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Abstract

This paper provides an introduction to Monte Carlo algorithms for
pricing American options written on multiple assets, with special em-
phasis on methods that can be applied in a multi-dimensional setting.
Simulated paths can be used to estimate by nonparametric regression
the continuation value of the option or the optimal exercise policy and
the value functions can then be computed by backward induction. The
flexibility of nonparametric regression allows to obtain accurate price
estimates with remarkable speed. For illustrative purpose we price one-
and two-dimensional American options.

1 Introduction

This paper deals with the problem of pricing American-style derivatives

on multiple assets. The American feature offers to the holder the right to
early exercise the option, cashing the payoff immediately. If rare cases are
excluded, one being an American call option on one stock that does not

pay dividends, there are not close evaluation formulae for such derivatives.
One of the main difficulties lies in the computation of the optimal exercise

time, as a stochastic control problem is to be solved. In particular, this fact
has made till recently the application of Monte Carlo simulation difficult in

such a context, because the standard backward arguments required by the

∗We thank two referees and the participants to “IV Workshop di Finanza Quantit-
ativa”, Torino, 2003, for useful comments that improved the final version of the paper.
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optimality principle do not allow straightforward use of implicitly forward
Monte Carlo tools.

The literature that tries to overcome the lack of analytical pricing for-
mulae for American options written on one asset is impressive and dates

back to the binomial model of [Cox et al., 1979], that can be used check-
ing at each node if immediate exercise is profitable. A selection of other

important papers on the subject includes (but is in no way limited to)
[Barone Adesi and Whaley, 1987], [Geske and Johnson, 1984], [Carr, 1998],

[Bunch and Johnson, 2000], [Grant et al., 1997] and [Huang et al., 1996].
Some of these contributions require advanced mathematical tools, like Ri-

chardson extrapolation or recursive integration schemes. Binomial trees with
tens of thousand nodes are still routinely used to get a quick approximate
answer with little coding effort.

Some researchers focused in the last decade on methods that can in prin-
ciple be employed to price options written on multiple assets. Pioneering

work in [Bossaerts, 1989] and [Tilley, 1993] explicitly models the early exer-
cise region or provides a bundling technique that groups simulated paths in

bunches indexed by price. A strenuous effort to use simulation-based meth-
ods despite the slow convergence is motivated by the ease of implementation

and by linear computational complexity in the number of risk sources (as-
sets). However, Tilley’s and many other algorithms give fairly inaccurate

results and require exponential time in the number of assets.
The Stratified State Aggregation along Price (SSAP) method described

in [Barraquand and Martineau, 1995] was a first important development of

Tilley’s ideas but nevertheless the burden of dimensionality is not solved and
[Coyle and Yang, 1999] show that the method is non convergent. The paper

of [Raymar and Zwecher, 1997] extends the SSAP methods by using a two
dimensional stratification that can in some cases provide convergence when

the SSAP method is failing. [Boyle et al., 1997] presents another method
but its success is again limited by exponential complexity. In other cases, like

the stochastic mesh method, [Broadie and Glasserman, 1997], this drawback
is avoided at a price of dramatically slow O(N−1/4) convergence, where N

is the number of simulations.
A major breakthrough toward a more efficient solution is provided by

[Longstaff and Schwartz, 2001], that show how to estimate by regression the

continuation value conditionally on optimal exercise strategy. This paper
ignited a strong interest in the use of regression to solve the American pricing

problems, that can now be tackled in cases of practical importance, see
[Haugh and Kogan, 2001, Andersen and Broadie, 2001]. The early work by

[Carriere, 1996], that somehow did not get at first the deserved attention,
is now recognized to contain many ideas developed in the following years.

In order to use regression, the points of the design matrix are randomly
sampled simulating lognormal stock paths and the continuation value is

computed backward for each time-slice, allowing to evaluate the discounted
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average of sample payoffs conditional on an approximate optimal timing of
the exercise feature. In the Longstaff–Schwartz approach the sample paths

are used to estimate weather immediate exercise is greater than the expected
risk-neutral payoff, but only realized payoffs are used to compute the price.

The method is appealing even if there are details in its application that
might require some effort. For example, the continuation value is computed

using a parametric regression on a number of variables that are polynomial
transformations of the normalized asset values. Though the authors claim

that the results are quite insensitive to the chosen regressors, a subset se-
lection is implicitly in order to ensure that convergence has occurred. The

regressions in the examples provided in the Longstaff–Schwartz paper use
for example a constant and 3 nonlinearly transformed regressors (based on
Laguerre polynomials) to price a univariate put option. The number of

regressors increases to 22 in pricing more complex derivatives and some nu-
merical care is needed to get accurate results, as reported in Section 8 of

the paper.
Moreover, the use of linear regression on nonlinearly transformed vari-

ables suggests that more sophisticated regression techniques could simplify
some parts of the algorithm, avoiding experimentation and selection of

different sets of variables or transformations. This idea is exploited in
[Haugh and Kogan, 2001] where neural networks are used in view of their

universal approximation properties and accurate bounds for the price are
given. The use of nonparametric regression encompasses both the need of
nonlinear transformations and variable subset selection. In fact, being the

continuation value estimated by a flexible functional form (for example, loc-
ally linear), there is no purpose in estimating a multiple linear regression

and it often suffices to use just the underlying stocks or risk sources.
This paper aims to provide a simple and introductory description of a

pricing algorithm that makes use of nonparametric techniques, in the spirit
of [Carriere, 1996]. The plan of the paper is the following: in the next sec-

tion we describe how to work backward the value functions using Monte
Carlo generated data. In Section 3 we briefly describe some nonparametric

techniques and point to some relevant references. This section is only inten-
ded to suggest some introductory readings on nonparametric regression that
might not be routinely known by the finance community. In Section 4 we

present two applications by pricing an American ‘standard’ put option and
an American put option written on the minimum of two assets. The results

we obtain are compared to, respectively, [Longstaff and Schwartz, 2001] and
[Boyle, 1988]. We then give some conclusive remarks.
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2 The pricing framework

We describe in this section the valuation framework for an american option

and propose a general pricing procedure that uses nonparametric regression.
Denote by Xt = (S1t, . . . , Snt) the vector of state variables (prices) at time

t and let f(Xt) be the payoff of the option. We discretize the lifespan of
the option [0, T ] assuming that the early exercise is possible only in a set of

K−1 discrete intermediate dates 0 < t1 < . . . < tK−1 < T . For convenience
we define t0 = 0 and tK = T . This Bermudan option can approximate

its American counterpart if K is large. Assume for simplicity a constant
interest rate r and let Ft(Xt) denote the value of the option (conditional on

optimal exercise) at time t. It is well known that

Ftj(Xtj) = max
(
f(Xtj), exp(−r(tj+1 − tj))Etj

[
Ftj+1(Xtj+1)

])
, (1)

where the Etj [·] denotes expected value conditional on the information at

tj , along with the boundary condition

FT (XT ) = f(XT ).

Conditional on optimal exercise in [tj+1, T ], equation (1) says that the value
of the option at time tj is the maximum between the gain of immediate

exercise (which is a known quantity) and the discounted expected value
of holding the right of future exercise. Note that taking the maximum

between two operands closely matches the structure of an American option,
that allows at any time only two strategies, but (1) can be adapted to more

general situations where various different decisions can be taken. In this
case, the maximum among the various outcomes is to be selected (for an

example, think to the classical oil well that can be opened, temporarily put
in idle state, or abandoned forever depending in the simplest case on the oil

price at time t).
The price of the option is then simply E0[F0(X0)], that can be estimated

as
1

N

N∑

i=1

max
(
f(X0), exp(−rt1)F̂t1(X

(i)
t1

)
)
,

where F̂t1(Xt1) is a (sample) estimate of E0[Ft1(Xt1)], X
(i)
t1

is the i−th real-

ization of state variable X at time t1 and N is the number of simulations.
The problematic part of backward evaluation of (1) lies in the computa-

tion of the expected value

Etj

[
Ftj+1(Xtj+1)

]
= E

[
Ftj+1(Xtj+1)|Xtj

]
. (2)

A number of approaches has been used to approximate such conditional

mean. [Raymar and Zwecher, 1997] estimates using a bundling approach
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the transition probabilities from state Xtj to Xtj+1 that allow to compute
the mean. A more direct and early approach is advocated in [Rebonato and

Cooper, 1998] that estimates the mean using Fast Fourier methods. A some-
what similar idea is presented and developed in [Longstaff and Schwartz, 2001]

that again estimate directly the conditional mean using a least square linear
regression of F (Xtj+1)’s on the (transformed) sample Xtj ’s.

We propose to estimate the value function Ftj (x) by

F̂tj (Xtj) = max(f(Xtj), e
−r(tj+1−tj)m̂tj(Xtj)), j = K − 1, . . . , 1 (3)

F̂T (XT ) = f(XT ),

where m̂tj(Xtj) is approximated regressing nonparametrically on x

m̂tj(x) = E
[
F̂tj+1(Xtj+1)|Xtj = x

]
. (4)

The expectation m̂(x) can be obtained nonparametrically by various

algorithms like k-nearest-neighbors, kernel regression, LOESS smoothing or
other techniques briefly reviewed in the next section.

In practice the functions m’s are estimated using N Monte Carlo paths of

prices {X(i)
tj , j = 1, . . . , K} where i = 1, . . . , N scans the number of simula-

tions and j = 1, . . . , K runs along the time variable. At time tj a (nonpara-

metric) regression is then performed on the dependent variable F (Xtj+1)
using as independent variable(s) Xtj . Knowing the estimated value of con-
tinuation permits then to choose for each time slice and each path if im-

mediate exercise is preferable. We name the combined use of Monte Carlo
and nonparametric regression as Nonparametric Monte Carlo (NPMC) al-

gorithm.
Among the advantages of this approach with respect to linear regres-

sion there are greater flexibility in choosing a nonlinear response function
m̂(x) and no need to select a proper subset of transformed regressors.

Moreover, we have not to restrict the design matrix, as in [Longstaff and
Schwartz,2001], to the paths that have positive immediate payoffs and obtain

the price by discounting in backward fashion the estimated value functions
and not the realized payoffs. From this specific point of view the method we
propose is similar to [Rebonato and Cooper, 1998]. In [Carriere, 1996] both

estimators are considered.
A drawback of multivariate nonparametric over linear regression is the

well known curse of dimensionality that might restrict the application of
NPMC to options written on few underlying assets, due to exponential in-

crease in the required sample size. As argued for example in [Fan and Gijbels, 1996],
if a neighborhood contains b points along each of d dimensions then there

are bd data points in the corresponding d−dimensional neighborhood. This
means that much larger datasets are needed, with heavy consequences on the

computational requirements of the approach even if d is moderate. The curse
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of dimensionality problem is discussed among others in [Silverman, 1986]
and [Härdle, 1990].

3 A primer in nonparametric regression

In this section we present, in an informal rather than rigorous way, some well
known nonparametric models to estimate a conditional expected value. For

the sake of simplicity, we will assume in the remaining part of the section the
existence of a unique risk source. As discussed previously, the estimation of

the conditional mean (4) is of primary interest in American option pricing.
Suppose we observe (Xi, Yi), i = 1, . . . , N and we want to study the

functional relationship that links the two variables. That is we suppose
Yi = m(Xi)+ εi, where εi are observation errors and we are interested in the

function m.
The scatter plot of the data points is a useful device to obtain a prelimin-

ary qualitative idea about the relation. However, care must be exercised in
order to avoid mistakes: the eye may fall for the concentration of the points
in some region, or by contrast it could be distracted by extreme points.

Figure 1 depicts 1000 simulated data points. The values of the explanatory
variable X and the noise ε are drawn from a standard gaussian random vari-

able and the response variable Y is the following nonlinear transformation
of the X variable:

Yi = sin(Xi) +
1

2
εi, i = 1, . . . , 1000

It might be not unreasonable at first glance to assume that a linear

model is appropriate even though some doubts about inclusion of additional
powers of X in the analysis could arise.

We may specify the model following a parametric or a nonparametric
approach. The first assumes we know the functional form of the regression

curve m and that it can be approximated by a parametric model, i.e. a
functional form depending on a finite set of parameters. A polynomial re-

gression equation is an example of a parametric model. One of the simplest
case is the straight line and we must estimate the intercept and the slope.
The solution of the minimization problem mina,b

∑n
i=1(Yi− a− bXi))

2 gives

us an estimate of the parameters. This method is known as Ordinary Least
Square (OLS) and if we assume the gaussian distribution for the errors εi it

is equivalent to the Maximum Likelihood estimation method.
Observe that a parametric approach has been adopted in the American

option pricing algorithm of Longstaff and Schwartz but, due to the nonlin-
ear regression function, many linear terms are needed to obtain reasonable

precision.
The nonparametric approach departs from the global paradigm of the

parametric approach and considers flexible functional forms. The errors dis-
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Figure 1: The simulated data: Xi, εi ∼ N(0, 1), Yi = sin(Xi)+ 1
2εi, N=1000.

tribution and the functional form of the relationship are not specified in
advance and hence we say it is a distribution-free methods. In the nonpara-

metric approach the regression curve is represented in terms of a function
that is “built” point by point. The value of m(x) at each fitted point is

estimated using a subset of the sample that is changing together with the
value of the point x where we fit.

Some natural questions at this stage are: how many data points do we
consider to estimate the value of the regression function? What is the rel-

evance of each data point in the fitting processes? How we summarize the
sample information to estimate the conditional expected value? The com-

bination of different answers to these questions has produced many different
local models able to capture the features of the regression curve.

The k-nearest-neighbors (k-NN) method, introduced in [Loftsgaarden

and Quesenberry, 1965], obtains m̂k(x) at point x using a constant number
k of observations to compute the weighted mean

m̂k(x) =
n∑

i=1

Wk,i(x)Yi,

where the weights Wk,i = 1/k if Xi is one of the k data points closest to the

estimation point x, otherwise Wk,i = 0. The smoothing parameter k plays
a key role controlling the smoothness of the fitted curve. On one hand,

if k is of the same order of N the local behavior of m̂k(x) disappears and
degenerates to the non conditional expected value. The symmetric case,

when k is too small, leads to the loss of smoothness of the curve.
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The above idea of local model is that the nearest data points are more
informative about the behavior in a neighborhood of x. If the distance from

the fit point is important, than the weights Wk,i should be a decreasing
function of this distance. So we can define the weights as

Wk,i(x) =
Kh(x−Xi)∑n
i=1Kh(x−Xi)

,

where Kh(u) = h−1K(u/h) is called a kernel function. The weights de-

pend on the kernel function and on the smoothing parameter h, called
bandwidth. The kernel estimator, first introduced in [Nadaraya, 1964] and
[Watson, 1964] for the regression curve is

m̂h(x) =

∑n
i=1 Kh(x−Xi)Yi∑n
i=1Kh(x−Xi)

.

Like in the k-NN models, when the smoothness parameter h → ∞ the

estimated regression curve degenerates to the non conditional expected value
of Y , while h→ 0 will produce essentially interpolation.

Another way to estimate the regression function replaces the weighted
average by polynomial in x. The polynomial parameters are estimated by

solving the following minimization problem

min
a

n∑

i=1

Kh(x−Xi)(Yi − m̂h(x; a))2,

where a is a local vector of polynomial coefficients. The weights are com-
puted, as before, using a kernel function.

The Locally Weighted Regression Smoother (LOESS) ([Cleveland, 1979]
and [Cleveland and Devlin, 1988]) and the Local Polynomial Models (LPM)

are two models that (locally) use the polynomial approximation, see [Fan and
Gijbels, 1996] for a complete treatment of the subject. Other developments

of the same idea are based on the use of non-polynomial local approximations
like spline functions, see [de Boor, 1978] or [Green and Silverman, 1994],

that have nice theoretical and computational features.
The LOESS is in some respect similar to k-NN model as it uses a con-

stant fraction, often named span, 0 ≤ d ≤ 1 of data points in a two-step

estimation procedure. In the first step, the polynomial parameters are es-
timated weighting each data points by a kernel function. In the following

step, the weights are updated to take into account the residuals obtained by
the previous fit: the points that have large residuals are downweighted so

that robustness with respect to outliers is obtained.
In the case of LPM, the parameters of the local polynomial are estimated

using the points whose distance from the fit point is smaller than the band-
width h. Hence the estimation of the regression curve considers a variable

number of data points, weighted by a kernel function.
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Observe that there is no need to specify parametrically a regression func-
tion. Hence, no trial-and-error effort is required to introduce and validate

additional terms in the regression model. The potential advantages in the es-
timation of the continuation value are apparent in the option pricing frame-

work. On the other hand, some smoothing parameter (d and h for LOESS
and LPM, respectively) must nevertheless be chosen with care to get reliable

results from any nonparametric method. The book [Fan and Gijbels, 1996]
discusses the convergence of nonparametric estimators that is asymptotic-

ally obtained, under suitable regularity conditions, if h → 0, N → ∞ and
Nh→∞.

Figure 2 shows a comparison of different regression models, both linear
and nonlinear, together with the true sinusoidal transformation. It is mani-
fest that nonparametric models track closely the true regression function in

the whole domain, while the linear model is somehow misleading and should
be re-estimated with additional regressors.

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

X

Y

Figure 2: Comparison of different models: true curve (solid), linear model

(dashed), LOESS (dotted) and spline regression (dotdashed).

4 Some applications of NPMC for option pricing

We provide in this section two applications to American option pricing,
comparing our results with the ones given in [Longstaff and Schwartz, 2001]

and [Boyle, 1988] on univariate and bivariate derivatives.
Consider first an American put option written on an asset following the
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equation
dS = rSdt+ σSdZ,

where r, σ are constants and Z is a standard Brownian motion. The strike
price is fixed at 40 and r = 0.06. Figure 3 depicts the estimated value

functions Ftj , j = 1, . . . , K, that are computed recursively starting from the
lower left to the upper right corner. The figure shows that the unknown value

functions are smoothly estimated using nonparametric regression. Table 1
reports the prices obtained by the NPMC method for a variety of initial

prices S0, volatilities σ and maturities T . All the results are obtained using
N = 500 antithetic simulations (hence 1000 random numbers are used for

the computation of each price) assuming that the option is exercisable 10
times per year.

35 40 45 50

0
1

2
3

4
5

x

F
(x

)

Figure 3: Estimated functions Ftj with K = 20, σ = 0.4, N = 1000. For

greater visibility the functions are subsequently plotted with solid, dashed,
dot-dashed and dotted lines. Estimation proceeds from the payoff profile at

t = T in the lower left corner and ends estimating Ft1 , in the upper right
part of the plot.

Table 1 shows that NPMC slightly underestimates the price of the op-
tion. The error ranges from less than 1 cent to roughly 1/8 (which is often
the tick in option markets) in some unfavorable cases. The fact that the

obtained prices are slightly smaller than the correct ones is expected as only
10 exercise date are possible in one year. Indeed this numerical procedure

approximates an American option with a Bermudan counterpart that is ob-
viously less worthy. More details on the reason of this underpricing and on
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Table 1: Price of an American put option, obtained using LOESS and Spline

regression (N = 500 and N = 2000, respectively) and 10 exercise times per
year. The reported prices are averaged over 50 repetitions and the standard

deviation (SD) is provided. The column labeled “FD” (for finite difference)
is taken from [Longstaff and Schwartz, 2001] and contains an accurate es-

timate of the price.

LOESS (N = 500) Splines (N = 2000)

S0 σ T FD Price SD Price SD

36 .2 1 4.478 4.439 .040 4.452 .018
2 4.840 4.784 .034 4.826 .017

.4 1 7.101 7.067 .062 7.097 .027
2 8.508 8.365 .055 8.522 .033

40 .2 1 2.314 2.294 .042 2.309 .031

2 2.885 2.867 .049 2.888 .028
.4 1 5.312 5.278 .072 5.317 .047

2 6.920 6.814 .077 6.941 .032
44 .2 1 1.110 1.106 .046 1.111 .028

2 1.690 1.715 .055 1.716 .028
.4 1 3.948 3.929 .104 3.942 .032

2 5.647 5.564 .089 5.695 .052

the ways to overcome it are provided if we analyze more closely the beha-

vior of NPMC. For brevity, we focus on the middle part of Table 1 (when
S0 = 40) and examine only the option of the 5-th row of Table 1. To invest-
igate the dependence of the price on N and K, Table 2 shows some pricing

results when the number of simulations and the exercise dates are increased.

Table 2: Average price (50 repetitions) of the put option with S0 = 40, σ =
0.2, T = 1 for different exercise datesK and number of simulationsN (stand-

ard deviations in brackets). The correct price is 2.314, as reported in Table
1.

N (Simulations)
K 500 1000 2000

10 2.300 (.037) 2.310 (.039) 2.305 (.021)

20 2.310 (.043) 2.314 (.030) 2.319 (.020)
50 2.324 (.038) 2.325 (.024) 2.330 (.020)

In general, increasing K produces more accurate prices. This is graphic-
ally depicted in Figure 4 where boxplots of 50 computed prices are depicted

for K = 10, 20, 50 (the first column of Table 2 is ‘graphed’). For compar-
ison, [Longstaff and Schwartz, 2001] get 2.313 setting K = 50, N = 50000

(of course their standard deviation is considerably smaller than ours). There
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Figure 4: Boxplots of 50 prices of the American put option with S0 = 40, σ =

0.2 and T = 1 for different K (number of exercise dates). It is apparent that
increasing K produce more accurate results, with no visible effect on the

standard deviation of the result. The dashed horizontal line corresponds to
the correct price, 2.314.

is no surprise in noticing in Table 2 that increasing N decreases the stand-
ard deviation of the simulation with little effect on the accuracy of the
estimate. As the computation complexity of the LOESS estimator goes

with the square of N , it is generally advisable to increase K, that only af-
fects linearly the required computing time, instead of increasing the number

of simulations. Very tight bounds on the computed price are obtained in
[Haugh and Kogan, 2001] using a useful dual representation of the option

price.
We stress that the above results are not specifically due to the nonpara-

metric regression technique used (namely, LOESS). The last two columns
of Table 1 shows the pricing results obtained by spline regression with 2000

antithetic simulations, being the other parameters fixed as in the LOESS
case. The prices are accurate (the error is at most 5 cents) and the standard
deviations in the last column is roughly halved with respect to the LOESS

ones, which is in agreement with the expected O(N−1/2) law for MC stand-
ard deviation. Hence, we argue that the good results can be obtained using

different nonparametric methods and we defer to future research the detailed
comparison of a host of procedures in order to cast further light on the best

methodology in terms of accuracy and speed1. These findings back up the

1All the pricing algorithms have been coded using R, a program that
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results obtained in other papers, where different nonlinear regressions are
used and good accuracy is obtained regardless of the chosen specific method.

In the remaining part of this section, we price a bivariate American put
option on the minimum of two correlated lognormal assets that is evaluated

in [Boyle, 1988] using a lattice approach. We consider an option that gives
the right to cash at any 0 ≤ t ≤ T the payoff max(0, X−min(S1t, S2t)), where

X is the strike price. In this case the state vector is then Xt = (S1t, S2t)
and the assets follow the equations

dSi/Si = rdt+ σidZi, i = 1, 2.

Table 3: Average prices (with standard deviations based on 50 repetitions)
of an American put option on the minimum of two assets, based onN = 8000

simulations and LOESS regression.

Strike Price [Boyle, 1988] LOESS SD

35 1.423 1.429 .029

40 3.892 3.911 .036
45 7.689 7.714 .055

Denoting the correlation of the brownian motions Zi’s by ρ, the paramet-
ers we use are the following: S01 = S02 = 40, σ1 = 0.2, σ2 = 0.3, ρ= 0.5, r =

0.04879 continuously compounded corresponding to 5% effective per annum,
T = 7/12 years and exercise prices X = 35, 40, 45. Pricing results provided

in Table 3 are based on LOESS regression with N = 8000 simulations and
span d = 0.05 (i.e. only 5% of the observations are on average used in the

regression). The results are accurate and the difference from Boyle values
is at most 0.025. To give an idea of the required computation effort, the

time needed to compute one of the entries of Table 3 (50 prices) is about
9.3 seconds on a Celeron 900 MHz. As the code we employ is not compiled,
we have no doubts that much faster pricing can be easily achieved.

5 Conclusions

This papers survey Monte Carlo algorithms for American option pricing,

based on nonparametric regression on simulated paths and iterated back-
ward estimation of the continuation value. We aim to provide a simple

introductory description of these methods, discussing advantages and pit-
falls of linear and nonparametric regression. We show that the estimation
of the nonlinear conditional expectation is eased if flexible nonparametric

can be downloaded at http://cran.r-project.org. The file containing the
program for American options pricing using spline regression is available at
http://www.dma.unive.it/∼paolop/long2d spline.R
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regression is used as, for example, there is no need to perform a subset
selection of regressors and the risk sources alone are used as independent

variables.
We informally review some nonparametric regression models, providing

an illustrative example and pointing to some relevant work in this area.
Some applications to option pricing are described. A standard American

put option is first evaluated and the results are compared to the ones in
[Longstaff and Schwartz, 2001], showing that accurate price estimation is

obtained using a smaller number of simulations and exercise dates. This
appears to be true no matter of which regression model is selected (LOESS

or spline smoothing, for example, give fairly similar results). We analyze
the unbiasedness and standard deviations of the computed prices varying
the number of exercise dates K.

We finally apply the method to an American put option on the minimum
of two assets, showing that the algorithm can be tailored to multivariate

derivatives with little effort (at least when the number of assets is low to
avoid the curse of dimensionality).
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