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Abstract 

 

This paper considers independently distributed stochastic processes that are also 

nonidentically distributed.  We find that an identically distributed process with 

autocorrelations can be obtained from an independent, yet nonidentically distributed, 

random generator.  Our approach is illustrated with a time series from the British pound-US 

dollar rate. 
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1.  Introduction 

 

The aim of this paper is to show how a stochastic time series, obtained from a random 

generator that is independent but not identically distributed, shows nonlinear 

autocorrelations when approached as if it were identically distributed.  We put forward 

reduced variables that are independent and identically distributed and observe that the main 

features of nonlinear autocorrelations emerge.  We illustrate our approach with a time series 

from the British pound-US dollar rate. 

 The structure of the paper is as follows.  Section 2 presents benchmark definitions.  

The set of independent and identically distributed, reduced variables is presented in Section 

3.  Section 4 calibrates our methodology with data from the pound-dollar exchange rate.  

And Section 5 concludes. 

 

2.  Previous results 

 

Here we will put forward some previous propositions and results [1, 2] that are of interest 

in this paper. 

 Consider the sum of n stochastic variables ix  

 

∑
=

=
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i
in xS
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together with the generalized moments of ix  and nS , i.e., 

 

, ,q
iq ix i n qµ = 〈 〉 ∀ ∈ ∈   
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The ix ’s are assumed to be identically distributed.  Given the probability density function 

(PDF) of a ix , i.e., )( ii xf , it follows from the classic central limit theorem (CLT) that the 

PDF of its reduced variable will be Gaussian as n → ∞ .  Necessary conditions for the CLT 

to hold are as follows.  (1) The ix ’s are independent, (2) the ix ’s have finite second 

moments, and (3) the infinitesimality condition holds.  The latter condition states that 

 

 ( )2

2

max , 1,...,
lim 0i

n
n

i nµ
ν→∞

=
=  

 

where ( )2max , 1,...,i i nµ =  is the largest value of the second moment [3, 4]. 

 A number of authors have tackled the problem of the reduced variable’s 

convergence speed toward its asymptotic Gaussian (e.g., Chebyshev [5], Gnedenko and 

Kolmogorov [6], Berry [7], and Esseen [8]).  One celebrated theorem by Berry and Esseen 

puts that, under proper conditions, the convergence speed is governed by the absolute value 

of ix ’s third moment over the cube of its standard deviation. 

 More recently some have employed tools of statistical physics to crunch data 

coming from subjects as diverse as economics and finance [9, 10] and biology [11].  One 

work of particular interest is that of Mantegna and Stanley [9].  They put forward a 

truncated Lévy flight (TLF).  The TLF is able to explain several properties observed in 

economic time series, such as scaling power laws in second moments and slow 

convergence speed to the Gaussian regime.  These are at odds with conventional wisdom 

but still consistent with the CLT. 

 We have shown [2] that major particular features of the TLF can be explained in 

terms of autocorrelations.  To see how, we first define an extended nonlinear 

autocorrelation as 
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The usual linear correlation term is obtained from 
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( )11 n i j i jx x x x〈 〉 = 〈 〉 − 〈 〉〈 〉∑                                                                                                (1) 

 

Here there is a power law in the second moment of type 1/
2 , 2n n αν α∝ ≠ , within a finite 

time window 1 2n n n≤ ≤ , even if (1) stands at its “noise” level [2]. 

In particular, the slow convergence might be caused by nonlinear autocorrelations.  

And the actual distance of a given distribution ( )f x  from its ultimate Gaussian state can be 

measured, as a result.  A distance function is defined as [1] 
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Symbols nSk  and nK  stand for skewness and kurtosis respectively.  They are defined as 
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As for the corresponding sum variable, we have shown that 
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where 

 

1 2 1... ...q q
nq q q nq nx xσ µ µ µ= + + + = 〈 〉 + + 〈 〉  

 

Term 0
nSk  is the skewness of Sn in an independent and identically distributed (IID) process.  

Term 1
nSk  involves nonlinear autocorrelations of third order.  Even if the correlation of 

pairs 11  is nil, 1
nSk  may not be so.  In such a case 0f

Iw ≠ , and this prevents the 

asymptotic Gaussian regime to be reached.  Term 0
nK  is that of an IID process.  And term 

1
nK  contains linear correlation of pairs.  Yet autocorrelations of fourth order appear in 2

nK .  

Both linear and nonlinear autocorrelations are critical for the understanding of f
Rw .  

Although linear autocorrelations play a key role in the convergence of a distribution, it is 

still necessary to take nonlinear autocorrelations into account to fully characterize a 

process. 

Thus the main properties of the TLF can be grasped by an analysis of nonlinear 

autocorrelations.  Such an approach is universal in that it encompasses any stochastic 

process of finite variance, not only those related to the TLF. 
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 Next section will move on to consider IID reduced variables. 

 

3.  Reduced variables that are independent and identically distributed 

 

First consider the mean of ix , 1i ixµ = , its variance, 22
2 ><−>=< iii xxµ , and standard 

deviation 2iµ .  The PDF of ix , say )( ii xf , is assumed to be distinct for every ix . Here 

we are particularly interested in reduced variables, i.e., 1

2

i i
i

i

xx µ
µ
−

= .  Then we define a 

class of reduced variables that are independent and identically distributed (IIDR) as 

follows. 

 

Definition 1.  Distributions )( ii xf  of ix  are such that jixfxf jjii ≠≠ ),()( .  But 

)()( jjii xfxf =  for the distributions of any pair of reduced variables 1 2( )i i ix µ µ−  and 

1 2( )j j jx µ µ− , ji ≠ . 

 

 Nonidentity for n of these variables is entirely determined by both their means 

1, 1, ,i i nµ =  and standard deviations 2 , 1, ,i i nµ = .  A reduced random generator 

(RRG) rG  is one with zero mean and unit standard deviation.  As a result, 

 

2 1i i r ix Gµ µ= +                                                                                                                    (4) 

 

An IIDR time series can thus be obtained as follows.  (1) Choosing a particular RRG, (2) 

choosing actual values 1, 1,...,i i nµ =  to capture the mean’s time evolution, and (3) choosing 

actual values 2 , 1,...,i i nµ =  to track the standard deviation’s behavior over time. 

 The results in the previous section can be applied to a time series obtained from an 

RRG.  For instance, we can pick an RRG derived from a TLF of 1=α  (Cauchy 

distribution) 

 



 7 

( ) ( )
1 22
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f x Cx

Lx L x L

 − ≤ ≤= =+ + < − >

                                    (5) 

 

where 0, 21 >LL .  The statistical moments of )(xf  are easily obtained. 

Defining a random generator associated with x , whose distribution function is the 

)(xf  in Eq. (5) is a well-known problem.  We can relate x  with, say y , which is uniformly 

distributed within interval [0,1] , and use probability conservation to show that 

 

( ) ( )[ ] ( )( )121 arctanarctanarctantan LyLLx −+=                                                                     (6) 

 

Because y  is uniformly distributed in ]1,0[ , x  will be distributed in ],[ 21 LL−  with a TLF 

of 1=α .  Reduced variable 1

2

xx µ
µ

−
=  will then be distributed according to a reduced 

TLF.  Finally we define a TLF−RRG of 1=α  from 

 

( ) ( ) ( )( )1 2 1 1

2

tan arctan arctan rand() arctan
r

L L L
G
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µ

 + − − =                                              (7) 

 

where rand() is a uniform random generator in [0,1].  Generator (7) is a reduced TLF 

entirely determined by 1L  and 2L .  If LLL == 21  then the TLF is symmetric.  Thus one 

can define an RRG relying merely on 1iµ  and 2iµ .  Thus, the means and standard 

deviations of an IIDR process are the only parameters that change during a random 

generation process. 

 

4.  Illustration 

 

Now we will illustrate the above technique with real world data.  We take a time series 

from the daily changes of the British pound−US dollar rate from 5 January 1971 to 4 May 

2005 (8615 data points).  The heart of our technique is as follows.  We divide such a 
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sequence into equal, non-overlapped time periods.  Then we compute the means and 

standard deviations of these periods.  For instance, defining a p-sized period as a sequence 

of p days is meant that the series of 8615 days will have pn  periods of p days that are 

consecutive and non-overlapped ( 8615pn p× = ).  We then calculate (for each of these 

periods) the means and standard deviations using the pound-dollar series.  The time 

evolution of these means and standard deviations are shown in Fig. 1 for p = 5 and p = 20. 

 Once p  and pn  are defined, we are ready to define the following IIDR random 

generator: 

 

( )2 1, 1, 2,3,...,8615i r iG A iµ µ+ =                                                                                        (8) 

 

where A  is a real number in interval ]1,0[ .  The 1iµ  and 2iµ  are given by 

 

11 21 31 1... pµ µ µ µ= = = = = first-period mean  

11 21 31 2 1...p p p pµ µ µ µ+ + += = = = = second-period mean                                                        (9) 

2 11 2 21 2 31 3 1...p p p pµ µ µ µ+ + += = = = = third-period mean  

 

 

and 

 

12 22 32 2... pµ µ µ µ= = = = = first-period standard deviation  

12 22 32 2 2...p p p pµ µ µ µ+ + += = = = = second-period standard deviation                    (10) 

2 12 2 22 2 32 3 2...p p p pµ µ µ µ+ + += = = = = third-period standard deviation  

 

 

 What generator (8) does is to produce 8615 values as follows.  As we generate 

values for each p, the values of 1iµ  and 2iµ  (that define the IIDR process) alter.  This 
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IIDR generator preserves the time evolution of means and standard deviations related to the 

p-sized periods of the pound-dollar series.  This works as if we were reproducing in the 

random generator the same actual time evolution of means and standard deviations. 

Our task is then to compare the statistical properties of the pound-dollar time series 

with those of an RRG obtained with 1iµ  and 2iµ  (as defined above).  The time evolution 

of the moments for the two series will be shown to behave similarly, as long as one makes 

proper choices of 1,A L , and 2L .  Accordingly an identically distributed process with 

autocorrelations can be obtained from an independent, yet nonidentically distributed, 

random generator. 

We employ Eqs. (2) and (3) to capture the time evolution of skewness and kurtosis 

in the pound-dollar returns.  And we take an RRG process that is independent but 

nonidentically distributed.  (We also assume that taking identically distributed variables is 

harmless.) 

Both symmetric ( 21 LL = ) and asymmetric ( 21 LL ≠ ) cases are considered.  For 

robustness, the routine in Eq. (8) is repeated twenty times.  In every case we pick a different 

seed for the uniformly distributed generator in Eq. (7).  Figures 2−6 show mean values of 

20 processes generated from an IIDR process (as in Eq. (8)).  Outcomes for processes with 

5=p , 1723=pn (trading weeks of 5 days) and 20=p , 430pn =  (trading months of 20 

days) are displayed. 

 Fig. 2−6 present values of standard deviation, skewness, and kurtosis.  For 

completeness, outcomes for a random aggregation of (IID) variables are also shown.  And 

“experimental” outcomes for the pound-dollar returns are shown for comparison. 

Fig. 2 presents a symmetric RRG.  We get 21 LL =  from maximum likelihood 

estimates.  Note that kurtosis behavior in the IIDR process is very similar to the actual 

value.  This suggests that kurtosis behavior can be explained in terms of the time evolution 

of the standard deviation defining the RRG.  Skewness behavior is not that clear-cut, 

however.  Yet this is expected because the generator is symmetric and A = 0.  Note, too, 

that the standard deviation behaves as if the process had a Hurst exponent of ½. 

 Fig. 3 shows an asymmetric RRG.  Note that the two curves are very similar (as 

those in Fig. 1).  Thus we conclude that kurtosis behavior can be explained by the evolution 
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of the standard deviations.  Also, the second moment of the IIDR process (Eq. (17)) is 

similar to that of an IID process.  This suggests lack of linear autocorrelation, despite the 

fact that nonlinear autocorrelations are surely present.  These can be seen from kurtosis 

behavior. 

Fig. 4 displays a symmetric RRG with A = 1.  L1 = L2 is chosen as before.  Kurtosis 

of the IIDR process is very similar to that of the actual data.  Accordingly a particular time 

evolution of mean and standard deviation suffices to track the bulk of higher-order moment 

behavior.  Yet the standard deviation cannot fit either the IID or actual data, because its 

Hurst exponent is lower than that of the pound-dollar series.  This particular IIDR process 

thus presents slow convergence to the Gaussian together with a Hurst greater than ½.  

These are typical features of the TLF. 

 Fig. 5 is equivalent to Fig. 4, apart from the fact that it shows a symmetric RRG.  

Thus the conclusions drawn from Fig. 4 extend to Fig. 5. 

 Fig. 6 departs from Fig. 5 in that A is set to 0.55.  The Hurst exponent is sensitive to 

changes in A.  The Hurst is ½ for A = 0, but grows as A increases (not shown).  At A = 0.55 

there occurs the best fit for the standard deviation and kurtosis.  This reinforces the 

standpoint that the generated process may be independent, though nonidentically, 

distributed. 

 

5.  Conclusion 

 

This paper suggests that the main features of nonlinear autocorrelations can be explained in 

terms of reduced variables that are independent and identically distributed (IIDR).  It seems 

that all relevant information concerning the correlations are encompassed by the time 

evolution of mean and standard deviation.  This makes it possible for a process to be in fact 

independent though nonidentically distributed.  Nonidentity can satisfactorily explain the 

slow convergence to the Gaussian regime as well as the emergence of a Hurst exponent 

greater than ½.  And it is still possible to observe a non-IID behavior in skewness and 

kurtosis even if the Hurst equals ½. 

 Nonconvergence to the Gaussian can thus be explained by departures from the 

infinitesimality hypothesis of IIDR processes.  Second moment is indeed highly volatile.  
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Thus one should expect the ratio of the highest volatility of each variable and volatility of 

the cumulative variable to approach zero very slowly, thereby preventing the Gaussian 

regime to be reached. 

From a physicist’s perspective, mean and volatility are barometers for market mood.  

If a market does not change its mood frequently, the infinitesimality hypothesis is likely to 

hold regardless of how eerie or troubled a market currently stands.  Yet a market presenting 

strong swings in mood impacts volatility very heavily, thereby slowing down convergence 

to the Gaussian. 

All these novel results are in line with our previous findings [1].  Mood swings are 

more usual in currencies of emerging markets.  Yet relative percentage changes in weekly 

volatilities are less sharp in these currencies.  And developed currency markets are less 

volatile.  As a result, sharp swings in volatility causes the breakdown of the infinitesimality 

hypothesis.  And this explains why exchange rates of emerging countries are both more 

volatile and farer from the Gaussian if compared to those of developed countries.  

However, sluggishness is stronger in developed countries.  This is because a tiny change in 

a near-zero volatility pushes the limit of the ratio of the highest volatility of each variable 

and volatility of the cumulative variable toward zero more slowly. 
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Fig. 1. (a) Time evolution of reckoned means (upper panel) and standard deviations (lower 
panel) of the daily pound-dollar rate for 1723 trading weeks from 5 January 1971 to 4 May 
2005 (p = 5). 
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Fig. 1 (b) Time evolution of reckoned means (upper panel) and standard deviations (lower 
panel) of the daily pound-dollar rate for 1723 trading weeks from 5 January 1971 to 4 May 
2005 (p = 20). 
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Fig. 2.  Scaling in standard deviations (upper panels), skewness (middle panels), and 
kurtosis (lower panels) of the daily pound-dollar rate.  Plots on the left show the IIRD 
process obtained with p = 5, A = 0, and the symmetric case L = L1 = L2.  Maximum 
likelihood estimate of L is 7.5.  Plots on the right hand side show the IIRD process with p = 
20. 
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Fig. 3.  Scaling in standard deviation (upper panels), skewness (middle panels), and 
kurtosis (lower panels) of the daily pound-dollar rate.  Plots on the left show the IIRD 
process obtained with p = 5, A = 0, and the asymmetric case L1 ≠ L2.  Maximum likelihood 
estimates of L1 and L2 are 7.5 and 6.15 respectively.  Plots on the right hand side show the 
IIRD process with p = 20. 
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Fig. 4.  Scaling in standard deviations (upper panels), skewness (middle panels), and 
kurtosis (lower panel) of the daily pound-dollar rate.  Plots on the left show the IIRD 
process obtained with p = 5, A = 1, and the symmetric case L = L1 = L2.  Maximum 
likelihood estimate of L is 7.5.  Plots on the right hand side show the IIRD process with p = 
20. 
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Fig. 5.  Scaling in standard deviation (upper panels), skewness (middle panels), and 
kurtosis (lower panels) of the daily pound-dollar rate.  Plots on the left show the IIRD 
process obtained with p = 5, A = 0, and asymmetric case L1 ≠ L2.  Maximum likelihood 
estimates of L1 and L2 are 7.5 and 6.15 respectively.  Plots on the right hand side show the 
IIRD process with p = 20. 
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Fig. 6.  Scaling in standard deviation (upper panels), skewness (middle panels), and 
kurtosis (lower panels) of the daily pound-dollar rate.  Plots on the left show the IIRD 
process obtained with p = 5, A = 0.55, and asymmetric case L1 ≠ L2.  Maximum likelihood 
estimates of L1 and L2 are 7.5 and 6.15 respectively.  Plots on the right hand side show the 
IIRD process with p = 20. 
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