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Abstract 
 

We assess the log-periodicity hypothesis for financial series behavior [3-6].  We put forward a three-
harmonic log-periodic formula to fit both daily and intraday data.  And we take the exchange rate between the 
Brazilian real and the US dollar to illustrate our case. 
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1. Introduction 
 
A familiar way to generate randomness is to break a solid object.  The line along which 
fracture occurs seems random, and this is almost universal to all kinds of materials.  It can 
then be argued that whatever basic mechanism is causing randomness, it cannot depend on 
the details of particular materials [1]. 

So there is room for a unified theoretical model for predicting rupture in materials in 
general [2].  The breakdown can be modeled as a network of growing and interacting 
microcracks that finally result in rupture.  It can then be found that the rate at which these 
cracks release energy is correlated with the time left before the material suffered failure. 
Thus the microcracks inform us a countdown to rupture. 

The microcracks can be plotted against the log of time to failure. They then appear 
to repeat at perfectly regular, log-periodic intervals.  By plotting three or more microcracks 
one could use the intervals between them to predict how long it would be before the 
material cracked. 

From observation of actual experiments, Didier Sornette [3, 4] thinks that discrete 
scale invariance is the right way to make it possible to spot a breakdown coming in many 
systems under stress. The distribution of crack lengths in ordinary scale invariance shows 
plots of the length of a crack against the number of cracks of that length with a smooth 
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curve in which tiny cracks are most common and big cracks least common.  Under discrete 
scale invariance some crack lengths will occur more frequently than for an ordinary scale 
invariance distribution. The details will be different for each system, but the data will 
always be hit with signatures that reveal when the whole system will go critical.  And these 
signatures can be log-periodic. 

Financial systems under stress that ultimately crash might then exhibit log-periodic 
signals [3, 4].  Sornette and Johansen [5] make the sanguine claim of having picked out the 
signals prior to the Wall Street crashes of 1929, 1962, and 1987, as well as the 1997 crash 
on the Hong Kong stock exchange.  They also claim to have forecasted the Nasdaq high-
tech bubble burst in April 2000 and correctly predicted the sudden upturn of the Japanese 
Nikkei index in January 1999. 

A bull market (bubble) occurs when optimism spreads, pushing the market value 
artificially high. The bubble may then burst in a crash.  If not, a slow period of downward 
adjustment (bear market or anti-bubble) will follow.  The equations found in the study of 
failure mechanisms in materials could be used to capture financial crashes.  This is because 
the way that cracks develop and cause damage is similar to the way that information seeps 
through the market and changes opinion. 

Bubbles and anti-bubbles are traits of herding, imitative behavior.  Coherent large 
scale collective behavior presents structure that results from the repeated nonlinear 
interactions.  And here the whole turns out to be greater than the sum of its parts.  Such 
characteristics are usually present in complex systems, which are not amenable to 
mathematical analysis [1].  A complex system is computationally irreducible, which means 
that the only way to decide about its behavior over time is to let it actually evolve in time.  
Thus it is inherently unpredictable. 

But predicting the detailed evolution of a complex system is pointless; what really 
matters is to predict the extreme events that result from the slow build-up of long-range 
correlations leading to a global cooperative behavior [4].  The slow build-up of stress 
eventually pushes the system to a critical time interval.  In particular, crashes may be 
caused by local self-reinforcing imitation between traders, which leads to a bubble.  After a 
threshold known as the critical point, many traders may place the same order (i.e. sell) at 
the same time, thereby provoking the crash [4]. 

So crashes are in a sense outliers with properties that are statistically distinct from 
the rest of the population.  Imitation makes a financial system non-stochastic on the eve of 
a crash.  Crashes are thus deterministic and governed by log-periodic formulas [5, 6].  As a 
result they could in theory be predictable. 

The log-periodicity hypothesis departs from the study of extreme events of 
conventional statistics.  If log-periodicity is present at certain times in financial data then 
this is suggestive that these periods of time present scale invariance in their time evolution.  
(And this scaling is not the one related to the power law tails of returns [7, 8].) 

The literature on log-periodicity usually employs daily data and tries out fits using 
one-harmonic and two-harmonic log-periodic equations.  By taking intraday (and also 
daily) financial data into account, this Letter puts forward that a three-harmonic log-
periodic formula adjusts better to the data.  The data sets are for the intraday and daily 
exchange rate between the Brazilian real and the US dollar. 

Section 2 of this Letter presents data and adjusts the log-periodic formulas to the 
series.  And Section 3 concludes. 
 



2. Data and analysis 
 
The daily data set ranges from 2 January 1995 to 31 December 2003.  The set has 2259 data 
points obtained from the Federal Reserve website.  The 15-minute set comprises 9327 data 
points from 9:30AM of 19 July 2001 to 4:30PM of 14 January 2003.  Figures 1a and 1c 
display raw data of the two sets, and Figures 1b and 1d show their single-period returns. 

Sornette and Johansen's [6] one-harmonic log-periodic equation is 
])ln(cos[)(ln 1φτθτττ λλ +++= CBAZ ,                                                                           (1) 

where τ is the time starting with the onset of an anti-bubble.  We set ctt −=τ  > 0, where tc 
is the critical time.  Parameter θ is angular log-frequency, C is amplitude, and φ1 is the 
phase. Term A + Bτλ is the trend across time, and A, B, and λ give its shape. 

Their two-harmonic log-periodic function [6] is given by 
])ln(2cos[])ln(cos[)(ln 21 φτθτφτθτττ λλλ +++++= DCBAZ .                                    (2) 

This version has two extra parameters, the amplitude D and phase φ2 of the second 
harmonic. 

Our suggested three-harmonic log-periodic formula is 
])ln(3cos[])ln(2cos[])ln(cos[)(ln 321 φτθτλφτθτφτθτττ λλλ +++++++= EDCBAZ (3) 

This equation adds the third harmonic with E and its phase φ3.  The parameter values in 
equations (1)-(3) were estimated by nonlinear least squares using SAS. 

Log-periodic cycles are generally described by a sum of log-periodic harmonics 
(LP), i.e., 
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But here we consider Jλλ == ...1  and Jθθ == ...1 . 
Figures 2a, 2b, and 2c display the log of the daily real-dollar rate from 28 August 

2000 to 26 September 2003 together with its one-harmonic, two-harmonic, and three-
harmonic log-periodic fit respectively.  The three-harmonic formula adjusts better.  Yet the 
adjustment fails for the entire series. 

Thus an anti-bubble started at the critical time tc = 28 August 2000.  This finding is 
consistent with the anti-bubble that started around August 2000 in US stockmarkets [6].  
Indeed as reported by the Brazilian central bank (www.bacen.gov.br), ‘after two significant 
valuations the Brazilian currency devalued against the US dollar in the third quarter of 2002 
in response to woes in US stockmarkets and Argentina’. 

Figures 3a, 3b, and 3c show the fit for the intraday data using one harmonics, two 
harmonics, and our suggested three harmonics.  As can be seen, the three-harmonic log-
periodic formula adjusts better to the data either.  Here we take the starting time at 1:00PM 
of 31 May 2002.  Parameter values for the fits are presented in Tables 1 and 2. 

An anti-bubble in the intraday rate thus started at the critical time tc = 31 May 2002.  
This makes sense as market participants were anticipating the left-wing presidential victory 
of November 2002. 
 
3. Conclusion 
 
Although complex financial systems are not arguably amenable to mathematical analysis, 
imitative behavior in a bull market renders a system periodic on the eve of a crash.  The 



log-periodicity hypothesis usually takes low frequency data to capture the long-range 
correlations that build up to eventually provoke the crash.  The novelty of this Letter is to 
suggest that the log-periodicity also applies to high frequency, intraday data. 

In practice one-harmonic and two-harmonic log-periodic formulas have been 
employed to fit daily data.  This Letter puts forward a three-harmonic log-periodic formula 
that seems to adjust better to both daily and intraday data.  We take the real-dollar 
exchange rate to illustrate our case. 

Our result is thus suggestive that the signatures of coming crashes can also be 
detected at short time scales. 
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Table 1a 
 

Parameter Estimate Standard 
Error 

95% Confidence Limits 

A 0.5991 0.00840 0.5827 0.6156 
B 0.00241 0.000460 0.00151 0.00331 
C -0.00079 0.000138 -0.00106 -0.00052 
θ -8.8204 0.0573 -8.9329 -8.7079 
φ1 65.3479 0.3551 64.6509 66.0449 
λ 0.8430 0.0280 0.7881 0.8979 

 
 
Table 1b 
 

Parameter Estimate Standard 
Error 

95% Confidence Limits 

A 0.5942 0.00825 0.5780 0.6104 
B 0.00298 0.000527 0.00195 0.00402 
C 0.000977 0.000156 0.000670 0.00128 
D 0.000170 0.000034 0.000103 0.000237 
θ -8.5215 0.0507 -8.6211 -8.4218 
φ1 60.3717 0.3139 59.7554 60.9879 
φ2 1.5558 0.6485 0.2827 2.8290 
λ 0.8091 0.0257 0.7587 0.8595 

 
 
Table 1c 
 

Parameter Estimate Standard 
Error 

95% Confidence Limits 

A 0.5923 0.00819 0.5762 0.6084 
B 0.00325 0.000555 0.00216 0.00434 
C 0.00107 0.000165 0.000744 0.00139 
D 0.000187 0.000037 0.000114 0.000260 
E 0.000109 0.000026 0.000059 0.000159 
θ -8.3940 0.0466 -8.4854 -8.3026 
φ1 59.5841 0.2880 59.0187 60.1495 
φ2 -0.2023 0.5954 -1.3710 0.9665 
φ3 -50.9140 0.8964 -52.6737 -49.1544 
λ 0.7955 0.0248 0.7468 0.8441 

 
Log-periodicity in the daily real-dollar rate. 
Results for the one- (Table 1a), two- (Table 1b), and three- (Table 1c) harmonic log-
periodic equation. 



Table 2a 
 

Parameter Estimate Standard 
Error 

95% Confidence Limits 

A 0.9451 0.00449 0.9363 0.9539 
B 0.000609 0.000147 0.000322 0.000897 
C 0.000175 0.000040 0.000096 0.000255 
θ 4.8615 0.0629 4.7382 4.9849 
φ1 44.8125 0.4643 43.9021 45.7228 
λ 0.7952 0.0299 0.7366 0.8538 

 
 
Table 2b 
 

Parameter Estimate Standard 
Error 

95% Confidence Limits 

A 0.9601 0.00254 0.9551 0.9650 
B 0.000109 0.000017 0.000076 0.000142 
C 0.000028 3.959E-6 0.000020 0.000036 
D -0.00002 2.492E-6 -0.00002 -0.00001 
θ 9.4812 0.0337 9.4150 9.5474 
φ1 -3.3802 0.2525 -3.8754 -2.8851 
φ2 -58.5288 0.5126 -59.5339 -57.5236 
λ 1.0268 0.0191 0.9893 1.0644 

 
 
Table 2c 
 

Parameter Estimate Standard 
Error 

95% Confidence Limits 

A 0.9625 0.00222 0.9581 0.9669 
B 0.000083 0.000014 0.000054 0.000111 
C 0.000015 2.563E-6 9.716E-6 0.000020 
D -0.00002 3.019E-6 -0.00002 -0.00001 
E 0.000017 2.77E-6 0.000011 0.000022 
θ 5.4020 0.0203 5.3621 5.4419 
φ1 28.5583 0.1543 28.2558 28.8609 
φ2 1.7746 0.2951 1.1960 2.3532 
φ3 3371.3 0.4534 3370.4 3372.2 
λ 1.0590 0.0222 1.0154 1.1026 

 
Log-periodicity in the intraday real-dollar rate. 
Results for the one- (Table 2a), two- (Table 2b), and three- (Table 2c) harmonic log-
periodic equation. 



 

 
Figure 1a. Daily real-dollar rate from 2 January 1995 to 31 December 2003. 
 



 
Figure 1b. Daily real-dollar single-period returns from 2 January 1995 to 31 December 2003. 
 



 
 
Figure 1c. Fifteen-minute real-dollar rate from 9:30 AM of 19 July 2001 to 4:30 PM of 14 January 2003. 
 



 
Figure 1d. Fifteen-minute real-dollar single-period returns from 9:30 AM of 19 July 2001 to 4:30 PM of 14 
January 2003. 



 
Figure 2a.  Log of the daily real-dollar rate from 28 August 2000 to 26 September 2003 together with its one-
harmonic log-periodic fit (dashed line). 
 

 
Figure 2b.  Log of the daily real-dollar rate from 28 August 2000 to 26 September 2003 together with its two-
harmonic log-periodic fit (dashed line). 
 



 
Figure 2c.  Log of the daily real-dollar rate from 28 August 2000 to 26 September 2003 together with its 
three-harmonic log-periodic fit (dashed line).  The three-harmonic log-periodic formula adjusts better than the 
previous cases.  See Table 1. 
 
 

 
Figure 3a.  One-harmonic log-periodic fit (dashed line) for the intraday real-dollar returns from 1:00PM of 31 
May 2002 to 4:30PM of 14 January 2003. 
 



 
Figure 3b.  Two-harmonic log-periodic fit (dashed line) for the intraday real-dollar returns from 1:00PM of 
31 May 2002 to 4:30PM of 14 January 2003.  
 

 
Figure 3c.  Three-harmonic log-periodic fit (dashed line) for the intraday real-dollar returns from 1:00PM of 
31 May 2002 to 4:30PM of 14 January 2003. As can be seen, the three-harmonic log-periodic formula adjusts 
better to the data.  See Table 2. 


