructed

phase space, the correlation dimension (CD) and the largest Lyapunov exponent (LE) are

estimated.  For the corn, soybean, wheat, hog, and coffee series, the CD’s lie in the range of 2-4,

and the largest LE’s are positive.  These combined results infer that these five futures markets

contain strange attractors that regulate the movements of the prices.  They are chaotic processes.

Interestingly, the correlation dimensions of the sugar series are likely to be integer, but

typically the correlation dimension of a chaotic process is noninteger.  Also, the sugar series do

not have positive Lyapunov exponents, which is another key property of chaos and indicates

local-divergence of a time path.  Therefore, the sugar market is not likely to be a chaotic process.

Hence, among three competitive hypotheses, for the five out of six markets examined,

only the third hypothesis of chaos is valid and the martingale difference null can be rejected by the

alternative.
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This analysis has attempted to correct many inappropriate procedures found in the

literature.  As already indicated, filtering data first with an ARCH-type model can distort potential

chaotic structures, and careful diagnostics are needed even before using ARCH-type models.  An

analysis of a chaotic structure must begin with constructing phase space, and the parameters of

phase must be determined carefully either by scientific reasoning or rules of thumb.  This

procedure has seldom been followed.  The correlation dimension for a chaos process can only be

observed when the embedding dimension travels from a small value to a larger, noninfinite value.

And, since correlation dimension and Lyapunov exponent each have strengths and weaknesses in

detecting chaos, it is best to apply them together to take advantage of their complementarity.

Finally, as Hsieh (1991) warned, the commonly used BDS statistic to test for chaos is not robust

when applied to ARCH-type filtered data nor data asymmetrically distributed.

5.2 IMPLICATIONS OF CHAOS FINDINGS

5.2.1 Understanding Price Behavior

This study concludes that five out of six futures markets analyzed are most likely to be

chaotic rather than ARCH or long-memory structures. This has important implications about how

to understand observed nonlinear dynamics in the markets.

An ARCH model tends to say that the observed nonnormality, nonperiodic cycles, and

spikes are due to the dependence in variances, or risk, of the price series.  The interactions of

various risk elements in the history of price changes lead to a path that exhibits irregular behavior.

An investment decision should emphasize the factors that determine the level of market risk.  In

many cases, the factors affecting price levels are different from those affecting risk.

A long-memory model does not attribute irregular behavior of price changes to the time

dependent variances.  Rather, long-range dependence in the price series is responsible for the
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observed nonlinear dynamics.  In a typical long-memory model, the observed time-varying

volatility of the market is the product of long-range dependence.  Here, the time-dependent

market risk is a result, not a cause.  Investors should focus on the elements that determine long

memory of the prices.  For example, the traders with long investment horizons are more likely to

wait for a trend in a given market before taking a decision.  If the share of long-run investors

increases in a given market, the price movements are more likely to have persistent patterns.

The factors affecting the formation of long memory might be numerous and the

interactions among them might be complicated.  However, a low dimension chaotic process could

be formed by a few variables with a simple functional representation.  Because the value(s) of

coefficient(s) fall into a particular range, or the reactions among different market forces happen to

take particular forms and strength, a chaotic process with very simple functional form can give

rise to the “chaotic” movements.  Here, the attention should not be given to searching for some

ambiguous or mystery variables, but for some fundamental factors, such as demand and supply

forces.  Examples of such studies are Chavas and Holt (1993) and Burton (1993).25

A chaos process tends to suggest that, without any exogenous shocks, a few deterministic

forces interact with each other in such a way that a very complicated and volatile time path can be

produced.  For the futures markets analyzed, the volatile price waves for such a long time period

may be caused by some basic forces, such as changes in demand and supply elasticities, and in

government farm support systems.  The amount of volatility that some random events, such as

weather, could be responsible for might be much less than expected.

                                               
25 Burton (1993) creates from a traditional utility function a classical chaos function.  This so-called logistic map is

able to produce very complicated chaotic behavior, though the functional form is not complicated.  Savit
(1988) details this type of map.
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5.2.2 Predictability of Futures Prices

Sims (1984) argued that the price changes must be unpredictable over small time intervals.

That is, given available information, the expectation for the variance of price changes is equal to

the variance of the price itself.  This means prediction error is the dominant component of price

changes over small time intervals.  This produces martingale differences used as the null

hypothesis of this study.

For a martingale difference process, price changes are unpredictable in a short time period.

However, this does not rule out the predictability over longer time periods.  For example, Fama

and French (1988), Poterba and Summers (1988) found pronounced negative long-term serial

correlation in stock markets.

For a chaotic process, though the system is a deterministic one without any stochastic

component and there are few explanatory variables, the series is still not predictable.  Because a

chaotic process is extremely sensitive to the initial value of the process and the value of

coefficients, a difference at the fifth decimal point either in the initial value of the process or

coefficient(s) of the function would lead to two totally different orbits after only a few iterations.

Savit (1988) and Baumol and Benhabib (1989) illustrate this property clearly.  If markets are, or

nearly are chaotic, it is possible to make a very short-run prediction but not a long-run prediction.

However, it is always far way from the exact when measuring economic activities and estimating

plausible functions, therefore, even the very short-run prediction becomes impossible.26

5.2.3 Usefulness of Chaos Findings

If a market is concluded as a chaotic process but chaos is not predictable, what is the

usefulness of such a conclusion?  The conclusion here that chaos is not predictable (either in long

                                               
26 In a sense, chaos is a compromise between the efficient market hypothesis and the belief that markets are

regulated by fundamental economic forces.
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run or short run) means it is almost impossible to build an accurate chaotic forecasting model

based on empirical data, discouraging use of forecasts in financial trading.  However, the

diagnostic that a market is a chaotic structure opens the door for forecasting on the other side.

Chaos is a fractal structure, which in financial markets means the price movements in a

short time interval are parts of the movements in a long time interval, superficially irregular but

still related to the whole in form.  This is called the property of self-similarity.  In a financial

market, a price wave is likely to be composed of smaller subwaves that correspond in dimension

and character to the larger wave of which they are a part.

The challenge for traders is how to find the decision-making points that can be used as

breakout points or stop-loss levels if the market reverses.  Sorkin and Buyer (1996) proposed a

three-step trading program, the cash flow analysis, to identify decision points.  They identify that

when trading volume converges around the same price in all time scales, market participants have

reached consensus, and this signals a major move.

Related to the fractal property of chaos, Tvede (1992) found that the risk/reward

properties for a market will be proportionally the same over different time frames.  Accordingly

traders can isolate the time frame that best suits their risk levels.  The challenging part is to

capture the low risk entry of the shorter time frame and exploit the profit opportunity of the long-

term frame.

The current chaos findings are from very long time series, and only during a long time

period, the impacts of single random events can be isolated and a few determinant factors are

likely to dominate markets to produce chaotic price movements.  Chaos is a long-run

phenomenon.  In the long run, it might be difficult to identify fractal structures and to use them

for prediction.  If such is the case, a passive strategy is suitable for managing assets over long

investment horizons.  Such a strategy suggests to establish a well-diversified portfolio of securities
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without attempting to find under- or overvalued financial assets.  In futures markets, this implies

that frequent buying and selling generate large brokerage fees but little financial gains, since

markets are practically random walks.  A buy- (or sell-) and-hold strategy is a more proper

management method.

Actually, the index fund, as a practice of passive strategy, has been growing very fast since

late 1970’s in stock markets.  Such a fund is designed to replicate the performance of a broad-

based index in stock.  Investors in a index fund have a very diversified portfolio but pay the

minimum management fees, because portfolio turnover is kept low and there is no need to pay

analysts to follow the markets (Bodie et al. 1996, p.348).  Chaos theory justifies the investment of

the index funds.

As a dynamic process, a chaos system is generated by a feedback mechanism, i.e., the

output of a previous time point is the input of the present.  If considering at some time points that

markets are in essence living systems made up of the mass psychological behavior of their human

participants, such a feedback mechanism will self-reinforce interdependent events and cause

irregular behavior.  Relative to the soybean market, the hog market has higher CD and LE, which

means that the feedback mechanism of the hog market is stronger than that of the soybean market.

Thus, it will not be surprising to observe much more random price movements in the hog market

than in the soybean market.  This irregular price behavior may mean that for investors who have

higher risk bearing capabilities, their optimal points on the mean-variance efficiency frontier are

more likely located in the hog market than in the soybean market.

5.3 FURTHER RESEARCH DIRECTIONS

Further research is very much needed at least in two directions: the theoretical and

empirical relationships among ARCH, long-memory, and chaos processes, and more detailed

nonlinear characteristics of individual futures markets.
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While this study attempted to distinguish the three nonlinear models one from the other in

agricultural futures market, there is no statistical theory, if not economic theories, which exist to

explain the relationships among them.  A long-memory process carries also the property of self-

similarity as a chaotic process does, and a chaotic process exhibits long-range dependence as a

long-memory process does.  How are self-similarity and long-range dependence different between

long-memory and chaotic structures?

Lo (1991) found that the modified R/S analysis can not detect long-range dependence in a

tent map.  A tent map is a well-known chaos model.  As a deterministic structure, a tent map

produces the orbits carrying obvious long memory.  This infers that the long-range dependence in

a chaotic structure is different from that in a long-memory structure.  The question is why and

how they are different.

This study found that the correlation dimensions of three sugar series, which have been

identified as long memory processes, are integers, and decrease by a unit from weekly to monthly.

At the same time, the sugar series can not be characterized by a Lyapunov exponent (no

convergence was observed).  These properties are the long-memory process in the view of chaos

theory.  No known theory is available to explain this phenomenon.

In the ARCH modeling practice, it was found that the variances of the series have slowly-

decayed, though very small, autocorrelations.  This suggests there might be long-memory

components in the variances of the data.  The long-range dependence of the variances is another

type of heteroscedasticity.  If using a long-memory, not an ARCH, process to capture the

heteroscedasticity, then the efficiency of maximum likelihood of conditional mean function should

be improved.  There could be a new nonlinear model, a combination of an ARIMA mean model

and a long-memory variance model.  Interestingly, Hauser and Kunster (1994) recently developed

a fractally difference model with ARCH errors, i.e., a combination of an AFIMA mean model and



44

an ARCH variance model.  Sengupta and Zheng (1995) found the market volatility of some of

stock prices likely to be a chaotic process.

More work on the implications of nonlinear dynamics on trading practices is needed.  It

has been argued that the fractal property of a chaotic process can be used to uncover trading

opportunities.  The series studied here consist of many fractal structures.  The average length of

nonperiodic cycles indicates how long a single fractal structure lasts in the market.  The

magnitudes and shapes of those fractals could be useful for traders.

The chaos findings of the present study in the five markets are based on the weekly and

monthly data.  The results from the daily series are not clear regarding the existence of chaotic

processes.  Though there is some evidence that suggests this may more likely be due to noise in

the daily data rather than the truncation introduced by daily price limits, further confirmation is

needed, specially when the time period becomes shorter.  In the short run, this truncation has

more direct implications for trading activities than in the long run.
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Figure 4-1.  Estimation of the Correlation Dimension
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Figure 4-1(continued).  Estimation of the Correlation Dimension
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Figure 4-1(continued).  Estimation of the Correlation Dimension
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Figure 4-2.  Estimation of the Lyapunov Exponent

•

•

•

•
••
•

•
•

•••
••
•••••

•
•
•••••••••

•••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••••••

•••••

Coffee Daily

Evolution Time

Ly
ap

un
ov

 E
xp

on
en

t

0 1000 3000 5000

0.
0

0.
01

0
0.

02
0

•

•

•
•
•
••
•••

••
••••••••••••

•
•••

•••••••••
•••••

•••••••••••••
••••••••••••••••••••••

Coffee Weekly

Evolution Time
Ly

ap
un

ov
 E

xp
on

en
t

0 200 600 1000

0.
0

0.
04

0.
08

•

•
•

•••••
•
•
•••

•
••
•••

•
•••••

••••••••
•••••••••

••••••••••••
•••••••

Coffee Monthly

Evolution Time

Ly
ap

un
ov

 E
xp

on
en

t

0 50 100 150 200 250

-0
.0

5
0.

05

•

•

•

•

•

•

••

•
•

•

•
•

•
•

••
•
••

•••

•
•
•
••

••
•

•••

••
••••

•
•
•

Corn Daily

Evolution Time

Ly
ap

un
ov

 E
xp

on
en

t

0 1000 3000 5000

-0
.0

02
0.

0

•
•

•

•

•

•
•••

•••••
•••••••••••••••••••••••••••

Corn Weekly

Evolution Time

Ly
ap

un
ov

 E
xp

on
en

t

0 200 600 1000

-0
.0

15
-0

.0
05

0.
00

5

•

••

•

•

•

•

••
••

•

•

•

•

••
•
•••

••••••
••

•••
••

••••••

Corn Monthly

Evolution Time

Ly
ap

un
ov

 E
xp

on
en

t
0 50 100 150 200

0.
02

0.
03

0.
04

0.
05



51

Figure 4-2 (continued).  Estimation of the Lyapunov Exponent
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Figure 4-2 (continued).  Estimation of the Lyapunov Exponent
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Figure 4-3. Relationship Between the CD and the LE Estimates (Weekly Data)
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