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Abstract 

 
In this paper we present a continuous time dynamical model of heterogeneous agents interacting in 

a financial market where transactions are cleared by a market maker. The market is composed of 

fundamentalist, trend following and contrarian agents who process information from the market 

with different time delays. Each class of investor is characterized by path dependent risk aversion. 

We also allow for the possibility of evolutionary switching between trend following and contrarian 

strategies. We find that the system shows periodic, quasi-periodic and chaotic dynamics as well as 

synchronization between technical traders. Furthermore, the model is able to generate time series of 

returns that exhibit statistical properties similar to those of the S&P500 index, which is 

characterized by excess kurtosis, volatility clustering and long memory. 
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Asset Price Dynamics in a Financial Market with 

Heterogeneous Trading Strategies and Time Delays 
 

 
Giuseppe Garofalo

•••• and Alessandro Sansone
•••••••• 

 

 

1. Introduction 

 
In recent years there has been a growing disaffection with the standard economic paradigm of 

efficient markets and rational expectations. In an efficient market, asset prices are the outcome of 

the trading of rational agents, in the sense that they forecast the expected price by exploiting all the 

information available and know that other traders are rational. As pointed out by Fama (1970), if 

market were not efficient, there would be profit opportunities which would be exploited by the 

trading of rational agents. This implies that prices must equal the fundamental prices, given by the 

expected discounted dividend streams, and therefore changes in prices are only caused by changes 

in the fundamental value. In real markets, however, traders have different information on traded 

assets and process information differently, therefore the assumption of homogeneous rational 

traders may not be appropriate. In addition to this, the efficient market hypothesis motivates the use 

of random walk increments in financial time series modeling: if news about fundamentals are 

normally distributed, the returns on an asset will be normal as well. However the random walk 

assumption does not allow the replication of some stylized facts of real financial markets, such as 

volatility clustering, excess kurtosis, autocorrelation in square and absolute returns, bubbles and 

crashes. Recently a large number of models that take into account heterogeneity in financial 

markets has been proposed. The typical agents considered in these model are basically 

fundamentalists, who believe that prices tend to equal the fundamental value of an asset, and 

technical traders, who predict future prices by extrapolating past patterns in the time series. Recent 

contribution to this literature include Beja and Goldman (1980); Day and Huang (1990); Caginalp 

and Ermentrout (1990, 1991); Chiarella (1992); Sethi (1996); Gaunersdorfer (2000); Gaunersdorfer 

and Hommes (2005); Chiarella, Dieci and Gardini (2002, 2005); Franke and Sethi (1998); 

Westerhoff (2003, 2004a, 2004b). Brock (1997), Brock and Hommes (1997, 1998, 2001a) have 

introduced the important concept of financial markets as adaptive belief systems, in the sense that 

agents switch prediction rule among different predictors according to a fitness function that depends 

on the realized profits of a given prediction strategy. Chiarella and He (2001) analyze asset price 

and wealth dynamics in the framework of Brock and Hommes (1998) and Levy and Levy (1996) 

without switching among different predictors. Such a model is extended by adding a switching rule 

between momentum and contrarian strategies by Chiarella and He (2002) in the context of a 
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Walrasian scenario and Chiarella and He (2003) and He (2003) in a market maker scenario. Brock, 

Hommes and Wagener (2005) analyze the limit evolution of Brock and Hommes (1998) when the 

strategies are distributed according to a continuous distribution; Thurner, Dockner and 

Gaunersdorfer (2002) analyze a market composed of a continuum of fundamentalists who show 

delays in information processing. These models allow for the formation of speculative bubbles, 

which may be triggered by news about fundamentals and reinforced by technical trading. Because 

of the presence of nonlinearities according to which different investors interact with one another, 

these models are capable of generating stable equilibria, periodic, quasi-periodic dynamics and 

strange attractors. 

 

This paper builds on the model of Thurner, Dockner and Gaunersdorfer (2002), henceforth TDG, 

which is inspired by the Nosè (1984a,b, 1991) and Hoover (1985) models of thermodynamics and 

analyzes a financial market in which there are only fundamental investors who trade according to 

the mispricing of the asset with delays which are uniformly distributed from initial to current time. 

We generalize TDG by introducing a continuum of technical traders who behave as either trend 

followers or contrarians and a switching rule between these technical trading rules. As for the 

fundamentalists, technical traders react with uniformly distributed delays to the information that 

they receive from the market. We do not assume the existence of a Walrasian auctioneer, but allow 

for transactions to be made in a condition of disequilibrium by assuming the existence of a market 

maker who takes an offsetting long or short position so as to clear the market and set the price 

according to the direction and magnitude of excess demand. We analyze how the interaction of 

different types of investors with path dependent risk aversion determines the dynamics and the 

statistical properties of the system as the proportion of fundamentalists, the growth rate of the 

fundamental, the speeds of reaction of the market participants and the intensity of switching 

between technical trading strategies are changed. In particular, the system is characterized by 

strange attractors that are capable of giving rise to time series of returns featuring stylized facts of 

real financial markets such as excess kurtosis, volatility clustering and long memory, even in a 

purely deterministic framework.  

 

The paper is organized as follows. In Section 2 a continuous time model of heterogeneous agent 

trading with different frequencies is outlined. Section 3 analyzes the statistical properties of the 

model-generated time series when the parameter values are chosen as to produce time series similar 

to those of the S&P500 index. Section 4 examines how the interaction of different investors 

determines the price dynamics of the time series and the effects of changing the proportion of the 

fundamentalists, the growth rate of the fundamental value, the price adjustment from the market 

maker, the speed of expected price adjustment from the fundamentalists and the extrapolation speed 

of technical traders. We will also analyze the introduction of a switching rule between trend 

followers and contrarians. Section 5 concludes. 

 

2. The model 
 

Let us consider a security continuously traded at price ( )tP . Assume that this security is in fixed 

supply, so that the price is only driven by excess demand. Following TDG, let us assume that the 

excess demand ( )tD  is a function of the current price and the fundamental value ( )tF . Differently 

from the standard financial economic literature, we assume that transactions are not made at 

equilibrium prices, but that a market maker takes a long position whenever the excess demand is 

negative and a short position whenever the demand excess is positive so as to clear the market. The 

market maker adjusts the price in the direction of the excess demand with speed equal to Mλ . The 

instantaneous rate of return is: 
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the fundamental value is assumed to grows at constant rate g, therefore: 

 

 
( )
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 (2) 

 

The market is composed of an infinite number of investors, who choose among three different 

investment strategies. Let us assume that a fraction α  of investors follows a fundamentalist strategy 

and a fraction ( )α−1  follows a technical analysis strategy. The fraction of technical analysts is in 

turn composed of a fraction β  of trend followers and a fraction ( )β−1  of contrarians. Let ( )tDF , 

( )tDTF  and ( )tDC  be respectively  the demands of fundamentalists, trend followers and contrarians 

rescaled by the proportions of agents who trades according to a given strategy. The excess demand 

for the security is thus given by: 

 

 ( ) ( ) ( ) ( ) ( ) ( ) [ ]1,0,;]1[1 ∈−+−+= βαββαα tDtDtDtD CTFF  (3) 

 

Each trader operates with a delay equal to τ , that is, the demand of a particular trader at time t  

depends on her decision variable at time τ−t . Time delays are uniformly distributed in the interval 

[ ]t,0 . 

Fundamentalists react to the differences between price and fundamental value. The total demand of 

fundamentalists operating with delay τ  is: 
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where τλF  is a parameter that measures the speed of reaction of fundamental traders; we assume 

that FF λλ τ =  throughout the paper. This demand function implies that the fundamentalists believe 

that the price tends to the fundamental value in the long run and reacts to the percentage mispricing 

of the asset in symmetric way with respect to underpricing and overpricing.
1
 

If time delays are uniformly distributed, the market demand of fundamentalists is given by: 
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time differentiation yields: 
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1
 TDG utilize ( ) ( ) ( )[ ]ττλτ −−−= tPtFtD FF  as functional form for the demand of fundamentalists. We rather utilize 

function (4) because we consider more plausible that fundamentalists react to mispricing in percentage terms. Of course 

if  ( )τ−tF  and ( )τ−tP  are in logarithm terms, the fundamentalist demand of TDG is equivalent to (4). 
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Following TDG, let us modify equation (6) by introducing the variable ( )F
tς  and adding a term 

( ) ( )tDt FFς−  to the right hand side:
1
 

 

 ( ) ( )
( )

( ) 0;log >−







= FFFFF

tD
tP

tF
tD λςλ& . (7) 

 

According to the sign of Fς , if there is an excess demand, the term ( ) ( )tDt FFς−  either drives it 

towards zero (if ( )F
tς  is positive) or foster it (if ( )F

tς  is negative). The variable ( )F
tς  may be 

interpreted as an indicator of the risk that traders bear and their risk aversion (if ( )F
tς  is negative, 

traders become risk-seekers). The dynamics for ( )F
tς  are given by: 

 

 ( ) ( ) 0;][
2

>−= FFFFF VtDt δδς&  (8) 

 

where F
V  is a factor controlling the variance. Throughout the paper, we will assume that F

V  is 

given. The economic motivation of equation (8) is that, the larger an open position on the asset, the 

more risk averse the investors become. 

Let us consider now the behavior of technical traders. As for the fundamentalists, their time delays 

are uniformly distributed in the interval [ ]t,0 . A trader operating with delay τ  utilizes the 

percentage return that occurred at time τ−t  in a linear prediction rule in order to form an 

expectation of future returns. The demands of trend followers and contrarians operating with delay 

τ  are respectively: 
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throughout the paper we will assume that TFTF λλ τ =  and CC λλ τ = . By integrating (9) and (10) with 

respect to τ  and time differentiating we get the time derivatives of the total demands of technical 

analysts, which are: 

 

 ( ) ( )
( )

0; >







= TFTFTF

tP

tP
tD λλ

&
&  (11) 

 ( ) ( )
( )

0; <







= CCC

tP

tP
tD λλ

&
& . (12) 

 

As for the fundamentalists, we add now the terms ( ) ( )tDt TFTFς−  and  ( ) ( )tDt CCς−  in order to take 

into account the risk and risk attitude of chartists. Time derivatives of their total demands are 

therefore: 

 

 ( ) ( )
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( ) ( ) 0; >−







= TFTFTFTFTF

tDt
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tP
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&
&  (13) 

                                                 
1
 TDG introduce the variable ξ , which is linear transformation of ( )tD F , and utilize it instead of ( )tD F . We will 

continue to utilize the variable ( )tD F  without any loss of generality. 
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Following TDG, the dynamics for ( )tTFς  and ( )tCς  are: 

 

 ( ) ( ) 0;][
2

≥−= TFTFTFTFTF VtDt δδς&  (15) 

 ( ) ( ) 0;][
2

≥−= CCCCC VtDt δδς&  (16) 

 

We will now consider the fraction α  as given, whereas the fraction of trend followers β  may be 

path dependent. In fact β  is considered as an endogenous variable because both trend followers and 

contrarians follow technical analysis strategies and therefore may be likely to switch them if one 

brings about higher returns. We assume that the more profitable is a strategy, the more investors 

will choose that strategy. The difference in the absolute return at time t between the two strategies is 

given by ( ) ( ) ( )][ tDtDtP CTF −& . The use of absolute returns as a measure of evolutionary fitness 

stems from the absence of wealth in the model, therefore it is not possible to calculate the 

percentage return of a strategy. Moreover, β  must be bounded in the interval [ ]1,0  and we assume 

that it tends to move towards 0.5 if both the strategies lead to equal profits. These assumptions can 

be taken into account if we assume this functional form for the time derivative of ( )tβ : 

 

  ( ) ( )[ ] ( ) ( ) ( )[ ] 0;cot ≥−+= ztDtDtPztt CTF&& πββ  (17) 

 

where the first term keeps the fraction of trend followers bounded in the interval [0,1] and z is a 

parameter that measure the speed of switching between the technical strategies. The proportion 

tends to 0.5 if the two strategies are characterized by the same absolute return. Therefore, the 

dynamics are ruled by the following nine ordinary differential equation system: 
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If z=0 or if the proportion of trend followers and contrarians is taken as a constant, then the system 

may be made stationary by defining the variable ( ) ( )
( )tP

tF
tM ≡ . In this case System 18 becomes: 
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where r is defined as ( ) ( ) ( ) ( ) ( ) [ ] 0;1,0;]]1[1[ >∈−+−+≡ MCTFFM tDtDtDr λαββααλ . Equations 

(1) and (3) imply that r is the rate of return on the asset. System 19 has equilibrium points only for a 

zero-Lebesgue measure parameter set. Indeed, if the system is on an equilibrium point, 

( ) ( ) ( ) 0=== ttt CTFF ςςς &&&  and the equilibrium demands are: 

 

  CCTFTFFF VDVDVD ±=±=±= ;;  (20) 

 

Moreover, the rate of return is equal to the growth rate of the fundamental, so that, plugging the 

equilibrium demands into the equation for r, we obtain that the following equality relation between 

parameters must hold for the system to have equilibrium points: 

 

  ( ) ( )( )( )CTFFM VVVg ββααλ −±±−+±= 11  (21) 

 

3. Statistical properties 

 
In this section, we analyze the statistical properties of the simulated time series, which have been 

generated by integrating the system up to time 7529 and recording the price at integer times starting 

from 4000=t  in order to allow the system to get sufficiently close to the asymptotic dynamics and 

to have time series as long as the daily time series of the S&P500 index between 1 January 1990 

and 31 December 2003. The system has been integrated by utilizing the default method of 

Mathematica 5, which switches between BFG and Adams algorithms depending on the stiffness of 

the system. No stochastic elements are added, because we are interested in analyzing how the 

interaction among different investors, whose risk aversions are time varying, may reproduce the 

stylized fact observed in real financial markets: volatility clustering, fat tails, no autocorrelation 

between returns and long memory. Thus the features of system-generated time series are 

endogenous and originate from the nonlinear structure of the systems. The model displays statistical 

properties similar to those of the index S&P500 using various parameter values. In Table 1 there are 

reported the mean, maximum, minimum, variance, skewness, kurtosis and the results of the Jarque-

Bera test of the daily returns on the S&P500 and on the time series generated by the differential 

equation system with parameters and initial values reported respectively on Table 2 and Table 3 and 

identified as Example 1 and Example 2. We have also reported in Table 1 the value of the largest 

Lyapunov exponent for Example 1.
1
 The distribution functions, autocorrelations of returns and 

square returns up to lag fifty are illustrated in Figure 1 and Figure 2. 

 

                                                 
1
 The Lyapunov exponent of Example 2 is not been reported because the trajectories of the price and fundamental are 

unbounded and the system cannot be made stationary by performing a change of variables, therefore the Lyapunov 

exponent would be meaningless. 
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 Mean Maximum Minimum Variance Skewness Kurtosis Jarque-Bera Lyapunov 

exponent 

S&P 500 0.000375309 0.0573148 -0.0686674 0.000110923 -0.0163294 6.49388 1794.62  

Example 1 0.000369353 0.0587311 -0.0709184 0.000105104 0.0690029 6.59998 1908.44 0.241898 

Example 2 0.000366283 0.0563845 -0.0550595 0.0000852793 0.0880204 6.2641 1325.25  

Table 1: Statistics for S&P500, Example 1 and Example 2 and Lyapunov exponent of Example 1. 

  

 Mλ  Fλ  
TFλ  Cλ  α  Fδ  TFδ  Cδ  F

V  TF
V  C

V  g  z  
Example 1 60 95/15 0.25 -0.22 0.4 240000 240000 240000 1/54000 1/54000 1/54000 0.000319 0 

Example 2 55 5 0.24 -0.25 0.4 240000 216000 216000 1/90000 1/90000 1/90000 0.000319 4 

Table 2: Parameter values of Example 1 and Example 2. 

 

 P  F  FD  TFD  CD  Fς  TFς  Cς  β  

Example 1 1.1 1 ( ) ( )[ ]0/0log* PG
Fλ  

0 0 1 1 1 0.5 

Example 2 1.1 1 ( ) ( )[ ]0/0log* PG
Fλ  

0 0 1 1 1 0.5 

Table 3: Initial values of Example 1 and Example 2. 

 

The growth rate of the fundamental, g, is equal to the mean growth rate of S&P500, which in turn 

has been calculated as the rate that in a continuously compounded capitalization regime implies the 

same return on the index on the overall period. Since the price moves around the fundamental, the 

means of the simulated time series match that of the S&P500. The other parameter values have been 

chosen so as to give rise to statistics similar to those of the S&P500 index. In TDG, the variable that 

accounts for the variance is F
V , in this model variance control is much more complicated, as there 

exist three different types of investment strategies, each characterized by a potentially different 

value of V. 
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Figure 1: Standardized distributions of returns (red histograms) and standard normal distribution (blue lines) for S&P500 index from 

1 January 1990 to 31 December 2003 (a) , Example 1 (b) and Example 2 (c). 
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Figure 2: Autocorrelations of returns (blue lines) and square returns (green lines) for S&P500 index from 1 January 1990 to 31 

December 2003 (a) , Example 1 (b) and Example 2 (c). 

 

We have considered the case where trend followers and contrarians have the same values of V  and 

δ , whereas fundamentalists may be characterized by different values, due to the smaller difference 

between two technical strategies than between technical and fundamentalist strategies. CTFF VVV ,,  

are constants because otherwise the unconditional variance would be in turn variable. For instance, 

the TDG setting with our specifications for the demand functions, FV ε= , would give rise to time 

series whose variance increases over time. Such a behavior is not typical of real time series, whose 

variances tend to be constant, unless there occur structural changes, or anyway do not follow well 

defined trends. CTFF VVV ,,  affect not only the variance, but skewness and kurtosis as well, and the 

relation is not monotonic. They may even bring about a global bifurcation of the system. As pointed 
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out by TDG, kurtosis and volatility clustering are due to the delayed reaction of investors that 

determines price overshooting. In a multi-agent modeling, such a process is fostered by the 

interaction among investors who are heterogeneous not only as concerns the time that they need to 

process information from the market, but also the strategies that they use to predict future prices. 

Real time series show little or no autocorrelation in returns and significant autocorrelations in 

square or absolute returns, which decay according to power laws, because of volatility clustering. 

Time series are also characterized by long memory and nonlinear structure. The model by TDG 

displays negative first order autocorrelations, close to 0.5, because of the presence of only 

fundamentalists that tends to drive the price back to its long period fundamental value. The 

introduction of trend followers should cause this autocorrelation to fall because price overshooting 

is more likely to occur. The action of contrarians should have less predictable effects on the 

autocorrelation, as these investors may offset both fundamentalists and trend followers. However 

the simulations give rise to significant autocorrelation that  nevertheless decays very quickly. The 

significance of autocorrelations is due to the absence of medium and long term trends. The 

autocorrelations of square returns instead decay much faster than those of S&P500, because of the 

fact that the price moves around the exponential fundamental trend in the long run. Changes in the 

speed of switching between technical strategies may affect qualitatively the system dynamics, and, 

even in the case where the dynamics remain qualitatively unchanged, they may determine large 

variations in the statistical properties, even if the proportion between trend followers and 

contrarians remains close to 0.5. In the simulations that we have run, the smaller variance in 

Example 2 is mostly due to the introduction of  switching between technical strategies rather than to 

the decrease in CTFF VVV ,, . Kurtosis tends to rise as TFλ  and Cλ  rise, whereas variance and 

skewness do not show a clear dependence on such parameters. Skewness tends to be slightly 

positive, conversely to the time series of the S&P500 index, which instead show a slightly negative 

skewness. Positive skewness is due to the exponentially growing fundamental value that determines 

that large price overshooting is on average positive. Price overshooting, which also determines 

kurtosis in returns, is induced by both the delayed reaction of investors and the interaction between 

fundamentalists and trend followers, as the latter may reinforce a trend triggered by the former. On 

the long run, fundamentalists cause the price to growth. Contrarians’ trading may not be sufficient 

to offset trend followers’, and moreover it may happen that the demands of both trend followers and 

contrarians have the same sign, because of the delay in investors’ reactions and the different 

dynamics of risk attitudes. The mean returns on time scales of 1,5,10 and 15 days are shown in 

Figure 3. It is apparent that returns cluster together on all the time scales, confirming an underlying 

long memory process. Such characteristics are typical of multifractal process. Let us consider a 

stochastic process ( )tx  and define the increment between t  and tt ∆+  in the following way: 

 

  ( ) ( ) ( ) Tttxttxttx ≤≤−∆+=∆ 0;, . (22) 

 

Let us assume now that increments are stationary and the distribution of ( )tx ∆,0  is invariant with 

respect to time shifts. According to Mandelbrot, Fisher and Calvet (1997), a multifractal process is a 

continuous time process with stationary increments which satisfy: 

 

  ( ) ( )( ) ( ) 1
],[

+
∆=∆

qq
tqcttxE

τ
 (23) 

for each tt ∆,  on which x  is defined and for each )[ ]max,0 qq ∈  such that ( ) ∞<∆ ],[
q

ttxE , where E 

is the expectation operator. The scaling function ( )qτ  determines the variations in expected value as 

time scale changes. Mandelbrot, Fisher and Calvet (1997) prove that scaling functions remain 

unchanged only for bounded time intervals, that is, multifractal processes must show transitions in 

their scaling properties or crossovers. Taking the logarithms of equation (23) we get: 
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  ( ) ( )[ ] ( )( ) [ ]tqqcttxE
q

∆++=∆ log1log],[log τ  (24) 

 

If ( ) ( ) ( )0loglog PtPtx −=  then ( )ttx ∆,  approximates the return on the time series ( )tP  in the 

interval [ ]ttt ∆+, . The plots of ( ) ],[log
q

ttxE ∆  of the S&P500 and the simulated time series with 

respect to [ ]t∆log  for q+1=1,1.5,2,2.5,3 are drawn in Figure 4. Since we are interested only in the 

scaling function ( )qτ  and not in the intercept, the values have been normalized by subtracting 

[ ]( ) ]10log,[log
q

txE . Time intervals ranges from 1 to 100 days. There is no apparent crossover up 

to a time scale of 100 days in the time series of S&P500, thus confirming its multifractal nature. In 

the simulations, crossover occurs for values of t between 3
e  and 4

e  and the fluctuations are more 

erratic than those of S&P500. Such a behavior underlines the capability of the model to generate 

dynamics typical of a multifractal process, however the exponential growth in the fundamental 

value implies an exponential long run growth in the expected returns, which in turn implies that 

crossover occurs for smaller time intervals than those of real time series. 
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Figure 3: Time series of returns on time scales of 1, 5, 10 and 15 days on S&P500 index (left), Example 1 (middle), Example 2 

(right). 
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Figure 4: Plots of ( ) ],[log

q
ttxE ∆  against [ ]t∆log  on S&P500 index (a), Example 1 (b), Example 2 (c) for q=1,1.5,2,2.5,3 

respectively in red, green, blue, purple and grey. 

 

4. Comparative dynamics 

 
In this section we will first analyze the dynamics for the system identified as Example 1, the 

dynamics for the other example being very similar, and then we will study the variations in 

dynamics as parameters change. In Figure 5 there are depicted the time series in the interval 

[ ]7529,7029  of prices, returns, proportion of trend followers out of the total of technical traders (it 

is constant because z=0), demands, risk attitudes and the projection of the phase space on the planes 

],[ FFD ς , ],[ TFTFD ς , ],[ CCD ς , ],[ TFF DD , ],[ TFF DD , ],[ CTF DD . Tables 4-10 show the mean, 

maximum, minimum, variance, skewness, kurtosis, Jarque-Bera and Lyapunov exponent for 

different parameters values. From the graph of the price, two type of trends are apparent: there is an 

upward long period trend that matches the dynamics of the fundamental value and is due to the 

trading of fundamentalists and upward and downward short period trends that oscillate around the 

long run trend and are instead due to the trading of technical analysts as well as to the delayed 

reaction of the fundamentalists. Short period cycles are characterized by considerable variations in 

both frequency and amplitude. Such a variability is due to the heterogeneity in strategies and time 

horizons and is reinforced by the variability in risk attitudes. The demands of technical traders 

switch between positive and negative phases, differently from the fundamentalist demand, which 

instead tends to move around zero. The average demand of fundamentalists is slightly positive, 

because of the upward trend in the fundamental value. The presence of long phases of positive and 

negative demands of technical traders, together with the dynamics for the risk aversion may 

determine very large price oscillations in both directions. In fact, long phases of positive demand 

provoke considerable increases in price, associated with strong sales from the fundamentalists. The 

increase in the fundamental value triggers a stock price increase due to the purchases by 

fundamentalists, which is reinforced by the action of trend followers, whereas contrarians tend to 

sell the stock. The opposite behavior of trend followers and contrarians is shown on the projection 

of the phase space on the space of technical analysts’ demands: the attractor is stretched along the 

bisector between the first and third orthant. The demand of fundamentalists has smaller oscillations 

in the periods where the risk aversion is high, because a high risk aversion induces the 

fundamentalists not to open large positions if the stock is mispriced. Whereas the risk aversion of 

fundamentalists follows well defined trends and is on average positive, those of technical traders 

tends to oscillate around zero. As such, technical traders switch between phases in which they are 

risk averse and phases in which are risk seekers. The dynamics for the risk attitudes may be 

explained in the following way: let us assume that the price is rising and the demand of trend 

followers is positive and greater than TF
V . Equation 15 implies that their risk aversion rises as 

well. The increase in price reduces the demand of fundamentalists and contrarians, but reinforces 

that of trend followers, which on the other hand tends to fall because of the increase in their risk 

aversion. Once the price falls, the demand of trend followers approaches zero (eventually becoming 

negative) and, as a consequence, their risk aversion falls. The dynamics are also the same in the 

case where the cycle is triggered by fundamentalists or contrarians. The only difference is that the 

demand of these investors will eventually change sign independently of their risk attitudes whereas 

the demand of trend followers are self-fulfilling because the price movements they induce in turn 
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reinforce the demands, given the risk aversion. The projections of the attractor on the planes 

],[ FFD ς , ],[ TFTFD ς , ],[ CCD ς  show the interactions between demands and risk attitudes. The 

different shape of the projection on the plane ],[ FFD ς  is due to greater amplitude and lower 

frequency of the dynamics of fundamentalists’ risk aversion than those of the other investors. In any 

case, however, risk attitudes may vary considerably even during phases in which the demands are 

almost steady. Indeed it is sufficient that the absolute value of the demand of investors type i 

remains for a long time respectively above i
V  to get a considerable change in risk aversion. The  

time  derivatives  of the  risk  attitudes  tend  to  reach  their  lower bounds, which are respectively 

equal to FF
Vδ− , TFTF

Vδ−  and CC
Vδ− , only when the demands are very close to zero.  
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Figure 5: Time series of prices (a), returns (b), proportion of trend followers of technical traders (c), demand of fundamentalists (d), 

trend followers (e), contrarians (f), risk aversion of fundamentalists (g),  trend followers (h), contrarians (i), projections of the phase 

space on the planes ],[
FF

D ς  (j), ],[
TFTF

D ς  (k), ],[
CC

D ς  (l), ],[
TFF

DD  (m), ],[
TFF

DD  (n), ],[
CTF

DD  (o) for the time 

interval [7029,7529]. 
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4.1. Effects of changing the proportion of fundamentalists and technical traders. In order to 

analyze the effect of the proportion of fundamentalists and technical traders, we select values of α  

ranging from 0 to 1 and with a difference of 0.1 between a simulation and the next. If there are no 

fundamentalists or if their proportion is only ten percent, the price goes to infinity, because 

technical trading drives the price away from the fundamental.
1
 If 2.0=α  the fundamentalists are 

able to steer the price to the fundamental value, but prices are subject to large oscillations induced 

by technical traders. Such oscillations become larger and larger as time goes on. In fact larger 

departures from the fundamental value are needed for the fundamentalists to bring the price back 

close to the fundamental value. The dynamics for the fundamentalist demand differ considerably 

from the baseline case where 4.0=α , in fact the departure from the fundamental value brings about 

long phases in which the fundamentalists go either long or short on the asset, determining in this 

way an increase in their risk aversion. This in turn implies a lower capability of offsetting technical 

traders. The overall demand of the latter presents long phases in which the demand is either positive 

or negative, phases in which it changes sign quickly and phases where the demands of contrarians 

and trend followers offset each other. This latter feature is called synchronization in the dynamical 

systems literature. During phases of synchronization the system reduces by one dimension. When 

the technical demand is equal or close to zero, fundamentalists bring the price back close to the 

fundamental value. As a consequence of the fact that the total demand does not change sign for long 

periods, the price tends to follow a monotonic trajectory when it is far from the fundamental and to 

oscillate as it gets close to it. Thus, the synchronization of technical traders determines an 

intermittent behavior in the system with regular monotonic phases interrupted by chaotic bursts. 

The time series of fundamentalist and technical demands are depicted in Figure 6. If α  is equal to 

0.3 the proportion of fundamentalist is sufficiently high as to prevent technical trading from 

bringing about larger and larger departures from the fundamental value. The oscillations have 

anyway larger amplitudes than in the case where 4.0=α , and this in turn determines an increase in 

the variance and a decrease in the kurtosis. If fundamentalists account for half of the investors, the 

demand of technical traders is generally lower than in the baseline case because fundamental 

trading prevents strong changes in the price. This leaves little room for a persistent phase of 

fundamentalist demand and therefore fundamentalists are more likely to became risk seekers. The 

higher proportion of fundamentalists determines a more regular behavior of the system, as denoted 

by the decrease in kurtosis. If the fraction of fundamentalists is equal to or greater than sixty 

percent, the system no longer converges to a strange attractor. Furthermore, the only attracting 

invariant set is a quasi-periodic attractor, as denoted by the values of the Lyapunov exponents. 

Moreover, as the proportion of fundamentalists in the market increases, the amplitude of the 

oscillations reduces. If there are only fundamentalists the attractor becomes strange again and the 

Lyapunov exponent rises up to 0.523002, which would indicate a highly chaotic system. However 

the rise in the Lyapunov exponent is due to the increase in the amplitudes of the oscillations that in 

turn are due to the overreaction induced by the delayed reaction of fundamentalists, which brings 

price above (below) the fundamental price when the security is originally underpriced (overpriced).  

 

4.2. Effects of changing the growth rate of the fundamental value. Increases in g cause a 

stronger activity of the fundamentalists on the market. The price tends to remain close to the 

fundamental value and the amplitude of the price oscillations is smaller, therefore the variance 

decreases as g increases. If g is four times greater than in the baseline case the action of 

fundamentalists is so strong as to break the strange attractor into a limit cycle. If g is five times 

greater, the system converges to a quasi-periodic attractor. The attractor is a limit cycle for g equal 

to or greater than six times the baseline case. 

 

 

 

                                                 
1
 The price goes to zero with other parameter values. What matters here is that the price does not match the fundamental 

in the long run. 
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α  Mean Maximum Minimum Variance Skewness Kurtosis Jarque-Bera Lyapunov 

exponent 

0.2 0.00210084 0.281998 -0.223493 0.00347306 0.657885 4.55161 608.396 0.0283678 

0.3 0.000902394 0.161515 -0.115126 0.00117017 0.151231 3.91785 137.289 0.268056 

0.4 0.000369353 0.0587311 -0.0709184 0.000105104 0.0690029 6.59998 1907.9 0.241898 

0.5 0.00034002 0.0309093 -0.0298682 0.0000438907 0.164723 5.05137 634.548 0.175174 

0.6 0.000505747 0.0351398 -0.032607 0.000360944 0.0181459 1.57432 298.98 0.0989546 

0.7 0.000542628 0.0235851 -0.0309212 0.000432451 0.0149926 1.50448 328.907 0.0288602 

0.8 0.000425532 0.0235851 -0.0225013 0.000227566 0.0137007 1.50864 327.061 0.0345303 

0.9 0.000323392 0.00685721 -0.00633042 0.0000171097 0.0046185 1.51802 322.865 0.0124616 

1 0.000502513 0.108746 -0.0974863 0.000367779 0.397363 15.0274 21357.8 0.523002 

Table 4: Mean, maximum, minimum, variance, skewness, kurtosis, Jarque-Bera and Lyapunov exponent for Example 1 as α  varies 

from 0.2 to 1. 
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Figure 6: In Panel a there are represented the total demands of fundamentalist (in black), trend followers (in blue) and contrarians (in 

red) respectively given by 
F

Dα , ( ) TF
Dβα−1  and ( )( ) C

Dβα −− 11  when 2.0=α  and 5.0=β . In Panel b there is depicted the 

total technical  demand, given by the sum of the demands of trend followers and contrarians. Total excess demand, given by equation 

(3), is depicted in Panel c. Time interval ranges from 4000 to 7529. 

 

0.000319

g  Mean Maximum Minimum Variance Skewness Kurtosis Jarque-Bera Lyapunov 
exponent 

0 0.0000537886 0.0495222 0.0452839 0.000118037 0.027382 5.16913 692.095 0.252298 

1 0.000369353 0.0587311 -0.0709184 0.000105104 0.0690029 6.59998 1907.9 0.241898 

2 0.000684626 0.0610451 -0.0564503 0.0000919609 0.109867 5.82433 1179.69 0.224348 

3 0.000994219 0.0414887 -0.0391781 0.0000699423 0.124856 5.70547 1085.14 0.204809 

4 0.00129316 0.0191797 -0.0148457 0.0000362081 0.342639 3.63877 129.012 0.00105954 

5 0.00159735 0.00478863 -0.00147119 (2.93407)10 -6 0.0557558 1.81467 208.364 0.00214585 

6 0.00191871 0.00426463 -0.000423662 (2.72064)10-6 -0.00054509 1.50511 328.501 0.00123471 

Table 5: Maximum, minimum, variance, skewness, kurtosis, Jarque-Bera and Lyapunov exponent for Example 1 as g varies from 0 to 

6·0.000319. 

 

4.3. Effects of changing the speed of adjustment of the market maker. A higher value of the 

speed of reaction of the market maker determines a greater response of the price to a given excess 

demand and this in turn brings about an increase in the variance. This in turn determines a greater 

disorder in the system. For instance, if 40;20=Mλ  the trajectories are periodic, if 30;10=Mλ  the 

attractor is strange but more tidy than in the standard case. Indeed, the Lyapunov exponents are 

respectively equal to 0.0021286 and 0.0012897 and the return distributions are approximately 

normal. In Figures 7 and 8 there are reported the phase plots respectively for Mλ  equal to 20 and 

30. 

 

4.4. Effects of changing the speed of expected price adjustment of fundamentalists. Increasing 

the speed reaction of fundamentalists brings about a decrease in the variance because the price tends 

to stay close to the fundamental. The system undergoes a transition as the parameter Fλ  is 

increased, that is, the dynamics shows a cyclical behavior after a transient chaotic phase. This kind 

of transition, called attractor destruction, is a type of crisis-induced intermittency and has been 

investigated by Grebogi, Ott, Romeiras and Yorke (1986) and Grebogi, Ott, Romeiras and Yorke 

(1987). However, for large values of Fλ  the attractor becomes strange again; if 40=Fλ  the 

Lyapunov exponent is 0.127318, that is, the system is weakly chaotic due to the overreaction of 

fundamentalists. This case is similar in some respects to that where there are only fundamentalists 

on the market, indeed kurtosis rises up to 10.1876. Because of the presence of technical traders, 

which are affected by the changes in prices triggered by the fundamentalists, it is not possible to 

determine what the dynamics eventually are as the reaction speed of the fundamentalists is further 
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increased. For instance, if 190=Fλ  the dynamics are periodic, but if  300=Fλ  the attractor is 

strange, with a Lyapunov exponent of 0.240876, and is characterized by an intermittent behavior. 

 
Mλ  

Mean Maximum Minimum Variance Skewness Kurtosis Jarque-Bera Lyapunov 
exponent 

10 0.000330484 0.0206878 -0.0201229 0.0000253034 0.0387064 3.48532 35.505 0.183651 

20 0.000360739 0.0176783 -0.0168995 0.0000794659 0.170052 1.97156 172.483 0.0021286 

30 0.000365441 0.0331703 -0.0319962 0.000081857 0.017598 3.02064 0.24473 0.159328 

40 0.000357116 0.014606 -0.0172128 0.0000779788 -0.206538 1.9594 184.261 0.0012897 

50 0.000361973 0.0197733 -0.0142528 0.0000844143 0.241145 2.0067 179.23 0.0014726 

60 0.000369353 0.0587311 -0.0709184 0.000105104 0.0690029 6.59998 1907.9 0.241898 

70 0.000381041 0.0793545 -0.0628766 0.000128775 0.145983 7.13087 2520.95 0.233348 

80 0.000405412 0.0669915 -0.0570457 0.000172349 0.157421 4.88388 536.273 0.235278 

90 0.00041944 0.0631928 -0.0533371 0.000204906 0.0882721 4.03829 163.054 0.257029 

100 0.000425154 0.0978468 -0.0698592 0.000234512 0.160142 4.68113 430.533 0.250071 

Table 6: Maximum, Minimum, Variance, Skewness, Kurtosis, Jarque-Bera and Lyapunov exponent for Example 1 as 
Mλ  varies 

from 10 to 100. 
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Figure 7: Projections of the phase space on the planes ],[

FF
D ς  (a), ],[

TFTF
D ς  (b), ],[

CC
D ς  (c), ],[

TFF
DD  (d), ],[

TFF
DD  

(e), ],[
CTF

DD  (f)  when 20=Mλ . 
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Figure 8: Projections of the phase space on the planes ],[

FF
D ς  (a), ],[

TFTF
D ς  (b), ],[

CC
D ς  (c), ],[

TFF
DD  (d), ],[

TFF
DD  

(e), ],[
CTF

DD  (f)  when 30=Mλ . 
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Fλ  
Mean Maximum Minimum Variance Skewness Kurtosis Jarque-Bera Lyapunov 

exponent 

19/15 0.00055803 0.0825522 -0.0761281 0.000483397 0.101521 3.75793 90.5049 0.260045 

38/15 0.00048943 0.0905994 -0.0713038 0.000324588 0.0888249 3.6847 73.5548 0.20373 

57/15 0.000434872 0.054647 -0.054509 0.000234301 0.0296036 3.25936 10.4036 0.243968 

76/15 0.000398758 0.0697828 -0.0714307 0.000157999 0.174213 5.02767 622.226 0.247527 

95/15 0.000369353 0.0587311 -0.0709184 0.000105104 0.0690029 6.59998 1907.9 0.241898 

114/15 0.000370917 0.0694991 -0.0494394 0.000104576 0.236946 6.56116 1897.24 0.232318 

133/15 0.000368247 0.0610275 -0.0395701 0.0000912715 0.256507 3.44351 67.603 0.00113966 

152/15 0.000368016 0.0736272 -0.0701349 0.0000930663 0.213145 4.98602 606.522 0.00244454 

171/15 0.000356914 0.0190932 -0.0147682 0.0000847965 0.163268 1.78405 233.018 0.00236142 

190/15 0.000352543 0.0593143 -0.0400121 0.0000674469 0.145138 6.65448 1975.6 0.064413 

40 0.000327483 0.0215197 -0.0206138 0.0000167665 0.0946897 10.1879 7602.37 0.127318 

190 0.000373124 0.0427878 -0.0428233 0.000112505 0.158359 4.63448 407.577 0.0739194 

300 0.000472087 0.0845286 -0.0675717 0.000316402 0.273594 4.19152 252.783 0.240876 

Table 7: Maximum, Minimum, Variance, Skewness, Kurtosis, Jarque-Bera and Lyapunov exponent for Example 1 as 
Fλ  varies from 

19/15 to 190/15 and for 
Fλ  equal to 30, 190, 300. 

 

4.5. Effects of changing the extrapolation speed of trend followers and contrarians. From the 

values of the Lyapunov exponent, it is apparent that for low values of TFλ  and Cλ  the system 

converges to a limit cycle. The dynamics may explode or converge to a price equal to zero if 

contrarians are much more reactive than trend followers, as in the cases where 

19.0;17.0;16.0=TFλ . This result is due to the risk aversion dynamics that cause the demands of 

trend followers and contrarians to have the same sign, because contrarians become risk seekers or 

not sufficiently risk averse to offset the trend followers. The price diverges to infinity or converges 

to zero when the demand of technical traders remains positive or negative (in these cases the 

statistics are meaningless and therefore are not reported in Table 8 and 9). When the system 

converges to a strange attractor, the statistics do not show a clear dependence on TFλ  and Cλ . 

Skewness tends to be slightly positive, differently from the time series of the S&P 500 index, which 

is instead slightly negative skewed. Positive skewness is due to the short term overshooting, as 

explained in Section 3. Overshooting, which causes also kurtosis in the time series, is induced by 

both the delayed reaction of investors and the interactions between fundamentalists and trend 

followers, since the latter may reinforce a trend triggered by the action of the former and contrarian 

trading is not sufficient to offset the trend followers. If we increase the reactivity of technical 

traders, the system becomes more regular, as trend followers and contrarians tend to balance each 

other. The dynamics are less regular if we only increase the reaction parameter of trend followers, 

because they prevail over contrarians.  

 

4.6. Effects of switching between trend following and contrarian strategies. So far we have 

dealt with a model where the proportion between trend followers and contrarians are kept constant. 

If 0>z  such proportions become path dependent. The higher the value of z, the higher the fraction 

of trend followers because this strategy is generally more profitable than the contrarian one, since 

price grows in the long run. This higher presence of trend chasers may render the system chaotic. 

 

 
TFλ  

Mean Maximum Minimum Variance Skewness Kurtosis Jarque-Bera Lyapunov 

exponent 

0.15 0.000384673 0.0187929 -0.0242905 0.000135443 -0.355236 2.13223 184.895 0.00263052 

0.16 - - - - - - - - 

0.17 - - - - - - - - 

0.18 0.000372227 0.0173602 -0.0222974 0.000117359 -0.290264 2.03177 187.349 0.0010877 

0.19 - - - - - - - - 

0.20 0.000378055 0.0598837 -0.0553325 0.000117933 0.133162 6.00388 1336.85 0.201067 

0.21 0.00038489 0.122849 -0.0810554 0.000131612 0.387327 10.6243 8633.27 0.221105 

0.22 0.000369102 0.0272894 -0.0259532 0.0000990937 0.037827 3.71217 75.3983 0.209684 

0.23 0.000367604 0.0593017 -0.0495785 0.0000994084 0.146344 6.06788 1396.14 0.238593 

0.24 0.000366941 0.0481003 -0.0573432 0.0000990906 -0.00316219 5.81994 1168.96 0.237215 

0.25 0.000369353 0.0587311 -0.0709184 0.000105104 0.0690029 6.59998 1907.9 0.241898 

Table 8: Maximum, Minimum, Variance, Skewness, Kurtosis, Jarque-Bera and Lyapunov exponent for Example 1 as 
TFλ  varies 

from 0.15 to 0.25. 
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Cλ  

Mean Maximum Minimum Variance Skewness Kurtosis Jarque-Bera Lyapunov 

exponent 

-0.15 0.000369556 0.0213667 -0.0158433 0.000106152 0.179352 1.91581 191.707 0.0021656 

-0.16 0.000372044 0.0211957 -0.015605 0.000102849 0.181869 1.92979 187.815 0.0024273 

-0.17 0.000370366 0.0210591 -0.0156312 0.000099644 0.186281 1.95433 181.137 0.0026694 

-0.18 0.000380905 0.0478136 -0.0481585 0.000121981 0.0891421 4.88654 527.85 0.230824 

-0.19 0.000377074 0.0465356 -0.0424717 0.000115556 0.0318894 4.71706 433.996 0.226468 

-0.20 0.000376226 0.0505584 -0.0478036 0.000109272 0.105942 5.21538 728.061 0.246516 

-0.21 0.00036901 0.0523215 -0.0468544 0.0000991786 0.11308 5.38548 844.025 0.233281 

-0.22 0.000369353 0.0587311 -0.0709184 0.000105104 0.0690029 6.59998 1907.9 0.241898 

-0.23 0.000369951 0.0864171 -0.0585479 0.000102825 0.138732 6.8382 2176.89 0.213399 

-0.24 0. 0.000376719 0.0723912 -0.0645418 0.000114519 0.047148 7.25154 2658.42 0.227939 

-0.25 0.000396688 0.0706271 -0.0654394 0.000159497 0.263336 15.3175 22343.7 0.158465 

Table 9: Maximum, Minimum, Variance, Skewness, Kurtosis, Jarque-Bera and Lyapunov exponent for Example 1 as 
Cλ  varies from 

-0.15 to -0.25. 

 

Let us consider the case with constant proportion where 16.0=TFλ  and 15.0−=Cλ . The system 

converges towards a limit cycle. If 50=z  the system, after an initial chaotic phase, until 1000≈t , 

approximates a regular orbit very similar to the limit cycle obtained with constant proportion and 

eventually becomes chaotic as 6600≈t . Indeed, the dynamics approximate a limit cycle as long as 

the proportion remains close to 0.5. The phase space projections of the system in the time interval 

[ ]2200,2000  are represented in Figure 9. The fraction of trend followers is on average equal to 

0.503711 and tends to oscillate between 0.48 and 0.54 with a variance of 0.000248758. If 100=z  

there are larger oscillations in the composition of technical analysts. Indeed, while the mean of the 

fraction of trend followers remains slightly over half (0.508117), the variance increases up to 

0.00264788.
1
 The higher proportion of trend followers causes greater departures from the 

fundamental value triggering a reaction by all types of investors. Such dynamics bring about an 

increase in the variance and the kurtosis of returns. If z is increased up to 150 and subsequently up 

to 500, the oscillations in the proportion between technical traders become larger and the variance 

of returns increases further, while kurtosis decreases because the increase in variance determines 

that some returns previously in the tails of the distribution now approach the center. 

 
z  Mean Maximum Minimum Variance Skewness Kurtosis Jarque-Bera Lyapunov 

exponent 

0 0.000419108 0.0204648 -0.0259058 0.000187242 -0.184689 1.7386 253.951 0.00137831 

50 0.000420392 0.0568036 -0.0711078 0.000191746 -0.16719 2.8211 21.1409  

100 0.000467982 0.0851743 -0.164496 0.000304584 -0.035824 8.06507 3772.03  

150 0.000565746 0.126586 -0.125605 0.000493903 0.122439 6.1863 1501.23  

500 0.000994454 0.154838 -0.128476 0.00136727 0.222942 4.19228 238.189  

Table 10: Maximum, Minimum, Variance, Skewness, Kurtosis, Jarque-Bera and Lyapunov exponent for Example 1 for 

z equal to 0, 50, 100, 150, 500. 
 

 

5. Conclusion 
 

In this paper we have outlined a continuous time deterministic model of a financial market with 

heterogeneous interacting agents. The dynamical system shows periodic, quasi-periodic and strange 

attractors, and is able to generate some stylized facts present in real markets, even in a purely 

deterministic setting: excess kurtosis, volatility clustering and long memory. We have indeed tuned 

the parameters in order to  produce artificial time series with statistical properties similar to those of 

the daily time series of S&P500 index between 1 January 1990 and 31 December 2003. Since  the 

fundamental value grows exponentially as time goes on, large price  overshooting  is  on  average 

positive, thus  giving  rise  to positive skewness. Mean, variance and kurtosis  tend  to match quite 

close those of the S&P500, whereas skewness and autocorrelation patterns are somewhat affected 

by the long run  exponentially increasing fundamental value and price.  Furthermore, because of the  

                                                 
1
 The mean and variance of trend followers are computed in the time interval from 4000 and 7529, as the statistics of 

time series of returns. 



 17 

 

-0.002 0 0.002 0.004 0.006 0.008 0.01
F.Demand

-0.01

-0.005

0

0.005

T
.
F
.

d
n
a
m
e
D

HdL

-0.002 0 0.002 0.004 0.006 0.008 0.01
F.Demand

-0.006

-0.005

-0.004

-0.003

C
.

d
n
a
m
e
D

HeL

-0.01 -0.005 0 0.005
T.F.Demand

-0.006

-0.005

-0.004

-0.003

C
.

d
n
a
m
e
D

HfL

-0.002 0 0.002 0.004 0.006 0.008 0.01
F.Demand

16

18

20

22

24

26

V
F

HaL

-0.01 -0.005 0 0.005
T.F.Demand

-2

0

2

4

V
F

T

HbL

-0.006 -0.005 -0.004 -0.003
C.Demand

-2

-1.5

-1

-0.5

0

0.5

1

VC

HcL

 
Figure 9: Projections of the phase space on the planes ],[

FF
D ς  (a), ],[

TFTF
D ς  (b), ],[

CC
D ς  (c), ],[

TFF
DD  (d), ],[

TFF
DD  

(e), ],[
CTF

DD  (f)  when 16.0=TFλ , 15.0−=Cλ  and z=50 in the time interval [2000,2200]. 

 
absence of chaotic long term trends and cycles, the model is not able to completely cancel the 

autocorrelations of returns and to give rise to square autocorrelations that decay according to a 

power law. Nevertheless the introduction of technical traders allows for a reduction in the 

autocorrelation with respect to TDG, which is characterized only by fundamentalist agents and 

shows a very high negative first order autocorrelation, because fundamentalists tend to drive the 

price back to fundamental too quickly. Even in the case where fundamentalists are the only agents 

present in the market, they are unable to drive the price back to the fundamental on a steady state 

trajectory, because of both the increasing risk aversion as they trade in order to profit out of a 

mispricing and the delays in processing the information from the market. Moreover, the increase in 

the fundamentalist reaction speed on the one hand may destroy the strange attractor giving rise to a 

chaotic transient, on the other may even increase the disorder in the system, as pointed out by the 

values of the Lyapunov exponent, because the fundamentalists trigger a strong response of technical 

traders. It may also be possible that, when the fraction of fundamentalists is low, trend followers 

and contrarians give rise to synchronization in the system, bringing about a dramatic change in the 

dynamics. In this case, the system exhibits the phenomenon of intermittency, that is, regular phase 

interrupted by chaotic bursts in the dynamics. The introduction of an evolutionary switching 

between technical traders leads to an increase in the volatility and in the kurtosis, provided that the 

speed of switching is not too high because otherwise the increase in the variance makes it less likely 

that returns will fall in the tails of the distributions. 

There are many ways to extend the model. While in the present paper the fundamental value is 

assumed to grow exogenously at a rate g, further research will introduce a feedback between price 

and fundamental, that is, a feedback between real and financial parts of the model. Another 

extension will consider time delays distributed according to distributions that give more importance 

to more recent observations as well as technical traders who take into account the whole history of 

past prices. Such extensions should produce time series with long run chaotic dynamics displaying 

more realistic statistical properties, mainly in terms of autocorrelation patterns and long memory. 
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